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THE FIRST EIGENVALUE $\lambda_{1,p}$ OF THE $p$-LAPLACE OPERATOR

XIAO RONG ZOU, YAO WEN LI, AND YU XIANG LI

ABSTRACT. In this paper, we give an estimate of the first eigenvalue $\lambda_{1,p}$ of
the p-Laplace operator associated to a Riemannian manifold $M^{m}$ . Precisely,
we show that for $p\geq 2$

$\lambda_{1,p}\geq(\frac{(m-1)k}{p-1-\frac{1}{(p-2+\sqrt{m})^{2}}}I^{p/2}$

provided that the Ricci curvature of $M$ is no less than $(m-1)k$ where $k$ is a
positive constant. The estimate improves a recent result by A.M.Matei and is
equal to the optimal result when $p=2$ .

1. INTRODUCTION AND THE STATE OF THE RESULT

Let $(M, g)$ be an m-dimensional connected compact Riemannian manifold with-
out boundary. The first eigenvalue of the Laplace-Beltrami operator on $M$ has
been extensively studied in mathematical literature. Many connections between
this invariant and other geometrical quantities have been pointed out. Recently,
there has been an increasing interest for the $p$-Laplacian operator $\triangle_{p}$ defined by

$\Delta_{p}f$ $:=-div(|df|^{p-2}df)$ , $p>1$ .
See $[1]-[8],[10]-[12]$ . An eigenfunction of $\triangle_{p}$ is a nonzero function $f$ such that there
exists a real number $\lambda$ satisfying

$\Delta_{p}f=\lambda|f|^{p-2}f$ .
The real number $\lambda$ is then called an eigenvalue of $\triangle_{p}$ on $M$ . Obviously, $0$ is an
eigenvalue associated with the constant eigenfunctions. The set $\sigma_{p}(M)$ of the re-
maining eigenvalues is a nonempty, unbounded subset of $(0, \infty)[5]$ . Its infimum
$\lambda_{1,p}(M)=\inf\sigma_{p}(M)$ itself is a positive eigenvalue and we have the following vari-
ational characterization [14]

(1.1) $\lambda_{1,p}(M)=\inf\{\frac{\int|df|^{p}}{\int|f|p}$ ; $0\not\equiv f\in W^{1,p}(M)$ , $\int|f|^{p-2}\beta=0\}$ ,

where, and throughout this paper, the integration is over $M$ with the standard vol-
ume element induced by the Riemannian metric. So finding first nonzero eigenvalue
is related to the problem of finding the best constant in the inequality

$|f|_{L^{p}}\leq C|df|_{L^{p}}$
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obtained by the continuous embedding $W^{1,p}(M)\rightarrow L^{p}(M)$ . For $p=2$ , we have
the following well-known theorem of Lichnerowicz-Obata $[9][13]$ .

Theorem 1.1. Let $M$ be a m-dimensional connected compact Riemannian mani-
fold. Suppose there exists positive constant $k$ such that $Ric^{M}\geq(m-1)k$ . Then
(1.2) $\lambda_{1,2}(M)\geq\lambda_{1,2}(S_{k}^{m})=mk$ .
Equality holds if and only if $M$ is isometric to $S_{k}^{m}$ .

For $p\geq 2$ , a low bound of $\lambda_{1,p}$ was obtained in [11] (c.f. Theorem 3.2) as follows

Theorem 1.2. With the same notation and assumptions as in the above theorem,
then

(1.3) $\lambda_{1,p}(M)\geq(\frac{(m-1)k}{p-1})^{p/2}$ , $p\geq 2$ .

The estimation (1.3) is clearly not optimal if we compare (1.3) with (1.2) for
$p=2$ . The purpose of this article is to improve the estimation (1.3) of the first
eigenvalue $\lambda_{1,p}(M)$ and we have

Theorem 1.3. Let $M$ be a m-dimensional compact Riemannian manifold without
$ bounda\eta$ . Suppose $Ric^{M}\geq(m-1)k>0$ . Then

(1.4) $\lambda_{1,p}(M)\geq(\frac{(m-1)k}{p-1-\frac{1}{(p-2+\sqrt{m})^{2}}}I^{p/2},$ $p\geq 2$ .

Remark 1.4. For $p>2$ , one does not even know the exact value $\lambda_{1,p}(S^{m})$ for the
standard sphere. Our estimation (1.4) is reduced to (1.2) for the usual Laplacian.

2. THE PROOF OF THE THEOREM 1.3
We start the proof witha lemma.

Lemma 2.1. Let $M^{m}$ be a compact Riemannian manifold. For $f\in C^{\infty}(M)$ , we
have

(2.1) $|Hess\beta||df|^{p-2}\geq\frac{1}{p-2+\sqrt{m}}|\triangle_{p}f|$ .

Proof. The inequality (2.1) is well-known for $p=2$ . We only consider the case
$p>2$ . For $\beta\in C^{\infty}(M)$ , we have
(2.2) $\triangle_{p}f=|df|^{p-2}\triangle f-(p-2)|d\beta|^{p-4}(Hessf)(\nabla f, \nabla f)$ .
For any constant $r\in R$ , set $s=(p-2)^{1}zm^{-1/4}$ and $t=(p-2)r/s$ , we have

$|Hess\beta+r|d\beta|^{p-2}g|^{2}$

(2.3) $=|Hessf|^{2}+2r|df|^{p-2}\triangle f+r^{2}m|df|^{2p-4}$ ,

and
$|s$ . Hessf $-t|df|^{p-4}df\otimes df|^{2}$

(2.4) $=s^{2}|$Hess$f|^{2}-2st|d\beta|^{p-4}$Hess$f(\nabla f, \nabla\beta)+t^{2}|df|^{2p-4}$ .
Summing up (2.3) and (2.4), using (2.2), we get for any $r\in R$

$(1+s^{2})|Hessj|^{2}+2r\triangle_{p}f+r^{2}(m+\frac{(p-2)^{2}}{s^{2}})|d\beta|^{2p-4}\geq 0$ .

–130–



THE FIRST EIGENVALUE $\lambda_{1,p}$ OF THE p-LAPLACE OPERATOR

So the discriminant of the left hand side is non positive, which implies the lemma.
$\square $

Following the arguments as in [11], we are now in the position to prove the
theorem 1.3.

We need only consider the cases for $p>2$ . Obviously, the infimum (1.1) does
not change when we replace $W^{1,p}(M)$ by $C^{\infty}(M)$ . For any $\beta\in C^{\infty}(M)$ , since
$\delta=$ -div is conjugate to the exterior differential operator $d$ , we have

$\int\triangle_{p}f\triangle f$ $=$ $\int\delta(|df|^{p-2}df)\triangle f=\int|df|^{p-2}(df, d\triangle\beta)$

$=$ $\int|df|^{p-2}(df, \triangle df)$ .

By the Bochner’s formula

$\langle d\beta, \triangle df\rangle=|Hess\beta|^{2}+\frac{1}{2}\triangle(|df|^{2})+Ric^{M}(d\beta, df)$ .

We have

$\int\triangle_{p}f\triangle f$ $=$ $\int|df|^{p-2}|Hess\beta|^{2}$

(2.5) $+$ $\frac{1}{2}\int|df|^{p-2}\triangle(|d\beta|^{2})+\int|df|^{p-2}Ric^{M}(df, df)$ .

Now,

$\int|df|^{p-2}\triangle(|df|^{2})$ $=$ $\int\langle d(|d\beta|^{p-2}), d(|d\beta|^{2})\rangle$

(2.6) $=$ $2(p-2)\int|df|^{p-2}|d(|df|)|^{2}\geq 0$ .

From the Young inequality, we have for $\forall\epsilon>0$ ,

(2.7) $|\beta|^{2}|d\beta|^{p-2}\leq\frac{2}{p}\epsilon^{4-2p}|f|^{p}+\frac{p-2}{p}e^{4}|d\beta|^{p}$ .

We have

(2.8) $|Hessf|^{2}|df|^{p-2}\geq 2\eta|Hessf||d\beta|^{p-2}|f|-\eta^{2}|df|^{p-2}|f|^{2}$ .

By $(2.7),and(2.8)$ and the lemma 2.1, we get

$|Hessf|^{2}|df|^{p-2}$

(2.9) $\geq\frac{2\eta}{p-2+\sqrt{m}}|\triangle_{p}\beta||f|-\frac{2\eta^{2}\epsilon^{4-2p}}{p}|f|^{p}-\frac{\eta^{2}(p-2)e^{4}}{p}|d\beta|^{p}$ .

Applying (2.6),(2.9) and the Ricci curvature assumption to the equality (2.5), we
have

$\int\triangle_{p}f\triangle f$ $\geq$ $\frac{2\eta}{p-2+\sqrt{m}}\int|\triangle_{p}\beta||\beta|-\frac{2\eta^{2}e^{4-2p}}{p}\int|\beta|^{p}$

(2.10) $+((m-1)k-\frac{\eta^{2}(p-2)e^{4}}{p})\int|d\beta|^{p}$ .
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It is clear that inequality (2.10) also holds for an eigenfunction $\beta$ corresponding to
the first eigenvalue $\lambda_{1,p}$ of $\triangle_{p}$ . On the other hand, when $f$ is such an eigenfUnction,
we have

$\lambda_{1,p}\int|f|^{p}$ $=$ $\int\beta\triangle_{p}f=\int f\delta(|df|^{p-2}df)$

(2.11) $\int|df|^{p-2}\langle df, df\rangle=\int|df|^{p}$ ,

and

(2.12) $\int|\triangle_{p}f||f|=\lambda_{1,p}\int|f|^{p}=\int|df|^{p}$ .

Also, we have

$\int\triangle_{p}\beta\triangle f$ $=$ $\lambda_{1,p}\int|f|^{p-2}f\triangle f=\lambda_{1,p}\int(d(|f|^{p-2}\beta),df\rangle$

$\lambda_{1,p}\int(p-2)|d\beta|^{p-3}(d|\beta|,$ $\frac{1}{2}d|f|^{2}\rangle$ $+|f|^{p-2}|df|^{2}$

$=$ $(p-1)\lambda_{1,p}\int|f|^{p-2}|df|^{2}$ .

So the H\"older inequality implies

(2.13) $\int\triangle_{P}f\triangle f\leq(p-1)\lambda_{1,p}(\int|f|^{p})^{1-\frac{2}{p}}(\int|d\beta|^{p})^{\frac{2}{p}}$

Using (2.13),(2.12) (2.11), we have by (2.10),

$(p-1)\lambda_{p}^{\frac{2}{1p}}\geq(m-1)k+\frac{2\eta}{p-2+\sqrt{m}}-\eta^{2}(\frac{2e^{4-2p}}{p\lambda_{1,p}}+\frac{(p-2)\epsilon^{4}}{p}I$ .

Now the theorem follows from the above inequality if we set $e=\lambda_{1}^{-\frac{1}{p2p}}$ and $\eta=$

$\frac{1}{p-2+\sqrt{m}}\lambda_{p}^{\frac{2}{1p}}$ .
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