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Real hypersurfaces in complex pro jective space
satisfying a certain condition on Ricci tensors

Yoshio Matsuyama

1 Introduction

Let CP*,n > 3 be an n-dimensional complex projective space with Fubini-
Study metric of constant holomorphic sectional curvature 4, and let M be a
real hypersurface CP"”. Let v be a unit local normal vector field on M and
§ = —Jv, where J denotes the complex structure of CP™. M has an almost
contact metric structure (,&,7,9) induced from J. We denote R and S the
curvature tensor and the Ricci tensor of M, respectively. Many differential ge-
ometeres have studied M (cf. [1], [5], [6], (8], [9], [10], [11] and [12]) by using
the structure (¢, €, 7, 9)-

Typical examples of real hypersurfaces in C P™ are homogeneous ones. Tak-
agi [12] showed that all homogeneous real hypersurfaces in CP™ are realized as
the tubes of constant radius over compact Hermitian symmetric spaces of rank
1 or rank 2. Namely, he showed the following: Let M be a homogeneous real
hypersurface of CP™. Then M is a tube of radius r over one of the following
Kaehler submanifolds:

(A;) hyperplane CP"~!, where 0 < r < g,
(A) totally geodesic CPF(1 < k <n -—2),
(B) complex quadric @,—1, where 0 <r < %,

n—1

(C) CP! xCP 2, where 0 <r < § and n(= 5) is odd,
(D) complex Grassmann CGa5, where 0 <r < T and n =09,
(E) Hermitian symmetric space SO(10)/U(5), where 0 <7 < % and n = 15.
Due to his classification, we find that the number of distinct constant principal
curvatures of a homogeneous real hypersurface is 2, 3 or 5. Here note that the
vector £ of any homogeneous real hypersurface M (which is a tube of radius )
is a principal curvature vector with principal curvature a = 2 cot 2r with multi-
plicity 1 (See [1]) and that in the case of type A; M has two distinct principal
curvatures and in the case of type A, (resp. B) M has three distinct principal
curvatures t,-—%— and a=1t— %r (resp. %—%, %—_*:_—% anda=t— %)

The following result is well known ([3]) : There are no real hypersurfaces
M with parallel Ricci tensor in CP™,n > 3. Moreover, CP",n > 3, does not
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admit real hypersurfaces M with the weak condition (R(X,Y)S)Z = 0 for any
X,Y,Z € TM. With relation. to this Gotoh [2] proved that if n > 3 and the
shape operator A of a real hypersurface M satisfies (R(X,Y)A)Z = 0 for any
X,Y,Z € €1, then M is locally congruent to a geodesic hypersphere.

The purpose of the present paper is to study more weaker condition
(R(X,Y)S)Z =0 for any X,Y,Z € £+,

where £+ denotes the orthogonal complement of € in T M. Specifically, we shall
prove the following :

Theorem  Let M be a real hypersurface of CP™,n > 3. Then M satisfies
(R(X,Y)S)Z =0 for any X,Y and Z in £+ if and only if M is locally congru-
ent to one of the following:

(i) a geodesic hypersurface,

(ii) o tube of radius T over a totally geodesic CPn 2 : ,

(iii) a tube of radius r over a complex quadric Q,_,, where 0 < r < T ond
cot?’2r =n — 2.

2 Preliminaries.

Let X be a tangent vector field on M. We write JX = ¢X + n(X)v, where
¢X is the tangent component of JX and 7(X) = g(X, £). As J? = —Id, where
Id denotes the identity endomorphism on TCP™, we get

for any X tangent to M. It is also easy to see that for any X and Y tangent to
M

(3) T Vx€ = ¢AX.

Finally, from the expression of the curvature tensor of CP", we see that the
curvature tensor, Codazzi equation and the Ricci tensor of M are given by

4) RX,Y)Z = g(Y,2)X - g(X,2)Y +g(¢Y, 2)pX — g(¢X, Z)pY
- 29(¢X,Y)¢Z+9(AK Z)A-X "'g(A-X? Z)AYa

(6) (VxAY — (VyA)X =n(X)¢Y —n(Y)pX —29(¢X,Y)E,
(6) SX = (@n+1)X —3p(X)E + hAX — A2X,
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where h = traceA and S is the Ricci tensor of type (1.1) on M.
Now, we recall without proof the following result in order to prove our theorem:

Proposition (Maeda [7]) Assume that € i3 a principal curvature vector and
the corresponding principal curvature is o. If AX = rX for X L &, then we
have ApX = ((ar +2)/(2r — a))pX.

3 Key lemma

Let M be a real hypersurface in CP",n > 3, whose the Ricci tensor S satis-
fies the identity SX = aX + bn(X)¢ for some smooth functions a and b on M (,
that is, M is n-Einstein). Then M is locally congruent to one of the following

({11, (81, [6]) -
(i) a geodesic hypersurface
(ii) a tube of radius r over a totally geodesic CP*, 1 < k < n — 2, where

o<r<% andcot2r=n—_—’kc—_—1,

(iii) a tube of radius r over a complex quadric Q,—1, where 0 < r < % and
cot?2r =n — 2.

On the other hand, in 3] Ki, Nakagawa and Suh proved that n > 3 and the
Ricci tensor S of a real hypersurface M satisfies (R(X,Y)S)Z + (R(Y, Z)S)X +
(R(Z,X)S)Y = 0 for all tangent vectors X,Y and Z in T'M if and only if M is
n-Einstein.

Lemma Let M be a real hypersurface of CP™,n > 3. Then M satisfies
(7) (R(X,Y)S)Z + (R(Y, Z)S)X + (R(Z,X)S)Y =0
for any X,Y and Z in &L if and only if M is n-Einstein

From (4) and (6) we see that the assumption (7) of Lemma is equivalent
to the equation

(8) 9(¢X, HZ)$Y +g(¢Y, HX)¢Z + g(¢Z, HY )pX
—9(¢Y, HZ)¢pX — g(¢pZ, HX )Y — g(¢ X, HY )pZ
+29(¢X,Y)pHZ +29(8Y, Z)pHX +29(¢Z, X)pHY =0,

where H = hA— A%, X,Y and Z € 1. Let {E4,... , F2p—2} be an orthonormal
basis of £+ at any point of M. Putting Z = E; and taking the inner product
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(8) by ¢E;, we get

(9) 9(6 X, HE;)g(8Y, 9 E;) + g(¢Y, HX)g(SE;, E;)
+9(¢E;, HY )g(¢X, $E;) — g(oY, HE;)g(¢X, dE;)
—9(¢E;, HX)g(8Y, $E;) — 9(¢ X, HY )g(p E;, ¢ E;)
+29(¢X,Y)9(PHE;, E;) + 29(®Y, E;)g(0H X, oE;)
+29(0E;, X)g(pHY, ¢E;) = 0.

Taking sumrmation of (9) on ¢, we obtain
—(2n—2)g9(¢HX,Y) — (2n—2)g(H¢X,Y) +2(traceH —g(HE, £))9(¢X,Y) = 0.

Hence we have

(10)
—(2n — 2)¢HX — (2n — 2)HpX + 2(traceH — g(HE, £))¢X = —(2n — 2)g(HPX, &)t

If in (8) we take X = E;,Z = ¢E; and take summation on j, we obtain for
Yeg¢t

(11) (—4n + 6)pHY — 2H@Y + 2(traceH — g(HE,£))pY = —29(HSY, £)E,
Taking the inner product (11) by any X € &L, we have
(12)  g((—4n +6)pHY — 2HPY + 2(traceH — g(HE, €)Y, X) = 0.
The equation (12) yields

g(Y, (4n — 6)Hp X + 206 HX — 2(traceH — g(HE, £))pX) = 0.
Then we can put

(4n — 6)HpX +2¢HX — 2(traceH — g(HE, £))pX = cf

for some function c. Hence we get

(13)
(4n — 6)HRY + 20HY — 2(traceH — g(HE, €))pY = (4n — 6)g(H Y, £)E.

Combining (11) with (13) , we have
(14) HoY — ¢HY = g(H@Y, £,

since n > 3.
Now, define a unit cross section U of £+ and smooth functions a, 3 on M by

(15) HE = af + BU.
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Hence we have

(16) g(HQU, £) = g(U, HE) = g($U, af + U) = 0.
Thus from (14) and (16) we get

(17) H¢U = ¢HU.

Taking the inner product (8) by U, we have

(18) 9(¢X, HZ)g(¢Y,U) + g(8Y, HX)g(¢Z,U)
+9(¢Z, HY )g(¢X,U) ~ g(8Y, HZ)g(¢ X, U)

—g(¢Z, HX)g(¢Y,U) — g(¢X, HY )g(¢2,U)
+29(¢X,Y)g(pHZ,U) + 29(¢Y, Z)g9(p HX, U)

+29(¢Z, X)g(¢HY,U) = 0.

Taking the contraction of (18) on Z, we obtain

(19) 9(¢Y, U)HpX — g(¢Y, HX)pU
~9(¢pX,U)pHY — g(¢X,U)HY
+g(¢Y, U)pHX + g(¢ X, HY )pU

—2g(¢X,Y)HoU +29(pHX,U)$Y
—29(¢HY,U)pX
= g(g(¢Y, U)H¢pX — g(¢X,U)HY,£)E.

Putting X = U and Y = ¢U in (19) , we get
(20) - H¢U =g(U,HU)¢U.

Assume that 3 # 0 at a point, say z. By (20) there exists a certain real number
A such that

(21) HoU = A¢U.
Combining (17) with (20) , (21) we have
(22) HU = \U + B§.
On the other hand, (10) implies
2(2n — 2)HU — 2(traceH — a)U = 2(2n — 2)B€.
Hence we obtain

(23) o (2n — 2)\ = traceH — a.
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Putting X = ¢Y in (19) , from (14) we obtain A = 0. Combining H = hA — A?
with (14) , (15) and (22) , we get

(24) B =0.

The equation (24) contradicts to 3 # 0. Therefore we get

(25) HE = a

Also, from (10) , (14) , (21) , (23) and (25) we see that
HX =\X for X e¢t

Therefore M is 7-Einstein. Conversely, assume that M is 7)-Einstein. Then the
result of Ki, Nakagawa and Suh ([3]) gurantees (7) . This proves Lemma.

4 Proof of Theorem

From the assumption of Theorem, i.e.,
(26) (R(X,Y)S)Z =0

for any X,Y and Z € €1, we see that M satisfies (7) . Hence M is 7-Einstein.
Conversely, assume that M is 7-Einstein. By (4) and (6) , we know that (26) is
equal to the equation

@7)  9(Y,HZ)X —g(X,HZ)Y +g(8Y, HZ)$pX — g(¢pX, HZ)pY
—29(¢X,Y)pHZ + g(AY,HZ)AX — g(AX,HZ)AY

—9(Y, 2)HX +g(X, Z)HY — g(¢Y, Z)HoX + g(¢ X, Z)HpY
+29(¢X,Y)HPZ — g(AY,Z)HAX + g(AX, Z)HAY = 0.

We shall determine 7-Einstein real hypersurfaces M satisfying (27) .

Let M be of type A; (which is a tube of radius r). Let ¢t = cotr. Then the
shape operator A of M is expressed as ([13]) :

(28) AX =tX

for any X € £+. Substituting (28) into the left side of (27) , we get (26) .
Let M be of type A, (which is a tube of radius r, where cot? r = #, 0<
k<n—1and0<r<F%). Let t=cotr. Then M has three distinct constant

principal curvatures ¢ with multiplicity 2k, -—%— with multiplicity 2n — 2k —2 and
t— % with multiplicity 1 ([13]). Let X € ;,Y and Z € V1, where V; denote

T
the eigenspace of A corresponding to the eigenvalue t. Then by Proposition we
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know that ¢ X € V;,¢Y and ¢Z € V 1. We put Z = ¢Y and Y| =11in (27) .
Then the linear independence of the vectors X, ¢X,Y and ¢Y shows
(t* +1)(t* — ht — 1)

- X =0,
ie.,
(29) t? —ht—1=0.
We now remark
(30) h=2kt—2l_—_-§—k——_-—2+t—%.
Substituting (30) into the left side of (29) , we have

2 = n—%—l

Since M is n-Einstein, t% = n—_%—_—l (See Key lemma). Thus ¢t2 = 1. Hence M
has three distinct constant principal curvatures +1 with multiplicity n — 1 and
0 with multiplicity 1. This implies that h = 0 and HX = —X for any X € &L
By easy computation we can verify the equation (27) for any X,Y, Z € &+, so
that the manifold M of type A of radius 7 satisfies (26) .

Let M be of type B (which is a tube of radius r, where cot?2r = n — 2 and
0<r« %) Let t = cotr = /n—1++/n —2. Then M has three distinct

constant principal curvatures r; = %——‘E—% with multiplicity n — 1, r2 = tf T 1]

with multiplicity n —1and a =1t — %r with multiplicity 1 ([13]). Note that the
following :

4
T+ 1o = 5 Ttz = -1,
4(n —1
heoo Yol
a
a=2v/n—2.

Let X € V.,,Y and Z € V,,,. Then by Proposition we see that ¢.X € V,,,9Y
and ¢Z € V,,. Putting X = ¢Y,|X| =1 and g(X, $Z) = 0, we get

(R(X,Y)S)Z = -2(r1—r2)(h—r1—12)p2Z
- oy —rp) LA =2)

Moreover, we have
(R(X,Y)S)Z =0 for X,Y,Z € Vyor X, Y, Z € V,,,
(R(X,Y)S)Z =0 for X,Z € V,,,Y(L ¢pX,0Z) € Vior X,Z € Vi, Y (L ¢X,0Z) ¢

A similar computation asserts that the real hypersurface M of tye B in the case
of a = 2v/n — 2 satisfies (26) . This proves Theorem.
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