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Abstract. Sufficient conditions for controllability of second order delay integrodifferential
systems in Banach spaces are established. The results are obtained by using the theory of
strongly continuous cosine family of operators and the Schaefer fixed point theorem.
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1.Introduction

Controllability of linear and nonlinear systems represented by ordinary differential
equations in finite dimensional space has been extensively studied. Several authors have
extended the concept to infinite dimensional systems in Banach Spaces with bounded op-
erators. Chukwu and Lenhart [3] have studied the controllability of nonlinear systems in
abstract spaces. Naito [7,8] has studied the controllability for semilinear systems and non-
linear Volterra integrodifferential systems. Quinn and Carmichael [11] have shown that the
controllability problem in Banach spaces can be converted into one of a fixed-point prob-
lem for a single-valued mapping. Balachandran et al [1] established sufficient conditions
for controllability of nonlinear integrodifferential systems in Banach spaces.

In many cases it is advantageous to treat the second order abstract differential equa-
tions directly rather than to convert them to first order systems. For example Fitzgibbon
[4] used the second order abstract differential equations for establishing the boundedness of
solutions of the equation governing the transverse motion of an extensible beam. A useful
tool for the study of abstract second order equations is the theory of strongly continuous
cosine families. We will make use of some of the basic ideas from cosine family theory
[13,14]. Motivation for second order systems can be found in [5,6]. Recently, Park et al
[10] have discussed the controllability of second order nonlinear systems in Banach spaces
with the help of the Schauder fixed point theorem. The purpose of this paper is to study
the controllability of second order integrodifferential systems in Banach spaces by using
the Schaefer theorem .
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2. Preliminaries.

Consider the second order delay control system of the form
t
2'(t) = Ax(t)+ fo f(s,z0,7'(s))ds + Bu(t), teJ=[0,T],
g = ¢1 "LJ(O) =Y, (1)

where the state z(-) takes values in the Banach space X,y € X, A is the infinitesimal
generator of the strongly continuous cosine family C(t), t € R, of bounded linear operators
in X, f is a nonlinear mapping from J x C x X to X, B is a bounded linear operator from
U to X and the control function u(-) is given in L?(J,U), a Banach space of admissible
control functions, with U as a Banach space. Here C = C([-r,0]) : X) is the Banach space
of all continuous functions ¢ : [-r,0] — X endowed with the supremum norm

¢l = sup{lg(s)| : —r < s < 0}.

Also for z € C([~r,T] : X) we have z; € C for t € [0,T}],z.(s) = z(t + s) for s € [-r,0].

Definition 1.[13] A one parameter family C(t), t € R, of bounded linear operatorsi in
the Banach space X is called a strongly continuous cosine family iff

(i) C(s+1t) + C(s —t) = 2C(s)C(t) for all s,t € R;
(i) C(0) =1;
(iii) C(t)z is continuous in ¢t on R for each fixed z € X.
Define the associated sine family S(t), t € R, by
S(t)z = /: C(s)zds, z€X, t€R.
Assume the following conditions on A.
(H:) A is the infinitesimal generator of a strongly continuous cosine family C (t),t € R, of
bounded linear operators from X into itself and the adjoint operator A* is densely

defined i.e. D(A*) = X* (See|[2]).

The infinitesimal generator of a strongly continuous cosine family C(t),t € R,
is the operator A : X — X defined by

d?
Az = EC(t)xlwo, x € D(A),

where D(A) = { z € X: C(t)z is twice continuously differentiable in ¢ }.

Let E = { z € X: C(t)z is once continuously differentiable in ¢ }.
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To establish our main theorem we need the following lemmas.

Lemma 1.[13] Let (H;) hold. Then
(1) there exist constants M > 1 and w > 0 such that

t‘
/ e“*lds
t

(i) S(¢)X c F and S(t)EcC D(A) forteR;

IC@)| < Me“t  and ||S(t) — SE)| <M for t,t* € R;

(iii) %C(t)m = AS(t)z for z € E and t€ R;
d?
(iv) 7o C(t)r = AC(t)z for z € D(A) and t€ R.
Lemma 2.[13] Let (H;) hold, let v : R — X such that v is continuously differen-
¢ .
tiable and let ¢(t) = /o S(t — s)v(s)ds. Then
q is twice continuously differentiable and for t € R, q(t) € D(A),

q(t) = /: C(t— s)v(s)ds, and ¢"(t) = A-t C(t - s)v'(s)ds + C(t)v(0) = Aq(t) +v(t).

Lemma 3.(Schaefer Theorem [12]) Let S be a convex subset of a normed linear
space Y and assume 0 € S. Let F: S — S be a completely continuous operator, and let

((F)={z€S:z=MAFz forsome 0< A <1}.

Then either {(F') is unbounded or F has a fixed point.
Let M =sup{||C(t)|| : t € J} and M* =sup{||AS(t)||: t € J}.
Let u(t) = sup{|z(s)| : s € [-7,t]}, t € J and v(t) = sup{|'(s)|: s € [0,2]}, t € J.

Let ¢ = K + K3, where
K, = M|¢|| + MT|lyl| + MT2||B||||W‘1||1[J|a:1|| + M|¢|| + MT|y||
+ MT fy Jo m(T)Qu(T) + ||2'(7)|)drds],
and
Ky = M*||¢|l + Mlly|| + MT|| BI[IW=H|[l|z:]| + Ml|#]l + MT||y|l
+ MT [T [2m(r)Qu(r) + v(7))drds].

We make the following assufnptions:

(H;) f(t,.,.): Cx X — X is continuous for each t € J and the function f(.,z,2):J — X
is strongly measurable for each (z,2) € C' x X.

- (H3) For every positive constant k there exists oy € L!(J) such that

sup ||f(t,,2)|| < ax(t) foraa teJ.
ll=ll, ||zl <k
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(H,) There exists an integrable function m : J — [0, 00) such that
I£(t, &, 2)Il < m(t)Qmax(lig]l, [lz]])), teJ, ¢€C, z€ X,

where € : [0, 00) — (0,00) is a continuous nondecreasing function and
T ps drd 0 ds
M(T+1)/0/om('r)'rs</c m<oo.

(Hs) Bu(t) is continuous.
(Hs) The linear operator W : L*(J,U) — X defined by
T
Wu = /0 S(T — s)Bu(s)ds
has a bounded invertible operator W' : X — L2(J,U) \ kerW (see [1].)
(H7) C(t),t > 0 is compact.

Then the system (1) has a mild solution of the form (see 9D

z(t)

g =

il

CW#(0) + SO+ [ "S(t - s) ([ srona(r))ar + Bu(s))ds, t€ J (2)

Definition 2. The system (1) is said to be controllable on J if for every ¢ € C with
#(0) € D(A), y € E and z, € X there exists a control u € L*(J,U) such that the solution
z(-) of (1) satisfies z(T') = z,.
3.Main Result
Theorem: Suppose (H,)-(Hy) hold. Then the system (1) is controllable on J.
Proof: Using (Hg), for an arbitrary function z(-) we define the control
T s
u(t) = Wa = C(T)$(0) = S(Thy - [ ST - 9) [ f(r,.,/(r))ards](t).
Using this control we will show that the operator defined by
t s )
(Fa)(t) = C@)$(©) +8Wy+ [ 5¢t—s) [ f(r,2.,2'(r))drds
t
+ /0 S(t — s)BW[z, — C(T)$(0) — S(T)y

T 6
_ /0 S(T — 6) /0 f(r, 2., 2 (7))drd6](s)ds, teJ,
= ¢(t), te[-r,0]

has a fixed point. This fixed point is then a solution of equation (2).

— 90 —




Clearly, (Fz)(T') = z;, which means that the control u steers the system from the ini-
tial function ¢ to z; in time 7", provided we obtain a fixed point of the nonlinear operator F'.

Consider the space Z = C([-r,T], X) N C'(J, X) with norm

lz|l* = max{||z||., |=|lo}
where ||z|, = sup{|z(t)|: —r <t < T}, |lz|o=sup{|z'(t)]:0<t<T}.

In order to study the controllability problem for the system (1), we have to apply Lemma
3, as in [9], to the following system

() = Ma(t)+ ) [ ‘f(s,z0,2'(s))ds + ABu(t), ted, Ae(0,1).  (3)
Let = be a mild solution of the system (3). Then from
2(t) = ACW@S0)+5e)w) + A [ 5¢~s) [ f(r,2,2/(r))drds
+A /O " S(t — 8)BW [z, — C(T)$(0) — S(T)y
- /0 s -0 fo ! $(r, @2y ())drd6] (s)ds
we have

le@)ll < Mlgll+MTlyll+MT [ [ m(r)@max(la., |2'(7)|))drds
+ MTBIIW [llza]l + Mgl + My

+MT [ [ m(r)(maxlal, I/ (r))drds)

or

p) < MIgl+ MYyl +MT [ [ m(r)Qur) + 12'()l)drds
+ MTBIIW (o1 + Mgl + My

+MT [ [ m(r)aur) + Ia'(r) ) drds]
o Jo
t s

—_— /

= K,+MT /0 /0 m(T)Up(r) + ||z’ ()| )drds.
Denoting by p(t) the right-hand side of the above inequality we have

p(0) = K}, u(t) <p(t) ted

and P'(t) = MT f; m(s)Up(s) + ||='(s)|)ds, t€ J.

But
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F(t) = NAS@S0)+COul+A [ O ~s) [ flr,z.,(r)drds
=y "C(t - 5)BWz, — C(T)$(0) — S(T)y
- /0 "s(r-0) /0 " (7,0, 3 (r))drd8](s)ds.
Thus we have

t ps
IO < Mllgl+ Myl +M [ [ m)2(lz. + 12'(7)ldrds
+ MT|BIW[[llz:]l + M|l + MT|yll

+MT [ [ m@)(le] + /(7)) drds]

o) < MG+ Mgl +M [ [ m()Qu(r) + v(r))drds
+ MT||B|[|W=|[||: ]| + M|L¢Il + MTly|
+ MT /0 /o m(T)Q(u(7) + v(r))drds]
= K+ M/ot /0’ m(7)QUu(7) + v(7))drds.

Denoting by g¢(t) the right-hand side of the above inequality we have

q(0) = K,  o(t) < q(t)

and d(t) =M [ m(s)Qu(s) +v(s)), teJ.
Let w(t) =p(t)+q(t), teJ
Then w(0) = p(0) + ¢(0) = ¢, and

w'(t) = p'(t)+4'(t)
< MT /0 m(s)Qw(s)) + M /0 m(s)Q(w(s))ds

M(T +1) /o ‘m(s)Qw(s))ds, te

This implies

w(t) ds T 8 00 ds
< —_— .
/(O) a0 _M(T+1)/o /0 m(r)drds </c aoy  t<Y

w

This inequality implies that there is a constant K such that (see [9])

w(t) =p(t) +9(t) < K, telJ
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Then [zl < u(t) <pt), tel,
2/l Sv(t) <qt), tel,
and hence lz|* < K,

where K depends only on T" and on the functions m and 9.

We shall now prove that the operator F : Z — Z defined by
(Fe)(t) = CO$(0)+ S+ [ "S(t—s) | #5002 (r))drds
+ [ "S(t — 5)BW{z; — C(T)$(0) — S(T)y

_ /0 S(T—e)[) f(r @, 2'(7))drdo)(s)ds, teJ,
= ¢(t), te[-r0

is a completely continuous operator.

Let B. = {z € Z : ||z||* < k} for k > 1. We first show that F maps B into an
equicontinuous family. Let z € By and t;,t, € J. Then if 0 < t) <ty <T,

[(Fz)(t:) — (Fz)(t2)l]
< IC@) = GO + 115(2) — SE) Iyl
H 150 = 6) = S(t~ )] [ F(r, . 2/(r)drds]
IS =9) [ fr,zra(r)drds]
+ 151 = 9) = S(tz = )BW [z, ~ C(T)9(0) - S(TYy
-/ " s(T - 0) Ji " £, 20, (7)) drdb(s)ds]
H [ S(t2 = 5)BW -z — (1)6(0) - (T

T 6
= [ s@=6) [ £(r, 0,2/ (r))drdb](s)ds]

IA

1C(t1) — C()Ill GOl + 1S (t1) — S(E2) |l ||w]l t
+ /0 ISt = 5) = S(ts — )| /0 ax(r)drds + /tl’uso;2 — )|l /0 ax(7)drds

+ [ 1504 = 9) = S ~ BNW 2] + MISO)] + MTly)

T pré
+ MT /0 /0 ax(7)drd6)ds
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t2
+ /t, IS (t2 = )HIBIHW ||zl + MI0)|| + MT|ly||
T 0
+MT /o /0 ax(r)drdf]ds,

and similarly
I(Fz)'(t,) — (F) (&)
< 16'@) = SO + 15 ~ @yl
+II /0 '[C(t - s) — Cty — 5)] /o £(r,z,, &' (7)) drds|
1 [ Ctta=9) [ (7,0, () drds]
+ [ 160 - )~ Clta = ) BW [z, ~ C(T)B(0) - STy
_ /o " S(r-9) /o ! (7,20, ())drd8](s)ds]|
H [ Clta = ) BW[z1 - C(T)$(0) - S(T)y

T )
_ /0 S(T - 8) /0 F(r, 20, 2 (7))dTd6) (s)ds||

IA

IA(S(81) = S(E))SO)]| + IC(t) — CE2) Nyl
"lC(t = 5) = Clea = o) [ entrldrds + [*1C(t - )| [ cn(r)drds
+ [0 — ) - Clta = o))l [ n(r)drds 10t = 9l [ au(ryar
t)
+/0 IC(t: = 5) — C(t2 = s)IIBIIW I [l|z:]l + Ml $(0) || + MT ||yl
T 0
+MT/0 /0 ax(T)drdl)ds
t2
+/h IC 2 = s)IIBIIW [l [l + M #(0) ]| + MT ||l
T 0
+MT/0 /o oy (T)drdf]ds.
The right-hand sides are independent of z € By and tends to zero as t, — t; — 0, since
C(t), S(t) are uniformly continuous for € J and the compactness of C(t), S(t) for t > 0

imply the continuity in the uniform operator topology. The compactness of S(t) follows
from that of C(t). Thus F maps By into an equicontinuous family of functions.

The equicontinuity for the cases t; < t < 0 and ¢, < 0 < t, follows from the uniform
continuity of ¢ on [—r,0] and from the relation

I(F2)(t1) = (Fz)(t)]l < l16(t1) — (Fz)(t)ll < I(Fz)(t2) — (Fz)(0)|| + [|4(0) — $(t1)]|

respectively. It is easy to see that the family F By is uniformly bounded.
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Next we show F'Bj is compact. Since we have shown FB; is an equicontinuous collec-
tion, it suffices by the Arzela-Ascoli theorem to show that F maps By into a precompact
set in X.

Let 0 < t < T be fixed and € a real number satisfying 0 < € < t. For z € B, we
define

(Fz)(t) = C(t)$(0)+ S(t)y + /0 T St—s) /0 " F(r, 20, & (7)) drds
+ /0 T S(t = 8)BW [z, — C(T)$(0) — S(T)y
- /(;T S(T-96) /oef(‘r, z,, ' (1))drdl)(s)ds.

Since C(t), S(t) are compact operators, the set Y;(t) = {(F.z)(t) : £ € Bi} is precompact
in X for every ¢, 0 < € < t. Moreover for every z € B;, we have

I(F2)e) - (F)@ < [ IS¢ ) [ f(r,an o (r)drlds
+ /ti IS(t — 5)BW[z; — C(T)¢(0) — S(T)y
- [ 8@ ~0) [ £(r, 0,2 (r))drde)(s)]ds.
< [LUSE =9l [ an(r)ards
+ [_e ISt = ) BIIW | [llz: )l + M| #O)]| + MT||y||
T r8
+ MT /0 /0 ax(7))drdf]ds,
and
I(Fo) () = (Fa)® < [ 1C@ =) [ fr,or,2/(r))arllds
+ [ 106 - ) BW [z, - C(T)8(0) - S(T)y
- " S(T - 9) [ " (7,0, 3 (7)) drdo](s) | ds.
< /H lc(t - s)|| /0 " () drds
+ /t; NC(t — )IIBIIW I[llz:ll + M$(0)|| + MT|ly||
T 6
+MT /O /0 ax(r))drdb]ds.

Therefore there are precompact sets arbitrarily close to the set {(Fz)(t) : ¢ € Bx}. Hence
the set {(Fz)(t) : ¢ € Bi} is precompact in X.

It remains to show that FF : Z — Z is continuous. For that consider the space
C? = {z € C([-~T] : X): 2o = ¢ = 0}. Let {z,}* C C% with z, — z in CQ.
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Then there is an integer v such that ||z.(t)]| < v, ||z, (¢)]| < v for all n and t € J, so
lz(t)|| < v,|lz'(t)|| < v and z,2’ € B,. By (Hs)

f(s,2a(s), 2n'(5)) — f(s,2(s),2(s))

for each t € J and since
£ (s, 2a(s), 24" (s)) — f(5,2(5),2'(s))l| < 20,(s),
we have by dominated convergence theorem
t 8 ’ 8 ’
|Fon~ Fall = sup|| [ St = o)[[ f(r,zn(r)oa'(rr = [ f(r,a(r),2'(r))drlds
. /t S(t — s)BW™ fT S(T - 8)
0 1}

| a2l )dr = [ £, (), 2 (r))arldsas]

< [T18C - o) $r,znr)sm(r)dr = [ fr, (), (r))drlds
T T
+ /o IS(t — s)BW /o S(T - 6)
@ @
[ Frza(r)zd(M)dr = [ f(r,0(r),2'(r))drldollds — 0
and

I(Fz,)' — (Fz)'||

= sup| /0' C(t - s)| /0 " f(ry @a(7), 2! (1) )dr — /o " f(r,2(r), 2 (v))dr]ds
- /ot C(t - s)BW™! foT S(T - 6)

U a2 dr — [ fir, (), 2/ (r)eridsas]

< [TNee= o[ srzatr)anrar - [ fir,a(r), 2 (r))dr]lds
+ [ -aBw [“s@-0)
° 6 ° 6
[ frza(r),za(m))dr = [ f(r,2(r),2'(r))dr]dellds — o.

Thus F is continuous. This completes the proof that F' is completely continuous.

We have already proved that the set ((F) = {z € Z: z = AFz, )\ € (0,1)} is bounded.
Hence by Schaefer’s theorem the operator F' has a fixed point in Z. This means that any
fixed point of F' is a mild solution of (1) on J satisfying (Fz)(t) = z(t). Thus the system
(1) is controllable on J.
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4.Example

Consider the partial differential equation

@t) = 2 0) + a0 + [ o(s,2,s = ), z(y, 9)ds,
2(0,t) = z(m,t)=0, for t>0,
z(y,t) = ¢(y,t), for —r <t <0,
z(y,0) = 2z(y), for O<y<m, teJ=][0,T] (4)

Now we have to show that there exists a control p which steers (4) from any specified
initial state to the final state in a Banach space X.

Let X = L?[0,n] and let A: X — X be defined by
Aw =w", w € D(A),

where D(A)={w € X : w,w' are absolutely continuous, w” € X, w(0)= w(w)=0}.

Then, Aw = E —n?(w,wy,)w,, w € D(A),

n=1

where wp(s) = 1/2/7sinns, n = 1,2,3,.... is the orthogonal set of eigenvalues of A.

It can be easily shown that A is the infinitesimal generator of a strongly continuous cosine
family C(t), t € R, in X and is given by

o<}
Clt)yw = cosnt(w,w,)w,, w € X.
n=1
The associated sine family is given by

Stw=>_ i— sin nt(w, w,)w,, w € X.

n=1

Let f:J x C x X — X be defined by
f(t,v,w)(y) = o(t,v(y),w(y)), veC, welX, yelon],

where o : J x [0,7] x [0,7] — [0,n] is continuous and strongly measurable and ¢ :
[0, 7] x [—7,0] — [0, ] is continuous.

Let u:J — U C X be defined by

(u(t))(y) = u(y,t), y€[0,m7].

where p : [0, 7] x J — [0, 7] is continuous.
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Assume that there exists a bounded invertible operator W~! (with range L2(J,U) \ kerW)
such that

Wu = foT S(T — s)u(s)ds

Further the function o satisfies the following condition:

There exists a continuous function p : J — [0, 00) such that
llo(t, v, w)ll < p()Qmax(llv]l, [wl)), ted, veC, weX,

where § : [0,00) — (0,00) is a continuous nondecreasing function and

M(T+1)/;T/0’p(s)ds</cm%,

where c is a known constant.

With this choice of A, f, and B = I (Identity operator), (1) is an abstract formula-
tion of (4). Furthermore, all the conditions stated in the above theorem are satisfied.
Hence, system (4) is controllable on J.
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