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ON A NEW CLASS OF UNIVALENT FUNCTIONS

KHALIDA INAYAT NOOR

ABSTRACT

A well-known linear operator is defined which acts on an analytic
function in the open unit disk by forming its convolution with an
incomplete beta function. In this paper, using this operator, we
define a new class of analytic functions in the unit disk and prove
that this class consists entirely of univalent functions. An inclu-
sion result is given. It is shown that it is closed under convolution
with convex function and some applications of this result are also
discussed.

1. INTRODUCTION

Let A be the class of analytic functions f on the open unit disk
E={z: |z| <1}, normalized by f(0) = 0 and f'(0) = 1. The class A
is closed under the Hadamard product or convolution

® n+1
(f *g) (2) = I ab z"°,
where
f(z) = ¢ a, z"+1, g(z) = ¢ bn zn+1 .
n=0 n=0

In particular, we consider convolution with the function ¢(a,c)

defined by
¢(a,c;z) = ; (:)" z"+1, zeE, c =0, -1, -2,....
n=0 n
where
(a). = r(at+n)/r(a),

n

i.e. (a)o =1, (a)n a(a+l)eeeeeeess. (a+n-1), n >1. The function
¢(a,c) is an incomplete beta function, related to the Gauss hyper-
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geometric function by
o(a,c;z) =z ,F (1,a5¢;2)

It has an analytic continuation to the z-plane cut along the positive
and ¢(2,1;2) is

real line from 1 to ». We note that ¢(a,l;z) = 2
the Koebe function. (1-2)
Carlson and Shaffer [2] defined a convolution operator on A

involving an incomplete beta function as
L(a,c)f = ¢(a,c)*f, f ¢ A.

If a=0, -1, -2,...., then L(a,c)f is a polynomial. If a0, -1, -2,...,
then application of the root test shows that the infinite series for
L(a,c)f has the same radius of convergence as that for f because

1
(a) "
lim T—Y_n =1
N »>oco Cn

Hence L(a,c) maps A into itself. The Ruscheweyh derivatives of f
are L(n+1,1)f, n=0,1,2,.... . L(a,a) is the identity and if a#0,
-1, -2, ...., then L(a,c) has a continuous inverse L(c,a) and is a 1-1
mapping of A onto itself. L(a,c) provides a convenient representation
of differentiation and integration. If g(z) = zf'(z), then
g = L(2,1)f and f = L(1,2)g.

Let P be the class of analytic functions with positive real part
in E. Then the class P' is defined to be the class of all functions f
such that f'e P.

We now define the following.

Definition 1.1

" Let feA. Then f ¢ P'(a,c) if and only if, L(a,c)f e P'.

2. PRELIMINARIES

Lemma 2.1 [4].

If c#0 and a and ¢ are real and satisfy a > N(c), where
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[ HEER if ] >+
N(c) =X (2.1)
2
3c 2 . 1
5t 3 if |c] <3 >

then ¢(c,a;z) is convex in E.

Lemma 2.2 [6]

If f is convex in E with f(0)=0 and f'(0)=1, then Re fgz) >%
for z ¢ E.
Lemma 2.3

If p(z) is analytic in E, p(0) = 1 and Re p(z) > %-, z ¢ E, then
for any function F, analytic in E and F(0)=0, the function (%) p*F
takes values of the convex hull of F(E).

This result follows immediately from Herglotz' representation for p.

3.  MAIN RESULTS
In the following, we prove that P'(a,c) C_P'.

Theorem 3.1

Let f ¢ P'(a,c), where a and c satisfy the conditions of Lemma 2.1.
Then, for z ¢ E, f ¢ P'. This implies f is close-to-convex anh hence
univalent in E, see [3].

Proof
Since L{(a,c)f ¢ P', we have
Re{¢(a,c;z) * f(z)}' >0, z ¢ E. (3.1)
Now
f'(z) = Eﬂii;&iil] * [f'(z)] * Eﬁi&;ﬂill]
= [¢(a’c;z) * f(z)]' * ic_’;;’zl; (3.2)
Applying Lemmas 2.1 and 2.2, we see that
Re $i£g§i£l > %-, z eE. (3.3)

From (3.1), (3.2), (3.3) and Lemma 2.3, we obtain the required
result that Re f'(z) > 0 for z ¢ E i.e. f eP'.

Next, we prove an inclusion result.
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Theorem 3.2
Let a#0, c and d be real and ¢ > N(d), where N(d) is defined as
in (2.1). Then
P'(a,d)C_P'(a,c).

Proof
Let f ¢ P'(a,d). This implies that

(¢(a,d)*f)’ =p e P, for z ¢ E. (3.4)
Now
¢la,c) = ¢(a,d) * ¢(d,c).
So

(s(ac) * £)r = Ha) v g

z

3 [o(a,d) * o(d,c)] * f*

(M*f')*m
z F2

"

(¢(a,d) * £)r » Hdac).

Using Lemmas 2.1 and 2.2 along with (3.4), we have (¢(a,c)*f)' ¢ P, and
consequently f ¢ P'(a,c). This proves our theorem.

We now prove that the class P'(a,c) is closed under convolution
with convex univalent functions.

Theorem 3.3

Let a # 0 and c be real and satisfy c > N(a), where N(a) is
defined in the similar way of (2.1). Let y be a convex univalent
function in E. If f ¢ P'(a,c), then y * f ¢ P'(a,c).

Proof
We want to show that

(¢(a,c) * (y*f))' eP,

Z

Let 2

= y(z). Then

(o(a,c) * (f * zy))"
.QL(P_ZLEl* (F * z)"

(e(a,c) * (y*f))’
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= (_‘E_____(aéc) * fl) * "‘1

(¢(a,c)*f)' * y«

Using the Lemmas 2.1, 2.2, 2.3 and the fact that f ¢ P'(a,c), we
obtain the desired result.

We shall now give some applications of theorem 3.3.
Theorem 3.4

Let f ¢ P'(a,c), where a and ¢ satisfy the conditions of
Theorem 3.3. Let, for b > 0

F(z) = 2L [F 071 et (3.5)
z 0

Then F ¢ P'(a,c).
The operator (3.5) for b = 1,2,3,.... was studied by Bernardi [1].

Proof

Let

% b+l _j 1
¢b(z) = jfl 5 z7 1+y = b b>0

Then ¥ is convex for z ¢ E (see [5]). Setting
F(z) = (g, * ) (2)

and using Theorem 3.3 we get the required resuilt.

Theorem 3.5

Let f ¢ P'(a,c) with a and c satisfying the conditions of
Theorem 3.3. For 0 < A < 1, let

FA(z) = (1-2) f(z) + azf'(2). (3.6)
Then FA e P'(a,c) for |z| < o where
ro= 1 ) (3.7)

0 /<2
2) %+ /40T - 22+ 1

Proof
We can write (3.6) as follows

Fo(2) = (u,* )(2), (3.8)
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where

(3.7)

V4
(1-2)

y4
“’x(z) (l-x)—l—_;+x ,» 0 <A<l

z+ 1 [1+(n-1)2]2"
n=2

The function v, 1s convex for |z] < ro> Where ry is given by
and this radius is best possible. Therefore applying Theorem

3.3 for (3.8) we see that F)‘ e P'(a,c) for |z| < ro where ro is given

by (3

.7). This completes the proof.
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