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ANALYTIC CLUSTER SETS

VALERIAN GAVRILOV, SHAMIL MAKHMUTOV*

ABSTRACT. We study the cluster sets for analytic functions in the unit disk. Lindeléf and Meier
types theorems are proved for analytic cluster sets.

1. INTRODUCTION

Let D = {2z : |z| < 1} be the unit disk in the finite complex plane C and T = {z: |z| = 1}.
For each pair of points a,b =€ D the hyperbolic distance between a and b is defined by

|1 ab| + |a — b|

o(a:b) = Z 18 ;T 5o — 3]

and if L is any curve contained in D, we set

o(a,L) = gg£a(a, b).

Let h(¢, @) denote the chord which is terminating at the point ¢ = e* € I" and make up
the angle of openning o, —% < a < %, with the radius of D at (. The subset bounded by
the chords h({, a1) and h((, a2) and by the circle |z — 1¢| = 1 is denoted by A((, a1, @2) (or,
simply, by A({) if we are not interested in the magmtude of angle A((, a1, a2)).

Let f be an arbitrary real or complex-valued function defined on D. We denote by
C’(f,C D), C(f,¢,h(¢, @) and C(f, ¢, A(C)), respectively, the cluster set of f at the point
¢ = e* € T with respect to the disk D, the chord h((, @) and the angle A(C).

A pomt ¢ = €' €T belongs to the set K(f) if C(f,¢, A1(¢)) = C(f,¢, A2(¢)) for any two
angles Ay(¢) and Az(¢) with the vertix at the point . A point ¢ = e* € I belongs to the set
C(f) if Na C(f,¢, A(L)) = C(f,¢, D) (over all angles A(¢)). By definition, C(f) c K(f).

The structure of cluster sets of meromorphic functions in D was studied by many authors
(see e.g. [CL], [G], [GH]). For example, by the strengthens version of Meier’s theorem [G], for
any meromorphic function f in D the unit circle I" can be represented as union of disjoint sets
of Meier points, precised Plessner points I*(f), set P(f) and a set E of first Baire category
and of type F, on I'. The sets I*(f) and P(f) are disjoint subsets of the set I(f) of Plessner
points for a meromorphic function f in D and a point ¢ = e* € I’ belongs to the set I(f)
if NaAC(f,¢, A(€)) = 2, where Q denotes the Reimann sphere. Moreover, by definition the
sets I*(f) and P(f) are connected with the concept of a P-sequence, related the property of
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normalacy for a meromorphic function f in D (see [G]). For a normal meromorphic function
fin D (in particular, for an unbounded univalent function f in D) the set P(f) is empty
and I*(f) = I(f) (see [G]).

In this paper we study cluster sets of analytic functions defined in the unit disk D using
results on analytically normal functions (Bloch functions) [ACP}, [M], and prove the Lindelsf
and Meier type theorems for analytic functions.

Let df(z) = (1 — |z|?)|f'(2)]. An analytic function f in D satisfying the condition

sup df(2) < oo is called Bloch function and the space of Bloch functions is denoted by B
zeD
[ACP], [M]. In [M] the second author defined the concept of pg-sequences of points for ana-

lytic functions in the unit disk. A sequence {z,} € D, lim |z,| =1, is called pB-sequence for
77— 00
function f if for each sequence of positive numbers {e,}, ILm len| = 0, there is a sequence of
n—o0

positive numbers {M,,}, le |M,,| = oo, such that
n—>o00

diamf(D(zn,€,)) > M, n=1,2,....

According to Theorem 5.3 [M] an analytic function f in D is a Bloch function if and only
if it doesn’t have pg-sequences of points. Any Bloch function doesn’t possess a P-sequence
too, but on the other hand, there is an analytic function g in D that possesses a pg-sequence
and doesn’t have P-sequences; for example, the function g(z) = (1 — z)~1.

2. MEIER TYPE THEOREM

Let f be an analytic function in D. We say that a point { = e*® € I" belongs to the Mg(f)
if C(f,¢, D) = C(f,¢, h(¢, ¢)) for each chord h(¢, ), —3% < < %, and diamC(f, {, D) < oo.
We say that a point ¢ = e € T belongs to the set Pg(f) if each chord h({, ) ending at ¢
contains a pp-sequence of points for f. We say that a point ¢ = €*® € I belongs to the set
I5(f) if

(1) N C(f,¢ h(¢, @) = Ua C(£,¢, AL 5
(2) diam nh C(fs C’ h(C) a)) =00 ;
(3) diam(J, C(ds,¢, A(C)) < oo .

It is easy to see (and it follows from the definitions) that sets Mg(f), Ps(f) and I, 5(f) are

mutually disjoint.

Theorem 1. Let f be an analytic function in the unit disk D. Then
I'= Mg(f) U Ps(f)UI(f)UE,

where E is a set on ' of the first Baire category and of type F, onT.

The proof of Theorem 1 is based on Collingwood’s Theorem on maximality, by analogy
with the proof of Meier type Theorem in [G].

Lemma 1 ([CL], pp.382-395). If g is a continuos function in the unit disk D then the
complement of C(g) with respect to T is a set of first Baire category and of type F,.

By applying Lemma 1 to functions f and d 7 we obtain the following decompositions

(1) F=C(fluE
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(2) T = C(dy) U Es

where E; and E, are sets of first Baire category and of type F,. By taking intersection of
(1) and (2) we obtain ' = M |JE where M = C(f)[(\C(df) and E = E;|JE,. It is clear
that FE is a set of first category and of type F,. It remains us to describe the set M.

For any point ¢ = e* € M there are four possibilities:

(I) diamC(f,¢,D) < oo and limsupdy(z) < o0 ;
z—=C
(II) diamC(f,{,D) = oo and limsupds(z) < 00 ;

z—=(¢

(III) diamC(f,{, D) = oo and limsupds(z) = oo ;

z—¢

(IV) diamC(f,¢, D) < oo and limsupds(z) = oo
z—(

In fact, case (IV) cannot happen since the condition limsup ds(2) = co implies, by Theorem
z—(

5.3 in [M], the existence of a pg-sequence for f tending to ¢ € I, and hence, diamC(f, ¢, D)
must be unbounded.

Lemma 2. A chord h({, @) doesn’t contain pp-sequence of points for analytic function f in
D if and only if there exists some angle A(C, o1, a2) containing the chord h(¢, o) for which
C(ds, ¢, A(C, a1, az)) is bounded.

Proof. The necessity of the conditions of Lemma 2 were proved in [M], Theorem 5.3. In
order to prove the sufficiency, we assume that, for some angle A((, a1, a3) containing the
chord h(¢, ) the cluster set C(dy, ¢, A(¢, @1, 2)) is bounded and the chord h({, o) contains
a pp-sequence of points {z,} for f. By Theorem 5.4 [M], there exists a sequence {2z},

1_1+m 0(zn, 2;,) = 0, for which hm ds(z],) = oo. Since the condition hm o(z,,h(¢, ) =0,
n—o0

beginning with some index IV all the points 2/, get into the angle A((, a1, az) This contradicts
our assumption that A(¢, a1, a2) doesn’t contain a pp-sequence for f. 0O

Lemma 2 implies that if assertion (III) is realized then every angle A((, a1, a2) with vertix
at ¢ contains a pg-sequence for f and, consequently, ¢ € Pg(f).

Lemma 3. Let f be an analytic function in D and ¢ = € € K(f). If C(ds, ¢, A(¢, a1, @2))
is bounded for any angle A((, 1, c2) with vertiz at { then for any chord h(¢,a) the set
C(f,¢, h(¢,a)) coincides with C(f,{,A({,a1,a2)). In particular, if the set C(dy, C,D) is
bounded at the point ( € C(f) then NLC(f,¢, h(¢,a)) = C(f,¢, D).

Proof. Assume that there exists a chord h(¢,ap) and value a € C = C U {co} such that
a & C(f,¢,h({,a0)) and also that in each angle A((, a1, a2) covering the chord h((, ap)

there exists a sequence of points {zn )} hm 28 = (, for which lim f (z,ﬁA)) = a. By
n—oo

shrinking the angle A({, a1, @2) to the chord h(§ , &g) we choose a subsequence {z} such that
kli’m zg = ¢, kli)m f(zk) = a and klim o(zk, h(¢, ap)) = 0. We also take on the chord h({, ag)
oo [ <] — 00

a sequence of points {z;.} such that lim o(zx,2;) = 0. By assumption, lim f(2;) # a.
k—o0 k—oc0

According to Theorem 5.4 [M], each of the sequence {zx} and {z,} is a pg-sequence for f.
By Lemma 2, the set C(dy, ¢, A({, @1, 2)) is unbounded for some angle A(¢, a;, a2) covering
the chord h((, ap). It contrudicts our assumption. 0O

Lemma 3 implies that if the possibility (I) is realized then ¢ = e’ € Mg(f) and if the
possibility (II) is realized then { = e'® € I}(f) and hence Theorem 1 is proved.
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3. LINDELOF TYPE THEOREM

We say that ( = e € T is an analytic Lindel6f point for analytic function f in
D if C(f,¢,h(¢,a1)) = C(f,{,h(¢,az2)) for any two chords h(¢,a;) and h(¢,c2) and
diamC(f,(, h(¢,@)) < o0, =% < a < Z. The set of analytic Lindelsf points for a func-
tion f is denoted by Lg(f).

We define the notion of o-porous set introduced by E.P.Dolzhenko [D]. Let E be a set on
I, a point ( = e € T and a real € > 0. We denote by (¢, E, €) the length of the largest
open arc which belongs to the arc 7¢,e = {{ = €** :  |¢ — 0| < €} and doesn’t intersect E (if
there is no such an arc, we put r(¢, E,€) = 0). The point { = € is called a point of porosity
of the set F if

r(¢, E) = limsup I—(Elﬂe—) > 0.
e—0 €

The set E is called porous on I if every point of the set F is a point of porosity for E. A
set on I is called a o-porous set if it is the union of not more than a countable collection of
porous sets.

It follows from the definition that any porous set, and therefore, any o-porous set is a set
of the first Baire category and of linear Lebesgue measure zero on I'. The converse assertions
are not, in general, true (see also [R], [Y]).

Denote by p(E) the collection of all points of a set E such that any point of p(E) is non-
isolated point of the set E and it is a point of porosity for E. A set E on I is called a perfect
o-porous set if there exists a finite or countable collection of closed sets {F,,} on I' such that

E= U§°,°=1 p(Fy).

Lemma 4 [K]. For an arbitrary mapping f : D — C the set '\ K (f) is a perfect o-porous
set on I'. Converse, for any perfect o-porous set E on T there exists an analytic and bounded
function g in D such that K(g) =T\ E.

Theorem 2. Let f be an analytic function in D. ThenT = Lg(f)UI5(f)UPs(f)UE where
E is a perfect o-porous set on T.

Proof. By analogy with the proof of Theorem 1, we apply Lemma 4 to the functions f and
dy and obtain ' = M U E where M = K(f) N K(ds) and E = E, U E;. It is clear that E is
a perfect o-porous set on I'. It remains to describe the set M.

For any point { = e* € M there are four possibilities:

(') diamC(f,{,A({)) <oco and limsup df(z) <oo forany A(();
z—(,z€A(Q) d
(IT’) diamC(f,¢,A(¢)) =oc0 and limsup df(2z) <oo forany A(();
—¢,z€A(Q) !
(III’) diamC(f,¢,A(2)) =00 and limsup df(z) =co forany A(();
z—(,2z€A(C)

(IV’) diamC(f,{,A(¢)) < oo and limsup df(z) =00 forany A(().
z2—¢,z€A(Q)

As in the proof of Theorem 1, an analogical argument shows that the case (IV’) cannot
happen. By Lemma 2, if case (III') is realized then ¢ = ¢ € Pz. Lemma 3 implies that if
case (I') holds then ¢ = e* € Lg, and if case (I) is realized then ¢ = ¢ € I}, and hence
Theorem 2 is proved. O
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