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ON SOME OPERATORS WHOSE PRODUCTS ARE POSITIVE

SHUHEI WADA

ABSTRACT. Let A, B be bounded linear operators on H satisfying
AB >0, A2B >0, AB2>0.

We study the positivity of A and B under the condition KerAB = {0} and the
representation for contractions A, B using positive operators.

It is known that a bounded linear operator T on a Hilbert space H which satisfies
T™ > 0 (n > 2) is not necessarily positive. In fact, if T satisfies that T2, T2 are
positive, then T' can be decomposed into a direct sum of operators N and S such
that N2 = 0,5 > 0 (cf. [2]). So it is clear that T > 0 (n > 2) and KerT = {0}
imply the positivity of T. This result motivates the following conjecture:

For bounded linear operators A and B on M satisfying
(%) AB >0, A2B >0 and AB? >0,
if it holds KerAB = {0}, then both A and B are positive.

We can easily see that this conjecture fails without the assumption KerAB = {0}
(see Example). As stated in the following, in many cases the above conjecture is
true. But, in general, we do not know whether the assumption (*) and KerAB = {0}
imply the positivity of A and B or not. So our aim is, under these assumptions, to
give a sufficient condition which implies their positivity.

Throughout this paper, we assume that bounded linear operators A and B satisfy
the condition (x).

Lemma 1. If RanB = H, then A > 0. Similarly, if RanA* = H, then B > 0.
Proof. By the assumption, we get
AB? = (AB?)* = B*(AB)* = B*AB.
So we have,
(ABz|Bzx) = (B*ABz|z) = (AB%z|z) >0,

for all z € H. Thus the condition RanB = H implies A > 0.

Since AB=(AB)*=B*A*, if we consider A and B instead of B* and A*, then
the condition RanA* = H implies B > 0. O

We remark that the assumption (*) implies the positivity of A B and AB™ (n =
1,2,...) by the similar argument in the above proof.
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Proposition 2. If the operator AB has its bounded inverse, then A, B are positive.
Proof. From KerB C KerAB = {0}, we have the injectivity of B. The relation

B = (AB)"'AB? = (AB)"'B*AB,
says that B is similar to B*, so we have
RanB = (KerB*)* = .

By Lemma 1, we have 4 > 0.
Applying the same argument for B* A* = AB, we also have the positivity of B*,
thatis, B>0. O

We consider the case that KerAB = {0}. The positivity and commutativity
of A and B follows from Lemma 1 if either A* or B has a dense range. If H is
finite-dimensional, then we can get A >0 and B > 0 by the invertibility of AB. If
AB = BA, then we can also get the positivity of A and B by the relation

H = Ran(AB)* = Ran(BA)* = RanBA = RanA* B*.

In the case that A is hyponormal, then we have (AB)A = A*(AB) by A(AB) =
(AB)A* and the Fuglede-Putnam theorem [3]. This shows that A* has a dense
range. So we have that if either A or B* is hyponormal, then both A and B are
positive.

We have seen as above, if the operators A, B hold a property related to normality
or invertibility, then we can get their positivity. From this point of view, we will
treat an accretive operator or a semi-Fredholm operator. We call a bounded linear
operator T is accretive if T+ T* > 0. It is clear that T™ is also accretive if T is
accretive.

Proposition 3. If either A or B is accretive and KerAB = {0}, then both A and
B are positive.

Proof. We may assume that A is accretive. Let f € H satisfy (A+ A2B)f = 0. By
the assumption, we have

0 < Re(Af|f) = —(A2Bf|f) < 0.

This means (A2Bf|f) = 0, and we have f = 0 since KerA2B =KerABA* = {o}.
So A + A%B is injective. From the assumption AB > 0, we have that A = (A +
A?B)(I + AB)™! is injective, so we get the positivity of A and B by Lemma 1. O

We call a bounded linear operator T left (resp. right) semi-Fredholm if RanT’
is closed and KerT (resp. KerT™*) is finite-dimensional. We call an operator T'
Fredholm if T is left semi-Fredholm and right semi-Fredholm. It is known that
the adjoint of a semi-Fredholm operator is also semi-Fredholm. Then we have the
following result:
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Theorem 4. If A, B are semi-Fredholm operators and KerAB = {0}, then A, B
are positive.

Proof. By Lemma 1, it suffices to show that RanB = M. For any g € (RanB)+
there exists h € RanB such that g = B*h, since RanB is closed and KerB = {0}.
Then we have, for any f € H,

0 =(Bflg) = (Bf|B*h) = (B>f|h),
so we get h € RanB N (RanB?)L. Since RanB N KerA = {0}, we have RanB C
RanA*. So there exists k € H such that h = A*k. Then we have

0= (B?flh) = (B>f|A*k) = (AB*f|k).
From the fact
RanAB? = (KerAB?)! = H,

weget k=0, h =0 and g = 0. This means RanB =H. O

Let P be the orthogonal projection onto (KerAB)L. In the rest of this paper,
we only compute A”B and AB™ (n = 1,2,...), so we may assume that A and B
have the following form:

_(An A _(Bu O
A= ( o o) B=(By o
with respect to the decomposition (KerAB)! @ (KerAB). Clearly we have AB =

ABP = PAB. Then we can show that A}, and Bj; are positive with respect to
the inner product induced by AB.

Theorem 5. For bounded linear operators A, B, there exist a pair of positive
operators Dy, D2 on a Hilbert space K and a bounded linear operator V from H to
K such that

AMHIB™HL — V*DR DIV for all n,m € NU {0}.

Moreover, if A2B? >0, then we have DD, = Dy D;.
Proof. We define a new inner product ( - | - ) on the closed subspace (KerAB)* by

(zly) = (ABz|y)

for all z,y € (KerAB)'. We denote by K the completion of (KerAB)L by this
inner product.

Let P be the orthogonal projection from H onto (KerAB)'. We define two
linear operators Dy, D; on (KerAB)! by z — PA*z, = — PBz respectively. It
follows from (*) that A3B > 0 and

(D1z|Dyz) = (PA*z|PA*z) = (ABPA*z|PA*z)
= (A’BA*z|z) = (A®Bz|z)
= ((A®BA®B)}z|z) = (ABA*2A2AB)} z|z)
< 14%I{(ABAB) ¥ z|z) = || A%|[(ABz|z)
= || A%|(z|z),
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which show that D; can be extended to a bounded linear operator on K. Since we
have

(D1z|x) = (ABPA*z|z) = (ABA*z|z) = (A’Bz|z) > 0
for all z € (KerAB)*, D, is a positive operator on K. In a similar fashion, Dy can
be extended to a positive operator on K.
Since PA* = PA*P and PB = PBP, we have (PA*)* = PA** and (PB)" =
PB™. If we define a bounded linear operator V from H to K by = + Pz for any
x € H, then we can get the required identity as follows:

(A"t1B™+iz|z) = (A" ABB™ Pz|Pz)

= (ABPA*"PB™ Pz|Pz)

= (D} D3'Vz|Vz)

= (V*D} DJ*Vz|x).
The assumption A2B2 > 0 implies the following relation:

(D1D;z|x) = (ABPA* PBz|z) = (A?B%z|z) > 0,
so we have DDz = (D D3)* = D2 D;y. This completes the proof. 0O

With related to the above result, we have some examples as follows:

Example. We put

1 11 2 3 0 0O
2 211 0 1 00
A=lo o0 0] B={_10 1 I
0 00O 4 -1 00
then A, B satisfy (x) but A2B? is not positive.
We put .
1 1 -1 —4 1 2 0O
2 2 -4 -6 {120 0
A4=loo 0o o' B=l1 00 o)
0 0 O 0 0100
then A, B satisfy (x) and A2B2 > 0 but PAP and PBP are not positive, where P

is the orthogonal projection onto (KerAB)L.

We consider the case that A, B are contractions and A2B2 > (. In the above
proof, we see that D; and D, become commuting positive contractions. So we can
get some results related to commuting positive contractions. For example, we have
the following result:

Corollary 6. Let A, B be contractions which satisfy A2B%2 > 0. Let f,g be
holomorphic functions on an open neighborhood of {z : |z| < 1}. If f(0) = g(0) =0,

then
I £ (A)g(B)II < sup{|fM(2)g! (w)] : z,w € [0,1]},
where

£(t) a(t)
(1] g5y — ) 1=2t>0) |y — ) 1=>t>0)
£ { ), -0, ® { 40, (t=0).
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