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Isomorphism classes of quasiperiodic
tilings by the projection method

Kazushi KOMATSU and Kuniko SAKAMOTO

ABSTRACT. Let $\mathcal{T}(W_{0})$ be the space of quasiperiodic tilings by the projec-
tion method in terms of $R^{d}=E\oplus E^{\perp}$ with a lattice $L$ and the orthogonal
projection $\pi$ : $R^{d}\rightarrow E$ . We will consider the case that $L=Z^{d}$ or $(E, L)$

which corresponds to an exceptional folding of Coxeter groups. We deter-
mine when two tilings in $\mathcal{T}(W_{0})$ belong to the same isomorphism class if
$\pi|L$ is injective. As its application we have uncountably many isomorphism
classes of quasiperiodic tilings by the projection method.

1. Introduction

First, we will prepare several basic definitions. A tiling $T$ of the space $R^{p}$

is a countable family of closed sets called tiles: $T=\{T_{1}, T_{2}, \ldots\}$ such that
$\bigcup_{i=1}^{\infty}T_{i}=R^{p}$ and Int $ T_{i}\cap$ Int $ T_{j}=\phi$ if $i\neq j$ . An isomorphism of tilings is
bijection between families of tiles that is induced by isometry of the \’{s}pace $R^{p}$ .
An aperiodic tiling is one that admits no translation isomorphisms to itself.
A tiling satisfies the local isomorphism property if for each bounded patch
of the tiling there exists a positive real number $r$ such that a translation of
its patch appears in any bal of radius $r$ . An quasiperiodic tiling is defined
to be an aperiodic tiling with the local isomorphism property.

In 1981 de Bruijn [2], [3] introduced the projection method to construct
quasiperiodic tilings such as Penrose tilings. The projection method was ex-
tended to the higher dimensional hypercubic lattices [5] and to more general
lattices [6]. To construct tilings by the projection method, the hypercubic
lattices are most frequently used. Furthermore some famous tilings are ob-
tained from root lattices (cf. [1]). We recall the definitions of tilings by the
projection method (cf. $[5],[6],[9],[12]$ ). Let $L$ be a lattice in $R^{d}$ . Let $E$ be a p-
dimensional subspace of $R^{d}$ , and $E^{\perp}$ its orthogonal complement with respect
to the standard inner product. Let $\pi$ : $R^{d}\rightarrow E$ be the orthogonal projection
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onto $E$ , and $\pi^{\perp}:$ $R^{d}\rightarrow E^{\perp}$ the orthogonal projection onto $E^{\perp}$ . Let $V(O)$ be
the Voronoi cell in $0$ of $L$ . We put $W=\pi^{\perp}(V(0))$ , which is called a window
for the projection. $W_{0}$ is defined as the subset of $W$ which consists of points
$s$ in $W$ such that $\partial W\cap(s+\pi^{\perp}(L))$ is empty. For any $x\in R^{d}$ such that
$\pi(x)\in W_{0}$ we define $\Lambda(x)$ by $\Lambda(x)=\pi((W\times E)\cap(x+L))$ . Let $\mathcal{V}(x)$ denote
the Voronoi tiling induced by $\Lambda(x)$ , which consists of the Voronoi cells of
$\Lambda(x)$ . For a vertex $v$ in $\mathcal{V}(x)$ we define $S(v)$ by $S(v)=\cup\{P\in \mathcal{V}(x)|v\in P\}$ .
The tiling $T(x)$ given by the projection method is defined as the collection
of tiles Conv $(S(v)\cap\Lambda(x))$ , where Conv $(B)$ denotes the convex hull of a set
$B$ . Note that $\Lambda(x)$ is the set of the vertices of $T(x)$ . $\mathcal{T}(W_{0})$ is defined to be
the space {$T(x)|x\in R^{d}$ such that $\pi(x)\in W_{0}$ } with a topology defined by a
tiling metric (see for example [20]).

Let $H$ be a folding of a Coxeter group $G$ . If $H$ is a non-crystallographic
group, the folding. is called exceptional. We have the settings of the root
lattice $L$ and the subspace $E$ of projection method corresponding to an ex-
ceptional folding of a Coxeter group when $G$ is $A_{4},$ $B_{4},$ $F_{4},$ $D_{6}$ or $E_{8}$-type and
each folding $H$ is $I_{2}(m)(m=5,8,12),$ $H_{3}$ or $H_{4}$-type (see [15],[16],[17]). It
is known that $H$ acts on $W$ as isometries (for example see $[8],[9]$ ).

In this paper we consider the case that that $L=Z^{d}$ or the above case
that $(E, L)$ corresponds to an exceptional folding.

We define an equivalence relation $s\sim t$ on $W_{0}$ by the folowing: $s\sim t$

$(s, t\in W_{0})$ if there exists $s_{0},$ $s_{1},$ $\ldots s_{k}\in W_{0}$ such that $s_{0}=s,$ $s_{k}=t$ and for
any $i(i=0,1, \ldots k)s_{i-1}-s_{i}\in\pi^{\perp}(L)$ or there exists isometry $g$ : $W\rightarrow W$

such that $g(s_{i-1})=s_{i}(g\in H$ in the case of projection method corresponding
to an exceptional folding).

For any $x\in R^{d}$ such that $\pi(x)\in W_{0}$ , we see that $T(x)$ is the transla-
tion of $T(\pi^{\perp}(x))$ by $\pi(x)$ . Then each isomorphism classes in $\mathcal{T}(W_{0})$ can be
represented by $T(s)$ for some $s\in W_{0}$ .

One of the purpose of this paper is to show the folowing theorem:

THEOREM. For $s,$ $t\in W_{0_{f}}$ let $T(s),$ $T(t)$ be quasiperiodic tilings by the
projection method in terms of $R^{d}=E\oplus E^{\perp}with$ a lattice $L$ and an orthogonal
projection $\pi$ : $R^{d}\rightarrow E$ . Assume that $L=Z^{d}$ and $\pi|L$ is injective, or that
$(E, L)$ corresponds to an exceptional folding. Then $T(s)$ is isomorphic to
$T(t)$ if and only if $s\sim t$ .

In the case that $(E, L)$ corresponds to an exceptional folding, It is known
that $\pi|L$ is injective ([15],[16],[17]). Two tilings are said to belong to the
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same local isomorphism class if every bounded patch that appears in one
of them also appears in the other. Note that all tilings belong to a single
local isomorphism class if $\pi$ is injective. We define a map $\rho$ : $W_{0}\rightarrow \mathcal{T}(E)$ by
$\rho(s)=T(s)$ . Note that $\rho$ is continuous, and that $\rho$ induces a homeomorphism
from $W_{0}/\sim to$ the space of isomorphism classes of $\mathcal{T}(W_{0})$ by the Theorem
if $\pi$ is injective.

In [4] Danzer and Dolbilin show that there are uncountably many equiv-
alence classes up to translation of quasiperiodic tilings obtained from a finite
system of prototiles and local matching rules. In [18] Oger show the same
result by applying finite Model theory.

As an application of the Theorem we give the simple proof of a similar
result in the case of quasiperiodic tilings obtained by the projection method.

COROLLARY. Assume that $L=Z^{d}$ or that $(E, L)$ corresponds to an excep-
tional folding. There are uncountably many isomorphism classes of quasiperi-
odic tilings by the projection method, in terms of $R^{d}=E\oplus E^{\perp}with$ a lattice
$L$ , which are contained in a single local isomorphism class.

When $L=Z^{d}$ , we have another variation of the projection method
(see [11],[13],[14],[19]) to construct quasiperiodic tilings as Penrose tilings
by rhomb tiles. In this variation we can also prove the similar theorems and
Corollary by slightly modifying the proof in the section 2 and 3.

2. Proof of Theorem

In order to prove the Theorem it suffices to show the following proposition:

PROPOSITION. For $s,$ $t\in W_{0}$ , let $T(s),$ $T(t)$ be quasiperiiodic tilings obatined
by the projection method in terms of $R^{d}=E\oplus E^{\perp}with$ a lattice $L$ and the
orthogonal projection $\pi$ : $R^{d}\rightarrow E$ . Then,
$(l)s-t\in\pi^{\perp}(L)$ if and only if $T(s)$ is a translation of $T(t)$ .
(2) In the case that $L=Z^{d}$ , if there exists isometry $g:W\rightarrow W$ such that
$g(s)=t$ , then $T(s)$ is isomorphic to $T(t)$ .
(3) In the case that $L=Z^{d}$ , if $T(s)$ is isomorphic to $T(t)_{f}$ then $s\sim t$ .
(4) In terms of $(E, L)$ corresponding to an exceptional folding, if there exists
$g\in H$ such that $g(s)=t,$ $T(s)$ is $isomo7phic$ to $T(t)$ .
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(5) In terms of $(E, L)$ corresponding to an exceptional folding, if $T(s)$ is
isomorphic to $T(t)$ by the underlying isometw $\emptyset$ and $\phi(0)=0$ , then $\phi$ belongs
to $H$ .

PROOF OF PROPOSITION
(1) A tiling obtained by projection method always satisfies the local iso-

morphism property. A tiling obtained by the projection method is aperiodic
if and only if $\pi^{\perp}|L$ is imjective by the aperiodic criterion( $[7]$ in the case that
$L=Z^{d},$ $[12]L$ is an integral lattice). We define $f_{s}$ : $W\cap(s+\pi^{\perp}(L))\rightarrow\Lambda(s)$

by $f_{s}=(\pi|s+L)\circ(\pi^{\perp}|W\cap(s+\pi^{\perp}(L)))^{-1}$ . Because $\pi^{\perp}|L$ and $\pi^{\perp}|L$ are
injective, $f_{s}$ is bijective.

If $T(s)=T(t)$ , then $\Lambda(s)=\Lambda(t)$ . We have a bijection $f_{t}^{-1}\circ f_{s}$ : $W\cap(s+$
$\pi^{\perp}(L))\rightarrow W\cap(t+\pi^{\perp}(L))$ . By the definition of $f_{t}$ and $f_{s}$ , we see that $f_{t}^{-1}\circ f_{s}$

is a translation map by a vector $t-s$ . Due to [21] $\pi^{\perp}(L)$ is dense if and only
if $\pi|L$ is injective. Then, we get that $W\cap(s+\pi^{\perp}(L)),$ $W\cap(t+\pi^{\perp}(L))$ are
dense in $W$ . The assumption that $s\neq t$ implies the contradiction, and we
get that $s=t$ . Hence we obtain that $T(s)=T(t)$ if and only if $s=t$ .

If $T(s)$ is a translation of $T(t)$ , then $\Lambda(s)=v+\Lambda(t)$ for some $v\in\pi(L)$ .
We take $u\in L$ such that $v=\pi(u)$ . Then we see that $(E\times W)\cap(s+L)$

$=v+(E\times W)\cap(t+L)=(E\times W)\cap(t+v+L)=(E\times W)\cap(t-\pi^{\perp}(u)+L)$ . By
the definition of the projection method in \S 1, we get that $T(s)=T(t-\pi^{\perp}(u))$ .
By the mentioned above $s=t-\pi^{\perp}(u)$ , and we obtain that $s-t\in\pi^{\perp}(L)$ .

If $s-t\in\pi^{\perp}(L)$ , then we see that $(E\times W)\cap(s+L)=(E\times W)\cap(t+$

$\pi^{\perp}(u)+L)=\pi(u)+(E\times W)\cap(t+L)$ for $u\in L$ such that $s-t=\pi^{\perp}(u)$ . By
the definition of the projection method in \S 1, we see that $\Lambda(s)=\pi(u)+\Lambda(t)$ ,
and obtain that $T(s)$ is a translation of $T(t)$ . The proof of Proposition (1)
is completed.

(2) Assume that there exists an isometry $g:W\rightarrow W$ such that $g(s)=t$ .
Since $L=Z^{d}$ is self-dual, the Voronoi cell $V(O)$ in $0$ of $L$ coincides with
a translation of $A=\{\sum_{i=1}^{d}r_{i}e_{i}|0\leq r_{i}\leq 1\}$ , where $\{e_{i}|i=1,2, \cdots d\}$ is
the standard basis of $L=Z^{d}$ . Since $W=\pi^{\perp}(V(0))$ and $g$ is an isometry,
$g(W\cap(s+\pi^{\perp}(L)))\subset W\cap(t+\pi^{\perp}(L))$ . We define a bijection $\psi:\Lambda(s)\rightarrow\Lambda(t)$

by $\psi=f_{t}og|(W\cap(s+\pi^{\perp}(L)))\circ f_{s}^{-1}$ .
We will show that $\psi$ : $\Lambda(s)\rightarrow\Lambda(t)$ is an isometry. We define $F$ : $(E\times$

$W)\cap(s+L)\rightarrow(E\times W)\cap(t+L)$ by $ F=(\pi^{\perp}|(E\times W)\cap(t+L))^{-1}\circ g|(W\cap$

$(s+\pi^{\perp}(L)))\circ(\pi^{\perp}|(E\times W)\cap(s+L))$ . Then we see that $F(s+\sum_{\tilde{l}=1}^{d}\alpha_{i}e_{i})=$

$t+\sum_{1=1}^{d}\alpha_{i}g(e_{i}),$ $g(e_{i})\in\{e_{i}|i=1,2, \cdots , d\}$ and $g(e_{i})\neq g(e_{j})$ if $i\neq j$ .
When lattice vectors in $Z^{d}$ have the same combinations of coefficients for a
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basis $\{e_{i}\}$ , the lengths of those lattice vectors are the same. Hence we get
that $F$ is an isometry. Because $F=\psi\times g$ and $g$ is an isometry, $\psi$ is also an
isometry. Note that $\psi$ extend to the isometry from $E$ to $E$ . Hence, $T(s)$ is
isomorphic to $T(t)$ . The proof of Proposition (2) is completed.

(3) If $T(s)$ is isomorphic to $T(t)$ by an isomorphism induced by the isom-
etry $\phi:E\rightarrow E$ , then we have a bijection $\phi$ : $\Lambda(s)\rightarrow\Lambda(t)$ . We take a vertex
$u$ of $T(s)$ and a vertex $v$ of $T(t)$ such that $\phi(u)=v$ . We define a bijection
$h^{\prime}$ : $W\cap(s^{\prime}+\pi^{\perp}(L))\rightarrow W\cap(t^{\prime}+\pi^{\perp}(L))$ by $h^{\prime}=f_{t}^{-1}\circ\phi\circ f_{s}$ . We put
$s^{\prime}=f_{s}^{-1}(u)$ and $t^{\prime}=f_{t}^{-1}(v)$ , and see that $h^{\prime}(s^{\prime})=t^{\prime}$ .

We will show that $h^{\prime}$ is an isometry. We define $ G:(E\times W)\cap(s^{\prime}+L)\rightarrow$

$(E\times W)\cap(t^{\prime}+L)$ by $G=(\pi|(E\times W)\cap(t^{\prime}+L))^{-1}\circ\phi\circ(\pi|(E\times W)\cap(s^{\prime}+L))$ .
Then we see that $G(s+\sum_{i=1}^{d}\beta_{i}e_{i})=t+\sum_{i=1}^{d}\beta_{i}\phi(e_{i}),$ $\phi(e_{i})\in\{e_{i}|i=$

$1,2,$ $\cdots d$} and $\phi(e_{i})\neq\phi(e_{j})$ if $i\neq j$ . When lattice vectors in $Z^{d}$ have the
same combinations of coefficients for a basis $\{e_{i}\}$ , the lengths of those lattice
vectors are the same. Hence we get that $G$ is an isometry. Because $G=\phi\times h$

and $\phi$ is an isometry, $h^{\prime}$ is also an isometry. Due to [21] $\pi^{\perp}(L)$ is dense if
and only if $\pi|L$ is injective. Then, we get that $W\cap(s+\pi^{\perp}(L))$ is dense in
$W$ , and that $h^{\prime}$ can extend to the isometry $h:W\rightarrow W$ such that $h(s^{\prime})=t^{\prime}$ .
Because $T(s)$ is translation of $T(s^{\prime})$ and $T(t)$ is translation of $T(t^{\prime})$ , we see
that $s-s^{\prime},$ $t-t^{\prime}\in\pi^{\perp}(L)$ by Proposition (1) which has been proven above.
Hence we get that $s\sim t$ . The proof of Proposition (3) is completed.

(4) $H$ acts on $(E\times W)\cap L,$ $E$ and $W$ as isometries (see [8], [9] for example).
By the similar argument to the proof of Proposition (2), we can prove that
$T(s)$ is isomorphic to $T(t)$ if there exists $g\in H$ such that $g(s)=t$ .

(5) Due to ([10],[15],[17],[18]) we recall the following results that are nec-
essary for our proofs:

Let $\Sigma$ be a root system of $G$ that satisties the crystallographic condition.
Then there exists a decomposition $\Sigma=\Sigma_{\ell}II\Sigma_{s}$ and an inflation map $T$ :
$R^{d}\rightarrow R^{d}$ such that the folowing two conditions:

$\pi(\Sigma_{s})$ is a root system of $H$ ,
$T(\Sigma_{s})=\Sigma_{\ell}$ ,
$\pi(T(x))=\alpha\pi(x)$ for $\forall x\in R^{d}$ ,
where $\alpha=\sqrt{3}$ if $F_{4}$-type, $\alpha=\sqrt{2}$ if $B_{4}$-type, $\alpha=\frac{1+\sqrt{5}}{2}$ if $A_{4},$ $D_{6},$ $E_{8}$-type.

If $T(s)$ is isomorphic to $T(t)$ by a underlying isometry $\phi$ : $E\rightarrow E$ and
$\phi(0)=0$ , then we have an isometry $\phi|\Lambda(s)$ : $\Lambda(s)\rightarrow\Lambda(t)$ . Hence the results
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quoted above imply that $\phi\in H$ .

3. Proof of Corollary

$W_{0}$ is obtained by removing countably many $(d-p-1)$-dimensional
polytopes $homW$ . So, $W_{0}$ is an uncountable set. Since the isometry group
of a $(d-p)$-dimensional polytope $W$ is finite, each equivalence class $for\sim$

is a countable set. Hence $ W_{0}/\sim$ is an uncountable set. By Theorem we
obtain Corollary in the case that $L=Z^{d}$ and $\pi|L$ is injective or that $(E, L)$

corresponds to an exceptional folding. The rest of proof of Corollary is the
case that $L=Z^{d}$ and $\pi|L$ is not injective. Due to [21] there exist subspaces
$V_{1}$ and $V_{2}$ which satisfy the following:

$E^{\perp}=V_{1}\oplus V_{2}$ ,
$\pi^{\perp}((V_{1}\oplus E)\cap L)=V_{1}\cap\pi^{\perp}(L)$ is a discrete lattice in the subspace $V_{1}$ ,
$\pi^{\perp}((V_{2}\oplus E)\cap L)=V_{2}\cap\pi^{\perp}(L)$ is dense in the nontrivial subspace $V_{2}$ .

Since $\pi|L$ is not injective, $\pi^{\perp}(L)$ is not dense. So, the subspace $V_{1}$ is
nontrivial. We write the closure of $W\cap(s+\pi^{\perp}(L))$ by $C(s)$ . Then we see
that $C(s)$ is a union of q-dimensional polytopes, where $q=\dim V_{2}$ . Note that
for any $t\in C(s)\cap W_{0}$ , every tiling $T(t)$ belongs to a single local isomorphism
class (see $[7],[11]$ ). We can take $s_{0}\in W_{0}$ which satisfies that $C(s_{0})\cap W_{0}$ is
an uncountable set. We consider the set $[s_{0}]$ which consists of $t\in C(s_{0})\cap W_{0}$

such that $T(t)$ is isomorphic to $T(s_{0})$ . Since $\pi|(E\times W)\cap(s+L))$ is injective
due to ([14],[19]), we can prove that $[s_{0}]$ is a countable set by the similar
argument to the proof of Proposition (3). Hence we have uncountably many
isomorphism classes of quasiperiodic tilings by the projection method. q.e. $d$ .
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