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Abstract

The maximal subgroups of the Rudvalis sporadic simple group are completely classified
up to conjugacy.

1 Introduction.
The Rudvalis group Rud is one of the six sporadic finite simple groups which are not involved in
the Fischer-Griess Monster. The aim of this paper is to classify the maximal subgroups of $Rud$,
where we use ATLAS notation to denote the isomorphism types of groups [2].

Theorem 1.1 The Rudvalis simple group of order $2^{14}\cdot 3^{3}\cdot 5^{3}\cdot 7\cdot 13\cdot 29$ has exactly 15 conjugacy
classes of maximal subgroups. The isomorphism types of the representatives are as follows:

$(A)$ Four 2-local subgroups: $(B)$

(1) 2 $\cdot$
$2^{4+6}$ : $S_{5}$ , (5)

(2) $2^{3+8}$ : $L_{2}(7)$ , (6)
(3) $2^{6}\cdot G_{2}(2)$ (non-split), (7)
(4) $(2^{2}xSz(8)):3$ . (8)

One 3-local and three 5-local subgroups:
$(3 \cdot A_{6})\cdot 2^{2}$ ,

$(5_{+}^{1+2} : Q_{8})\cdot 4$ ,
$5^{2}$ : $GL_{2}(5)$ ,
(5: 4) $xA_{5}$ .

$(C)$ Seven non-local subgroups:
(9) $2F_{4}(2)$ , (13) $L_{2}(29)$ ,

(10) $U_{3}(5).2$ , (14) $PGL_{2}(13)$ ,
(11) $A_{8}$ , (15) $A_{6}\cdot 2^{2}$ .
(12) $L_{2}(25):2^{2}$ ,

It should be mentioned that the same result has also obtained by R. Wilson [10] by fully
using computer for calculating matrices of degree 28. The original version of the present paper
was written in 1984, completely independent from Wilson’s work (see p. 248 in [2]). Since the
methods I used in that paper are not so dramatically different from those used by Wilson, I did
not submit the paper. However, I have been asked by several people where my paper appeared
and some of them kindly encouraged me to publish it. Thus I decided to publish it, in order to
make it easy to access and to stress a difference between my method and Wilson’s: that is, in the
present paper, the classification has done without using computer. In particular, the existence
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of a subgroup isomorphic to $A_{8}$ , which was not established before $Wilsons$) or the author’s work,
will be shown by a computer-free method.

We give several remarks about notation. We use standard notation in group theory. For
example, $Q_{8}$ and $SD_{16}$ mean the quarternion group of order 8 and the semidiheadraJ group of
order 16, respectively. We use $\Omega_{1}(P)$ to denote the subgroup generated by elements of order $p$

of a p-group $P$ . As for other notation, we follow [2]. We also freely use information (structure
constants, for example) obtained from the character table of the Rudvalis group, which we can
see $f$. $g$ . in [2] p. 127. Throughout this paper, we adopt the naming of the conjugacy classes of
the Rudvalis group by [2].

We recall several papers about the Rudvalis group $Rud$ , whose results will be used in this
paper. Parrott [7] determined much of local structures of Rud as well as the conjugacy classes
(see [2] p. 127). He also proved the existence of subgroups isomorphic to $2F_{4}(2)$ and $2^{6}G_{2}$ ,
by applying the Brauer trick. Conway and Wales [4] constructed the double cover of Rud as
the matrix group of degree 28 over $C$ , and proved that it has a transitive rank-3 permutation
representation of degree 4060 with one point satbilizer $2F_{4}(2)$ . Afterward, Conway [3] gave a
more comprehensible description of thi$s$ representation as well as the existence of subgroups
isomorphic to $U_{3}(5).2$ . The character tables of the Rudvalis group and its double cover were
calculated by J. S. Frame. Assa [1] and O’Nan [6] characterized Rud by its Sylow 2-subgroup and
a 2-1ocal subgroup isomorphic to $2^{6}G_{2}(2)$ , respectively. The existence of subgroups isomorphic
to $L_{2}(29)$ has shown by Young [11]. By observing the representation over $F_{2}$ obtained from
the 28-dimensional ordinary representation above, Mason and Smith [8] showed the existence
of subgroups isomrphic to $L_{2}(13)$ . Furthermore, the list of maximal subgroups of $2F_{4}(2)^{\prime}$ wae
obtained independently by Tchakerian [9] and Wilson [10].

Now we describe the outline of the proof of the theorem. We start with an observation that
every maximal subgroup of a finite simple group $G$ is the normalizer in $G$ of a characteristically
simple subgroup. A characteristicaly simple group is a direct product of isomorphic simple
groups. In particular, each abelian characteristically simple group is an elementary abelian
p-group for some prime $p$.

Thus the process of making a complete list of maximal subgroups of $G$ , up to conjugacy, is
divided into the following three steps. First, we make the complete list of characteristically simple
groups which actually occur as subgroups of $G$ . Second, we determine the classes and normalizers
in $G$ of each subgroup of this list. Finaly, we choose maximal subgroups by $exa\iota nining$ the
inclusion relations up to conjugacy among those normalizers.

First step contains constructions of some unknown simple subgroups. Usually, such sub-
groups are of fairly large indices in $G$ and do not have nice geometric meanings. Thus this
construction should be done by examining the generators and relations. This usually requires
enough information about explicit matrix representations for individual elements of $G$ and tough
calculation which often need help of computers. However, for the Rudvalis group, the only un-
known subgroup is $A_{8}$ , which has a nice presentation. Thus, we can verify these relations by only
observing local subgroups (see \S 9.1,2). This is the reason why we can avoid use of computers.

Second step is complicated and sometimes we need computer to complete it. In this paper,
we will finish this step without using computer, since we can reduce the required works by
mainly exploiting the following three methods. The first one is to use the argument based on
enumerations of structure constants. This will be applied to subgroups isomorphic to $A_{5},$ $A_{6}$ ,
$L_{2}(7),$ $L_{2}(13),$ $L_{2}(25),$ $L_{3}(3)$ and $Sz(8)$ . Since the structure constants are rather small for these
subgroups, this argument is very useful. The second one is to show that the subgroup in question
should fix a non-trivial vector of a 28-dimensional vector space over $F_{2}$ on which Rud $ac$ts (see
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\S 2.2). This is applied to the subgroups isomorphic to $2F_{4}(2)$ or $L_{2}(7)$ . The third method is to
generate groups by taking successive normalizers. The subgroups isomorphic to $A_{7},$ $A_{8},$ $L_{2}(29)$

and $U_{3}(3)$ are treated by this method.
Finaly, we describe the orgamization of this paper. In \S 2, we explain notation and several

arguments frequently used in this paper. In \S 3 and 4, we treat the first and second steps
above for abelian characteristically simple subgroups. That is, we determine the maximal p-
local subgroups for each prime $p$ dividing the order of $Rud$ . In \S 5, we will consider the first
step for non-abelian subgroups. Subgroup isomorphic to $A_{8}$ will be constructed in \S 9.2. The
other sections are devoted to complete the second step for non-abelian characteristically simple
subgroups. Then, by observing the results in every sections, we immediately have the main
theorem.

2 Notation and some standard arguments.
Throughout this paper, $G$ will denote a fixed finite group isomorphic to the Rudvalis simple
group. For any subgroup $H$ of $G$, we adopt the ATLAS notation to denote the conjugacy classes
of $H$ ; that is, the classes of elements of a given order are arranged in decending order of the
orders of their stabilizers. If there is a risk of confusion, we denote these classes of $H$ with the
subscript, like $(2A)_{H}$ . For $G=H$ , the subscript $G$ will be dropped. Elements contained in a
class $(nX)$ of $H$ are called $(nX)_{H}$-elements. If a subgroup of $H$ has an isomorphism type $X$ in
ATLAS notation, we cal it am X-subgroup. For an $(lA)_{H}$-element $x$ and an $(mB)_{H}$-element $y$

with $xy\in(nC)_{H}$ , the subgroup \langle $x,$ $y$) of $H$ is called of H-type $(lA, mB;nC)_{H}$ . Furthermore,
$C_{H}((nA)_{H})$ and $N_{H}((nA)_{H})$ mean the isomorphism types of the centralizer and the normalizer
of the cyclic group generated by an element of a class $(nA)_{H}$ , respectively. Finally, we say that
a subgroup $H$ of $G$ is $nA$-pure, if any non-trivial element of $H$ lies in a class $nA$ (of $G$).

2.1 Enumeration of structure constants.
For a subgroup $H$ of $G$ and a fixed element $t\in(nC)_{H}$ , we define

$(lA, mB;t)_{H}$ $:=\{(x, y)\in(lA)_{H}x(mB)_{H}|xy=t\}$ .

The subscript $H$ is dropped when it is clear which group is meant. The structure constant
$\#(lA, mB;t)$ can be calculated as follows, using the character table of $H$ :

$\#(lA, mB;t)_{H}=\frac{|H|}{|C_{H}(lA)||C_{H}(mB)|}\sum_{\chi}\frac{\chi(g)\chi(h)\overline{\chi(t)}}{\chi(1)}$ ,

where $g$ and $h$ are any elements of $lA$ and $mB$ respectively, $\chi$ runs over all the irreducible
characters of $G$ and $\overline{\chi(t)}$ means the complex conjugate of $\chi(t)$ . In particular, this value is
independent of the particular choice of $t\in(nC)_{H}$ . Thus we also denote it by $\#(lA, mB;nC)$ .

Let $H$ be a subgroup of $G$ of G-type (lA, $mB;nC$), and let $t$ be an $(nZ)_{G}$-element of $H$ . For
a subset $K$ of $G$ containing $t$ , we define

(lA, $mB;t$ ) $\cap K:=\{(x, y)\in(lA)x(mB)|x, y\in K, xy=t\}$ .

In non-local analyses (\S 5-9), we often consider the set (lA, $mB;t$ ) $\cap K$ for the set $K=\bigcup_{g\in N_{G}(t)}H^{9}$ .
We denote this important set by $H(t):H(t)$ $:=\bigcup_{g\in N_{G}(t)}H^{9}$ . Assume that (lA, $mB;t$ ) $\cap(H\cap H^{9})=$
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$\emptyset$ for any $g\not\in N_{G}(\ell)$ . Then the cardinality of this set is given by

$|(lA, mB;t)\cap H||N_{G}(t)$ : $N_{G}(t)\cap N_{G}(H)|$ .

We note that the first factor of this value can be calculated by the character table of $H$ , if we
know the fusion pattern of $H$ in $G$ . In fact, if the sets $(lA)_{G}\cap H$ and $(mB)_{G}\cap H$ are divided
into the conjugacy classes $(lA_{1})_{H},$

$\ldots,$
$(lA_{p})_{H}$ of $H$ and $(lB_{1})_{H},$

$\ldots,$
$(lB_{q})_{H}$ of $H$ , respectively, we

have
$|(lA, mB;t)\cap H|=\sum_{1=1j}^{p}\sum_{=1}^{q}|((lA_{i})_{H}, (mB_{j})_{H}$ ; $t)_{H}$ ) $|$ .

This formula turns out to be very useful to determine the conjugacy classes of non-abelian simple
subgroups of $G$ (see \S 6-8).

2.2 The 28-dimensional $F_{2}G$-module.
Mason and Smith [8] have constructed an $F_{2}G$-module $V$ of dimension 28 as follows. Let $\tilde{G}$ be
the double cover of $G$ and $V_{0}$ be CG-module of dimension 28 over $C$ constructed in [4]. Then
there exists a $Z[i]\tilde{G}$-module $V_{1}$ containing a basis of $V_{0}$ . Since $Z[\iota]/(i+1)\cong F_{2}$ , we get an
$F_{2}G$-module $V$ of dimension 28 over $F_{2}$ by reading the coefficients of representation matrices
afforded by $V_{1}$ modulo $i+1$ ; that is, $V$ $:=Z[\iota]/(i+1)\otimes V_{1}$ .

We can find in [8] Table 8 the G-orbits on the set $V^{*}$ of non-zero vectors of $V$ and the
corresponding stabilizers. For convenience, we quote it here, where the first column provides a
name for a representative of each orbit, the second column shows the isomorphism type of the
corresponding stabilizer, and the third column gives 1/29 times the length of the corresponding
G-orbit. Note that any element of order 29 of $G$ acts fixed point freely on $V$ .

Table 1: R-orbits on $V^{*}$ .

$l$ $Au\ell(L_{2}(25))$
$tvafName$

$2Stabi1izer2.2^{4+8}S_{5}F_{4}(2)$

(Orbit $1ength$ )

$/29l,l64,800l61,28020,475l4,400140|_{r}^{S}pgNw$

ame

$Stabi1izerS_{7}2.2^{4}.2A_{5}PGL_{2}(13)2^{6}\cdot G_{2}(2)2^{(8)}S_{3}$

(Orbit $1ength$)

$/292,304,0003,276,000l,3l0,400998,4006,500$

$(2^{2}xSz(8))3$

3. $Aut(A_{6})$

From this table, we can calculate the dimensions of subspaces of $V$ fixed by elements of $G$ of
odd orders (see [8] Lemma 2.3).

Lemma 2.1 The dimensions of $C_{V}(3A),$ $C_{V}(5A),$ $C_{V}(5B)_{f}$ and $C_{V}(7A)$ are 10, 8, 4 and 4,
respectively.

The following argument (DIM in [8]) $wiU$ be used in \S 7 and 8, as well as the above Table and
Lemma. Let $g_{1}=1,$ $g_{2},$ $\ldots$ , $g_{\mathfrak{n}}$ be elements of odd order of a finite group $X$ acting on a space
$W$ over a field $k$ of characteristic 2. Assume that for all possible $F_{2}X$-irreducible modules $W_{1}$

($i=1,$ $\ldots$ , k) of dimensions less than or equal to dim $W$ and for each $j=1,$ $\ldots$ , $n$ , we know the
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dimensions of subspaces $C_{W}(g_{j})$ of $W$ and $C_{W_{i}}(g_{j})$ of $W_{1}$ fixed by $g_{f}$ . Then the multiplicities $m_{i}$

of $W_{1}$ among the $F_{2}X$-composition factors of $W$ satisfy the following $n$ linear equations

$\sum_{i=1}^{k}m_{i}$ dim $C_{W_{i}}(g_{j})=\dim C_{W}(g_{j})$ , $j=1,$
$\ldots,$

$n$ .

These equations allow us to restrict (or even solve for) the non-negative integers $m_{i}(i=1, \ldots, n)$ .

3 2-1ocal subgroups.
Assume that elements $z,$ $t,$ $v,$ $w,$ $w_{1},$ $a,$ $b,$ $c,$ $d,$ $y,$ $y_{2},$ $u$ are involutions and $x_{1},$ $x_{2}$ are elements of
order 4 with $x_{1}^{2}=x_{2}^{2}=z$ satisfying the following commutator relations, where all unstated
commutators are trivial:

$[w_{1}, a]=[w, b]=[v, c]=[d,t]=[x_{1}, x_{2}]=z;[w_{1}, y]=vt,$ $[w, y]=t;[w_{1}, y_{2}]=vz$ ,
$[w, y_{2}]=vt;[w_{1}, u]=w,$ $[v, u]=t;[a, x_{1}]=t,$ $[a, x_{2}]=vz;[b, x_{1}]=v,$ $[b, x_{2}]=vt$ ;
$[c, x_{1}]=w,$ $[c, x_{2}]=w_{1}wtz;[d, x_{1}]=w_{1},$ $[d, x_{2}]=wv;[a, b]=vt,$ $[a, d]=w$ ,
$[b, c]=w_{1}$ ; $[x_{2}, y]=z,$ $[x_{1}, y_{2}]=tz;[x_{2}, y_{2}]=v\ell z,$ $[u, x_{1}]=z,$ $[u, x_{2}]=x_{1}$ ; $[a, y_{2}]=t$ ,
$[b, y]=vz;[b, u]=ax_{1}wv,$ $[c, y]=a;[d, y]=abx_{2}v\ell,$ $[d, u]=c;[c, y_{2}]=abx_{1}x_{2}w_{1}$ ,
$[d, y_{2}]=b;[y_{2}, u]=y$ .

In this section, we set $V=(z,$ $t,$ $ v\rangle$ , $E=(z,$ $t,$ $v,$ $w,$ $ w_{1}\rangle$ , $J=(E,$ $x_{1},$ $x_{2},$ $a,$ $b,$ $c,$
$ d\rangle$ , $T=$

$\langle J, y, y_{2}, u\rangle$ and $X=(z,$ $t,$ $w,$ $a,$ $c,$
$ u\rangle$ in the group generated by the above elements with the

above relations.

Lemma 3.1. $[7],[1]$ The group $T$ is isomorphic to a Sylow 2-subgroup of the Rudvalis group $G$ .

We will identify $T$ with a Sylow 2-subgroup of $G$ . The above relations show that $Z(T)=\langle z)$ .
We set $H:=C_{G}(z)$ .

Lemma 3.2. [7], [1]
(1) The group $G$ has two classes of involutions with representatives $z$ and $yx_{1}x_{2}$ . The involution

$z$ is central and a square of some element of order 4, while the involution $yx_{1}x_{2}$ is not central
nor a square.

(2) The subgroup $H$ has five classes of $2A$ -involutions of $G$ with representatives $z,$ $t,$ $a,$ $y,$ $u$ .

Parrott [7] describes some 2-1ocal subgroups of $G$ .

Proposition 3.3.
(1) We have $J=O_{2}(H)_{f}J^{\prime}=\Phi(J)=E\cong 2^{5}$ , and $H/J\cong S_{5}$ . Furthermore $C_{G}(E)=$

$\langle E, x_{1}, x_{2}\rangle$ and $\Omega_{1}(C_{G}(E))=(z\rangle$ . In particular, $H=N_{G}(E)$ . If $x$ is an element of odd
prime order of $H$ , we have $C_{J}(x)\cong Q_{8}$ . The involution $u$ corresponds to a transposition
of $H/J\cong S_{5}$ .

(2) We have $ C_{G}(V)=\langle E, x_{1}, x_{2}, a, b, y, y_{2}\rangle$ and $N_{G}(V)/C_{G}(V)\cong L_{3}(2)$ .
(3) We have $C_{G}(X)=X$ and $N_{G}(X)/X\cong G_{2}(2)$ .
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(4) For the element $\tilde{y}=yx_{1}x_{2}$ , we have $C_{G}(\tilde{y})=\tilde{E}xS$ , where $\tilde{E}$ is a $2B$ -pure four group
containing $\tilde{y}$ and $S\cong Sz(8)$ . Furthermore, $N_{G}(\tilde{E})=C_{G}(\tilde{y}).\tilde{Q}$ , where $\tilde{Q}$ is a subgroup of
order 3 with $\tilde{E}\tilde{Q}\cong A_{4}$ and $S\tilde{Q}\cong Aut(Sz(8))$ .

We will start with the 2-1ocai analysis. First, we note the following.

Lemma 3.4. If $W$ is an elementary abelian 2-subgroup of $G$ containing a $2B$ -involution, then
either $N_{G}(W)$ is conjugate to a subgroup of $N_{G}(\tilde{E})$ or $N_{G}(W)$ is contained in the normalizer of
a $2A$ -pure elementary abelian subgroup of order 8.

Proof. We may assume that $W$ contains $\tilde{y}$ and therefore $W\subseteq C_{G}(\tilde{y})=\tilde{E}xS$ , where $S\cong Sz(8)$

by Pro. 3.3 (4). If $W$ is contained in $\tilde{E}$ , we have $O_{2}(C_{G}(W))=\tilde{E}$ and $N_{G}(W)\subseteq N_{G}(\tilde{E})$ . Assume
that $W\not\subset\tilde{E}$ . Then there is an involution $s\in S$ with $ W\cap s\tilde{E}\neq\emptyset$ . We have $C_{G}(W)\subseteq\tilde{E}xC_{S}(s)$ .
The subgroup $C_{S}(s)$ is a special 2-group with $\Omega_{1}(C_{S}(s))\cong 2^{3}$ . We note that any involution of $S$

lies in the class $2A$ , because it commutes with a conjugate of the group $\tilde{Q}$ of order 3 (see Prop. 3.3
(4)). Since we have $\#(2A, 2A;2B)=0$ , any product of two mutualy commuting $2A$-involutions
is a $2A$-involution. In particular, the involutions of $C_{G}(\tilde{y})\backslash S$ are $2B$-involutions. Thus, by the
above inclusion, $N_{G}(W)$ normalizes the $2A$-pure elementary abelian group $\Omega_{1}(C_{S}(s))$ of order 8.
$\square $

By the lemma above, in order to classify maximal 2-1ocal subgroups, it suffices to consider
normalizers of $2A$-pure subgroups. The next lemma about $2A$-pure four subgroups can be verified
by strightforward computations and Prop. 3.2.

Lemma 3.5.
(1) Any $2A$ -pure four subgroup of $G$ is conjugate to $(z,t),$ $(z, a),$ ( $z,$

$ y\rangle$ or $(z, u)$ .
(2) We have $C_{G}(z, t)=(E,$ $x_{1},$ $x_{2},$ $a,$ $b,$ $c,$ $y,$

$ y_{2}\rangle$ and $C_{G}(z, t)^{u}=V$ ;
$C_{G}(z, a)=(z,t, v, w, a, c, x_{1}y_{2}, y, bx_{2}w_{1}y_{2}, u)$ and $(g^{2}|g\in C_{G}(z, a)^{\prime})=(t)$ ;
$C_{G}(z, y)=\{z,t,$ $a,$ $v,$ $x_{1},$ $ww_{1}x_{2}b,$ $y,$ $y_{2},$

$ u\rangle$ and $ L_{3}(C_{G}(z, y))=(t\rangle$ , where $L_{1}(K)=K^{\prime}$ and
$L_{n}(K)=[L_{n-1}(K), K]$ for a group $K$ ; $C_{G}(z, u)=X((u\rangle\times Q(y))$ , where $Q$ is a Sylow
3-subgroup of $H$ inverted by $y$ , and $O_{2}(C_{G}(z, u))=X$ .

(3) We have $N_{G}(\langle z,t\rangle)\subseteq N_{G}(V),$ $N_{G}(\langle z, a))\subseteq C_{G}(t),$ $ N_{G}((z, y\rangle$ ) $\subseteq C_{G}(\ell)$ and $ N_{G}((z, u))\subseteq$

$N_{G}(X)$ .

Lemma 3.6. Let $W$ be a $2A$ -pure elementary abelian subgroup containing $z$ . Then, by replacing
$W$ by its suitable H-conjugate, $W$ satisfies one of the following possibilities $(a),$

$\ldots,$
$(g)$ , where

we set $E_{1};=\langle z,t,$ $v,$ $a,$ $y$) $\cong 2^{5},$ $F_{0}$ $:=\langle z, t, v, w, a\rangle\cong 2^{5},$ $F_{1}$ $:=\langle z,t,$ $a,$ $y,$ $u$) $\cong 2^{5}$ and $F_{2};=$

\langle $z,$ $t,$ $v,$ $y,$ $y_{2}$) $\cong 2^{5}$ . Furthermore, we have $C_{G}(F_{1})=F_{1}$ for $i=0,1,2$ .
$(a)$ $W\subseteq E$ $(e)$ $(z,$ $ a\rangle$ $\subseteq W\subseteq F_{0}$ .
$(b)$ $\langle z, y\rangle\subseteq W\subseteq E_{1}$ . $(f)$ ( $z,$

$ y\rangle$ $\subseteq W\subseteq F_{1}$ or $(z, u)\subseteq W\subseteq F_{1}$ .
$(c)$ $(z, u)\subseteq W\subseteq X$ . $(g)$ $(z, y)\subseteq W\subseteq F_{2}$ .
$(d)$ $\langle z,$ $a$) $\subseteq W\subseteq(z,t, w, a, c)(\subseteq X)$ .

Proof. Since the claims follow mainly from straightforward computations, we will give the
proof of a part of them. Suppose $W\not\subset J$ . Then we may assume that $W$ contains ( $z,$

$ y\rangle$ or $(z, u)$ .
We consider the case $(z, y)\subseteq W$ . The group ( $z,$ $\ell,$ $ y\rangle$ is a normal subgroup $of\infty C_{G}z,$$y=$

$ M(w_{3}\rangle$ , where $M;=(z, t, y, v, a, x_{1}, y_{2}, u)$ and $w_{3}$ $:=ww_{1}x_{2}b$ . The factor group $C_{G}(z, y);=$

– 6 –



$C_{G}(z, y)/\langle z,$ $t,$ $y$ ) is generated by the image $\overline{M}$ of $M$ , which is an elementary abelian normal
2-subgroup of index 2, and the image $\overline{w_{3}}$. Thus we have either $ W\subseteq MorrW\cap Mw_{3}\neq\emptyset$ . Since
we may verify that the centralizer in $\overline{C_{G}(z,y)}$ of an involution of $\overline{M}\overline{w_{3}}$ is $\langle v, a, x_{1}y_{2}, w_{3}\rangle$ , we have
$W\subseteq\langle z,$ $\ell,$ $y$ ) $a,$ $x_{1}y_{2},$ $w_{3}$ ) in the latter case.

Assume that $W\subseteq M$ . The group $E_{1}$ is an elementary abelian subgroup of $M$ of index 8. We
may verify that the coset $E_{1}g$ does not contain any involutions for $g=x_{1},$ $x_{1}u,$ $x_{1}y_{2},$ $x_{1}y_{2}u,$ $y_{2}u$ ,
and the sets of involutions of the cosets $E_{1}u$ and $E_{1}y_{2}$ are \langle $z,$ $t,$ $a,$ $y)u$ and $(z,$ $a,$ $v,$

$ y\rangle$
$y_{2}$ , respec-

tively. Thus we have $W\subseteq E_{1},$ $W\subseteq F_{1}$ or $W\subseteq F_{2}$ , if $W\subseteq M$ . We note that $F_{1}$ and $F_{2}$ are
self-centralizing and $F_{1}$ is conjugate to $E$ by a Lemma in [7].

All the remaining cases are treated by similar method $s$ . $\square $

Lemma 3.7. For a self-centralizing $2A$ -pure elementary abelian subgroup $W$ of $G$ of order
$2^{5},$ $N_{G}(W)$ is conjugate to a subgroup of $H,$ $N_{G}(\langle z, t\rangle),$ $ N_{G}((z, a\rangle$ )

$,$

$ N_{G}((z, y\rangle$ )
$,$

$N_{G}(\langle z,u))$ , or
$N_{G}(\langle z,\ell, v))$ .

Proof. The group $N_{G}(W)/W$ is isomorphic to a subgroup of $L_{S}(2)$ , as $C_{G}(W)=W$ . Then
possible prime divisors of $|N_{G}(W)/W|$ are 2, 3 and 5, since $|G|$ is prime to 31 and no $2A$-involution
commutes with an element of order 7. If $N_{G}(W)$ is a 2-group, it is conjugate to a subgroup of
the Sylow 2-subgroup $T$ contained in $H=C_{G}(z)$ . Thus we may assume that there is an element
$\omega$ of $N_{G}(W)$ of order $p$ for $p=3$ or 5. Then $C_{W}(\omega)\neq 1$ , and therefore we may assume that
$z\in C_{W}(\omega)$ . By Lemma 3.6, we have $W=F_{i}$ for some $i=0,1,2$ and then $|E\cap W|=2^{4},2^{2},2^{3}$ ,
respectively. If $p=5$ , then $\omega$ acts trivially on $(E\cap W)/(z)$ and so $E\cap W\subseteq C_{W}(\omega)$ , which
contradicts the fact $C_{J}(\omega)\cong Q_{8}$ (see Lem. 2.3 (1)). Thus $p=3$ and $N$ $:=N_{G}(W)$ is a $\{2, 3\}-$

group. Since $N/W$ is a subgroup of $L_{5}(2),$ $|C_{W}(\omega)|=2$ or $2^{3}$ . We have $|C_{W}(\omega)|=2$ and
$|N|_{3}=3$ , since there is one class of elements of order 3 of $G$ and a Sylow 2-subgroup of $C_{G}(3A)$

is a semi-diheadral group of order 16. Thus $\omega$ acts fixed point freely on $|E\cap W/(z)|$ , and therefore
$|E\cap W|=2^{3}$ and $W=F_{2}$ . Then $N\cap H=\langle E,$ $x_{1},$ $x_{2},$ $a,$ $b,$ $y,$ $y_{2},$ $u$) $=:S$ and $|S|=2^{12}\leq|N|_{2}$ .
If $|N|_{2}=2^{12}$ , then $N=\langle S, \omega\rangle\subseteq C_{G}(z)$ . If $|N|_{2}=2^{13}$ , a Sylow 2-subgroup $S_{0}$ of $N$ containing
$S$ normalizes $Z(S^{\prime})=\langle z,$ $\ell,$ $v$), and therefore we have $N=\langle S_{0}, \omega\rangle\subseteq N_{G}(\langle z,t, v))$ . If $|N|_{2}=2^{14}$ ,
$N/O_{2}(N)\cong A_{3}$ or $S_{3}$ . Then $|O_{2}(N)|=2^{13}$ or $2^{14}$ , and so $Z(O_{2}(N))\cong 2$ or $2^{2}$ , as $ Z(T)=(z\rangle$ .
Thus, in this case, $N$ is contained in the normalizer of an elementary abelian subgroup of order
at most 4. Hence the claim follows from Lemma 3.5 (1). $\square $

Lemma 3.8. Let $W$ be a $2A$ -pure elementary abelian subgroup of $G$ of order at least 8. Then,
under the notation in Lemma 3.6, the following holds.

(1) If ( $z,$
$ a\rangle$ $\subseteq W\subseteq F_{0}$ , by replacing $W$ by a suitable conjugate, one of the following occurs:

( $z,$
$ a\rangle$ $\subseteq W\subseteq E_{1},$ $N_{G}(W)\subseteq N_{G}(\langle z, t\rangle)$ , or $N_{G}(W)\subseteq N_{G}(X)$ .

(2) If $\langle z, y\rangle\subseteq W\subseteq F_{1}$ or $\langle z, u\rangle\subseteq W\subseteq F_{1}$ , by replacing $W$ by a suitable conjugate, one of the
following occurs: $N_{G}(W)\subseteq N_{G}(F_{1}),$ $\langle z, u\rangle\subseteq W\subseteq X$ , or $\langle z,$

$y$) $\subseteq W\subseteq E_{1},$ .
(3) If ( $z,$

$ y\rangle$ $\subseteq W\subseteq F_{2}$ , by replacing $W$ by a suitable conjugate, one of the following occurs:
$\langle z, y\rangle\subseteq W\subseteq E_{1}$ or $N_{G}(W)\subseteq N_{G}(F_{0})$ .

Proof. We only prove the claim (1). The other claims are proved by similar arguments.
Since ( $z,$ $a,$ $t,$ $ v\rangle$ is a maximal elementary abelian subgroup of $F_{0},$ $W\subseteq\langle z, a,\ell, v\rangle\subseteq E_{1}$ or

$ W\cap\langle z, a, t, v\rangle w\neq\emptyset$ . In the latter case, $W$ contains $w,$ $\ell w,$ $vw$ or $tvw$ , since ( $z,$
$ a\rangle$ $\subseteq W$ . Since

$a^{y}=a,$ $w^{y}=tw,$ $(vw)^{y}=\ell vw$ and $a^{m}=a,$ $w^{m}=vw$ for $m=y_{2}ux_{1}$ , we may assume that $w\in W$ .
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Thus, if $|W|=2^{3}$ , we have $W=(z,$ $a,$
$ w\rangle$ , $ C_{G}(W)=\langle z, t, v, w, a, c, u\rangle$ and $ C_{G}(W)^{l}=\langle z,t\rangle$ , and

therefore $N_{G}(W)\subseteq N_{G}((z,t\rangle)$ . $If|W|=2^{4},$ $W=(z,a, w, t\rangle, W=\langle z,a, w, v)$ or $W=(z,$ $a,$ $w,$ $ v\rangle$ .
Since the latter two groups are conjugate under the action of $u$ , we may assume that one of the
first two cases occurs. In the first case, $C_{G}(W)=X$ and $N_{G}(W)\subseteq N_{G}(X)$ . In the second case,
$C_{G}(W)=F_{0}$ and $N_{G}(W)\subseteq N_{G}(F_{0})$ . $\square $

We may also prove the following lemma by similar argument as above.

Lemma 3.9. Let $W$ be a $2A$ -pure elementary abelian subgroup of $G$ of order at least 8.

(1) If $(z, u)\subseteq W\subseteq X_{f}N_{G}(W)$ lies in $N_{G}(X)$ or $N_{G}(\langle z, a\rangle)$ .
(2) If $(z, a)\subseteq W\subseteq(z,t, w, a, c)$ and $W\not\subset F_{0},$ $N_{G}(W)$ is contained in $N_{G}(X)$ , where $F_{0}$ is the

subgroup in Lemma 3.6.

By Lemmas 3.5-9, we can conclude that if $W$ is a 2 $A$-pure elementary abelian 2-subgroups
of $G$ , then either $W$ is conjugate to a subgroup of $E$ of order at least 8, or $N_{G}(W)$ is conjugate
to a subgroup of $C_{G}(z),$ $N_{G}(V)$ or $N_{G}(X)$ .

Lemma 3.10. For a subgroup $W$ of $E$ of order at least 8, $N_{G}(W)$ is conjugate to a subgroup of
$N_{G}(V)$ or $C_{G}(z)$ .

Proof. Since the elements of $ E\backslash (z\rangle$ form one conjugacy class of $H$ , we may assume that
$z,$ $t\in W$ . The set $ E\backslash (z\rangle$ is divided into the following four T-classes: $\{\ell, z\ell\},$ $\{v, vz, vt, v\ell z\}$ ,
{we $|e\in\langle z,\ell,$ $v)$ } and $\{w_{1}e|e\in\langle z,t, v, w)\}$ . Since $\langle z,t, w\rangle^{y2}=\langle z, t, vw\rangle,$ $(z,t,$ $ w_{1}\rangle^{y2}=\langle z,\ell, w_{1}v\rangle$ ,
$\langle z,t, w_{1}\rangle‘‘=(z,\ell,w_{1}w)$ and ( $z,t,$ $ w_{1}w\rangle^{y}=\langle z, t, vw_{1}w\rangle$ , we may assume that $W$ contains $(z,\ell, v)=$

$V,$ \langle $z,$ $t,$ $w)=:V_{0}$ or $(z,t,w_{1}\rangle$ $=:V_{1}$ . We have $C_{G}(V_{0})=(E, x_{1}, x_{2},a, c, u),$ $\langle g^{2}|g\in C_{G}(V_{0})\rangle=(z\rangle$ ;
$C_{G}(V_{1})=\langle E,$ $x_{1},$ $x_{2},b,$ $c$), $C_{G}(V_{1})^{\prime}=E$ and $Z(C_{G}(V_{1}))=\langle z$). Thus, if $|W|=2^{3}$ , then $W=V$
or $N_{G}(W)\subseteq C_{G}(z)$ . Assume that $|W|=2^{4}$ . Then $W=(V,$ $ w\rangle$ , ( $V,$ $ w_{1}\rangle$ , $(V, ww_{1}),$ $\langle V_{0}, w_{1}\rangle$ ,
$(V_{0}, vw_{1}),$ ( $ V_{1},vw\rangle$ or $\langle V_{0},$

$w_{1}$ ). Since \langle V, $ w_{1})^{u}=\langle V, ww_{1}), (V_{0}, w_{1})^{y}=(V_{0},vw_{1}\rangle$ and $(V_{0}, w_{1})^{y_{2}u}=$

$\langle V_{1}, vw\rangle$ , we may assume that $W=$ \langle $V,$ $w),$ $\langle V,$ $ w_{1}\rangle$ or $(V_{0},$ $w_{1})$ . Then $C_{G}(W)=(E,$ $x_{1},$ $x_{2},$
$ a\rangle$ ,

$\langle E, x_{1}, x_{2}, b\rangle$ or $(E, x_{1}, x_{2}, c)$ , and therefore $C_{G}(W)^{\prime}=V$ or $\langle z, w, tw_{1}\rangle$ . Then $N_{G}(W)\subseteq N_{G}(V)$

or $N_{G}(\langle z, w, tw_{1}))$ . The latter group is conjugate to a subgroup $N_{G}(V)$ or $C_{G}(z)$ by the argument
above. If $|W|=2^{5}$ , we have $W=E$ and $N_{G}(W)\subseteq C_{G}(z)$ . The lemma has proved. $\square $

Hence, we get the following conclusions.

Proposition 3.11. For a $2A$ -pure elementary abelian 2-subgroup $W$ of $G,$ $N_{G}(W)$ is conjugate
to a subgroup of $C_{G}(z),$ $N_{G}(V)$ or $N_{G}(X)$ .

Proposition 3.12. Any subgroup of $G$ with a non-trival normal 2-subgroup is conjugate to one
of the subgroups in the list below:
(1) $C_{G}(z)\cong 2.2^{4+6}$ : $S_{5}$ , (3) $N_{G}(V)\cong 2^{3+8}$ : $L_{3}(2)$ ,
(2) $N_{G}(\tilde{E})\cong(2^{2}xSz(8)):3$ , (4) $N_{G}(X)\cong 2^{6}\cdot G_{2}(2)$ .

Remark. Since $G$ has a subgroup isomorphic to $S_{7}$ and the centralizer of a transposition of
this group is of type 2 $xS_{5}$ , the extension $C_{G}(2A)/O_{2}(C_{G}(2A))$ splits. In [6], O’Nan showed
that the extension $N_{G}(V)/O_{2}(N_{G}(V))$ splits, but $N_{G}(X)/X$ does not split.
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4 Odd local subgroups.
The structures of centralizers of elements of odd prime orders are determined by Parrott [7]. In
this section, we use this information to determine maximal p-local subgroups for an odd prime
$p$ dividing $|G|$ .

Proposition 4.1. Any subgroup of $G$ with a normal 3-group is conjugate to a subgroup of
$N_{G}(3A)\cong 3Au\ell(A_{6})$ or $N_{G}(V_{3})\cong 3^{2}$ : $GL_{2}(3)$ , where $V_{3}$ is an elementary abelian group of order
9. Furthermore, $G$ has one class of elementary abelian subgroups of order 9, and $N_{G}(V_{3})$ is
contained in a subgroup isomorphic to $2F_{4}(2)^{\prime}$ .

Proof. A Sylow 3-subgroup $P$ of $G$ is an extra special group of order $3^{3}$ and exponent 3. Since
any elements of order 3 of $N_{G}(Z(P))/P\cong Au\ell(A_{6})$ are conjugate to each other, the elementary
abelian subgroups of order 9 of $G$ form one class. We note that $P$ is contained in a subgroup
$T$ of $G$ isomorphic to $2F_{4}(2)^{\prime}$ . Thus, by [9], $P$ is contained in a subgroup $L$ of $T$ isomorphic
to $Au\ell(L_{3}(3))$ . Since there is no element of order prime to 3 centralizing a subgroup of $G$ of
order 9, an elementary abelian subgroup of order 9 is self-centralizing. Thus its normalizer in $G$

coincides with that in $L$ , which is isomorphic to $3^{2}$ : $GL_{2}(3)$ . $\square $

Proposition 4.2. Any subgroup of $G$ with a normal 5-group is conjugate to a subgroup of
$N_{G}(5A)\cong(5^{1+2} : Q_{8})4,$ $N_{G}(5B)\cong(5:4)xA_{5}$ or $N_{G}(V_{5})\cong 5^{2}$ : $GL_{2}(5)$ , where $V_{5}$ is a $5A$ -pure
elementary abelian group of order 25.

Proof. As is shown in [4], $G$ has a subgroup $M$ isomorphic to $Aut(L_{2}(25))$ . Let $V$ be a Sylow
5-subgroup of $M$ and $P$ a Sylow 5-subgroup of $G$ containing $V$ . By [7] Lemma 16, $P$ is an extra
special group of order $5^{3}$ and exponent 5, $N_{G}(P)=N_{G}(Z(P))\supseteq C_{G}(Z(P))\cong 5^{1+2}$ : $Q_{8}$ , and
$P\backslash Z(P)$ consists of 40 $5A$-elements and 80 $5B$-elements. It suffices to determine classes and
normalizers of elementary abelian 5-subgroups of order 25 of $P$ .

The group $V$ is $5A$-pure, since $Z(P)$ is contained in $V$ and $N_{M}(V)\cong(5^{2} : 24)2$ acts transitively
on $ V\#$ . As $|C_{G}(2A)|_{5}=5$ , the group $C_{G}(Z(P))/P\cong Q_{8}$ acts fixed-point-freely on $P/Z(P)$ and
it does not normalize $V/Z(P)$ . Then $C_{G}(V)=V$ and $V\cap V^{9}=Z(P)$ for some $g\in C_{G}(Z(P))$ .
Thus $N_{G}(V)/V$ is isomorphic to a subgroup of $GL_{2}(5)$ of index at most 2, and $V\cap V^{g}\backslash Z(P)$

coincides with the set of 40 $5A$-element $s$ of $P\backslash Z(P)$ . Furthermore, the latter fact shows that
for an elementary abelian subgroup $E(\neq V, V^{g})$ of order 25 of $P$ , we have $ Z(P)=\langle E\cap 5A\rangle$ and
$N_{G}(E)\subseteq N_{G}(Z(P))$ .

Suppose $N_{G}(V)/V$ is a subgroup of $GL_{2}(5)$ of index 2. Then it is isomorphic to the central
product $4*SL_{2}(5)$ and has no element of order 8, which is a contradiction. Thus $ N_{G}(V)/V\cong$

$GL_{2}(5)$ , and therefore $N_{G}(V)\cong 5^{2}$ : $GL_{2}(5)$ by the theorem of Gash\"utz. $\square $

Remark about $N_{G}(5B)$ . For a $5B$-element $\gamma_{1}$ , we have $C_{G}(\gamma_{1})=\langle\gamma_{1}\rangle xA\cong 5xA_{5}$ , where
$A=(C_{G}(\gamma_{1}))^{l}$ . Since any involution centralizing a $5B$-element lies in the class $2B$ , a Sylow
2-subgroup of $A$ is a $2B$-pure four subgroup. Thus $C_{G}(E)=ExS\cong 2^{2}xSz(8)$ and $\gamma_{1}$ is
contained in $S$ . Let $Q$ be a complement of $C_{G}(E)$ in $N_{G}(E)$ . Since $Au\ell(Sz(8))\backslash Sz(8)$ contains
an element of order 3 centralizing a Sylow 5-group of $Sz(8)$ , we may assume that $Q$ centralizes
a Sylow 5-normalizer $\langle\gamma_{1}, g\rangle\cong 5:4$ of $S$ . Then $E:Q$ is a subgroup of $A$ centralizing \langle $\gamma_{1},g$).
Since $g$ is an element of order 4 acting on $A$ and centralizing $E:Q,$ $g$ centralizes $A\cong A_{5}$ . Thus
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$ N_{G}(\gamma_{1})=\langle C_{G}(\gamma_{1}), g\rangle=(\gamma_{1},g\rangle$ $xA\cong 5;4xA_{5}$ . In particular, $A$ is of type $(2A, 3A, 5A)$ , since
an element of order 5 of $A$ centralizes a $2A$-involution $g^{2}$ .

For $p=7,13$ or 29, a Sylow subgroup of $G$ is of order $p$ . Thus a p-local subgroup is a
subgroup of a Sylow p-normalizer, whose structure is determined by [7].

Lemma 4.3 (1) We have $N_{G}(7A)$ or $(2^{2}x7;2):3$ . $N_{G}(7A)$ is a subgroup of the normalizer
of the $2B$ -pure four subgroup $O_{2}(C_{G}(7A))$ .

(2) We have $N_{G}(13A)\cong(2^{2}x13:4):3$ . $N_{G}(13A)$ is a subgroup of the normalizer of the
$2B$ -pure four subgroup $O_{2}(C_{G}(13A))$ .

(3) We have $N_{G}(29A)=N_{G}(29B)\cong 29:14$ .

5 Non-abelian characteristically simple subgroups.
Assuming the classification of finite simple groups (though it is enough to quote only partial re-
sults), we may determine the following list of isomorphism types of non-abelian characteristically
simple groups of orders dividing 1 $G|=2^{14}\cdot 3^{3}\cdot 5^{3}\cdot 7\cdot 13\cdot 29$ :

$A_{\mathfrak{n}}$ for $n=5,$ $\ldots,$
$13;A_{5}xA_{5},$ $A_{6}xA_{6}$ ;

$L_{2}(q)$ for $q=7,8,13,25,27,29,64$ ;
$L_{3}(3),$ $L_{3}(4),$ $U_{3}(3),$ $U_{3}(4),$ $U_{3}(5);Sz(8),$ $G_{2}(4),$ $2F_{4}(2)^{\prime};J_{2}$ .

Among the above candidates, neither $L_{2}(8)$ nor $L_{2}(64)$ could be an isomorphism type of a
subgroup of $G$ , since both of them contain elements of order 9. Since a Sylow 3-subgroup of $G$

is not abelian, $G$ does not have a subgroup isomorphic to $L_{2}(27)$ . We can eliminate subgroups
isomorphic to $U_{3}(4),$ $J_{2}$ or $G_{2}(4)$ as follows. If any of these groups is isomorphic to a subgroup
$H$ of $G$ , involutions of $H$ are of class $2A$ of $G$ , since they are square elements or commute with
element $s$ of order 3 of $H$ . However, an element of order 5 of $H$ centeralizes both involutions
and elements of order 3. This contradicts the fact that elements of order 5 of $G$ centralizing
$2A$-involutions are of clas$s5A$ , while those centralizing elements of order 3 are of class $5B$ . This
fact also shows that $G$ has no subgroup isomorphic to $A_{5}xA_{5}$ , and so no subgroup isomorphic
to $A_{6}xA_{6}$ .

Lemma 5.1. $G$ has no subgroup isomorphic to $L_{3}(4)$ .

Proof. Let $L$ be a subgroup of $G$ isomorphic to $L_{3}(4)$ . Any element of order 4 of $L$ is contained
in a subgroup of $L$ isomorphic to $A_{6}$ . Thus they are of class $4D$ of $G$ by Prop. 6.4. Then the
fusion of elements of $L$ in $G$ is determined as follows except elements of order 5.

$L$ $1A$ $2A$ $3A$ $4A$ $4B$ $4C$ $5A$ $5B^{\cdot}$ $7A$ $7B^{*}$

$G$ $1A$ $2A$ $3A$ $4D$ $4D$ $4D$ $5Aor5B^{*}$ $7A$ $7A$

Then we have a contradiction by computing the multiplicity $(\chi|_{L}, 1_{L})$ for the irreducible
character $\chi$ of $G$ of degree 406. $\square $

As for the remaining groups, it is known that every groups except $A_{8}$ is isomorphic to a
subgroup of $G$ : The $2F_{4}(2)$-subgroups of $G$ appeared in the original construction of the Rudvalis
group (see [4]), and they contain subgroups isomorphic to $A_{5},$ $A_{6}L_{2}(25)$ and $L_{3}(3)$ (see $[9],[10]$ ).
Conway [3] proved the existences of subgroups of $G$ isomorphic to $U_{3}(5)$ and $A_{7}$ . Mason and
Smith [8] established the existence of an $L_{2}(13)$-subgroup of $G$ as a stabilizer of a vector of the
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28-dimensional G-module over $F_{2}$ (see \S 2). The groups $Sz(8),$ $U_{3}(3)$ and $L_{2}(7)$ are isomorphic to
subgroups of local subgroups of $G$ . K.-C. Young [11] proved the existence of an $L_{2}(29)$-subgroup
of $G$ .

In \S 9, we will construct a subgroup of $G$ isomorphic to $A_{8}$ by means of generators and
relations.

Thus we have shown the following result.

Proposition 5.2 The following is the complete list of the isomorphism types of non-abelian
characteristically simple subgroups of the Rudvalis group $G$ :

$A_{5},$ $A_{6},$ $A_{7},$ $A_{8};L_{2}(7)_{l}L_{2}(13)_{l}L_{2}(25),$ $L_{2}(29)$ ;
$L_{3}(3),$ $U_{3}(3),$ $U_{3}(5),$ $Sz(8),$ $2F_{4}(2)$ .

The reminder of this paper is mainly devoted to the much more complicated problem; that is,
the determination of the conjugacy classe $s$ of the subgroups above and their normalizers.

6 Subgroups $A_{5},$ $A_{6}$ and $Sz(8)$ .
6.1 Subgroups isomorphic to $A_{5}$ .
A presentation of $A_{5}$ is $(a, b|a^{2}=b^{3}=(ab)^{5}=1\rangle$ . Thus the classes of subgroups of $G$ isomorphic
to $A_{5}$ can be determined by computing the structure constants $(2X, 3A;5Y)$ for $X,$ $Y=A,$ $B$ .

Proposition 6.1.

(1) There are at most two classes of $A_{5}$ -subgroups of $G$ of type $(2A, 3A;5A)$ . Their normalizers
are conjugate to subgroups of the centralizer of a $2A$ -involution.

(2) There are at most three classes of $A_{5}$ -subgroups of $G$ of type $(2B, 3A;5A)$ . The normal-
izer of a subgroup of one class is the normalizer of a $5B$-element, and the normlizers of
subgroups of the other classes are contained in the centralizers of $2A$ -involutions.

(3) There is a unique class of $A_{5}$ -subgroups of $G$ of type $(2A, 3A;5B)$ . Their normalizers are
isomorphic to $(3 xA_{5}).2$ , and they are contained in the normalizers of $3A$ -elements.

(4) $ThereisauniqueclassofA_{5^{-}}subgroupsofGoftype(2B, 3A;5B)$ . They are self-normalizing.

Proof. (1) The centralizer of a 5 $A$-element is isomorphic to $5^{1+2}$ : $Q_{8}$ and there is no element
of order 5 centralizing a $2A$-involution and a 3 $A$-element. Then the centralizer of a subgroup of
type $(2A, 3A;5A)$ is a cyclic group of order at most 4, and the assertion follows from the fact
$\#(2A, 3A; SA)=500=1/2|C_{G}(5A)|$ .

(2) By Lemma 3, the commutator subgroup $A$ of the centralizer of a $5B$-element $x$ is of type
$(2B, 3A;5A)$ . Let $B$ be a subgroup of type $(2B, 3A;5A)$ centralizing an element $y$ of order 5.
Then $y$ is a $5B$-element and $B=C_{G}(y)^{\prime}$ , and so $B$ is conjugate to $A$ and $N_{G}(B)=N_{G}(y)$ .

We fix a $5A$-element $\gamma$ of $A$ . Assume that $\langle\alpha, \beta\rangle$ centralizes an element of order 5 for a pair
$(\alpha, \beta)$ of $(2B, 3A;\gamma)$ . Then $\langle\alpha, \beta\rangle$ is contained in $A(\gamma)$ (recall the notation in 2.1) by the above
remark and Sylow’s theorem. Since we have $|(2B, 3A;\gamma)\cap A(\gamma)|=5|N_{G}(\gamma):N_{G}(\gamma)\cap N_{G}(A)|=$

$5\cdot 1000\cdot 4/|5:4x5;2|=100$ , any pair of this set generates a subgroup conjugate to $A$ .
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Since $\#(2B, 3A, 5A)=600$ , there remain 500 pairs of $(2B, 3A;\gamma)$ not centralizing any element
of order 5. Since their centralizers are cyclic groups of order at moat 4, these pairs are divided
into at most two orbits under $C_{G}(\gamma)$ . Thus the result follows.

(3) Let $q$ be an element of order 3. As $ N_{G}(q)/(q\rangle$ $\cong Au\ell(A_{6})$ , there is a subgroup $T$ of $N_{G}(q)$

with $T/\langle q\rangle\cong S_{5}$ . Since a Sylow 3-subgroup of $G$ is isomorphic to $3_{+}^{1+2}$ and the Schur multiplier
of $S_{5}$ is prime to 3, $(q)$ has a complement $S$ in $T$ by applying the Gaschutz theorem. We set
$A=S^{\prime}$ . Since $q$ centralizes $A,$ $A$ is of type $(2A, 3A;5B)$ . The centralizer of a 5 $B$-element is
isomorphic to 3 $xA_{5}$ and its commutator subgroup is of type $(2B, 3A;5A)$ . Then $C_{G}(A)=(q)$ ,
since a 5 $A$-element centralizes no element of $2B\cup 3A$ and no $3^{2}$-subgroup centralizes an element
of order 5. Thus the result follows from the fact $(2A, 3A;5B)=100=1/3\cdot|C_{G}(5B)|$ .

(4) Let $x$ be a 5 $B$-element and $A$ a subgroup of type $(2B, 3A;5B)$ containing $x$ . If $C_{G}(A)\neq 1$ ,
$C_{G}(A)$ contains a $5B$-element $a$ by the same argument as in (3). However, then $C_{G}(a)^{\prime}=A$ is of
type $(2B, 3A;5A)$ , which is a contradiction. Thus $C_{G}(A)=1$ and $A$ is self-normalizing, since $2B-$

involutions are not squares in $G$ . Then, under the natation in 2.1, we have $|(2B, 3A;x)\cap A(x)|=$

$5|N_{G}(x):N_{G}(a)\cap A|=5\cdot 2^{4}\cdot 3\cdot 5^{2}/2\cdot 5=600$ $=\#(2B, 3A;5B)$ , and therefore any pair of
$(2B, 3A;x)$ are conjugate to each other. $\square $

6.2 Subgroups isomorphic to $A_{6}$ .
The group $A_{6}$ has a presentation ( $a,$ $b|a^{2}=b^{4}=$ (ab)5 $=(ab^{2})^{5}=1\rangle$ and involutions of $A_{6}$ are
square elements. Since any element of a prime order does not commute with an $A_{6}$-subgroup,
the possible types of $A_{6}$-subgroups of $G$ are $(2A, 4X;5Y)$ for (X, $Y$ ) $=(D, A),$ $(D, B)$ or $(B, B)$

by the folowing structure constant $s$ :
$\#(2A,4C;5A)=250$ $=|C_{G}(5A)|/4,$ $\#(2A, 4A;5A)=500$ $=|C_{G}(5A)|/2,$ $\#(2A,4D;5A)=$
$2000=2|C_{G}(5A)|/4,$ $\#(2A,4B;5A)=\#(2A, 4C;5B)=\#(2A,4A;5B)=0,$ $\#(2A, 4D;5B)=$
$600=2|C_{G}(5B)|,$ $\#(2A,4B;5B)=300=|C_{G}(5B)|$ .

The next two lemmas acount for $\#(2A, 4B;5B)$ and the half of $\#(2A, 4D;5B)$ .

Lemma 6.2. There is a unique class of subgroups of $G$ of type $(2A,4B;5B)$ . They are isomor-
phic to $Sz(8)$ and their normalizers are conjugate to the normalizer of a $2B$-pure four group.

Proof. For a $5B$-element $x$ , we have $N_{G}(x)=\langle x, y\rangle xA\cong 5;4xA_{5}$ , where $A=C_{G}(x)^{\prime}$ . A
Sylow 2-subgroup $E$ of $A$ is a $2B$-pure four group with $N_{G}(E)=(ExS):Z\cong(2^{2}xSz(8))3$ ,
where $EZ\subseteq A$ and \langle $x,$ $y$) $\subseteq S$ . (See the remark after Prop. 4.2.) Since $y$ is an element of order
4 centralizing a $5A$-element of $A,$ $y$ is a $4A$ or 4 $B$-element. The group $S=C_{G}(E)^{\prime}\cong Sz(8)$

has two non-real classe$s4A$ and $4B$ . Since involutions and elements of order 5 of $S$ are $2A$ and
$5B$-elements, respectively, the structure constants $\#(2A, 4A;5A)_{S}=\#(2A, 4B;5A)_{S}=30$ and
$\#(2A,4A;5B)_{G}=0$ show that the element $y$ of $S$ of order 4 is a $4B$-element. By observing the
list of maximal subgroups of $Sz(8)$ , any one of 60 pairs of $(2A, 4B;5B)\cap S$ generates $S$ . Thus,
by the usual counting argument, we have $|(2A, 4B;x)\cap S(x)|=60|N_{G}(x):N_{G}(x)\cap N_{G}(S)|=$

$60\cdot 2^{4}\cdot 3\cdot 5^{2}/|EZx(x, y)|=300=\#(2A,4B;x)$ , and therefore any pair of $(2A, 4B;x)\cap S(x)$

generates a subgroup conjugate to $S$ . As $N_{G}(S)=N_{G}(O_{2}(C_{G}(S)))=N_{G}(E)$ , the assertions
have proved. $\square $

In the proof of Prop. 6.1(3), we have shown that there is a subgroup $\Sigma$ isomorphic to $S_{5}$

which normalizes a subgroup $\langle q\rangle$ of order 3. We let $x$ be an element of $\Sigma$ of order 5.

Lemma 6.3. The group $\Sigma$ is of type $(2A, 4D;5B)$ and $|(2A, 4D;x)\cap\Sigma(x)|=300$ .
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Proof. The group $S_{5}$ is generated by a transposition and an element of order 4 such that their
product is of order 5. Since a transposition centralizes an element of order 3, $\Sigma\cong S_{5}$ is of type
$(2A, 4X;5B)$ . By Lemma 6.2 and structure constants, $\Sigma$ is of type $(2A, 4D;5B)$ , and the latter
part of the claim follows from the usual counting argument. $\square $

We will show in \S 9 that $G$ has a subgroup isomorphic to $A_{8}$ containing a 5B-element. Thus
there is, in fact, an $A_{6}$-subgroup containing an $5B$-element.

Lemma 6.4.
(1) Any subgroup of $G$ isomorphic to $A_{6}$ is of type $(2A, 4D;5A)$ or $(2A, 4D;5B)$ .
(2) There is a unique class of subgroups isomorphic to $A_{6}$ of type $(2A, 4D;5A)$ . Their normal-

izers are isomorphic to $Au\ell(A_{6})$ and are contained in subgroups isomorphic to $2F_{4}(2)$ .
(3) There is a unique class of subgroups isomorphic to $A_{6}$ of type $(2A, 4D;5B)$ . Their normal-

izers are isomorphic to $Au\ell(A_{6})$ .

Proof. The claim (1) folows from the previous remark and Lemma 6.2. Let $A$ be a subgroup
isomorphic to $A_{6}$ and $x$ an element of $A$ of order 5.

Assume that $x$ is a $5B$-element and $A$ is of type $(2A, 4D;5B)$ . The set $(2A, 4A;5A)_{A_{6}}$

consists of 10 pairs and any pair of this set generates $A_{6}$ . Thus we have $|(2A, 4D;x)\cap A(x)|=$

$10|N_{G}(x):N_{G}(x)\cap N_{G}(A)|$ , which is not greater than 300 by Lemma 6.3. Then $|N_{G}(x)\cap N_{G}(A)|\geq$

$40$ , and so the equaJity holds and $N_{G}(A)\cong Aut(A_{6})$ . This proves the claim (3).
Assume that $x$ is a $5A$-element and $A$ is of type $(2A, 4D;5A)$ . There is a subgroup $\Sigma$ of $G$

isomorphic to $S_{7}$ . By identifying $\Sigma$ with the symmetric group on $\{1, \ldots, 7\}$ , we may take $x=$

(12345). Since $x$ centralizes a transposition commuting an element of order 3, $x$ is a $5A$-element
and the subgroup $B$ of $\Sigma$ of even permutations fixing the letter 7 is of type $(2A,4D;5A)$ . Since
4$D$-elements of $B$ are permutations of type 124, the group $C$ of even permutations preserving
the partition {1, $\ldots$ , 5}, {6, 7} is also an $S_{5}$-subgroup of type $(2A, 4D;5A)$ .

If $(\alpha, \beta)\in(2A, 4D;x)$ is contained in $A$ or $B,$ $C_{G}(\alpha, \beta)=1$ and the orbit of $C_{G}(x)$ containing
$(\alpha, \beta)$ is of length $1000=|C_{G}(x)|$ . Since $\#(2A, 4D;5A)=2x$ 1000 and there is a subgroup
$C\cong S_{5}$ of type $(2A, 4D;5A)$ , we can conclude that the group $A$ is conjugate to $B$ and the only
1000 pairs of $(2A, 4D;x)$ generate subgroups isomorphic to $A_{6}$ . Then $N_{G}(A)$ is isomorphic to
$Au\ell(A_{6})$ , by the same computation in the case $x\in 5B$ .

As we will show in Table 3 of \S 7, elements of order 5 of a $2F_{4}(2)$-subgroup $F$ are $5A$-elements
and contained in a subgroup of $F$ isomorphic to $Aut(A_{6})$ (see [9]). Thus $N_{G}(A)$ is contained in
a $2F_{4}(2)$-subgroup. $\square $

6.3 Subgroups isomorphic to $Sz(8)$ .
As is shown in the proof of Lemma 6.2, a $Sz(8)$-subgroup is of type $(2A, 4X;5Y)$ . Since there
is no $2A$-involution centralizing an element of order 7, the possible types are $(2A,4D;5A)$ ,
$(2A, 4D;5B),$ $(2A, 4B;5B)$ . In the first two cases, the usual counting arguments show that
these groups are contained in local subgroups. Thus they are the commutator subgroups of
centralizers of some $2B$-pure four subgroups. Then they are of type $(2A, 4B;5B)$ , which is a
contradiction. Therefore, $Sz(8)$-subgroups are of type $(2A,4B;5B)$ . Then, by Lemma 6.2, we
have the following:

Proposition 6.5. There is a unique class of subgroups of $G$ isomorphic to $Sz(8)$ . They are of
typ$e(2A, 4B;5B)$ and their normalizers are normalizers of $2B$ -pure four groups.
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7Subgroups $2F_{4}(2)^{\prime},$ $L_{3}(3),$ $L_{2}(13),$ $L_{2}(25)$ and $L_{2}(29)$ .
7.1 Subgroups isomorphic to $2F_{4}(2)^{\prime}$ .
The original construction of the Rudvalis group shows that $G$ has a subgroup $F$ isomorphic to
$2F_{4}(2)$ such that $G$ is a permutation group of rank 3 on the cosets $G/F$ . The character $\phi$ of the
corresponding permutation representation is the sum of the three irreducible characters of $G$ of
degrees 1, 783 and 3276.

Table 2: Conjugacy classes of $2F_{4}(2)$ .

$\frac{Name{\rm Re} pre.F^{\prime}|C_{F}(g)|ClassinG|C_{G}(g)|\phi(g)}{1A1y|F|1G|G|4060}$

$\alpha_{12}$ $y$$2A$ $2^{12}5$ $2A$ $2^{14}35$ 92
$\alpha_{10}$ $y$$2B$ $2^{10}3$ $2A$ $2^{14}35$ 92

$4A$ $\alpha_{5}$ $n$
$2^{8}5$ $4A$ $2^{9}35$ 32

$4B$ $(4A)^{-1}$ $n$
$2^{8}5$ $4A$ $2^{9}35$ 32

$\alpha_{5}\alpha_{6}$ $y$$4C$ $2^{7}3$ $4A$ $2^{9}35$ 32
$\alpha_{7}\alpha_{8}$ $y$$4D$ $2^{8}$ $4C$ $2^{10}$ 4

$4E$ $\alpha_{2}\alpha_{6}\alpha_{8}$ $n$
$2^{6}3$ $4B$ $2^{8}35$ 20

$4F$ $\alpha_{5}\alpha_{7}$ $n$
$2^{7}$ $4D$ $2^{9}$ 8

$\alpha_{5}\alpha_{6}\alpha_{8}$ $y$$4G$ $2^{7}$ $4D$ $2^{9}$ 8
$\alpha_{2}\alpha_{4}\alpha_{6}\alpha_{8}$ $y$$8A$ $2^{6}$ $8B$ $2^{6}$ 4

$8B$ $(8A)^{3}$ $y$
$2^{6}$ $8B$ $2^{6}$ 4

$8C$ $\alpha_{2}\alpha_{4}$ $n$
$2^{5}$ $8B$ $2^{6}$ 4

$8D$ $\alpha_{2}\alpha_{3}\alpha_{4}\alpha_{6}\alpha_{7}$ $y$
$2^{4}$ $8C$ $2^{5}$ 2

$8E$ $\alpha_{2}\alpha_{3}\alpha_{5}$ $n$
$2^{4}$ $8A$ $2^{5}3$ 6

16A $\alpha_{1}\alpha_{3}$ $n$
$2^{4}$ 16A $2^{4}$ 2

16B $(16A)^{3}$ $n$
$2^{4}$ 16B $2^{4}$ 2

$\alpha_{1}\alpha_{3}\alpha_{5}$ $y$16C $2^{4}$ 16A $2^{4}$ 2
16D $(16C)^{3}$ $y$

$2^{4}$ 16B $2^{4}$ 2
$3A$ $\ell_{4}$ $y$

$2^{3}3^{3}$ $3A$ $2^{4}3^{3}5$ 10
$6A$ $2Bx3A$ $y$

$2^{3}3$ $6A$ $2^{4}3$ 2
12A $3Ax4C$ $y$

$2^{2}3$ 12A $2^{3}3$ 2
12B $3Ax4E$ $n$

$2^{2}3$ 12B $2^{2}3$ 2
12C $3Ax4E$ $n$

$2^{2}3$ 12B $2^{2}3$ 2
$5A$ $\ell_{9}$ $y$

$2^{2}5^{2}$ $5A$ $2^{3}5^{3}$ 10
10A $2Ax5A$ $y$

$2^{2}5$ 10A $2^{3}5$ 2
20A $4Ax5A$ $n$

$2^{2}5$ 20A $2^{2}5$ 2
20B $4Bx5A$ $n$

$2^{2}5$ 20A $2^{2}5$ 2
13A $t_{17}$ $y$ 13 l3A $2^{2}5$ 4

Since the conjugacy classes of $F$ are known, we can determine the fusion of elements of $F$

in $G$ by the values of $\phi$ , using the formula $\phi(g)=|C_{G}(g)|\Sigma_{=1}^{*}\frac{1}{|C_{P}(g:)|}$ , where $\{g_{1}, \ldots, g_{*}\}$ is a
complete system of representatives of F-classes of $\{g^{x}|x\in G\}$ . The results are found in the
above table, where $\alpha_{1},$ $\ldots$ , $\alpha_{12}$ are generators of a Sylow 2-subgroup of $F$ satisfying the relations
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given in [1]. In the first and second columns of this table, F-classes of $F$ are exhibited with
thier names and representatives $g$ . In the third column, $y$ and $n$ mean that $g\in F^{\prime}$ and $g\not\in F^{\prime}$ ,
respectively. The orders of centralizers of $g$ in $F$ and $G$ are given in the fourth and sixth columns,
respectively, and the fusion of $g$ in $G$ is shown in the fifth column. The seventh column shows
the value of the permutation character $\phi$ .

Lemma 7.1. There is a unique class of subgroups of $G$ isomorphic to $2F_{4}(2)^{\prime}$ . Their normalizers
are conjugate to $F$ .

Proof. Let $T$ be a subgroup of $G$ isomorphic to $2F_{4}(2)^{\prime}$ . Since the Schur multiplier of $T$ is
trivial, the double cover $G$ of $G$ has a subgroup $\tilde{T}$ isomorphic to $T$ . The degrees of the irreducible
characters of $T$ not exceeding 28 are 1, 26 and 27. Thus $\tilde{T}$ fixes a non-trivial subspace of the
28-dimensional space $V_{0}$ over $Q(i)$ on which $\tilde{G}$ acts. By reducing modulo 2, we have a G-space
$V$ over $F_{2}$ of dimension 28 on which $T$ has a non-trivial fixed subspace. Thus the result follows
from Table in 2.2.

7.2 Subgroups isomorphic to $L_{3}(3),$ $L_{2}(25)$ or $L_{2}(13)$ .
Let $L$ be a subgroup of $G$ isomorphic to $L_{3}(3),$ $L_{2}(25)$ or $L_{2}(13)$ . Involutions of $L$ are 2A-
involutions, since they centralize elements of order 3. Then the structure constants of these
groups show that $L$ is of type $(2A, 3A;13A)$ . The following lemmas follow from the usual
counting arguments.

Lemma 7.2. There is a subgroup $L$ of $G$ isomorphic to $L_{2}(25)$ with $N_{G}(L)\cong Aut(L_{2}(25))$ . For
an element $x$ of $L$ of order $13_{f}|(2A, 3A;x)\cap L|=2\cdot 13$ and $|(2A, 3A;x)\cap L(x)|=3\cdot 4\cdot 13$ . Any
pair of the set $(2A, 3A;x)\cap L$ generates $L$ .

Lemma 7.3. A subgroup $F$ of $G$ isomorphic to $2F_{4}(2)$ contains a subgroup $M$ isomorphic
to $L_{3}(3)$ with $N_{G}(M)=N_{F}(M)\cong L_{2}(13)$ . For an element $x$ of $M$ of order 13, we have
$|(2A, 3A;x)\cap M|=13$ and $|(2A, 3A;x)\cap M(x)|=3\cdot 4\cdot 13$ .

Lemma 7.4. There is a subgroup $P$ of $G$ isomorphic to $L_{2}(13)$ with $N_{G}(P)\cong PGL_{2}(13)$ . For
an element $xofP$ of order 13, we have $|(2A, 3A;x)\cap P|=13$ and $|(2A, 3A;x)\cap P(x)|=4\cdot 13$ .

Since $\#(2A, 3A;13A)=7\cdot 4\cdot 13$ , the above lemmas imply the following.

Proposition 7.5. For $L\cong L_{2}(25),$ $L_{2}(13)$ or $L_{3}(3)$ , there is a unique class of subgroups $ofG$ iso-
morphic to L. Their normalizers in $G$ are isomorphic to $Au\ell(L_{2}(25)),$ $PGL_{2}(13)$ and $Au\ell(L_{3}(3))$

for $L\cong L_{2}(25),$ $L_{2}(13)$ and $L_{3}(3)$ , respectively. The normalizer isomorphic to $Aut(L_{3}(3))|s$ con-
tained in a subgroup isomorphic to $2F_{4}(2)$ .

7.3 Subgroups isomorphic to $L_{2}(29)$ .
There is an $L_{2}(29)$-subgroup of $G$ (see [11]).

Proposition 7.6. There is a unique class of subgroups of $G$ isomorphic to $L_{2}(29)$ . They are
self-normalizing.
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Proof. Let $L_{i}(i=1,2)$ be subgroups isomorphic to $L_{2}(29)$ . By Sylow’s theorem, we may
assume that $L_{1}\cap L_{2}$ contains a Sylow 29-subgroup $P$ of $G$ . Then $ N_{L_{1}}(P)=N_{G}(P)=N_{L_{2}}(P)\cong$

$29;14$ . For a complement $D$ of $P$ in $N_{G}(P)$ , we have $N_{L_{i}}(D)\cong D_{28}(i=1,2)$ . Since an involution
of $L_{i}$ centralizes an element of order 7, it is of class $2B$ . Then for the unique involution $x$ of
the complement $D,$ $C_{G}(x)=ExS\cong 2^{2}xSz(8)$ . As $N_{L_{i}}(D)\subseteq C_{G}(x)$ , the involution $u_{i}$

of $N_{L}:(D)\backslash D$ is a product of $u_{i}^{l}$ of $E$ and an involution $u^{u}$ of $S$ inverting $O_{7}(D)$ . Since a
Sylow 7-normalizer of $S$ is isomorphic to 7: 2, we may assume that $u_{1}^{\prime\prime}=u_{2}^{\pi}=:v$ . Then
$u^{\prime}.\cdot=1$ and $u_{i}=x$ , since an involution of $S$ is of class $2A$ and $N_{L;}(D)$ does not contain
$v=x\cdot xv$ . Thus $ u_{1}^{\prime}\cdot u_{2}^{\prime}\in$ ( $ x\rangle$ and $N_{L_{1}}(D)=\langle x,$ $O_{7}(D),$ $u_{1}^{\prime}$ ) $=\langle x, O_{7}(D),u_{2}^{\prime}\rangle=N_{L_{2}}(D)$ , and
then $ L_{1}=(N_{G}(P), N_{L_{1}}(D)\rangle$ $=(N_{G}(P), N_{L},(D))=L_{2}$ .

Since $2B$-involutions are not squares, $L_{1}$ is not contained in a subgroup isomorphic to
$PGL_{2}(29)$ . Thus $L_{1}$ is self-normalizing.

8 Subgroups $L_{2}(7)$ and $U_{3}(3)$ .
8.1 Subgroups isomorphic to $L_{2}(7)$ .
Let $X=(z,\ell,$ $w,$ $a,$ $c,$

$ u\rangle$ be the elementary abelian subgroup of order $2^{6}$ in \S 3. The normalizer
$N_{G}(X)$ is a non-split extension of $G_{2}(2)$ by $X$ , but $X$ has a complement isomorphic to $U_{3}(3)$ in
$N_{G}(X)^{\prime}$ (see [6] Lemma 3.4). In order to compute the structure constant $|(2A, 3A;x)\cap N_{G}(X)|$

for an element $x$ of order 7 of $N_{G}(X)$ , we recal the following explicit definition of $G_{2}(2)$ given
by Dickson (see [5] and [6]).

Let $V=F_{2}^{7}$ be the vector space of row vectors of length 7 with coefficients in $F_{2}$ and $e_{i}$

$(i=0, \ldots, 6)$ its natural basis. We define a non-singular quadratic form $q$ on $V$ by $q(x)=$

$x_{0}^{2}+x_{1}x_{4}+x_{2}x_{5}+x_{3}x_{6}$ for $\dot{x}=(x_{i})_{1=0}^{6}\in V$ , and identify $O_{7}(2)$ with the group of matrices $A$

of $GL_{2}(7)$ preserving $q:q(x)=q(xA)$ for any $x\in V$ . We denote by $n$ the matrix of $GL_{7}(2)$

with $(i,j)$-entry 1 for $(i,j)=(2,6),$ $(3,5),$ $(4,0),$ $(4,1)$ and $i=j=0,$ $\ldots,6$ and $(i,j)$-entry $0$

otherwis $e$ . We also define matrices $m$ and $\ell(Y)$ for $Y\in L_{3}(2)$ as follows, where $I$ denotes the
identity matrix of size 3:

$m$ $:=\left(\begin{array}{lll}1 & 0 & 0\\0 & 0 & I\\0 & I & 0\end{array}\right),$ $\ell(Y)$ $:=\left(\begin{array}{lll}1 & 0 & 0\\0 & Y & 0\\0 & 0 & \ell Y^{-1}\end{array}\right)$ .

We may verify that $m,$ $n$ and $\ell(Y)$ for $Y\in L_{3}(2)$ are contained in $O_{7}(2)$ . By [5], the subgroup
$K$ $:=(m,$ $n,$ $\ell(Y)|Y\in L_{3}(2)\rangle$ is isomorphic to $G_{2}(2)$ . Since $K$ acts trivially on $F_{2}1$ , where
1 $=\Sigma_{1=0}^{6}e_{i},$ $K$ acts on the 6-dimensional space $W:=V/F_{2}1$ . The image of a subset $X$

of $V$ in $W$ is denoted by $\overline{X}$. Note that $K^{\prime}$ is isomorphic to $U_{3}(3)$ and contains the group
$L$ $:=\{\ell(Y)|Y\in L_{3}(2)\}\cong L_{3}(2)$ .

We also set $x=\ell(X),$ $\alpha=\ell(A)$ and $\beta=\ell(B)$ for

$X$ $:=\left(\begin{array}{lll}0 & 1 & 0\\1 & 0 & 1\\0 & l & 1\end{array}\right),$ $A$ $:=\left(\begin{array}{lll}0 & 1 & 0\\1 & 0 & 0\\1 & l & 1\end{array}\right)$ and $B$ $:=\left(\begin{array}{lll}1 & 0 & 1\\0 & l & 0\\1 & 0 & 1\end{array}\right)$ ;

and $x_{1}$ $:=0,$ $x_{2}$ $:=(0;0,0,0;0,0,1)$ , X3 $:=(0;1,0,1;0,0,0)$ and $x_{4}$ $:=x_{2}+x_{3}$ . In the semidirect
product $W:L$ with respect to the natural action of $L$ on the space $W$ , we define $ L;;=\langle x_{i}\alpha,x_{i}\beta$)
for $i=1,$ $\ldots,$

$4$ . Finally, we set $V_{+}:=(e;|i=0,1,2,3)$ and $ V_{-}:=\langle e_{i}|i=0,4,5,6\rangle$ .
Then we can verify the following lemma by straightforward calculation.

Lemma 8.1. Under the notation above, we have the following results:
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(1) The elements $\alpha,$
$\beta$ and $x$ are of order 2, 3 and 7, respectively. We have $\alpha\beta=x$ and

$C_{W}(\alpha)\cap[W, \beta]=\{x_{i}|i=1, \ldots, 4\}$ .
(2) The groups $L_{i}$ are isomorhpic to $L_{3}(2)$ for $i=1,2,3,4$ . In the semidirect product $W:L$ ,

we have ( $L_{1},$ $ L_{2}\rangle$ $=\overline{V_{+}}:L$ and $(L_{3}, L_{4})=\overline{V_{-}}:L$ .

In the rest of this subsection, we consider $(2A, 3A;x)$ for an element $x$ of order 7 of $N_{G}(X)$ .
We note that $C_{G}(x)\cong 2^{2}x7,$ $N_{G}(x)\cong(2^{2}x7)3$ and $O_{2}(C_{G}(x))$ is a 2 $B$-pure four subgroup.

Lemma 8.2. For an element $x$ of order 7 of $N$ $:=N_{G}(X)\cong 2^{6}\cdot G_{2}(2)$ , the following hold:

(1) We have $|(2A,3A;x)\cap N|=4\cdot 7$ and $|(2A, 3A;x)\cap N(x)|=4\cdot 4\cdot 7$ .
(2) There are four subgroups $L;(i=1, \ldots , 4)$ of $N$ of type $(2A, 3A;x)$ . They are isomorphic

to $L_{2}(7)$ .
(3) For an involution $u$ of $N$ inverting $x$ , we have $(N\supseteq)N_{G}(L_{i})=(L_{i}, u)\cong PGL_{2}(7)$ for

$i=1,2,$ $N_{G}(L_{i})=L_{i}$ for $i=3,4,$ $L3=L_{4}$ , and $(L_{1}, L_{3})‘‘=\langle L_{1}, L_{4}\rangle\cong 2^{3}$ : $L_{3}(2)$ .
Furthermore, $L_{1}$ is not conjugate to $L_{2}$ in $G$ .

(4) There are two complements $U$ and $V$ of $X$ in $N^{\prime}$ such that $U\cap V$ is a Sylow 3-normalizer
in both $U$ and V. The groups $U$ and $V$ are self-normalizing and are conjugate in $N$ , but
not in $N^{l}$ .

Proof. Set $\mathcal{X}:=(2A, 3A;x)\cap N$ and $M$ $:=N^{\prime}\cong 2^{6}$ : $U_{3}(3)$ . We let $U$ be a complement of $X$ in
$M$ containing $x$ . Since groups of type $(2A, 3A;7A)$ are perfect, we have $\mathcal{X}=\mathcal{X}\cap M$ . Then for
any $(\alpha, \beta)\in \mathcal{X}$ , we may uniquely write $\alpha=\alpha_{1}\alpha_{2}$ and $\beta=\beta_{1}\beta_{2}$ , where $\alpha_{1},$ $\beta_{1}\in X$ and $\alpha_{2},$ $\beta_{2}\in U$ .
We may verify that $(\alpha, \beta)\in \mathcal{X}$ if and only if $(\alpha_{2}, \beta_{2})\in \mathcal{X}\cap U$ and $\alpha_{1}=\beta_{1}\in C_{X}(\alpha_{2})\cap[X, \beta_{2}]$ .
Note that all faithful representations of $U_{3}(3)$ of dimension 6 over $F_{2}$ are equivalent to each
other (see [6], Lemma 15). Then we may take as $X$ and $U$ the groups $W$ and $K^{\prime}$ in Lemma
8.1, respectively. Since $x$ acts regularly on $\mathcal{X}\cap U$ , it follows from Lemma 8.1 that for each
$(\alpha_{2}, \beta_{2})\in \mathcal{X}\cap U$ there are four element $s\alpha_{1}\in X$ with $(\alpha_{1}\alpha_{2}, \alpha_{1}\beta_{2})\in \mathcal{X}$ . Thus $|\mathcal{X}\cap U|=4\cdot 7$

and any pair of $\mathcal{X}\cap U$ generates an $L_{2}(7)$-subgroup. There are four such $L_{2}(7)$-subgroups in
total.

As $N_{N}(x)\cong 7:6$ , the set $\{N^{9}|g\in N_{G}(x)\}$ consists of four conjugates on which $O_{2}(C_{G}(x))$

acts regularly. We will show that $\mathcal{X}\cap N^{g}=\emptyset$ for any $1\neq g\in O_{2}(C_{G}(x))$ . Suppose $(\alpha, \beta)$ lies in
$\mathcal{X}\cap N^{9}$ for some $1\neq g\in O_{2}(C_{G}(x))$ . Then $L:=(\alpha,$ $\beta\rangle$ is an $L_{2}(7)$-subgroup of $M\cap M^{9}$ . Since
$N_{L}(x),$ $N_{M}(x)$ and $N_{M},(x)$ are isomorphic to 7: 3, we have $N_{L}(x)=N_{M}(x)=N_{M\cap M},(x)$ , and
therefore the involution $g$ acts on $N_{L}(x)$ . On the other hand, since $g$ lies in the normal subgroup
$O_{2}(C_{G}(x))$ of $N_{G}(x)$ , an element $q$ of order 3 of $N_{L}(x)acts$ on $O_{2}(C_{G}(x))$ . Then $q$ centralizes an
$2B$-involution $g$ , which is a contradiction. Thus we proved the above claim, and then we have
$|(2A, 3A;x)\cap N(x)|=4|\mathcal{X}|=4\cdot 4\cdot 7$ . The assertions (1) and (2) are verified.

To show the assertions (3) and (4), we will first observe that the involution $u$ normalizes
$ L=\langle\alpha_{2}, \beta_{2}\rangle$ for any $(\alpha_{2}, \beta_{2})\in \mathcal{X}\cap U$ . Note that the maximal subgroups of $U_{3}(3)$ are of
indices 28, 36 and 63 and those of index 36 are isomorphic to $L_{2}(7)$ . Thus $U$ is transitive on
$X\backslash \{1\}$ , and $U\cap U^{h}=C_{U}(h)$ is a subgroup of $U$ of index 36 for any $1\neq h\in X$ . We set
$\Omega$ $:=\{U^{g}|g\in M\}=\{U^{g}|g\in X\}$ and $V$ $:=U^{u}$ . If $U=V$ , the group $\langle U, u\rangle(\cong G_{2}(2))$ would be
a complement of $X$ in $N$ . Thus $U\neq V$ . As $x\in U\cap V,$ $ V\not\in\Omega$ . Since $U$ and $V$ contain Sylow
3-subgroups of $M,$ $V^{k}\cap U$ contains $N_{U}(R)$ for some $k\in M$ , where $R$ is a Sylow 3-subgroup of
$U$ . We have $V^{k}\cap U=N_{U}(R)$ , since $R$ is maximal in $U$ and $ V\not\in\Omega$ . Then the V-orbit on $\Omega$

containing $U^{k^{-1}}$ is of length $|V:V\cap U^{k^{-1}}|=28$ . In particular, $U$ is not contained in this orbit
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and the V-orbit containing $U$ is of length at most 36. Then this length is $36=|V:U\cap V|$ , and
therefore $U\cap V\cong L_{2}(7)$ . Thus for any pair $(\alpha_{2}, \beta_{2})\in \mathcal{X}\cap U$ , we have $L=(\alpha_{2}, \beta_{2})=U\cap V$ and
$L$ is normalized by the involution $u$ .

For $L_{1};=L$ , we have $N_{G}(L_{1})=(L_{1}, u)\subseteq N$ , as $C_{G}(L_{1})=1$ . By Lemma 8.1, we may
assume that $(L_{1}, L_{3})\cong\langle L_{1}, L_{4}\rangle\cong 2^{3}$ : $L_{2}(7)$ . Suppose $L$ ; is normalized by $u$ for $i=3$ or 4. Then
$(L_{1}, u\rangle\cong PGL_{2}(7)$ acts on $O_{2}(\langle L_{1}, L_{i}))\cong 2^{3}$ , and therefore $L_{1}$ centralizes this $2^{3}$-subgroup,
which is a contradiction. Thus ( $L_{1},$ $L_{3}\rangle^{u}=(L_{1},$ $ L_{4}\rangle$ . Since $u$ acts on the set $\{L_{i}|i=1, \ldots,4\}$

of $L_{2}(7)$-subgroups of $Ncont\dot{a}ningx$ , we have $L_{3}=L_{4},$ $L_{2}^{u}=L_{2}$ , and $N_{G}(L_{2})=\langle L_{2},$ $u$) $\subseteq N$ .
Suppose $N_{G}(L_{i})$ properly contains $L_{i}$ for $i=3$ or 4. Then $N_{G}(L_{i})\cong PGL_{2}(7)$ and there is an
involution $u^{\prime}$ of $N_{G}(L_{i})$ inverting $x$ . Such an involution $u^{\prime}$ lies in the coset $ uO_{2}(C_{G}(x))(x\rangle$ . As is
shown in the proof of the assertion (1), the group $M\cap M^{9}$ does not contain an $L_{2}(7)$-subgroup for
any $1\neq g\in O_{2}(C_{G}(x))$ . Then $ u^{\prime}\in u(x\rangle$ , which is a contradiction. Thus $L_{i}$ are self-normalizing
for $i=3,4$ . Since the hypothesis $U\neq N_{G}(U)$ implies the existence of an involution $u^{\prime}$ of $N_{G}(U)$

inverting $x$ , we may show that the $U_{3}(3)$-subgroup $U$ is self-normalizing, by the same reasoning
as above. Furthermore, the same reasoning can be used to derive a contradiction from the
assumption that $L_{1}^{g}=L_{2}$ for some $g\in G$ , because it implies that we may take $g\in N_{G}(x)$ .
Hence assertions (3) and (4) have been proved. $\square $

Lemma 8.3. For an $S_{7}$ -subgroup $\Sigma$ of $G$ containing an element $x$ of order 7, $|(2A, 3A;x)\cap\Sigma|=$

2. 7 and $|(2A, 3A;x)\cap\Sigma(x)|=4\cdot 2\cdot 7$ hold. There are two subgroups of $\Sigma$ of type $(2A, 3A;x)$

containing $x$ , which are conjugate $L_{2}(7)$ -subgroups and are self-normalizing.

Proof. Involutions of $\Sigma$ are $2A$-involutions, since they commute with elements of order 3. By
the character table of $S_{7},$ $|(2A,3A;x)\cap\Sigma|=2\cdot 7$ and there are two subgroups of $\Sigma$ of type
$(2A, 3A;x)$ containing $x$ . Since $\Sigma$ is self-normalizing and $N_{\Sigma}(x)\cong 7:6,$ $\{\Sigma 9|g\in N_{G}(x)\}=$

$\{\Sigma^{g}|g\in O_{2}(C_{G}(x))\}$ . Suppose the set $(2A, 3A;x)\cap\Sigma\cap\Sigma^{g}$ contains a pair $(\alpha, \beta)$ for $ 1\neq g\in$

$O_{2}(C_{G}(x))$ . Then, since $g$ acts on $(\alpha, \beta\rangle$ $\cap N_{G}(x)=O^{2}(N_{\Sigma}(x))=(\Sigma\cap\Sigma^{g})\cap N_{G}(x)$ , the 2B-
involution $g$ centralizes an element of order 3, which is a contradiction. Thus $|(2A, 3A;x)\cap$

$\Sigma(x)|=2\cdot 7|N_{G}(x):N_{G}(x)\cap\Sigma|=4\cdot 2\cdot 7$ . $\square $

Lemma 8.4. For an $S_{7}$ -subgroup $\Sigma ofG$ containing an element $x$ of order 7 $ ofN:=N_{G}(X)\cong$

$2^{6}\cdot G_{2}(2)$ , we have $(2A, 3A;x)\cap\Sigma(x)\cap N(x)=\emptyset$ and $|(2A, 3A;x)\cap(\Sigma(x)\cup N(x))|=6\cdot 4\cdot 7$ .

Proof. Suppose there is a pair $(\alpha,\beta)$ of $(2A, 3A;x)\cap\Sigma\cap N$ . We will observe that this as-
sumption leads to a contradiction. Then the lemma immediately follows from usual counting
arguments (see \S 2.1). We set $L$ $:=\langle\alpha,$ $\beta$) and consider the G-space $V$ of dimension 28 over
$F_{2}$ (see \S 2.2). Note that any irreducible $L_{3}(2)$-module over $F_{2}$ is equivalent to one of the fol-
lowing: trivial module $V_{1}$ , the natural module $V_{3}$ of dimension 3, its contragradient $V_{3}^{*}$ , and
the 8-dimensional module $V_{8}$ contained in $V_{3}\otimes V_{3}^{*}$ . We know dimensions of subspaces of these
modules fixed by elements of odd prime orders of $L_{3}(2)$ , along with dimensions of subspaces of $V$

fixed by elements of $G$ of odd prime orders. Thus, by DIM-argument in \S 2.2, we can determine
the multiplicity of the trivial modules among the L-composition factors of $V$ as an L-module
over $F_{2}$ . It is 2.

We use the notation in Table in \S 2.2. A vector $0\neq z\in V$ is of type $g$ or $s$ if and only if
the stabilizer $G_{z}$ contains an $L_{2}(7)$-group. There are vectors $x$ and $y$ of $V$ of type $g$ and $s$ with
the stabilizers $G_{x}=N$ and $ G_{y}=\Sigma$ in $G$ , respectively. Since $L\cong L_{2}(7)$ fixes vectors $x$ and $y$ ,
$C_{V}(L)=$ \langle $x,$ $y)$ by the remark above. Any vector $z(\neq 0,$ $x,$ $y)$ of $(x,$ $ y\rangle$ is of type $g$ or $s$ . If it
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is of type $g$ , there is a conjugate $N^{m}(\neq N)$ with $L\subset N\cap N^{m}$ , which is a contradiction by the
proof of Lemma 8.2 (1). If $z$ is of type $s$ , we also have a contradiction by Lemma 8.3 (1). $\square $

Lemma 8.5. We have $|(2A, 3A;x)\cap L|=2\cdot 7$ and $|(2A, 3A;x)\cap L(x)|=3\cdot 4\cdot 7$ for an $L_{2}(13)-$

subgroup $L$ containing an element $x$ of order 7. Any pair $(\alpha, \beta)\in(2A, 3A;x)\cap L$ generates
$L$ .

Proof. By the character table of $L_{2}(13)$ , we have $|(2A, 3A;x)\cap L|=2\cdot 7$ . Since any proper
subgroup of $L_{2}(13)$ are solvable and subgroups of type $(2A, 3A;7X)$ are non-solvable, $ L=\langle\alpha,\beta$)
for any $(\alpha,\beta)\in(2A, 3A;x)\cap L$ . In particular, $(2A, 3A;x)\cap L\cap L^{g}=1$ for $g\in N_{G}(x)$ with
$L\neq L^{9}$ . Since $N_{G}(L)\cong PGL_{2}(13)$ by Lemma 7.4 and $N_{G}(x)\cap N_{G}(L)\cong 2xD_{14}$ , we have
$|(2A, 3A;x)\cap L(g)|=2\cdot 7\cdot|N_{G}(x):N_{G}(L)|=3\cdot 4\cdot 7$ . $\square $

As $\#(2A, 3A;7A)=9\cdot 4\cdot 7$ , we have the following conclusion about conjugacy dasses of
$L_{2}(7)$-subgroups by Lemmas 8.2-5.

Proposition 8.6. There are four classes of subgroups of $G$ isomorphic to $L_{2}(7)$ , with repoesenta-
tives $L_{i}(i=1, \ldots, 4)$ satisfying the following properties: The normalizers of $L_{1}$ and $L_{2}$ in $G$ are
isomorphic to $PGL_{2}(7)$ and $L_{3}$ and $L_{4}$ are self-normalizing. The normalizers of $L_{:}(i=1,2,3)$

are contained in $N_{G}(X)\cong 2^{6}\cdot G_{2}(2)$ and $L_{4}$ is contained in a subgroup of $G$ isomorphic to $S_{7}$ .

8.2 Subgroups isomorphic to $U_{3}(3)$ .
Proposition 8.7. There is a unique class of subgroups of $G$ isomorphic to $U_{3}(3)$ . They are
self-normalizing and are conjugate to a subgroup of $N_{G}(X)\cong 2^{6}\cdot G_{2}(2)$ .

Proof. Let $U$ be a $U_{3}(3)$-subgroup of $N$ $:=N_{G}(X)$ and $R$ a Sylow -subgroup of $U$ . The group
$R$ is a Sylow 3-subgroup of $G$ with normalizers $N_{U}(R)\cong 3^{1+2}$ : 8 in $U$ and $N_{G}(R)\cong 3^{1+2}$ : $SD_{16}$ .
Let $h$ be a generator of a complement of $R$ in $N_{U}(R)$ . Since $h^{2}$ is an element of order 4 centralizing
$Z(R),$ $h^{2}$ is a 4$A$-element of $G$ and so $h\in(8A)$ . We recall that there is a conjugate $V$ of $U$

in $N$ with $U\cap V=N_{U}(R)$ by Lemma 8.2 (4). Take any $U_{3}(3)$-subgroup $M$ of $G$ . To show
that $M$ is conjugate to $U$ , we may assume that $R\subseteq M$ by Sylow’s theorem, and therefore that
$N_{U}(R)=N_{M}(R)\subseteq M$ . We will show that $M=U$ or $V$ .

First, we will observe that there is an involution $g$ of $M$ satisfying $h^{g}=h^{-3},$ $[g, q]$ is of order
8 for any $1\neq q\in Z(R)$ , and $M=\langle R,$ $h,$ $g$ ). To show this claim, we identify $M$ with the matrix
group $\{A\in GL_{3}(F_{9})|AJ^{t}\overline{A}=J\}$ , where $\overline{A}=(a_{j}^{3})$ for $A=\vee(a|j)$ and $J$ is the matrix of size 3
with $(i,j)$-entry 1 for $i+j=4$ and $0$ otherwise. We may assume that $R$ consists of matrices

$\left(\begin{array}{lll}1 & 0 & 0\\a & 1 & 0\\b & -a^{3} & l\end{array}\right)$ for $a,$ $b\in F_{9}$ with $a+a^{3}+b^{4}=0,$ $h$ is the diagonal matrix with $(i, i)$-entries

$\eta^{-3},$ $\eta^{2},$
$\eta$ for $i=1,2,3$ , respectively, where $\eta$ is a generator of F5. Let $v$ be the matrix with

$(i,j)$-entry $1,$ $-1$ , and 1 for $(i,j)=(1,3),$ $(2,2)$ and $(3, 1)$ , respectively, and $0$ otherwise. Then
we may verify that $v$ is an involution $s$atisfying the required properties. (Note that ( $R,$ $ h\rangle$ is
maximal in $M.$ ) In particular, $U$ and $V$ contain involutions $g_{1}$ and $g_{2}$ with the above properties,
respectively. We have $\langle h, g_{1}\rangle\neq\langle h, g_{2}\rangle$ .

We take a $2F_{4}(2)$-subgroup $F$ of $G$ containing $R$ . Then $N_{G}(R)=N_{F}(R)$ . We will observe
that there are involutions $g_{3}$ and $g_{4}$ satisfying the following properties: $h^{\Phi}=h^{g}\cdot=h^{-3},$ $g_{3}g_{4}$

is an involution, $\langle h,g_{3}\rangle\neq\langle h,$
$g_{4}$ ) and $\langle R, h, g_{3})=(R, h, g_{4}\rangle=F$ . To show this, we identify
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$h\in(8A)_{G}\cap F$ with the element $\alpha_{2}\alpha_{3}\alpha_{5}$ in Table in \S 7.1. Then, by using the commutator
formulas in [1], we may verify that $g_{3}=andg_{4}=\alpha_{8}\alpha_{9}\alpha_{11}\alpha_{12}$ satisfies the former three properties
in the above. (Note that $h^{4}=\alpha_{10}.$ ) Since $N_{F}(R)$ does not contain ( $h,$ $ g_{3}\rangle$ or ( $h,$ $ g_{4}\rangle$ , we have
$\langle R, h,g_{3})=F=(R, h,g_{4}\rangle$ by observing the list of maximal subgroups of $2F_{4}(2)^{\prime}$ (see $[9],[10]$ ).

Next we will consider the group ( $ h,g\rangle$ for an involution $g$ with $h^{9}=h^{-3}$ . In the rest of
this proof, we use notation in \S 3. Note that $x_{2}u$ is of class $(8A)$ (see [7] Table 2) and $x_{2}uy=$

$(x_{2}u)^{va_{l2}}$ . By using commutator formulas in \S 2, we can verify that $C_{G}(x_{2}u)=(\ell, w, x_{2}u,q_{1})$

and $N_{G}(x_{2}u)=C_{G}(x_{2}u)(y, u)$ , where $q_{1}$ is an element of order 3 with $[q_{1}, u]=1$ and $q_{1}^{1}=q_{1}^{-1}$ .
The element $q_{1}$ acts on ( $t,$ $ w\rangle$ . We may assume that $\ell^{q\iota}=\ell w$ and $(\ell w)^{91}=w$ . Now, taking
suitable conjugates of $R,$ $U$ and $N$ , we may assume that $Z(R)=(q_{0})$ , where $q_{0}:=q_{1}^{y’\iota v}$ . Then
$x_{2}u=(x_{2}u\cdot y)^{l2av}$ inverts $q_{1}$ , and so $(h)$ and $(x_{2}u)$ are two cyclic subgroups of order 8 of
$N_{G}(q_{0})\backslash C_{G}(q_{0})$ . Since $N_{G}(q_{0})/\langle q_{0}\rangle\cong Aut(A_{6})$ , the group ($x_{2}u,u,$ $y\rangle^{nav}$ is a Sylow 2-subgroup
of $N_{G}(q_{0})$ . Then $\{x_{2}uy, (x_{2}uy)^{3}, (x_{2}uy)^{-3}\}^{y_{2}\iota v}$ coincides with the set of elements of order 8 of
$(x_{2}u, u, y)^{\nu 2^{\circ v}}\backslash C_{G}(q_{0})$ , and so $(h)$ is conjugate to $(x_{2}u)$ in $N_{G}(q_{0})$ . Thus, by taking suitable
conjugates of $R,$ $U$ and $N$ under $N_{G}(q_{0})$ , we may assume that $ Z(R)=(q_{0}\rangle$ and $(h\rangle$ $=\langle x_{2}u\rangle$ .
Then if $g$ is an involution with $h^{9}=h^{-3}$ , we have $g\in N_{G}(x_{2}u)$ . By observing this explicitly
known group $N_{G}(x_{2}u)$ , we may conclude that \langle $h,g$ ) is one of the following six subgroups:

$A_{1}$ $:=(h, y\rangle, A_{2} :=\langle h,\ell y),$ $A_{3}$ $:=(h,$ $ q_{1}y\rangle$ ,
$A_{4}$ $:=\langle h, \ell w, q_{1}y\rangle,$ $A_{5}$ $:=(h,q_{1}^{-1}y\rangle$ or $A_{6}$ $:=\langle h, wq_{1}^{-1}y\rangle$ .

Hence, by the preceeding remark, the $U_{3}(3)$-subgroup $M$ containing $ R(h\rangle$ $=N_{U}(R)$ coincides
with $(R, A_{i})$ for some $i=1,$ $\ldots,$

$6$ and $F=(R,A_{j_{1}})=(R, A_{j},)$ for some $j_{1},j_{2}=1,$
$\ldots,$

$6$ .
Finally, we will show that $\langle R, A;\rangle$ is not isomorphic to $U_{3}(3)$ nor $2F_{4}(2)$ for $i=1,2$ . Since $y$

centralizes $y_{2}av,$ $y$ acts on $ Z(R)=(qo\rangle$ . Then ( $R,$ $h,$ $ y\rangle$ $\subseteq N_{G}(q_{0})$ and the claim has proved for
$i=1$ . As $q_{0},ty,$ $h\in H=C_{G}(z)$ , we have $[q_{0}, \ell y]\equiv[q_{0}, kty]\equiv q_{0}$ $(mod O_{2}(H))$ for any element
$k$ of $A_{2}$ . Then $[q_{0}, k]$ is not of order 8 for any $k\in A_{2}$ , and therefore $(R, A_{2})\not\cong U_{3}(3)$ by the
preceeding remark about $U_{3}(3)$ . Furthermore, we can show that $(R, A_{2})\not\cong 2F_{4}(2)$ as follows. If
\langle $R,$ $A_{2}$ ) $\cong 2F_{4}(2)$ , by the preceeding remark about $2F_{4}(2)$ , there is an involution $g$ of $A_{2}$ such
that $(\ell y)g$ is an involution and $(R, h, g)\cong 2F_{4}(2)$ . By computing modulo $O_{2}(H)$ as above, we
have ( $h,$ $ g\rangle$ $=A_{2}$ , which is a contradiction.

Hence we conclude that $(R, A_{i})\cong 2F_{4}(2)$ for exactly two indices $i$ of $\{3, \ldots, 6\}$ and $(R,A_{j})\cong$

$U_{3}(3)$ for the other indices $j$ . Thus the latter two groups must coincide with $U$ and $V$ . Thus
$M=U$ or $V$ , which proved the uniqueness of conjugacy class of $U_{3}(3)$-subgroups. Then the
claim about normalizers follows from Lemma 8.2 (4). $\square $

9 Subgroups $A_{7},$ $A_{8}$ and $U_{3}(5)$ .
9.1 Subgroups isomorphic to $A_{7}$ .
There is a subgroup $U$ of $G$ isomorphic to $U_{3}(3)$ with $N_{G}(U)\cong U_{3}(5).2$ (see [3]). The group $U_{3}(5)$

has two classes of elements of order 5. By suitably numbering classes $(5X)_{U}$ for $X=B,$ $C,$ $D$ ,
we may assume that $(5A)_{U}$ and $(5B)_{U}$ are contained in $(5A)_{G}$ and the other two classe $s$ are
contained in $(5B)_{G}$ . There is an $A_{7}$-subgroup $A$ of $U$ containing an element of $(5X)_{U}$ for each
$X=B,$ $C,$ $D$ . Then they are $A_{7}$-subgroups containing both $5A$ and $5B$-elements of $G$ . The
normalizer in $U$ of an $A_{7}$-subgroup containing $(5B)_{U}$-elements is isomorphic to $S_{7}$ (see [3]).
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Lemma 9.1. For an element $a$ of order 3 and an element $h$ of order 4 with $[a, a^{h}]=1$ and
$a^{h^{2}}=a^{-1}$ , we denote by $S(a, h)$ the set of $2A$ -involutions $u$ of $G$ satisfying the relations $a^{u}=a^{-1}$

$[a, h^{2}]=1$ , and that $a^{h}\cdot u$ is of order 4. Then $S(a, h)$ consists of 9 involutions and is divided
into three cosets by ( $ a\rangle$ .

Proof. Since $N_{G}(a)/\langle a$ ) $\cong Au\ell(A_{6})$ , there are subgroups $M:=C_{G}(a),$ $L$ and $\Sigma$ with $ M/(a)\cong$

$M_{10},$ $ L/(a\rangle$ $\cong PGL_{2}(9)$ and $\Sigma/(a\rangle$ $\cong S_{6}$ . Involutions of $L\backslash L^{\prime}$ are $(2B)_{G}$-involutions (see [7]). We
identify $\overline{\Sigma};=\Sigma/(a\rangle$ with the symmetric group on six letters $\{1_{f}\ldots, 6\}$ and use the bar notation.
Since $u$ and $h^{2}$ are $(2A)_{G}$-involutions of $N_{G}(a)$ , they correspond to odd permutations of X. Then
we may assume that $\overline{h}^{2}=(12).$ Since $\overline{a}^{\hslash}$ is an element of order 3 inverted by $\overline{h}^{2}$ , we may assume
that $\overline{a}^{\hslash}=(123)$ . Thus the odd permutation tt commuting with $\overline{h}^{2}$ is (34), (35) or (36), and then
the claim follows. $\square $

Proposition 9.2.

(1) There is a unique class of subgroups of $G$ isomorphic to $A_{7}$ containing $(5A)_{G}$ -elements.
Their normalizers are isomorphic to $S_{7}$ and are conjugate to a subgroup of a $U_{3}(5)-$

subgroup.
(2) There is a unique class of subgroups of $G$ isomorphic to $A_{7}$ containing $(5B)_{G}$ -elements.

They are self-normalizing.

Proof. Let $A$ be an $A_{7}$-subgroup of $G$ and $R$ a Sylow 3-subgroup of $A$ . By Prop. 6.4 (2)(3),
$N_{G}(B)\cong Au\ell(A_{6})$ for any $A_{6}$-subgroup $B$ of $A$ containing $R$ . Then $N_{G}(B)\cap N_{G}(R)$ is a
Frobenius group isomorphic to $3^{2}$ : 8. Let $q$ be a generator of a complement of $R$ in this group
and let $h:=q^{2}$ . Then $ N_{A}(R)=N_{B}(R)=R\langle h\rangle$ and there is an element $a\in R$ with $[a, a^{h}]=1$

and $a^{h^{2}}=a^{-1}$ . By observing $A_{7}$ , we may conclude that there is an involution $u\in S(a, h)$ (see
Lemma 9.1) with $\langle a, h, u\rangle=A_{7}$ . (If we identify $A$ with the alternating group on $\{1, \ldots, 7\}$ , we
may take $R=$ $((123), (456)\rangle$ and $h=(14)(2536)$ . Then $a=(123)$ and $u=(23)(47).)$ Note that
such an involution $u$ is a $(2A)_{G}$-involution, since involutions of $A_{7}$ are $s$quare elements.

Take another $A_{7}$-subgroup $C$ of $G$ . We will observe that there is an involution $v\in S(a, h)$

such that $\langle a, h, v\rangle$ is a conjugate of $C$ . Since $3^{2}$-subgroups of $G$ are conjugate to each other, we
may assume that $R\subseteq C$ . Since Sylow 2-subgroups of $N_{G}(R)$ are isomorphic to $SD_{16},$ $N_{G}(R)$

acts transitively on the set of elements of order 4 with square roots in $N_{G}(R)$ . Thus we may
assume that $R\langle h\rangle\subseteq C$ . Thus if we let $ S(a, h)=u_{1}\langle a\rangle\cup u_{2}\langle a\rangle\cup u_{3}\langle a\rangle$ (see Lemma 9.1), $C$

coincides with one of $\langle a, h, u;\rangle(i=1,2,3)$ by Lemma 9.1.
Since there is an $S_{7}$-subgroup of $G$ , we may assume that $\langle a, h, u_{1}\rangle\cong A_{7}$ and this subgroup is

contained in an $S_{7}$-subgroup of $G$ . By observing $S_{7}$ , we may conclude that there is an involution
$m$ of $N_{G}(\langle a, h, u_{1}\rangle)$ with $a^{m}=a^{-1},$ $h^{m}=h^{-1}$ and $[u_{1}, m]=1$ . (In the identification of $S_{7}$ above,
we may take $m=(23).)$ Since there is an $A_{7}$-subgroup of $G$ containing a $(5B)_{G}$-element, we
may assume that ( $a,$ $h,$ $ u_{2}\rangle$ is such an $A_{7}$-subgroup. If its normalizer is isomorphic to $S_{7}$ , then a
transposition of thi$sS_{7}$-subgroup centralizes both $3A$ and $5B$-elements, which is a contradiction.
Thus $\langle a, h, u_{2}\rangle$ is self-normalizing. Since the above involution $m$ acts on the set $S(a, h)$ , we have
$\langle a, h, u_{3}\rangle=\langle a, h, u_{2}\rangle$ .

Summarizing the arguments in the paragraphs above, the lemma has proved. $\square $
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9.2 Subgroups isomorphic to $A_{8}$ .
Proposition 9.3. There is a subgroup of $G$ isomorphic to $A_{8}$ .

Proof. Let $B$ be an $A_{7}$-subgroup of $G$ containing a $(5B)_{G}$-element. We identify $B$ with the
alternating group on letters $\{1, \ldots,7\}$ . We define elements $a,$ $h,$ $u$ and $b$ of $B$ by $a$ $:=(123)$ ,
$h;=(14)(2536),$ $u;=(23)(47)$ and $b;=a^{h}=(456)$ (see the proof of 9.2). RecaU that the
alternating group $A_{\mathfrak{n}+2}$ has a presentation $\{a_{1}, \ldots, a_{n}|\mathcal{R}\}$ , where $\mathcal{R}$ is the set of the following
relations: $a_{1}^{3}=a_{1}^{2}=1$ for $i=2,$ $\ldots$ , $n,$ $(a_{i}a_{i+1})^{3}=1$ for $i=1,$ $\ldots,$

$n-1$ , and $(a_{i}a_{j})^{2}=1$ for
any $i,j=1,$ $\ldots$ , $n$ with $|i-j|>1$ . We set elements $a_{i}$ $(i=1, \ldots , 5)$ of $B$ by $a_{1};=a=(123)$ ,
$a_{2};=(uhuhu)^{b^{-1}}=(23)(16),$ $a_{3};=h^{2}=(23)(56),$ $a_{4}$ $:=(h^{2})^{b^{-1}}=(23)(45)$ , and $a_{5}$ $:=u=$
(23)(47). We may verify that these $a_{i}(i=1, \ldots, 5)$ satisfy the above relations for $n=5$ . Thus
$A_{7}\cong(a;|i=1, \ldots, 5\rangle=\langle a, h, u)=B$ . As $ N_{G}((a,b\rangle$ ) $\cong 3^{2}$ : $GL_{2}(3)$ , there is an involution $m$

of $N_{G}(\{a, b\rangle)$ with $a^{m}=a^{-1},$ $b^{m}=b$ and $h^{m}=h^{-1}$ . Since $m$ commutes with the element $b$ of
order 3, $m$ is a $(2B)_{G}$-involution. We will observe that the elements $a_{i}(i=1, \ldots, 5)$ above and
$a_{6}$ $:=m$ satisfy the above presentation of $A_{n+2}$ for $n=6$ .

The elements $b,$ $h^{2},$ $u$ and $m$ are contained in $N_{G}(a)$ . Then they are contained in a subgroup
$\Sigma$ of $N_{G}(a)$ with $\overline{\Sigma};=\Sigma/(a)\cong S_{6}$ . By identifying $\overline{\Sigma}$ with the symmetric group of six letters
{1, $\ldots$ , 6}, we may assume that $\overline{b}=(123),$ $\overline{h^{2}}=(12)$ and $\overline{u}=(35)$ by arguments in Lemma
9.1. Since $m$ is an odd permutation commuting with $\overline{b}$ and $\overline{h^{2}},$ $m=(45),$ (56) or (46). Since
$ B=\langle a, h, u\rangle$ is self-normalizing, we have $m=(56)$ or (46). Thus um and $um=a_{5}a_{6}$ are of
order 3.

Since $[h^{2}, m]=1=[b, m]$ , the elements $a_{3}a_{6}=h^{2}m$ and $a_{4}a_{6}=(h^{2}m)^{b^{-1}}$ are involutions.
Furthermore, $a_{1}a_{6}=am$ is of order 2, since $m$ inverts $a$ .

The final relation we have to establish is $(a_{2}a_{6})^{2}=1$ . Note that $a_{2}a_{6}$ is an involution if
and only if [uhuhu, $m$] $=1$ . We set $\overline{N_{G}(h^{2})}=N_{G}(h^{2})/\langle h^{2}\rangle$ and will use the bar convention.
The elements $u,$

$h$ and $m$ lie in $N_{G}(h^{2})$ . Since $[\overline{h},\overline{m}]=1$ and $um$ is of order 3, the elements
um and $\overline{u}^{\overline{h}}\overline{m}$ are of order 3. Since $u^{h}u=h^{2}\cdot(147)$ lies in $B$ , the element $\overline{u}^{\overline{h}}\overline{u}$ is of order 3.
As $|C_{G}(h^{2})|_{3}=3$ , we may verify that the subgroup ( $\overline{u},\overline{u}^{\overline{h}},$

$\overline{m}\rangle$ generated by three involutions is
isomorphic to $S_{3}$ and the relation $(\overline{u}^{\overline{hu}})^{\overline{m}}=\overline{\rightarrow u}u$. Thus $(uhuhu)^{m}=uhuhu$ or (uhuhu) $\cdot h^{2}$ . If
the latter case occurs, the product of $(uhuhu)^{m}=(14)(56)$ and $a_{4}=(23)(45)$ is (1564)(23) and
is of order 4. However, this product is conjugate to uhuhu $\cdot a_{4}=(154)$ , since $[a_{4}, m]=1$ , which
is a contradiction. Thus we have $(uhuhu)^{m}=uhuhu$ , and so the final relation $(a_{2}a_{6})^{2}=1$ .

Since $A_{8}$ is simple and the elements $a_{i}(i=1, \ldots, 6)$ are not identity elements, we have
$\langle a_{i}|i=1, \ldots, 6\rangle\cong A_{8}$ . Thus this is an $A_{8}$-subgroup of G. $\square $

Proposition 9.4. There is a unique class of subgroups of $G$ isomorphic to $A_{8}$ . They are self-
normalizing.

Proof. Take any $A_{8}$-subgroup $A$ of $G$ . Since any element of order 5 of $A$ commutes with
elements of order 3, it is of class $(5B)_{G}$ . If $N_{G}(A)\neq A,$ $N_{G}(A)\cong S_{7}$ contains a transposition
centralizing $(5B)_{G}$-elements, which is a contradiction. Thus $A$ is self-normalizing.

There are $A_{7}$-subgroups $B_{2}\cap B_{3}\cong A_{6}$ . Then, using the notation in the proof of Prop. 9.2,
we may assume that $B_{2}=(a, h, u_{2})$ and $B_{3}=$ \langle $a,$ $h,$ $u_{3})$ . We have $A=(B_{2},$ $ B_{3}\rangle$ . Since any
$A_{8}$-subgroup $C$ has a conjugate $C^{9}$ containing $(a, h)$ , we have $A=C^{9}$ . $\square $
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9.3 Subgroups isomorphic to $U_{3}(5)$ .
Proposition 9.5. There is a unique class of subgroups of $G$ isomorphic to $U_{3}(5)$ . Their nor-
malizers are isomorphic to $U_{3}(5)$ . $2$ , the extension of $U_{3}(5)$ by the field automorphism.

Proof. Let $E=(a,$ $ b\rangle$ be a $3^{2}$-subgroup of $G$ and $C$ a complement $(\cong GL_{2}(3))$ of $E$ in $N_{G}(E)$ .
We identify $a$ and $b$ with the natural basis of $F_{3}^{2}$ , the vector space of row vectors of length 2
with entries in F3, and identify each element of $C$ with the matrix representing its action on $E$ .
We take elements $c:=\left(\begin{array}{ll}1 & 0\\1 & 1\end{array}\right),$ $h:=\left(\begin{array}{ll}0 & 1\\-1 & 0\end{array}\right)$ , and $m:=\left(\begin{array}{ll}-1 & 0\\0 & 1\end{array}\right)$ . By Lemma 9.1, the

set $S(a, h)$ is divided into three cosets $ u_{i}(a\rangle$ $(i=1,2,3)$ . We may assume that $ A=\langle a, h, u_{1}\rangle$

and $B=(a,$ $h,$ $ u_{2}\rangle$ are $A_{7}$-subgroups containing $(5A)_{G}$ and $(5B)_{G}$-elements, respectively, by the
proof of Prop. 9.2. Note that $B^{m}=\langle a,$ $h,$ $u_{3}$ ) and $A^{m}=A$ , since $mac$ts on $S(a, h)$ .

We take any $U_{3}(5)$-subgroup $U$ of $G$ . We may assume that $A\subseteq U$ . As $N_{U}(E)\cong 3^{2}$ : $Q_{8}$ , we
have $N_{U}(E)=E(h, h^{c})$ . By observing $U_{3}(5)$ , we may find an involution $v\in S(a, h^{c})=S(a, h)^{c}$

such that $\langle a, h^{c}, u\rangle$ is an $A_{7}$-subgroup of $U$ . The group $\langle a, h^{c}, u\rangle$ contains an element of order 5
which is conjugate to no element of order 5 of $A$ , and therefore it is $B^{c}$ or $B^{mc}$ by the remark
above. Since $B^{c}$ and $B^{mc}$ do not contain $h$ and $h^{c^{-1}}$ , respectively, the maximality of $A_{7}$ in $U_{3}(5)$

implies that $U=\{B^{c},$ $ h\rangle$ or $U=\langle B^{mc}, h^{c^{-1}}\rangle=\langle B^{c}, h\rangle^{c^{-1}mc}$ . (Note that $m$ inverts $c$ and $h.$ ) Thus
$U_{3}(5)$-subgroups containing $A$ are conjugate to each other, and the conjugacy of $U_{3}(5)$-subgroups
of $G$ has proved. Suppose $N_{G}(U)\backslash U$ contains an element of order 3. Then it centralizes an
central element of order 5 of $U$ , which contradicts the fact that central elements of order 5 of $U$

are $(5A)_{G}$-elements. Thus $N_{G}(U)\cong U_{3}(5)$ . $2$ . $\square $
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