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ANALYTIC CLUSTER SETS

VALERIAN GAVRILOV, SHAMIL MAKHMUTOV*

ABSTRACT. We study the cluster sets for analytic functions in the unit disk. Lindel\"of and Meier
types theorems are proved for analytic cluster sets.

1. INTRODUCTION

Let $D=\{z;|z|<1\}$ be the unit disk in the finite complex plane $C$ and $\Gamma=\{z:|z|=1\}$ .
For each pair of points a, $b=\in Dthehyperbolicdistancebetweenaandbisdefinedby$

$\sigma(a, b)=\frac{1}{2}\log\frac{|1-\overline{a}b|+|a-b|}{|1-\overline{a}b|-|a-b|}$

and if $L$ is any curve contained in $D$ , we set

$\sigma(a, L)=\inf_{b\in L}\sigma(a, b)$ .

Let $h(\zeta, \alpha)$ denote the chord which is terminating at the point $\zeta=e^{i\theta}\in\Gamma$ and make up
the angle of openning $\alpha,$ $-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ with the radius of $D$ at $\zeta$ . The subset bounded by
the chords $h(\zeta, \alpha_{1})$ and $h(\zeta, \alpha_{2})$ and by the circle $|z-\frac{1}{2}\zeta|=\frac{1}{2}$ is denoted by $\Delta(\zeta, \alpha_{1}, \alpha_{2})$ (or,
simply, by $\Delta(\zeta)$ if we are not interested in the magnitude of angle $\Delta(\zeta, \alpha_{1)}\alpha_{2}))$ .

Let $f$ be an arbitrary real or complex-valued function defined on $D$ . We denote by
$C(f, \zeta, D),$ $C(f, \zeta, h(\zeta, \alpha))$ and $C(f, \zeta, \Delta(\zeta))$ , respectively, the cluster set of $f$ at the point
$\zeta=e^{i\theta}\in\Gamma$ with respect to the disk $D$ , the chord $h(\zeta, \alpha)$ and the angle $\Delta(\zeta)$ .

A point $\zeta=e^{i\theta}\in\Gamma$ belongs to the set $K(f)$ if $C(f,$ $\zeta,$ $\Delta_{1}(())=C(f, \zeta, \Delta_{2}(\zeta))$ for any two
angles $\Delta_{1}(\zeta)$ and $\Delta_{2}(\zeta)$ with the vertix at the point $\zeta$ . A point ( $=e^{i\theta}\in\Gamma$ belongs to the set
$C(f)$ if $\bigcap_{\Delta}C(f, \zeta, \Delta(\zeta))=C(f, \zeta, D)$ (over all angles $\Delta(\zeta)$ ). By definition, $C(f)\subset K(f)$ .

The structure of cluster sets of meromorphic functions in $D$ was studied by many authors
(see e.g. [CL], [G], [GH]). For example, by the strengthens version of Meier’s theorem [G], for
any meromorphic function $f$ in $D$ the unit circle $\Gamma$ can be represented as union of disjoint sets
of Meier points, precised Plessner points $I^{*}(f)$ , set $P(f)$ and a set $E$ of first Baire category
and of type $F_{\sigma}$ on F. The sets $I^{*}(f)$ and $P(f)$ are disjoint subsets of the set $I(f)$ of Plessner
points for a meromorphic function $f$ in $D$ and a point $\zeta=e^{i\theta}\in\Gamma$ belongs to the set $I(f)$

$if\cap {}_{\Delta}C(f, \zeta, \Delta(\zeta))=\Omega$ , where $\Omega$ denotes the Reimann sphere. Moreover, by definition the
sets $I^{*}(f)$ and $P(f)$ are connected with the concept of a P-sequence, related the property of
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normalacy for a meromorphic function $f$ in $D$ (see [G]). For a normal meromorphic function
$f$ in $D$ (in particular, for an unbounded univalent function $f$ in $D$ ) the set $P(f)$ is empty
and $I^{*}(f)=I(f)$ (see [G]).

In this paper we study cluster sets of analytic functions defined in the unit disk $D$ using
results on analytically normal functions (Bloch functions) [ACP], [M], and prove the Lindel\"of
and Meier type theorems for analytic functions.

Let $d_{f}(z)=(1-|z|^{2})|f^{\prime}(z)|$ . An analytic function $f$ in $D$ satisfying the condition
$supd_{f}(z)<\infty$ is called Bloch function and the space of Bloch functions is denoted by $\mathcal{B}$

$z\in D$

[ACP], [M]. In [M] the second author defined the concept of $\rho_{\mathcal{B}}$-sequences of points for ana-
lytic functions in the unit disk. A sequence $\{z_{n}\}\in D,\lim_{n\rightarrow\infty}|z_{n}|=1$ , is called $\rho_{\mathcal{B}}$-sequence for
function $f$ if for each sequence of positive numbers $\{\epsilon_{n}\},\lim_{n\rightarrow\infty}|\epsilon_{n}|=0$ , there is a sequence of
positive numbers $\{M_{n}\},\lim_{n\rightarrow\infty}|M_{\mathfrak{n}}|=\infty$ , such that

diamf $(D(z_{\mathfrak{n}}, \epsilon_{n}))\geq M_{\mathfrak{n}}$ , $n=1,2,$ $\ldots$ .

According to Theorem 5.3 [M] an analytic function $f$ in $D$ is a Bloch function if and only
if it doesn’t have $\rho_{B}$-sequences of points. Any Bloch function doesn’t possess a P-sequence
too, but on the other hand, there is an analytic function $g$ in $D$ that possesses a $\rho_{B}$-sequence
and doesn’t have P-sequences; for example, the function $g(z)=(1-z)^{-1}$ .

2. MEIER TYPE THEOREM

Let $f$ be an analytic function in $D$ . We say that a point $\zeta=e^{i\theta}\in\Gamma$ belongs to the $M_{B}(f)$

if $C(f, \zeta, D)=C(f, \zeta, h(\zeta, \varphi))$ for each chord $h(\zeta, \varphi),$ $-\frac{\pi}{2}<\varphi<\frac{\pi}{2}$ and diamC $(f, \zeta, D)<\infty$ .
We say that a point $\zeta=e^{i\theta}\in\Gamma$ belongs to the set $P_{B}(f)$ if each chord $h(\zeta, \alpha)$ ending at $\zeta$

contains a $\rho_{B}$-sequence of points for $f$ . We say that a point $\zeta=e^{i\theta}\in\Gamma$ belongs to the set
$I_{\mathcal{B}}^{*}(f)$ if

(1) $\bigcap_{h}C(f, \zeta, h(\zeta, \alpha))=\bigcup_{\Delta}C(f, \zeta, \Delta(\zeta))$ ;
(2) diam $\bigcap_{h}C(f, \zeta, h(\zeta, \alpha))=\infty$ ;
(3) diam $\bigcup_{\Delta}C(d_{f}, \zeta, \Delta(\zeta))<\infty$ .

It is easy to see (and it follows $hom$ the definitions) that sets $M_{B}(f),$ $P_{B}(f)$ and $I_{\mathcal{B}}^{*}(f)$ are
mutually disjoint.

Theorem 1. Let $f$ be an analytic function in the unit disk D. Then

$\Gamma=M_{B}(f)\cup P_{B}(f)\cup I_{\mathcal{B}}^{*}(f)\cup E$ ,

where $E$ is a set on $\Gamma$ of the first Baire category and of type $F_{\sigma}$ on $\Gamma$ .
The proof of Theorem 1 is based on Collingwood’s Theorem on maximality, by analogy

with the proof of Meier type Theorem in [G].

Lemma 1 ([CL], pp.382-395). If $g$ is a continuos fimction in the unit disk $D$ then the
complement of $C(g)$ with respect to $\Gamma$ is a set of first Baire $ catego\eta$ and of type $F_{\sigma}$ .

By applying Lemma 1 to functions $f$ and $d_{f}$ we obtain the following decompositions

(1) $\Gamma=C(f)\cup E_{1}$
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(2) $\Gamma=C(d_{f})\cup E_{2}$

where $E_{1}$ and $E_{2}$ are sets of first Baire category and of type $F_{\sigma}$ . By taking intersection of
(1) and (2) we obtain $\Gamma=M\cup E$ where $M=C(f)\cap C(d_{f})$ and $E=E_{1}\cup E_{2}$ . It is clear
that $E$ is a set of first category and of type $F_{\sigma}$ . It remains us to describe the set $M$ .

For any point $\zeta=e^{i\theta}\in M$ there are four possibilities:

(I) diamC $(f, \zeta, D)<\infty$ and
$\lim_{z\rightarrow}\sup_{\zeta}d_{f}(z)<\infty$

;

(II) diamC $(f, \zeta, D)=\infty$ and $\lim_{z\rightarrow}\sup_{\zeta}d_{f}(z)<\infty$
;

(III) diamC $(f, \zeta, D)=\infty$ and $\lim_{z\rightarrow}\sup_{\zeta}d_{f}(z)=\infty$
;

(IV) diamC $(f, \zeta, D)<\infty$ and $\lim_{z\rightarrow}\sup_{\zeta}d_{f}(z)=\infty$
.

In fact, case (IV) cannot happen since the condition $\lim_{z\rightarrow\zeta}\sup d_{f}(z)=\infty$
implies, by Theorem

5.3 in [M], the existence of a $\rho_{\mathcal{B}}$-sequence for $f$ tending to $\zeta\in\Gamma$ , and hence, diamC $(f, \zeta, D)$

must be unbounded.

Lemma 2. A chord $h(\zeta, \alpha)$ doesn $\prime t$ contain $\rho_{\mathcal{B}}$ -sequence of points for analytic function $f$ in
$D$ if and only if there exists some angle $\Delta(\zeta, \alpha_{1}, \alpha_{2})$ containing the chord $h(\zeta, \alpha)$ for which
$C(d_{f}, \zeta, \Delta(\zeta, \alpha_{1}, \alpha_{2}))$ is bounded.

Proof. The necessity of the conditions of Lemma 2 were proved in [M], Theorem 5.3. In
order to prove the sufficiency, we assume that, for some angle $\Delta(\zeta, \alpha_{1}, \alpha_{2})$ containing the
chord $h(\zeta, \alpha)$ the cluster set $C(d_{f}, \zeta, \Delta(\zeta, \alpha_{1}, \alpha_{2}))$ is bounded and the chord $h(\zeta, \alpha)$ contains
a $\rho_{B}$-sequence of points $\{z_{n}\}$ for $f$ . By Theorem 5.4 [M], there exists a sequence $\{z_{n}^{\prime}\}$ ,
$\lim_{n\rightarrow\infty}\sigma(z_{n}, z_{n}^{\prime})=0$ , for which $\lim_{n\rightarrow\infty}d_{f}(z_{n}^{\prime})=\infty$ . Since the condition $\lim_{n\rightarrow\infty}\sigma(z_{n}^{\prime}, h(\zeta, \alpha))=0$ ,
beginning with some index $N$ all the points $z_{n}^{\prime}$ get into the angle $\Delta(\zeta, \alpha_{1}, \alpha_{2})$ . This contradicts
our assumption that $\Delta(\zeta, \alpha_{1}, \alpha_{2})$ doesn’t contain a $\rho_{\mathcal{B}}$-sequence for $f$ . $\square $

Lemma 2 implies that if assertion (III) is realized then every angle $\triangle(\zeta, \alpha_{1}, \alpha_{2})$ with vertix
at $\zeta$ contains a $\rho_{\mathcal{B}}$-sequence for $f$ and, consequently, $(\in P_{B}(f)$ .
Lemma 3. Let $f$ be an analytic function in $D$ and $\zeta=e^{i\theta}\in K(f)$ . If $C(d_{f}, \zeta, \Delta(\zeta, \alpha_{1}, \alpha_{2}))$

is bounded for any angle $\Delta(\zeta, \alpha_{1}, \alpha_{2})$ with vertix at $\zeta$ then for any chord $h(\zeta, \alpha)$ the set
$C(f,$ $\zeta,$ $h((, \alpha))$ coincides with $C(f, \zeta, \Delta(\zeta, \alpha_{1}, \alpha_{2}))$ . In particular, if the set $C(d_{f}, \zeta, D)$ is
bounded at the point $\zeta\in C(f)$ then $\bigcap_{h}C(f, \zeta, h(\zeta, \alpha))=C(f, \zeta, D)$ .

Proof. Assume that there exists a chord $h(\zeta, \alpha_{0})$ and value $a\in\overline{C}=CU\{\infty\}$ such that
$a\not\in C(f, \zeta, h(\zeta, \alpha_{0}))$ and also that in each angle $\Delta(\zeta, \alpha_{1}, \alpha_{2})$ covering the chord $h(\zeta, \alpha_{0})$

there exists a sequence of points $\{z_{n}^{(\Delta)}\},\lim_{n\rightarrow\infty}z_{n}^{(\Delta)}=\zeta$ , for which $\lim_{n\rightarrow\infty}f(z_{n}^{(\Delta)})=a$ . By
shrinking the angle $\Delta(\zeta, \alpha_{1}, \alpha_{2})$ to the chord $h(\zeta, \alpha_{0})$ we choose a subsequence $\{z_{k}\}$ such that
$\lim_{k\rightarrow\infty}z_{k}=\zeta,\lim_{k\rightarrow\infty}f(z_{k})=a$ and $\lim_{k\rightarrow\infty}\sigma(z_{k}, h(\zeta, \alpha_{0}))=0$ . We also take on the chord $h(\zeta, \alpha_{0})$

a sequence of points $\{z_{k}^{\prime}\}$ such that $\lim_{k\rightarrow\infty}\sigma(z_{k}, z_{k}^{\prime})=0$ . By assumption, $\lim_{k\rightarrow\infty}f(z_{k}^{\prime})\neq a$ .
According to Theorem 5.4 [M], each of the sequence $\{z_{k}\}$ and $\{z_{k}^{\prime}\}$ is a $\rho_{B}$-sequence for $f$ .
By Lemma 2, the set $C(d_{f}, \zeta, \triangle(\zeta, \alpha_{1}, \alpha_{2}))$ is unbounded for some angle $\triangle(\zeta, \alpha_{1}, \alpha_{2})$ covering
the chord $h(\zeta, \alpha_{0})$ . It contrudicts our assumption. $\square $

Lemma 3 implies that if the possibility (I) is realized then ( $=e^{i\theta}\in M_{B}(f)$ and if the
possibility (II) is realized then $\zeta=e^{i\theta}\in I_{\mathcal{B}}^{*}(f)$ and hence Theorem 1 is proved.
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3. LINDEL\"oF TYPE THEOREM

We say that $\zeta=e^{i\theta}$ $\in\Gamma$ is an analytic Lindel\"of point for analytic function $f$ in
$D$ if $C(f, \zeta, h(\zeta, \alpha_{1}))$ $=C(f, \zeta, h(\zeta, \alpha_{2}))$ for any two chords $h(\zeta, \alpha_{1})$ and $h(\zeta, \alpha_{2})$ and
diamC( $f$ , (, $h((, \alpha))<\infty,$ $-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ The set of analytic Lindel\"of points for a func-
tion $f$ is denoted by $L_{B}(f)$ .

We define the notion of $\sigma$-porous set introduced by E.P.Dolzhenko [D]. Let $E$ be a set on
$\Gamma$ , a point $\zeta=e^{i\theta}\in\Gamma$ and a real $\epsilon>0$ . We denote by $r(\zeta, E, \epsilon)$ the length of the largest
open arc which belongs to the arc $\gamma_{\zeta,\epsilon}=\{\xi=e^{i\varphi} : |\varphi-\theta|<\epsilon\}$ and doesn’t intersect $E$ (if
there is no such an arc, we put $r(\zeta, E, \epsilon)=0)$ . The point $\zeta=e^{i\theta}$ is called a point of porosity
of the set $E$ if

$r(\zeta, E)=\lim_{\epsilon\rightarrow}\sup_{0}\frac{r(\zeta,E,\epsilon)}{\epsilon}>0$ .

The set $E$ is called porous on $\Gamma$ if every point of the set $E$ is a point of porosity for $E$ . A
set on $\Gamma$ is called a $\sigma$ -porous set if it is the union of not more than a countable colection of
porous sets.

It follows from the definition that any porous set, and therefore, any $\sigma$-porous set is a set
of the first Baire category and of linear Lebesgue measure zero on $\Gamma$ . The converse assertions
are not, in general, true (see also [R], [Y]).

Denote by $p(E)$ the collection of all points of a set $E$ such that any point of $p(E)$ is non-
isolated point of the set $E$ and it is a point of porosity for $E$ . A set $E$ on $\Gamma$ is called a perfect
$\sigma$-porous set if there exists a finite or countable collection of closed sets $\{F_{n}\}$ on $\Gamma$ such that
$E=\bigcup_{n=1}^{\infty}p(F_{n})$ .

Lemma 4 [K]. For an arbitrary mapping $f$ : $D\rightarrow\overline{C}$ the set $\Gamma\backslash K(f)$ is a perfect $\sigma$ -porous
set on $\Gamma$ . Converse, for any perfect $\sigma$ -porous set $E$ on $\Gamma$ there exists an analytic and bounded
function $g$ in $D$ such that $K(g)=\Gamma\backslash E$ .

Theorem 2. Let $f$ be an analytic function in D. Then $\Gamma=L_{B}(f)\cup I_{B}^{*}(f)\cup P_{B}(f)\cup E$ where
$E$ is a perfect $\sigma$ -porous set on F.

Proof. By analogy with the proof of Theorem 1, we apply Lemma 4 to the functions $f$ and
$d_{f}$ and obtain $\Gamma=M\cup E$ where $M=K(f)\cap K(d_{f})$ and $E=E_{1}\cup E_{2}$ . It is clear that $E$ is
a perfect $\sigma$-porous set on F. It remains to describe the set $M$ .

For any point $\zeta=e^{i\theta}\in M$ there are four possibilities:

(I’) diam$ C(f, \zeta, \Delta(\zeta))<\infty$ and
$\lim_{z\rightarrow\zeta,z\in}\sup_{\Delta(\zeta)}d_{f}(z)<\infty$ for any $\Delta(\zeta)$ ;

(II’) diamC $(f, \zeta, \Delta(\zeta))=\infty$ and
$\lim_{z\rightarrow\zeta,z\in}\sup_{\Delta(\zeta)}d_{f}(z)<\infty$ for any $\Delta(\zeta)$ ;

(III’) diamC $(f, \zeta, \Delta(z))=\infty$ and
$\lim_{z\rightarrow\zeta,z\in}\sup_{\Delta(\zeta)}d_{f}(z)=\infty$ for any $\Delta(\zeta)$ ;

(IV’) diamC $(f, \zeta, \Delta(\zeta))<\infty$ and
$\lim_{z\rightarrow\zeta)z}\sup_{\in\Delta(\zeta)}d_{f}(z)=\infty$ for any $\Delta(\zeta)$ .

As in the proof of Theorem 1, an analogical argument shows that the case (IV’) cannot
happen. By Lemma 2, if case (III’) is realized then $\zeta=e^{i\theta}\in P_{B}$ . Lemma 3 implies that if
case (I’) holds then $\zeta=e^{i\theta}\in L_{B}$ , and if case (II’) is realized then $\zeta=e^{i\theta}\in I_{B}^{*}$ , and hence
Theorem 2 is proved. $\square $
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