AN APPLICATION OF FURUTA INEQUALITY

Young Ok Kim

In this note, by the Furuta inequality, we give an elementary proof of a result of Aluthge and Wang as follows: If T is an invertible w-hyponormal operator, then T^2 is also w-hyponormal.

1. Introduction. Through this note, let T be a bounded linear operator on a Hilbert space \mathcal{H} . For positive operators A and B, we write $A \geq B$ if $A - B \geq 0$. We denote $A \succ B$ if A and B are invertible positive operators satisfying $A \geq (A^{\frac{1}{2}}BA^{\frac{1}{2}})^{\frac{1}{2}}$. Let T = U|T| be the polar decomposition of T. We define $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. The operator \tilde{T} is called the Aluthge transformation of T([1]). We denote $\hat{T} = |\tilde{T}|^{\frac{1}{2}}\tilde{U}|\tilde{T}|^{\frac{1}{2}}$. where $\tilde{T} = \tilde{U}|\tilde{T}|$ is the polar decomposition of \tilde{T} . An operator T is called w-hyponormal if $|\tilde{T}| \geq |T| \geq |\tilde{T}|$. The notion of w-hyponormal operators was introduced by Aluthge and Wang ([3],[5]). It is known that if T is p-hyponormal operator T is not in general([2]). Indeed, Halmos gave an example of a hyponormal operator T for which T^2 is not hyponormal. But the situation is different for log-hyponormal operators: if T is log-hyponormal operators, it is natural to ask whether similar result holds for invertible w-hyponormal operators. Aluthge and Wang gave an affirmative answer to this question and proved the following result:

PROPOSITION A ([5], Theorem 5.2). If T is an invertible w-hyponormal operator, T^2 is also w-hyponormal.

The aim of this note is to give an elementary proof of Proposition A by the Furuta inequality ([6]).

Mathematical subject classification (1991): 47A63.

Key words and phrases: Furuta inequality, w-hyponormal.

2. Proof. We begin with the following theorems:

THEOREM 2.1([5], Corollary 1.2). An operator T is w-hyponormal if and only if (1) $|T| \ge (|T|^{\frac{1}{2}}|T^*||T|^{\frac{1}{2}})^{\frac{1}{2}}$ and (2) $(|T^*|^{\frac{1}{2}}|T||T^*|^{\frac{1}{2}})^{\frac{1}{2}} \ge |T^*|$.

THEOREM 2.2 ([7], Lemma). Let A and B be invertible positive operators. Then $(AB^2A)^{\lambda} = AB(BA^2B)^{\lambda-1}BA$ for any $\lambda \in \mathbf{R}$.

THEOREM 2.3. Let T be invertible w-hyponormal. Then we have $|T| \geq (|T|^{\frac{1}{2}}|T^*||T|^{\frac{1}{2}})^{\frac{1}{2}}$ if and only if $(|T^*|^{\frac{1}{2}}|T||T^*|^{\frac{1}{2}})^{\frac{1}{2}} \geq |T^*|$.

Proof. This follows at once from applying Theorem 2.2 with $A = |T|^{\frac{1}{2}}$, $B = |T^*|^{\frac{1}{2}}$ and $\lambda = \frac{1}{2}$.

THEOREM 2.4 ([6], Furuta inequality). Let A and B be bounded linear operators in a Hilbert space satisfy $A \geq B \geq 0$ and $p, r \geq 0, q \geq 1$. If $(1+r)q \geq p+r$, then $A^{\frac{p+r}{q}} \geq (A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}})^{\frac{1}{q}} \quad and \quad (B^{\frac{r}{2}}A^{p}B^{\frac{r}{2}})^{\frac{1}{q}} \geq B^{\frac{p+r}{q}}.$

(1+r)q = p+r q = 1 p = q (1,1) (1,0) q

We prepare the following result.

THEOREM 2.5. Let A > 0 and B > 0 satisfy $A^{\beta_0} \geq (A^{\frac{\beta_0}{2}}B^{\alpha_0}A^{\frac{\beta_0}{2}})^{\frac{\beta_0}{\alpha_0 + \beta_0}}$ for $\alpha_0 > 0$ and $\beta_0 > 0$. Then, for $\alpha \geq \alpha_0$ and $\beta \geq \beta_0$,

$$A^{\beta} \ge (A^{\frac{\beta}{2}} B^{\alpha} A^{\frac{\beta}{2}})^{\frac{\beta}{\alpha + \beta}}.$$

Proof. Letting $q = \frac{p+r}{1+r}$ of the Furuta inequality, we have

$$A^{(1+r)\beta_0} \ge \{A^{\frac{\beta_0 r}{2}} (A^{\frac{\beta_0}{2}} B^{\alpha_0} A^{\frac{\beta_0}{2}})^{\frac{\beta_0 p}{\alpha_0 + \beta_0}} A^{\frac{\beta_0 r}{2}}\}^{\frac{1+r}{p+r}} \quad for \quad p \ge 1, r \ge 0.$$

Put $p = \frac{\alpha_0 + \beta_0}{\beta_0} \ge 1$. Then we have

$$A^{(1+r)\beta_0} \ge \left(A^{\frac{1+r}{2}\beta_0}B^{\alpha_0}A^{\frac{1+r}{2}\beta_0}\right)^{\frac{(1+r)\beta_0}{\alpha_0 + (1+r)\beta_0}}.$$
 (3)

Since $r \geq 0$, let $\beta = (1+r)\beta_0$ ($\geq \beta$). Then we have

$$A^{\beta} \ge (A^{\frac{\beta}{2}} B^{\alpha_0} A^{\frac{\beta}{2}})^{\frac{\beta}{\alpha_0 + \beta}}.$$

By Theorem 2.2, it is equivalent to $(B^{\frac{\alpha_0}{2}}A^{\beta}B^{\frac{\alpha_0}{2}})^{\frac{\alpha_0}{\alpha_0+\beta}} \geq B^{\alpha_0}$. And, by the Furuta inequality, we have

$$\{B^{\frac{\alpha_0r}{2}}(B^{\frac{\alpha_0}{2}}A^\beta B^{\frac{\alpha_0}{2}})^{\frac{\alpha_0p}{\alpha_0+\beta}}B^{\frac{\alpha_0r}{2}}\}^{\frac{1+r}{p+r}}\geq B^{\alpha_0(1+r)}.$$

Put $p = \frac{\alpha_0 + \beta}{\alpha_0} \ge 1$. Then we have

$$\left(B^{\frac{1+r}{2}\alpha_0}A^{\beta}B^{\frac{1+r}{2}\alpha_0}\right)^{\frac{(1+r)\alpha_0}{\alpha_0(1+r)+\beta}} \ge B^{\alpha_0(1+r)}. \tag{4}$$

Letting $\alpha=(1+r)\alpha_0$ ($\geq\alpha_0$) of (4), we have $(B^{\frac{\alpha}{2}}A^{\beta}B^{\frac{\alpha}{2}})^{\frac{\alpha}{\alpha+\beta}}\geq B^{\alpha}$. Therefore, by Theorem 2.2 we have $A^{\beta}\geq (A^{\frac{\beta}{2}}B^{\alpha}A^{\frac{\beta}{2}})^{\frac{\beta}{\alpha+\beta}}$. So the proof is complete.

Proof of Proposition A. By Theorems 2.1 and 2.3, T is invertible w-hyponormal if and only if $(|T^*|^{\frac{1}{2}}|T||T^*|^{\frac{1}{2}})^{\frac{1}{2}} \ge |T^*|$. Since $(|T^*|^{\frac{1}{2}}|T||T^*|^{\frac{1}{2}})^{\frac{1}{2}} \ge |T^*|$ implies $(|T^*||T|^2|T^*|)^{\frac{1}{2}} \ge |T^*|^2$ by Theorem 2.5, we have that by Theorem 2.2.

$$(|T^*||T|^2|T^*|)^{\frac{1}{2}} \ge |T^*|^2 \iff |T^2| \ge |T|^2$$

and

$$|T|^2 \ge (|T||T^*|^2|T|)^{\frac{1}{2}} \iff |T^*|^2 \ge |T^{2^*}|.$$

Hence, by Theorem 2.2, we have

$$|T^*|^2 \le (|T^*||T|^2|T^*|)^{\frac{1}{2}}$$

$$\leq (|T^*||T^2||T^*|)^{\frac{1}{2}}$$

$$=|T^*||T^2|^{\frac{1}{2}}(|T^2|^{\frac{1}{2}}|T^*|^2|T^2|^{\frac{1}{2}})^{\frac{-1}{2}}|T^2|^{\frac{1}{2}}|T^*|.$$

Therefore,

$$|T^2| \ge (|T^2|^{\frac{1}{2}}|T^*|^2|T^2|^{\frac{1}{2}})^{\frac{1}{2}} \ge (|T^2|^{\frac{1}{2}}|T^{2^*}||T^2|^{\frac{1}{2}})^{\frac{1}{2}},$$

which shows that T^2 is w-hyponormal. The proof is complete.

References

- [1] A. Aluthge, On p-hyponormal operator for 0 , Integr. Equat. Oper. Th. <math>13(1990), 307-315.
- [2] A. Aluthge and D. Wang, *Power's of p-hyponormal operators*, to appear in J. Inequal. Appl.
- [3] A. Aluthge and D. Wang, w-hyponormal operators, to appear in J. Inequal. Appl.
- [4] A. Aluthge and D. Wang, An operator inequality which implies paranormality. Math. Inequal. Appl. 2(1999), 113-119.
- [5] A. Aluthge and D. Wang, w-hyponormal operators II, preprint.
- [6] T. Furuta, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{\frac{1}{q}} \ge B^{\frac{p+2r}{q}}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc. 101(1987), 85-88.
- [7] T. Furuta, Two operator functions with monotone property, Proc. Amer. Math. Soc. 111(1991), 511-516.

Young Ok Kim
Department of Mathematics
Sungkyunkwan University
Suwon 440-764, Korea
e-mail: fanta@math.skku.ac.kr

Received September 3, 1999

Revised October 25, 1999