Real hypersurfaces in complex projective space satisfying a certain condition on Ricci tensors

Yoshio Matsuyama

Introduction 1

Let $CP^n, n \geq 3$ be an n-dimensional complex projective space with Fubini-Study metric of constant holomorphic sectional curvature 4, and let M be a real hypersurface $\mathbb{C}P^n$. Let ν be a unit local normal vector field on M and $\xi = -J\nu$, where J denotes the complex structure of $\mathbb{C}P^n$. M has an almost contact metric structure (ϕ, ξ, η, g) induced from J. We denote R and S the curvature tensor and the Ricci tensor of M, respectively. Many differential geometeres have studied M (cf. [1], [5], [6], [8], [9], [10], [11] and [12]) by using the structure (ϕ, ξ, η, g) .

Typical examples of real hypersurfaces in $\mathbb{C}P^n$ are homogeneous ones. Takagi [12] showed that all homogeneous real hypersurfaces in $\bar{C}P^n$ are realized as the tubes of constant radius over compact Hermitian symmetric spaces of rank 1 or rank 2. Namely, he showed the following: Let M be a homogeneous real hypersurface of $\mathbb{C}P^n$. Then M is a tube of radius r over one of the following Kaehler submanifolds:

- (A_1) hyperplane CP^{n-1} , where $0 < r < \frac{\pi}{2}$,
- (A₂) totally geodesic $CP^k (1 \le k \le n-2)$, (B) complex quadric Q_{n-1} , where $0 < r < \frac{\pi}{4}$,
- (C) $CP^1 \times CP^{\frac{n-1}{2}}$, where $0 < r < \frac{\pi}{4}$ and $n \ge 5$ is odd,
- (D) complex Grassmann $CG_{2,5}$, where $0 < r < \frac{\pi}{4}$ and n = 9,
- (E) Hermitian symmetric space SO(10)/U(5), where $0 < r < \frac{\pi}{4}$ and n = 15. Due to his classification, we find that the number of distinct constant principal curvatures of a homogeneous real hypersurface is 2, 3 or 5. Here note that the vector ξ of any homogeneous real hypersurface M (which is a tube of radius r) is a principal curvature vector with principal curvature $\alpha = 2 \cot 2r$ with multiplicity 1 (See [1]) and that in the case of type A_1 M has two distinct principal curvatures and in the case of type A_2 (resp. B) M has three distinct principal curvatures $t, -\frac{1}{t}$ and $\alpha = t - \frac{1}{t}$ (resp. $\frac{1+t}{1-t}, \frac{t-1}{t+1}$ and $\alpha = t - \frac{1}{t}$).

The following result is well known ([3]): There are no real hypersurfaces M with parallel Ricci tensor in $\mathbb{C}P^n, n \geq 3$. Moreover, $\mathbb{C}P^n, n \geq 3$, does not admit real hypersurfaces M with the weak condition (R(X,Y)S)Z=0 for any $X,Y,Z\in TM$. With relation to this Gotoh [2] proved that if $n\geq 3$ and the shape operator A of a real hypersurface M satisfies (R(X,Y)A)Z=0 for any $X,Y,Z\in \xi^{\perp}$, then M is locally congruent to a geodesic hypersphere.

The purpose of the present paper is to study more weaker condition

$$(R(X,Y)S)Z = 0$$
 for any $X,Y,Z \in \xi^{\perp}$,

where ξ^{\perp} denotes the orthogonal complement of ξ in TM. Specifically, we shall prove the following :

Theorem Let M be a real hypersurface of \mathbb{CP}^n , $n \geq 3$. Then M satisfies (R(X,Y)S)Z = 0 for any X, Y and Z in ξ^{\perp} if and only if M is locally congruent to one of the following:

- (i) a geodesic hypersurface,
- (ii) a tube of radius $\frac{\pi}{4}$ over a totally geodesic $CP^{\frac{n-1}{2}}$,
- (iii) a tube of radius r over a complex quadric Q_{n-1} , where $0 < r < \frac{\pi}{4}$ and $\cot^2 2r = n 2$.

2 Preliminaries.

Let X be a tangent vector field on M. We write $JX = \phi X + \eta(X)\nu$, where ϕX is the tangent component of JX and $\eta(X) = g(X, \xi)$. As $J^2 = -Id$, where Id denotes the identity endomorphism on TCP^n , we get

(1)
$$\phi^2 X = -X + \eta(X)\xi, \quad \eta(\phi X) = 0, \quad \phi \xi = 0$$

for any X tangent to M. It is also easy to see that for any X and Y tangent to M

(2)
$$(\nabla_X \phi)Y = \eta(Y)AX - g(AX, Y)\xi,$$

$$(3) \nabla_X \xi = \phi AX.$$

Finally, from the expression of the curvature tensor of $\mathbb{C}P^n$, we see that the curvature tensor, Codazzi equation and the Ricci tensor of M are given by

$$(4) R(X,Y)Z = g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z + g(AY,Z)AX - g(AX,Z)AY,$$

(5)
$$(\nabla_X A)Y - (\nabla_Y A)X = \eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi,$$

(6)
$$SX = (2n+1)X - 3\eta(X)\xi + hAX - A^2X,$$

where h = trace A and S is the Ricci tensor of type (1.1) on M.

Now, we recall without proof the following result in order to prove our theorem:

Proposition (Maeda [7]) Assume that ξ is a principal curvature vector and the corresponding principal curvature is α . If AX = rX for $X \perp \xi$, then we have $A\phi X = ((\alpha r + 2)/(2r - \alpha))\phi X$.

3 Key lemma

Let M be a real hypersurface in $CP^n, n \geq 3$, whose the Ricci tensor S satisfies the identity $SX = aX + b\eta(X)\xi$ for some smooth functions a and b on M (, that is, M is η -Einstein). Then M is locally congruent to one of the following ([1], [5], [6]):

(i) a geodesic hypersurface

(ii) a tube of radius r over a totally geodesic CP^k , $1 \le k \le n-2$, where $0 < r < \frac{\pi}{2}$ and $\cot^2 r = \frac{k}{n-k-1}$,

(iii) a tube of radius r over a complex quadric Q_{n-1} , where $0 < r < \frac{\pi}{4}$ and $\cot^2 2r = n - 2$.

On the other hand, in [3] Ki, Nakagawa and Suh proved that $n \geq 3$ and the Ricci tensor S of a real hypersurface M satisfies (R(X,Y)S)Z + (R(Y,Z)S)X + (R(Z,X)S)Y = 0 for all tangent vectors X,Y and Z in TM if and only if M is n-Einstein.

Lemma Let M be a real hypersurface of \mathbb{CP}^n , $n \geq 3$. Then M satisfies

(7)
$$(R(X,Y)S)Z + (R(Y,Z)S)X + (R(Z,X)S)Y = 0$$

for any X,Y and Z in ξ^{\perp} if and only if M is η -Einstein

From (4) and (6) we see that the assumption (7) of Lemma is equivalent to the equation

(8)
$$g(\phi X, HZ)\phi Y + g(\phi Y, HX)\phi Z + g(\phi Z, HY)\phi X$$
$$-g(\phi Y, HZ)\phi X - g(\phi Z, HX)\phi Y - g(\phi X, HY)\phi Z$$
$$+2g(\phi X, Y)\phi HZ + 2g(\phi Y, Z)\phi HX + 2g(\phi Z, X)\phi HY = 0,$$

where $H = hA - A^2$, X, Y and $Z \in \xi^{\perp}$. Let $\{E_1, \ldots, E_{2n-2}\}$ be an orthonormal basis of ξ^{\perp} at any point of M. Putting $Z = E_i$ and taking the inner product

(8) by ϕE_i , we get

(9)
$$g(\phi X, HE_{i})g(\phi Y, \phi E_{i}) + g(\phi Y, HX)g(\phi E_{i}, \phi E_{i}) + g(\phi E_{i}, HY)g(\phi X, \phi E_{i}) - g(\phi Y, HE_{i})g(\phi X, \phi E_{i}) - g(\phi E_{i}, HX)g(\phi Y, \phi E_{i}) - g(\phi X, HY)g(\phi E_{i}, \phi E_{i}) + 2g(\phi X, Y)g(\phi HE_{i}, \phi E_{i}) + 2g(\phi Y, E_{i})g(\phi HX, \phi E_{i}) + 2g(\phi E_{i}, X)g(\phi HY, \phi E_{i}) = 0.$$

Taking summation of (9) on i, we obtain

$$-(2n-2)g(\phi HX,Y) - (2n-2)g(H\phi X,Y) + 2(\text{trace}H - g(H\xi,\xi))g(\phi X,Y) = 0.$$

Hence we have

(10)
$$-(2n-2)\phi HX - (2n-2)H\phi X + 2(\text{trace}H - g(H\xi,\xi))\phi X = -(2n-2)g(H\phi X,\xi)\xi$$

If in (8) we take $X=E_j, Z=\phi E_j$ and take summation on j, we obtain for $Y\in \mathcal{E}^\perp$

(11)
$$(-4n+6)\phi HY - 2H\phi Y + 2(\text{trace}H - g(H\xi,\xi))\phi Y = -2g(H\phi Y,\xi)\xi$$
,

Taking the inner product (11) by any $X \in \xi^{\perp}$, we have

(12)
$$g((-4n+6)\phi HY - 2H\phi Y + 2(\text{trace}H - g(H\xi,\xi))\phi Y, X) = 0.$$

The equation (12) yields

$$g(Y, (4n-6)H\phi X + 2\phi HX - 2(\operatorname{trace} H - g(H\xi, \xi))\phi X) = 0.$$

Then we can put

$$(4n-6)H\phi X + 2\phi HX - 2(\operatorname{trace} H - g(H\xi, \xi))\phi X = c\xi$$

for some function c. Hence we get

(13)
$$(4n-6)H\phi Y + 2\phi HY - 2(\text{trace}H - g(H\xi, \xi))\phi Y = (4n-6)g(H\phi Y, \xi)\xi.$$

Combining (11) with (13), we have

(14)
$$H\phi Y - \phi HY = g(H\phi Y, \xi)\xi,$$

since $n \geq 3$.

Now, define a unit cross section U of ξ^{\perp} and smooth functions α, β on M by

(15)
$$H\xi = \alpha \xi + \beta U.$$

Hence we have

(16)
$$g(H\phi U,\xi) = g(\phi U,H\xi) = g(\phi U,\alpha\xi + \beta U) = 0.$$

Thus from (14) and (16) we get

(17)
$$H\phi U = \phi HU.$$

Taking the inner product (8) by U, we have

(18)
$$g(\phi X, HZ)g(\phi Y, U) + g(\phi Y, HX)g(\phi Z, U)$$
$$+g(\phi Z, HY)g(\phi X, U) - g(\phi Y, HZ)g(\phi X, U)$$
$$-g(\phi Z, HX)g(\phi Y, U) - g(\phi X, HY)g(\phi Z, U)$$
$$+2g(\phi X, Y)g(\phi HZ, U) + 2g(\phi Y, Z)g(\phi HX, U)$$
$$+2g(\phi Z, X)g(\phi HY, U) = 0.$$

Taking the contraction of (18) on Z, we obtain

(19)
$$g(\phi Y, U)H\phi X - g(\phi Y, HX)\phi U$$
$$-g(\phi X, U)\phi HY - g(\phi X, U)H\phi Y$$
$$+g(\phi Y, U)\phi HX + g(\phi X, HY)\phi U$$
$$-2g(\phi X, Y)H\phi U + 2g(\phi HX, U)\phi Y$$
$$-2g(\phi HY, U)\phi X$$
$$= g(g(\phi Y, U)H\phi X - g(\phi X, U)H\phi Y, \xi)\xi.$$

Putting X = U and $Y = \phi U$ in (19), we get

(20)
$$H\phi U = g(U, HU)\phi U.$$

Assume that $\beta \neq 0$ at a point, say x. By (20) there exists a certain real number λ such that

$$(21) H\phi U = \lambda \phi U.$$

Combining (17) with (20), (21) we have

(22)
$$HU = \lambda U + \beta \xi.$$

On the other hand, (10) implies

$$2(2n-2)HU - 2(\operatorname{trace} H - \alpha)U = 2(2n-2)\beta\xi.$$

Hence we obtain

(23)
$$(2n-2)\lambda = \operatorname{trace} H - \alpha.$$

Putting $X = \phi Y$ in (19), from (14) we obtain $\lambda = 0$. Combining $H = hA - A^2$ with (14), (15) and (22), we get

$$\beta = 0.$$

The equation (24) contradicts to $\beta \neq 0$. Therefore we get

$$(25) H\xi = \alpha \xi$$

Also, from (10), (14), (21), (23) and (25) we see that

$$HX = \lambda X$$
 for $X \in \xi^{\perp}$.

Therefore M is η -Einstein. Conversely, assume that M is η -Einstein. Then the result of Ki, Nakagawa and Suh ([3]) gurantees (7). This proves Lemma.

4 Proof of Theorem

From the assumption of Theorem, i.e.,

$$(26) (R(X,Y)S)Z = 0$$

for any X,Y and $Z \in \xi^{\perp}$, we see that M satisfies (7). Hence M is η -Einstein. Conversely, assume that M is η -Einstein. By (4) and (6), we know that (26) is equal to the equation

(27)
$$g(Y,HZ)X - g(X,HZ)Y + g(\phi Y,HZ)\phi X - g(\phi X,HZ)\phi Y$$
$$-2g(\phi X,Y)\phi HZ + g(AY,HZ)AX - g(AX,HZ)AY$$
$$-g(Y,Z)HX + g(X,Z)HY - g(\phi Y,Z)H\phi X + g(\phi X,Z)H\phi Y$$
$$+2g(\phi X,Y)H\phi Z - g(AY,Z)HAX + g(AX,Z)HAY = 0.$$

We shall determine η -Einstein real hypersurfaces M satisfying (27). Let M be of type A_1 (which is a tube of radius r). Let $t = \cot r$. Then the shape operator A of M is expressed as ([13]):

$$(28) AX = tX$$

for any $X \in \xi^{\perp}$. Substituting (28) into the left side of (27), we get (26). Let M be of type A_2 (which is a tube of radius r, where $\cot^2 r = \frac{k}{n-k-1}, 0 < k < n-1$ and $0 < r < \frac{\pi}{2}$). Let $t = \cot r$. Then M has three distinct constant principal curvatures t with multiplicity $2k, -\frac{1}{t}$ with multiplicity 2n-2k-2 and $t-\frac{1}{t}$ with multiplicity 1 ([13]). Let $X \in V_t, Y$ and $Z \in V_{-\frac{1}{t}}$, where V_t denote the eigenspace of A corresponding to the eigenvalue t. Then by Proposition we

know that $\phi X \in V_t, \phi Y$ and $\phi Z \in V_{-\frac{1}{t}}$. We put $Z = \phi Y$ and |Y| = 1 in (27). Then the linear independence of the vectors $X, \phi X, Y$ and ϕY shows

$$\frac{(t^2+1)(t^2-ht-1)}{t^2}\phi X = 0,$$

i.e.,

$$(29) t^2 - ht - 1 = 0.$$

We now remark

(30)
$$h = 2kt - \frac{2n - 2k - 2}{t} + t - \frac{1}{t}.$$

Substituting (30) into the left side of (29), we have

$$t^2 = \frac{n-k-1}{k}.$$

Since M is η -Einstein, $t^2=\frac{k}{n-k-1}$ (See Key lemma). Thus $t^2=1$. Hence M has three distinct constant principal curvatures ± 1 with multiplicity n-1 and 0 with multiplicity 1. This implies that h=0 and HX=-X for any $X\in \xi^{\perp}$. By easy computation we can verify the equation (27) for any $X,Y,Z\in \xi^{\perp}$, so that the manifold M of type A_2 of radius $\frac{\pi}{A}$ satisfies (26).

Let M be of type B (which is a tube of radius r, where $\cot^2 2r = n-2$ and $0 < r < \frac{\pi}{4}$). Let $t = \cot r = \sqrt{n-1} + \sqrt{n-2}$. Then M has three distinct constant principal curvatures $r_1 = \frac{1+t}{1-t}$ with multiplicity n-1, $r_2 = \frac{t-1}{t+1}$ with multiplicity n-1 and $\alpha = t-\frac{1}{t}$ with multiplicity 1 ([13]). Note that the following:

$$r_1 + r_2 = -\frac{4}{\alpha}, \ r_1 r_2 = -1,$$
 $h = \alpha - \frac{4(n-1)}{\alpha},$ $\alpha = 2\sqrt{n-2}.$

Let $X \in V_{r_1}$, Y and $Z \in V_{r_2}$. Then by Proposition we see that $\phi X \in V_{r_2}$, ϕY and $\phi Z \in V_{r_1}$. Putting $X = \phi Y$, |X| = 1 and $g(X, \phi Z) = 0$, we get

$$(R(X,Y)S)Z = -2(r_1 - r_2)(h - r_1 - r_2)\phi Z$$

= -2(r_1 - r_2)\frac{\alpha^2 - 4(n - 2)}{\alpha}\phi Z.

Moreover, we have

$$(R(X,Y)S)Z = 0 for X, Y, Z \in V_{r_1} \text{ or } X, Y, Z \in V_{r_2},$$

$$(R(X,Y)S)Z = 0 for X, Z \in V_{r_1}, Y(\perp \phi X, \phi Z) \in V_{r_2} \text{ or } X, Z \in V_{r_2}, Y(\perp \phi X, \phi Z) \in V_{r_2}$$

A similar computation asserts that the real hypersurface M of tye B in the case of $\alpha = 2\sqrt{n-2}$ satisfies (26). This proves Theorem.

References

- [1] T. Cecil and P. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269(1982), 481-498
- [2] T. Gotoh, Geodesic hypersurfaces in complex projective space, Tsukuba J. Math. 18(1994), 207-215
- [3] U. H. Ki, H. Nakagawa and Y. J. Suh, Real hypersurfaces with harmonic Weyl tensor of a complex space form, Hiroshima Math. J. 20(1990), 93-102.
- [4] M. Kimura, Real hypersurfaces and complex submanifolds in complex projective space, Trans. Amer. Math. Soc. 296(1986), 137-149
- [5] M. Kimura and S. Maeda, On real hypersurfaces of a complex projective space, Math. Z. 202(1989), 299-311
- [6] M. Kon, Pseudo-Einstein real hypersurfaces in complex space form, J. Diff. Geom. 14(1979), 339-354
- [7] Y. Maeda, On real hypersurfaces in a complex projective space J. Math. Soc. Japan 26(1976), 529-540
- [8] Y. Matsuyama, A characterization of real hypersurfaces in complex projective space, J. Institute Sci. and Eng., Chuo Vniv. 2(1996), 11-13
- [9] Y. Matsuyama, A characterization of real hypersurfaces in complex projective space II, J. Institute Sci. and Eng., Chuo Univ. 3(1997), 1-3
- [10] Y. Matsuyama, A characterization of real hypersurfaces in complex projective space III, Yokohama Math. J. 46(1999), 119-126
- [11] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212(1975), 355-364
- [12] R. Takagi, On real hypersurfaces of a complex projective space, Osaka J. Math. 10(1973), 355-264
- [13] R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27(1975), 43-53, 507-516

Department of Mathematics Chuo University 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, Japan