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ON SOME OPERATORS WHOSE PRODUCTS ARE POSITIVE

SHUHEI WADA

ABSTRACT. Let $A,$ $B$ be bounded linear operators on $\mathcal{H}$ satisfying

$AB\geq 0,$ $A^{2}B\geq 0,$ $AB^{2}\geq 0$ .
We study the positfvity of $A$ and $B$ under the $\infty ndition$ KerAB $=\{0\}$ and the
repraeentation for contractions $A,$ $B$ using positive operators.

It is known that a bounded linear operator $T$ on a Hilbert space $\mathcal{H}$ which satisfies
$T^{\iota}\geq 0(n\geq 2)$ is not necessarily positive. In fact, if $T$ satisfies that $T^{2},$ $T^{3}$ are
positive, then $T$ can be decomposed into a direct sum of operators $N$ and $S$ such
that $N^{2}=0,$ $S\geq 0$ (cf. [2]). So it is clear that $T^{\iota}\geq 0(n\geq 2)$ and KerT $=\{0\}$

imply the positivity of $T$. This result motivates the folowing conjecture:
For bounded linear operators $A$ and $B$ on $\mathcal{H}$ satisfying

$(*)$ $AB\geq 0,$ $A^{2}B\geq 0$ and $AB^{2}\geq 0$ ,
if it holds Ker$AB=\{0\}$ , then both Aand Bare positive.

We can easily see that this conjecture fails without the assumption KerAB $=\{0\}$

(see Example). As stated in the $folow\dot{i}g$ , in many cases the above conjecture is
true. But, in general, we do not know whether the assumption $(*)$ and KerAB $=\{0\}$

imply the positivity of $A$ and $B$ or not. So our aim is, under these assumptions, to
give a sufficient condition which implies their positivity.

Throughout this paper, we assume that bounded linear operators $A$ and $B$ satisfy
the condition $(*)$ .
Lemma 1. If $\overline{RanB}=\mathcal{H}$ , then $A\geq 0$ . Similarly, if $\overline{RRanA^{*}}=\mathcal{H}$ , then $B\geq 0$ .
Prvof. By the assumption, we get

$AB^{2}=(AB^{2})^{*}=B^{*}(AB)^{*}=B^{*}AB$ .
So we have,

$(ABx|Bx\rangle=\langle B^{*}ABx|x\rangle=\langle AB^{2}x|x\rangle\geq 0$ ,
for all $x\in \mathcal{H}$ . Thus the condition $\overline{R{\rm Re} nB}=\mathcal{H}$ implies $A\geq 0$ .

Since $AB=(AB)^{*}=B^{*}A^{*}$ , if we consider $A$ and $B$ instead of $B^{*}$ and $A^{*}$ , then
the condition RRan $A^{*}=\mathcal{H}$ implies $B\geq 0$ . $\square $

We remark that the assumption $(*)$ implies the positivity of $A^{n}B$ and $AB^{n}(n=$
$1,2,$ $\ldots$ ) by the similar argument in the above proof.
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Proposition 2. If the operator AB has its bounded inverse, then $A,$ $B$ are positive.

Prvof. From Ker$B\subset KerAB=\{0\}$ , we have the injectivity of $B$ . The relation

$B=(AB)^{-1}AB^{2}=(AB)^{-1}B^{*}AB$ ,

says that $B$ is similar to $B^{*}$ , so we have

$\overline{RRanB}=(KerB^{*})^{\perp}=\mathcal{H}$ .
By Lemma 1, we have $A\geq 0$ .

Applying the same argument for $B^{*}A^{*}=AB$ , we also have the positivity of $B^{*}$ ,
that is, $B\geq 0$. $\square $

We consider the case that KerAB $=\{0\}$ . The positivity and commutativity
of $A$ and $B$ folows $kom$ Lemma 1 if either $A^{*}$ or $B$ has a dense range. If $\mathcal{H}$ is
finite-dimensional, then we can get $A\geq 0$ and $B\geq 0$ by the invertibihty of $AB$ . If
$AB=BA$ , then we can also get the positivity of $A$ and $B$ by the relation

$\mathcal{H}=\overline{Ran(AB)^{*}}=\overline{Ran(BA)^{*}}=\overline{RanBA}=\overline{{\rm Re} nA^{*}B^{*}}$.

In the case that $A$ is hyponormal, then we have $(AB)A=A^{*}(AB)$ by $A(AB)=$
$(AB)A^{*}$ and the Eiglede-Putnam theorem [3]. This shows that $A^{*}$ has a dense
range. So we have that if either $A$ or $B^{*}$ is hyponomal, then both $A$ and $B$ are
positive.

We have seen as above, if the operators $A,$ $B$ hold a property related to normality
or invertibihty, then we can get their positivity. From this point of view, we wil
treat an accretive operator or a $semi- Redho$ operator. We cal a bounded linear
operator $T$ is accretive if $T+T^{*}\geq 0$ . It is clear that $\tau*$ is also accretive if $T$ is
accretive.

Proposition 3. If either $A$ or $B$ is accretive and KerAB $=\{0\}$ , then both $A$ and
$B$ are positive.

Prvof. We may assume that $A$ is accretive. Let $f\in \mathcal{H}$ satisfy $(A+A^{2}B)f=0$ . By
the assumption, we have

$0\leq{\rm Re}(Af|f\rangle=-(A^{2}Bf|f\rangle\leq 0$ .

This means $\langle A^{2}Bf|f\rangle=0$ , and we have $f=0$ since KerA2$B=KerABA^{*}=\{0\}$ .
So $A+A^{2}B$ is injective. Rom the assumption $AB\geq 0$ , we have that $A=(A+$
$A^{2}B)(I+AB)^{-1}$ is injective, so we get the positivity of $A$ and $B$ by Lemma 1. $\square $

We cal a bounded linear operator $T$ left (resp. right) $semi- Redho$ if $RmT$
is closed and KerT (resp. $KerT^{*}$ ) is finitedimensional. We cal an operator $T$

$Redho$ if $T$ is left $semi- Redho$ and right $semi- Redho$ . It is known that
the adjoint of a $semi- Redho$ operator is also $semi\sim Redho$ . Then we have the
following result:

–112–



Theorem 4. If $A,$ $B$ are semi-Fredholm operators and Ker$AB=\{0\}$ , then $A,$ $B$

are positive.

Prvof By Lemma 1, it suffices to show that Ran $B=\mathcal{H}$ . For any $ g\in$ $($Ran $B)^{\perp}$

there exists $h\in RanB$ such that $g=B^{*}h$ , since Ran$B$ is closed and KerB $=\{0\}$ .
Then we have, for any $f\in \mathcal{H}$ ,

$ 0=\langle Bf|g\rangle=(Bf|B^{*}h\rangle=\langle B^{2}f|h\rangle$ ,

so we get $h\in RanB\cap(RanB^{2})^{\perp}$ . Since Ran$ B\cap$ Ker$A=\{0\}$ , we have Ran $ B\subset$

Ran$A^{*}$ . So there exists $k\in \mathcal{H}$ such that $h=A^{*}k$ . Then we have

$ 0=\langle B^{2}f|h\rangle=\langle B^{2}f|A^{*}k\rangle=(AB^{2}f|k\rangle$ .
Rom the fact

$\overline{RRanAB^{2}}=(KerAB^{2})^{\perp}=\mathcal{H}$ ,
we get $k=0,$ $h=0$ and $g=0$ . This means Ran$B=\mathcal{H}$ . $\square $

Let $P$ be the orthogonal projection onto $(KerAB)^{\perp}$ . In the rest of this paper,
we only compute $A^{n}B$ and $AB^{n}(n=1,2, \ldots)$ , so we may assume that $A$ and $B$

have the following form:

$A=\left(\begin{array}{ll}A_{ll} & A_{l2}\\0 & 0\end{array}\right)$ $B=\left(\begin{array}{ll}B_{1l} & 0\\B_{21} & 0\end{array}\right)$

with respect to the decomposition $(KerAB)^{\perp}\oplus(KerAB)$ . Clearly we have $AB=$
$ABP=PAB$ . Then we can show that $Ai_{1}$ and $B_{11}$ are positive with respect to
the inner product induced by $AB$ .
Theorem 5. For bounded linear operators $A,$ $B$ , there exist a pair of positive
operators $D_{1},$ $D_{2}$ on a Hilbert $\varphi ace\mathcal{K}$ and a bounded linear operator $V$ ffom $\mathcal{H}$ to

$\mathcal{K}$ such that
$A^{\mathfrak{n}+1}B^{m+1}=V^{*}D_{1}^{\mathfrak{n}}D_{2}^{m}V$ for all $n,m\in N\cup\{0\}$ .

Moreover, if $A^{2}B^{2}\geq 0$, then we have $D_{1}D_{2}=D_{2}D_{1}$ .
Proof. We define a new inner product $(. |\cdot)$ on the closed subspace $(KerAB)^{\perp}$ by

$(x|y)=\langle ABx|y\rangle$

for all $x,$ $y\in(KerAB)^{\perp}$ . We denote by $\mathcal{K}$ the completion of $(KerAB)^{\perp}$ by this
inner product.

Let $P$ be the orthogonal projection from $\mathcal{H}$ onto $(KerAB)^{\perp}$ . We define two
linear operators $D_{1},$ $D_{2}$ on $(KerAB)^{\perp}$ by $x\mapsto PA^{*}x,$ $x\mapsto PBx$ respectively. It
folows $hom(*)$ that $A^{3}B\geq 0$ and

$(D_{1}x|D_{1}x)=(PA^{*}x|PA^{*}x)=\langle ABPA^{*}x|PA^{*}x\rangle$

$=\langle A^{2}BA^{*}x|x\rangle=\langle A^{3}Bx|x\rangle$

$=\langle(A^{33\}}BAB)x|x\rangle=\langle(ABA^{*2}A^{2}AB)^{8}x|x\rangle$

$\leq||A^{2}||\langle(ABAB)\}x|x\rangle=||A^{2}||(ABx|x\rangle$

$=||A^{2}||(x|x)$ ,
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which show that $D_{1}$ can be extended to a bounded linear operator on $\mathcal{K}$ . Since we
have

$(D_{1}x|x)=\langle ABPA^{*}x|x\rangle=(ABA^{*}x|x\rangle=\langle A^{2}Bx|x\rangle\geq 0$

for all $x\in(KerAB)^{\perp},$ $D_{1}$ is a positive operator on $\mathcal{K}$ . In a similar fashion, $D_{2}$ can
be extended to a positive operator on $\mathcal{K}$ .

Since $PA^{*}=PA^{*}P$ and $PB=PBP$ , we have $(PA^{*})^{\mathfrak{n}}=PA^{*\mathfrak{n}}$ and $(PB)^{\mathfrak{n}}=$

$PB^{n}$ . If we define a bounded linear operator $V$ from $\mathcal{H}$ to $\mathcal{K}$ by $x\mapsto Px$ for any
$x\in \mathcal{H}$ , then we can get the required identity as folows:

$(A^{\mathfrak{n}+1}B^{m+1}x|x\rangle=(A^{\mathfrak{n}}ABB^{m}Px|Px\rangle$

$=(ABPA^{*n}PB^{m}Px|Px\rangle$

$=(D_{1}^{n}D_{2}^{m}Vx|Vx)$

$=(V^{*}D_{1}^{\mathfrak{n}}D_{2}^{m}Vx|x\rangle$ .
The assumption $A^{2}B^{2}\geq 0$ implies the $folow\dot{i}g$ relation:

$(D_{1}D_{2}x|x)=(ABPA^{*}PBx|x)=\langle A^{2}B^{2}x|x\rangle\geq 0$ ,
so we have $D_{1}D_{2}=(D_{1}D_{2})^{*}=D_{2}D_{1}$ . This completes the proof. $\square $

With related to the above result, we have $some\propto amples$ as folows:
Example. We put

$A=\left(\begin{array}{llll}1 & 1 & 1 & 2\\2 & 2 & 1 & 1\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{array}\right)$ , $B=\left(\begin{array}{llll}3 & 0 & 0 & 0\\0 & 1 & 0 & 0\\-10 & 1 & 0 & 0\\4 & -1 & 0 & 0\end{array}\right)$ ,

then $A,$ $B$ satisfy $(*)$ but $A^{2}B^{2}$ is not positive.
We put

$A=\left(\begin{array}{llll}1 & 1 & -1 & -4\\2 & 2 & -4 & -6\\0 & 0 & 0 & 0\\0 & 0 & 0 & 0\end{array}\right)$ , $B=\left(\begin{array}{llll}1 & 2 & 0 & 0\\1 & 2 & 0 & 0\\1 & 0 & 0 & 0\\0 & 1 & 0 & 0\end{array}\right)$ ,

then $A,$ $B$ satisfy $t*$) and $A^{2}B^{2}\geq 0$ but PAP and PBP are not positive, where $P$

$is$ the orthogonal projection onto $(KerAB)^{\perp}$ .
We consider the case that $A,$ $B$ are contractions and $A^{2}B^{2}\geq 0$ . In the above

proof, we see that $D_{1}$ and $D_{2}$ become commuting positive contractions. So we can
get some results related to commuting positive contractions. For example, we have
the folowing result:
Corollary 6. Let $A,$ $B$ be contractions which satisfy $A^{2}B^{2}\geq 0$ . Let $f,g$ be
holomorphic junctions on an open neighborhood of $\{z;|z|\leq 1\}$ . If$f(O)=g(O)=0$,
then

$||f(A)g(B)||\leq\sup\{|f^{[1|}(z)g^{[1|}(w)| : z, w\in[0,1]\}$ ,
where

$f^{[1|}(t)=\{$ $f(0)\omega_{\ell}\ell,$

,
$(1\geq t>0)$

$g^{[1|}(t)=\{$

$(t=0)$ ,
$\omega_{\ell}\ell$ , $(1\geq t>0)$

$g^{\prime}(0)$ , $(t=0)$ .
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