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ABsTrRACT. We study the spectral characterization of harmonic sub-
mersions when the target manifold is QP™ x QP™.

1. INTRODUCTION

The inverse eigenvalue problem of the second order operators aris-
ing in Riemannian geometry has been studied by many authors. Among
them, the Jacobi operator for a harmonic map was studied in [8,11,12,13],
and that for the area functional was studied in [1,5,9]. The Jacobi op-
erator of a harmonic map f arises in the second variation formula of
the energy of the harmonic map f. This formula can be expressed in
terms of an elliptic differential operator Js(called the Jacobi operator)
defined on the space of sections of the bundle induced from the tangent
bundle of the target manifold.

The spectral charaterization of harmonic Riemannian submersions
among the set of all harmonic morphisms has been studied in the cases
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when the target manifolds are the standard sphere S™, complex projec-
tive space C' P™([13]), the quaternionic projective space QP™([11]) and
product manifolds ([8]).

In this paper, we shall prove the following

Main Theorem. Let f and f' be harmonic morphisms of a com-
pact Riemannian manifold (M, g) with constant scalar curvature into
QP" xQP™, where QP™ is the quaternionic projective space of real 4n-
dimension. Assume that Spec(Js) = Spec(Jy:). If f is a Riemannian
submersion, then so is f’.

2. PRELIMINARIES

Let (M, g) be an m-dimensional connected, closed(i.e., compact with-
out boundary) Riemannian manifold with metric ¢ and (IV,h) an n-
dimensional Riemannian manifold with metric Ah. A smooth map f :
(M, g) — (N, h) is said to be harmonic if it is a critical point of the
energy functional

E(f) = /M e(f) dv,,

where the energy density e(f) of f is defined to be e(f) := 1 Y-, h(fxe;,
f«€i), [+« is the differential of f, {e1,---,emn} is a local orthonormal
frame field on M, and dv, is the volume element with respect to g.
Let us consider the Jacobi operator Jy for a harmonic map f defined
by
JfV i = AV — RV

for V. € T'(E)(the space of smooth sections of FE), where A is the
rough Laplacian associated to the induced connection V of the in-

duced bundle E := f*TN defined by VxV := V’}_ xV (for X a tan-

gent vector of M, V* the Levi-Civita connection of the metric ), and
RV := > Ra(V, fr€i)fe€i(Rp, is the Riemannian curvature tensor
of (N,h)). In this paper, we take the convention

Ru(X,Y) :=[V%, V3]~ Vi 3

where X and Y are tangent vector fields on N. Then J; is self-adjoint,
elliptic of second order and has a discrete spectrum as a consequence
of the compactness of M.
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Consider the semigroup e~¢’s given by

e IV (z) = /M K(t,z,y,J5)V(y) dvg(y),

where K (t,x,y, Jr) € Hom(FE,, F,) is the kernel function (r,y € M,
E; is the fibre of I over ). Then we have asymptotic expansions for
the L2-trace

(2.1)  Tr(e ¥r) = i e ™~ (4nt) 7 f: t"an(Jr) (t407),
i=1 n=0

where each a,,(Jy) is the spectral invariant of J;, which depends only
on the discrete spectrum ;

Spec(Jf) ={A1 <A < --- < Agj-v- T 00}

Applying Gilkey’s results in [4,p.327] to the Jacobi operator J s of a
harmonic map f, we obtain

Theorem 2.1 [cf.13]. For a harmonic map f: (M,g) — (N, h),

(2.2) ao(J5) =nVol(M, g),
(2.3) a1(Jy) = E/ Tg dvg +/ Tr(Ry) dvy,
6 Jum M
(2.4)
n 9 2 2
aa(T7) = 555 [ 1573 = 2oy + 21 R, ") dvy
M
= 2 .
+ 555 [ [-30IRY|" + 607, Tr(Ry) + 180Tr(R,)] dos,
M

where RV is the curvature tensor of the connection V on FE,which is
defined by RY:= f*Ry, and Ry, p,, T, are the curvature tensor, Ricci
tensor, scalar curvature of M, respectively.
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Remark 2.2. dim(M) = m is determined by Spec(Jy) (i.e., dim (M)
is a spectral invariant of J;) because of the asymptotic expansion (2.1).

3. PRODUCT MANIFOLDS OF QUATERNIONIC KAEHLER MANIFOLDS

To begin with we define an almost product manifold. Let N be a
smooth manifold with a tensor F' of type (1,1) such that

F?2=1],

where I denotes the identity transformation. Then we say that N is an
almost product manifold with almost product structure F. If an almost
product manifold NV admits a Riemannian metric A such that

h(FX,FY)=h(X,Y)

for any vector fields X and Y on N, then N is called to be an almost
product Riemannian manifold. Let N; be a quaternionic Kaehler mani-
fold with metric hy. Then there exists a 3-dimensional vector bundle F;
of tensors of type (1, 1) such that in any coordinate neighborhood U; of
N1, there exists a local basis of almost Hermitian structures ¢, ¢2, ¢3
of F satisfying

¢2 = —I(the identity transformation)(s = 1,2, 3),
(3.1) P10 ¢2 = —P2 01 = ¢3,02 03 = —¢3 0 P2 = ¢4,
#3001 = —¢p10¢3 =2,

and local 1-forms a1, a2 and a3 on U satisfying

'Vx¢1 = a3(X)d2 — a2(X)ds
(3.2) 'Vx¢2 = —a3(X)¢1 + a1 (X)ds

'Vx¢3 = aa(X)$1 — a1(X) o2
for any vector field X on N;, where 1V is the Levi-Civita connection
of Ni. The bundle F satisfying (3.1) and (3.2) is called a quaternionic

Kaehler structure in N;. The bundle E) satisfying the algebraic rela-
tion (3.1) is called an almost quaternionic structure. A manifold with
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an almost quaternionic structure is called an almost quaternionic man-
ifold(cf. [6,14]).

Let N be another quaternionic Kaehler manifold with metric hg.
Note that a local basis of almost Hermitian structures 11, ¥, 13 of the
quaternionic Kaehler structure Fy of N, satisfy the above algebraic
relation (3.1), and there exist local 1-forms b1, bz and b3 in a coordi-
nate neighborhood Us of Nj satisfying the relation (3.2) in covariant
differentiation.

Now we consider a product manifold N := N; X Nz of two quater-
nionic Kaehler manifolds N; and N3([10]). We denote by P and () the
projection operators of the tangent space of N to that of N; and N,
respectively. Then we have

P’P=P,Q*=Q, PQ=0=QP.

Setting F = P — Q, then we obtain F?2 = I, i.e., F is an almost product
structure on N. Moreover, we define a Riemannian metric h on N by

for any vector fields X and Y of N. Then we have
hFX,Y)=h(FY,X).

For any vector field X on N we put

(3.3) 0, X = ¢sPX +9:QX, s =1,2,3.

Now we consider the vector bundle F over N generated by {0, = ¢, &
Vs : s =1,2,3}, where {¢, : s = 1,2,3} and {9, : s = 1,2,3} are local
bases of quaternionic Kaehler structures F; and Fj respectively. Then,
for any local coordinate neighborhood Ui X Usa, we see that the local

basis of almost Hermitian structures 61,02, 03 satisfies the algebraic
relation (3.1). Moreover we know from (3.3) that

(3'4) PO, = ¢3P7 Qea - 'st'

Let N be a Riemannian product manifold of quaternionic Kaehler
manifolds with the almost product structure F, and {6, : s = 1,2, 3}
a canonical local basis of the almost quaternionic structure. Let f :
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M — N be an isometric immersion of a Riemannian manifold M into
N.If Ff,(ToM) C f(T.M) (resp. Ff.(ToM) C f.(ToM)%) for each
x € M, then f is said to be an F-invariant (resp. F-anti-invariant)
immersion. f is called an invariant(resp. totally real) immersion if for
each ¢ € M, f,T, M is invariant(resp. totally real) subspace under
{0s;s =1,2,3} (cf. [3,10,11)).

Let N1 be a quaternionic Kaehler manifold with a local basis {@, ¢2,
@3} of E1. Let Q(X) be the so-called quaternionic section determined
by X, which is a 4-plane spanned by {X,¢,X : s = 1,2,3}, where X
is a unit vector on N;. Any 2-plane in a quaternionic section is called
a quaternionic plane. The sectional curvature of a quaternionic plane
7 is called the quaternionic sectional curvature of w. A quaternionic
Kaehler manifold is a quaternionic space form if its quaternionic sec-
tional curvatures are equal to a constant.

It is well known that a quaternionic Kaehler manifold N; is a quater-
nionic space form with constant quaternionic sectional curvature \; if
and only if its curvature tensor R; is of the form (cf. [6], [14]) :

AL
4
+ D {h1(8:Y, 2)$: X — h1($: X, Z)$,Y

— 2h1 (¢3X’ Y)¢3Z}] 4

where X,Y and Z are vector fields on NV;.
Here and in the sequel, we denote by N1™* (1) the real 4n;-dimensional
quaternionic space form of constant quaternionic sectional curvature \;.
Let N2™2(\2) be a real 4nj-dimensional quaternionic space form
with constant quaternionic sectional curvature Ao and a local basis
{%1,%2,v¥3} of F. Then the curvature tensor Ry of N, is given by

A2
1
+ > {he (Y, 209X — ha(9s X, Z)9sY

Ri(X,Y)Z = S [m(Y, 2)X — by (X, Z)Y

R(X,Y)Z = 22 [ha(Y, 2)X — ha(X, Z)Y

— 2ha (¥ X, Y )9 Z}],
where X,Y and Z are vector fields on Ns.

—136 —



Now we consider the product manifold N = N{"* (A1) X Ng'? (Ag) of
quaternionic space forms N'' (A;) and Ng?(\2). Then the curvature
tensor Ry of N = N1™ (A1) X N2™%(\g) is given by

(3.5)
Rw(X,Y)Z =a[n(Y,Z)X —h(X,Z)Y + h(FY,Z)FX —hFX,Z)FY

+ Y {h(6.Y,2)0,X — h(0,X,Z)8,Y —2h(8.X,Y)8,2Z}
+ Y {h(FO,¥,2)F0,X — h(F8,X, Z)F0,V — 2h(F0,X,V)F0,2}]

+B[MFY,2)X —h(FX,Z)Y +h(Y,Z)FX — h(X,Z)FY
+ > {h(FO,Y,2)8,X — h(F0,X,2)0,Y +h(0,Y,Z)F0,X

— k(0. X,2)F0,Y — 2h(F0,X,Y)0,Z — 2h(0,X,Y)F0,Z}]

for any vector fields X ,f’ and Z on N , Wwhere F' := P — () is an almost
A1+ Ag A=A

16 and 3 := 16 ([10]).
Remark 3.1. In the product manifold N = N1™ (A1) X N2™ (\g),
if n1 = ng and A1 = Az, then N is an Einstein manifold. In fact, The

Ricci tensor p,, of N is given by

product structure on N, « :=

on(X,7) = o{(4(n + Dh(X, V) + (TraF)h(FX,7)}
+B{(4(n+ DR(FX,Y) + (TroF)h(X,Y)}

for any vector fields X and Y on N. If \1 = Xp (ie, 8 = 0) and
ny =ng =n (ie, TrpF = 0), then p, = 4(n + 4)ah. Hence N is an
Einstein manifold.

4. SPECTRAL INVARIANTS FOR J; OF A HARMONIC MAP f

In this section we consider the target manifold N as N = N{"* ()
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X Ng? (A). In this case 3 = 0. We adopt the following notations :
QX,Y) :=h(X, FY),
Q,(X,Y) :=h(X,0,Y),
0,(X,Y) := h(X, F6,Y),
Qs RO,(X,Y):=0Q,(X,Y)0,(X,Y),s=1,2,3

for any vector fields X and Y on N. Then for a harmonic map f :
(M, g) — (N, h) we obtain from (3.4) and (3.5)

(4.1) Tr(Rs) = 2(n + 16)ale(f) + (TruF)(Tref*Q)),

(4.2)

Tr(R}) = D > h(BRu(fuei,va)fsti, Ra(fue;, va)fue;)
i,j=1a=1

= a*[4(n + 32)e(f)” + 56/l /7hl|* + 243 || £*9% + 56]| £

+ (n+ 32)(Tre f*Q)* + 24/|£* 0,1 + 4e(f)(Tro f*Q) (TriF)],

(4.3)
IRV = 32 37 h(Ra(facis fres )var to)h(Rn(faci, frei)vas vs)

3,7=1a,b=1

= a?[64e(f)* — 16| f*hl* + (4n +18) Y || 7, ||
+16(Tre f*Q)* — 16]|f*QII* + (n +18) Y || 70, |2

+8)  f*(R, K 0,)(ei, ;) (TraF)],

3,2,8

where {v, : @ =1,--- ,n:=nj +na} is a local orthonormal frame field
on N and {e; :2=1,..-,m} is a local orthonormal frame field on M.
Substituting (4.1) ~ (4.3) into Theorem 2.1, we get
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Proposition 4.1. Let f : (M,g) — N = N™(X) X N"2()\) be a har-
monic map of an m-dimensional compact Riemannian manifold (M, g)
into an n(= ni + ng)-dimensional product manifold N. Then the coef-
ficients ao(Jy), a1(Js) and aa(Js) of the asymptotic expansion for the
Jacobi operator J; are respectively given by

(4.4) aop (Jf) = nVol(M, g),

(4.5)
n
a1(Jr) = I /M Tgdvg

+a / [2(rn + 16)e(f) + (Tra F)(Tro £*2)] dv,,
M

(4.6)
n
az(Jyf) = 360 [57'92 — 2”109”2 + 2||Ry“2]d'”y
M
o? 2 w12
+ — | [8(3n + 88)e(f)” + 352||f*All
12 Jy

+2(3n + 88)(Tro f* Q)% +2(63 — 2n) 3 _ || 7 ©.I°

+ 352/l Q> - 8> f*(2, B O,)(es, &;)(TrwF)

%,7,8
+ 24e(f) (Tre f*Q)(TriF) +2(63 — 2n) > [|F*Q%l1*] dvg

+ ! / [2(n + 16)e(f) + (T F)(Trgf*Q)] 7y du,.
6 Jm

Corollary 4.2. Let f and f' be harmonic maps of a Riemannian mani-
fold (M, g) of constant scalar curvature into N = N™ (\) x N™2()\) with
n1 = ng. Assume that Spec(Js) = Spec(Js:). Then we obtain

(i) E(f) = E(f").
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(i) [or [8(3n +88)e(f)* + 352(|f*A|* + 2(3n + 88)(T'r, £*Q)?
+2(63 —2n) 3, [1F*©,|* +352] f*Q|* +2(63 — 2n) 3, | 7* Q% 1?] dv,
= [ar [8(3n +88)e(f')® + 352|| /" hl|* + 2(3n + 88)(T'r, f'*Q)?2
+2(63—2n) 3, || /0, " +352]| 7" 21> +2(63—2n) 3=, [| £ |%] dv,

Proof. Since ny = ny, TrpF = 0. Hence (i) follows from (4.5) and (ii)
follows from (i) and (4.6), respectively.

Corollary 4.3. Let f and f' be isometric minimal immersions of
(M, g) into N = N™ (A\)x N™2()\) withn, = ny. Assume that Spec(Jyg) =
Spec(Js:). Then we have

(4.7)
/ [2(3n + 88)(Tre f*)% +2(63 — 2n) > _ || £*6, |1
M s

+352]| F* QI +2(63 — 2n) 3 170, 1%] dv,

_ /M [2(3n + 88)(Try £ 2)% + 2(63 — 2n) S || f*0,|I”

+352/| £ QII" +2(63 — 2n) S 112, 1%] dv.

m

Proof. Note that Trp,F = 0, e(f) = 5

follows from (ii).

and ||f*h||*> = m. Then (4.7)

Now we prepare the following lemma, for later use.

Lemma 4.4. Let f be an isometric immersion of a compact Riemann-
ian manifold (M, g) into an almost quaternionic manifold (N, h). Then
we have the inequality

(4.8) 0< / Z | £*Q,% dv, < 3dim(M)Vol(M, g).
M S

Moreover,
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(i) the equality [,, 3. ||f*Q,||” dv, = 0 holds if and only if the im-
mersion f is totally real, and

(ii) the equality [, . 17*Q)1° dvy = 3dim(M)Vol(M, g) holds if
and only if the immersion f is invariant.

Proof. The proof is similar to that of Lemma 6.4([13]).

Proposition 4.5. Let f and f' be F-anti-invariant minimal immer-
sions of (M, g) into QP™ x QP™. Assume that Spec(Jy) = Spec(Js).
Then

(i) if f is a totally real immersion, then so is f’, and

(ii) if f is an invariant immersion, then so is f'.

Proof. Note that [|f*Q|> = m = || f*h||* and ||f"*Q)°> =m = ||f""h|’.
Since f and f’ are F-anti-invariant immersions, ||f*Q| =0 = Tr,f*Q.
From this and (4.7), we get

(4.9) /M [ 1F 002 + S 1 96] dug
= /M 117007 + ST 2l”] dog.

Assume that f is a totally real immersion. Then we have »__||f *0, ||
=0=>_, |7*Q5]|°. Hence the equation (4.9) implies that > . ||f”"®‘§,||2

=0=3, If*Qs|%. Then Lemma 4.4 implies that f’ is a totally real
immersion.

Next, assume that f is an invariant immersion. Then we have
> s 176, = 3m = ||£*©|®. From (4.9) we obtain

0= [ [Bm =1 l) + Bm = 217770 .

This and (4.8) give >, Ilf'*Qs”2 = 3m. Hence Lemma 4.4 shows that
f’ is also an invariant immersion.
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5. PROOF OF MAIN THEOREM

To proceed to the proof of main theorem we need the notion of
harmonic morphisms (for details, see [2,7]).

A smooth map f : (M, g) — (N, h) is a harmonic morphism if v o f
is a harmonic function in f~1(V) for every function v which is harmonic
in an open set V' C N such that f~1(V) # ¢.

A smooth map f : (M, g) — (N, h) is horizontally weakly conformal
if (i) fuz : ToM — Ty(4) N is surjective at each point = with e(f)(z) #
0, and (ii) there exists a smooth function A on M such that for each €
M with e(f)(z) # 0, f*h(X,Y) = A%(z)g9(X,Y) for X,Y € H,, where
H, is the orthogonal complement of Kerf, with respect to gz, T € M.

Lemma 5.1 [2,7]. (i) if dim(M) < dim(N), then every harmonic mor-
phism is constant.

(i) If dim(M) > dim(N), then a smooth map f : (M,g) — (N, k)
is a harmonic morphism if and only if f is horizontally weakly conformal
and harmonic.

It is known (cf.[2]) that the set M* := {x € M : e(f)(x) # 0} is
open and dense in M, the function A? is given by A2 = 2¢(f)dim(N)~!,
and || f*h||*> = dim(N)A%. A smooth map f : (M,g) — (N,h) is
a Riemannian submersion if it is horizontally weakly conformal with
A=1on M.

Proof of Main Theorem. It is sufficient to show that the function
A2 for f’ satisfies A2 = 1 everywhere on M. Note that e(f') = nA? and

Ilf"*R)|* = 2n)4, where n is of quaternionic dimension.
First of all, we show that if f is a harmonic morphism of (M, g) into
(QP™ x QP™,h), then

(51) ITre f*QII* = A(TrF)?,
IF*Q0* = 1*R* on M*.
In fact, at each point £ € M*, we can define a linear transformation F
of H, into itself such that F o f, = f, o F'. Then
F?=1,9(FX,FY)=g(X,Y), X,Y € H,.
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Taking an orthonormal basis {e,;a =1,...,2n} of (H,.,g,), we obtain

(Tr,f*Q)? = Zh(f*ea,Ff*ea) Zh(f*ea,f*Fea)]

- [Z )\29(6@,17’6,,)]2 =: M (TrF)?
and

[Fakele Z h(fvea, Ffres)® = Z h(fe€a, foFes)?

a,b=1 a,b=1
= 2nX* = ||f*h|?,

where T7F is constant on M*. B
Next, at each point x € M*, we define a linear transformation 6, of
H, into itself such that 6, o f, = f, o 8,. Then we obtain

02 =—I(s=1,2,3),0,00, = —0y00, =05

02003 = —0300; =0,,03060, = —0; 063 =0,

9(0:X,6,Y) = g(X,Y) and ¢9(6,X,X) =0,X,Y € H,.
Also we get

(5.2) Ol = 7Rl = 7RI = 200t

Now, let f and f’ be harmonic morphisms (M,g) into (QP™ x
QP™, h) with Spec(Js) = Spec(Js:). Using (5.1) and (5.2), we have
from Corollary 4.2
(') E(f) = E(f')
and
(it") f,,{8(3n+88)e(f)2+4(365—6n)|| f*h||*+2(3n+88)(Try f*Q)2} dv,
= [, {8(3n+88)e(f’)%+4(365—6n)|| £ R +2(3n+88)(Try f/*Q)2} dv,.

If f is a Riemannian submersion, then e(f) = n and ||f*4||> = 2n.
Hence (i') is equivalent to [, A%2dvy, = [, dvg, and (ii’) is equivalent
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to
th

p—

8.

9.

10.

11.

12.

13.

14.

S Mdv, = fis dvg. Therefore we get A2 = 1 everywhere on M by
e Cauchy-Schwarz inequality. Thus we complete the proof.

REFERENCES

. H.Donnelly, Spectral invariants of the second variation operator, Illinois J.Math.
21 (1977), 185-189.

. B.Fuglede, Harmonic morphisms between Riemannian manifolds, Ann. Inst.
Fourier(Grenoble) 28 (1978), 107-144. _

. S.Funabashi, Totally complez submanifolds of a quaternionic Kaehlerian man-
ifold, Kodai Math.J. 2, 314-336.

. P.B.Gilkey, Invariance theory, the heat equation, and the Atiyah-Singer indez
theorem, Publish or Perish, 1984.

. T.Hasegawa, Spectral Geometry of closed minimal submanifolds in a space form,
real and complex, Kodai Math.J. 3 (1980), 224-252.

. S.Ishihara, Quaternion Kaehler manifolds, J.Differential Geo. 9, 483-500.

. T.Ishihara, A mapping of Riemannian manifolds which preserves harmonic

Junctions, J.Math. Kyoto Univ. 19 (1979), 215-229.

T.H.Kang, U-Hang Ki and Jin Suk Pak, On the spectral geometry for the Jacobi

operators of harmonic maps into product manifolds, J. Korean Math. Soc. 34(2)

(1997), 483-500.

T.H.Kang and H.S.Kim, On the spectral geometry of closed minimal submani-

folds in a Sasakian or cosympletic manifold with constant ¢-sectional curvature,

Nihonkai Math.J. 6(1) (1995), 43-61.

T.H.Kang and H.C.Nam, Submanifolds of an almost quaternionic Kaehler prod-

uct manifold, Bull. Korean Math. Soc. 34(4), 653-665.

T.H.Kang and J.S.Pak, On the spectral geometry for the Jacobi operators of

harmonic maps into a quaternionic projective space, Geometriae Dedicata 60

(1996), 153-161.

S.Nishikawa, P.Tondeur and L.Vanhecke, Spectral Geometry for Riemannian

Foliations, Annals of Global Analysis and Geometry 10 (1992), 291-304.

H.Urakawa, Spectral Geometry of the second variation operator of harmonic

maps, Illinois J.Math. 33(2) (1989), 250-267.

K.Yano and M.Kon, Structures on manifolds, Series in Pure Math. Vol 3, World

Scientific, Singapore, 1984.

Received July 31, 1998 Revised April 19, 1999

— 144 —



