On extreme points of the unit ball of a non-commutative L^{P}-space with $\mathbf{0}<\boldsymbol{p} \leq \mathbf{1}$

By
Keiichi Watanabe

(Received December 12, 1988)

1. Introduction

The notion of an extreme point is playing an important role in the theory of topological vector spaces, in particular, that of Banach spaces. Some properties of a linear map can be stated in terms of extreme points of a certain convex set of linear maps. For example, a non-zero representation of a C^{*}-algebra is irreducible if and only if it is spatially equivalent to a GNS-representation associated with a pure state (that is an extreme point of the state space). R. Kadison gave a characterization of extreme points of the unit ball of a C^{*}-algebra, and he applied it to classify isometries between C^{*}-algebras. Thus it is fundamental to characterize extreme points of the unit ball of a (quasi-) Banach space associated with an operator algebra. For a commutative L^{p}-space $L^{p}(\mathbf{X}, \mu)$ of measurable functions, the results are well-known. In case of $1<p<\infty$, the unit sphere is precisely the set of all extreme points of the unit ball. If $p=\infty$, the set of all extreme points is exactly the unitary group of $L^{\infty}(X, \mu)$ ($[6$, Chapter I, Lemma 10.11]). For $0<p \leq 1$, there exists an extreme point if and only if the measure space (X, μ) has an atom.

Our first aim in this paper is to give a necessary and sufficient condition for the existence of an extreme point of the closed unit ball of a non-commutative L^{p}-space. Secondarily, we shall determine the form of each extreme point completely. However, when $1<p<\infty$, it is shown that the Clarkson-McCarthy's inequality holds for noncommutative L^{p}-spaces associated with von Neumann algebras (see [1], [3], [7]). Therefore they are uniformly convex, in particular, strictly convex. Thus the set of all extreme points coincides with the unit sphere. For $p=\infty, L^{\infty}$-space was defined to be the von Neumann algebra itself and so it is a C^{*}-algebra. If S is the unit ball of a C^{*}. algebra A, the following facts are well-known; (i) there exists an extreme point x in S if and only if A is unital; and (ii) when A is unital, then $x \in S$ is extreme if and only if $x^{*} x$ is a projection such that $\left(1-x^{*} x\right) A\left(1-x x^{*}\right)=\{0\}([6$, Chapter I, Theorem 10.2]). Therefore, we may concentrate our attention to the case of $0<p \leq 1$. Finally we also consider
an example for $p=1$ which satisfies the same consequence as the Klein-Milman's Theorem.

2. Preliminaries

In this section we recall some basic results as well as definitions of non-commutative L^{p}-spaces associated with a von Neumann algebra which is not necessarily semifinite. Let M be an arbitrary von Neumann algebra with a faithful normal semifinite weight φ_{0}. Denote by N the crossed product $M \rtimes_{\sigma \varphi_{0}} \boldsymbol{R}$ determined by M and the modular automorphism group $\left\{\sigma_{t}^{\varphi_{0}}\right\}_{t \in \boldsymbol{R}}$ with respect to φ_{0}. Then there exists a canonical faithful normal semifinite trace τ on N satisfying $\tau \circ \theta_{s}=e^{-s} \tau, s \in \boldsymbol{R}$, where $\left\{\theta_{s}\right\}_{s \in \boldsymbol{R}}$ is the dual action of $\left\{\boldsymbol{\sigma}_{t}^{\varphi}\right\}_{t \in \boldsymbol{R}}$. Also, we denote by \widetilde{N} the set of all τ-measurable operators (affiliated with N). For $0<p \leq \infty$, the Haagerup's L^{p}-space $L^{p}(M)$ is defined by

$$
L^{p}(M)=\left\{a \in \widetilde{N} ; \theta_{s}(a)=e^{-s / p} a, s \in \boldsymbol{R}\right\} .
$$

For each $\varphi \in M_{*,+}$, a unique $h_{\varphi} \in \widetilde{N}_{+}$is given by $\widetilde{\varphi}=\tau\left(h_{\varphi} \cdot\right)$ where $\widetilde{\varphi}$ is the dual weight of φ. The mapping $\varphi \longrightarrow h_{\varphi}$ is extended to a linear order isomorphism from M_{*} onto $L^{1}(M)$, and so the linear functional tr on $L^{1}(M)$ is defined by $\operatorname{tr}\left(h_{\varphi}\right)=\varphi(1), \varphi \in M_{*}$. For $0<p<\infty$, the (quasi-) norm of $L^{p}(M)$ is defined by

$$
\|a\|_{p}=\operatorname{tr}\left(|a|^{p}\right)^{1 / p}, \quad a \in L^{p}(M) .
$$

When $1 \leq p<\infty, L^{p}(M)$ is a Banach space with the norm $\|\cdot\|_{p}$ and its dual Banach space is $L^{q}(M)$ where $1 / p+1 / q=1$ by the following duality;

$$
(a, b)=\operatorname{tr}(a b)=\operatorname{tr}(b a), \quad a \in L^{p}(M), b \in L^{q}(M) .
$$

The space $L^{p}(M)$ is independent of the choice of φ_{0} up to isomorphism. Furthermore, if M is semifinite with a faithful normal semifinite trace τ_{0}, the Haagerup L^{p}-space constructed by τ_{0} can be identified with the classical non-commutative L^{p}-space $L^{p}\left(M, \tau_{0}\right)$.

3. Main Theorem

Let M be an arbitrary von Neumann algebra and let M_{1} (resp. M_{2}) be the discrete (resp. continuous) direct summand of M. Fix any $0<p \leq 1$ and fix a faithful normal semifinite trace τ on M_{1}. We denote by S, S_{1}, S_{2} the unit ball of $L^{p}(M), L^{p}\left(M_{1}, \tau\right)$, $L^{p}\left(M_{2}\right)$, respectively, and we denote by $\operatorname{Ext}(S)$ the set of all extreme points of S. Then the main result of this note is

Theorem 1. Keep the situations and notations as above. Then (i) Ext (S) is not empty if and only if M has a minimal projection. (ii) If M has a minimal projection, then $\operatorname{Ext}(S)=\operatorname{Ext}\left(S_{1}\right) \oplus 0$. For $x \in L^{p}\left(M_{1}, \tau\right)$ with its polar decomposition $x=u|x|$, $x \in \operatorname{Ext}\left(S_{1}\right)$ if and only if $e=u^{*} u$ is minimal and $|x|=\tau(e)^{-1 / p} e$.

To prove this theorem, we need some lemmas.

Lemma 2. If there exists an element x in $\operatorname{Ext}(S)$, then the support projection $s(|x|)$ of $|x|$ is minimal in M.

Proof. Suppose that $s(|x|)$ is not minimal in M. Thus, there exists a projection e in M such that $0<e<s(|x|)$. Putting $f=s(|x|)-e$, we have $1=\|x\|_{p}^{p}=\left\||x|^{p}\right\|_{1}=\||x|^{p / 2}$ $\cdot e|x|^{p / 2}\left\|_{1}+\right\||x|^{p / 2} f|x|^{p / 2} \|_{1}$. If $\lambda=\left\||x|^{p / 2} e|x|^{p / 2}\right\|_{1}=0$ (resp. 1), then it is easy to see that $e=0$ (resp. $s(|x|))$. Hence we have $0<\lambda<1$. By Hölder's inequality, we have

$$
\left\||x|^{1 / 2} e|x|^{1 / 2}\right\|_{p} \leq\left\||x|^{\frac{1}{2}-\frac{p}{2}}\right\|_{\alpha} \||x|^{\frac{p}{2}} e|x|^{\frac{p}{2}\left\|_{1}\right\||x|^{\frac{1}{2}-\frac{p}{2}} \|_{\alpha} \leq \lambda, ~}
$$

where $\alpha=\frac{2 p}{1-p}$. Thus we obtain a convex combination of two elements in S :

$$
|x|=\lambda \frac{|x|^{1 / 2} e|x|^{1 / 2}}{\lambda}+(1-\lambda) \frac{|x|^{1 / 2} f|x|^{1 / 2}}{1-\lambda} .
$$

Let $x=u|x|$ be the polar decomposition of x and let $|x|=\int_{0}^{\infty} t d e_{t}$ be the spectral decomposition of $|x|$. Then we clearly have

$$
x=\lambda \frac{u|x|^{1 / 2} e|x|^{1 / 2}}{\lambda}+(1-\lambda) \frac{u|x|^{1 / 2} f|x|^{1 / 2}}{1-\lambda} .
$$

Since $x \in \operatorname{Ext}(S)$, we conclude that

$$
x=\frac{u|x|^{1 / 2} e|x|^{1 / 2}}{\lambda}=\frac{u|x|^{1 / 2} f|x|^{1 / 2}}{1-\lambda} .
$$

Therefore, we have that $\lambda|x|=|x|^{1 / 2} e|x|^{1 / 2}$. Multiplying on the left and right side by $\int_{1 / n}^{\infty} t^{-1 / 2} d e_{t}$, we get that $\lambda E_{n}=E_{n} e E_{n}$ with $E_{n}=\int_{1 / n}^{\infty} d e_{t}$. Since $\left\{E_{n}\right\}$ converges to $s(|x|)$ strongly, it follows that $\lambda s(|x|)=s(|x|) e s(|x|)=e$. This contradiction completes the proof.

We denote by z the unique central projection in M such that $M_{1}=M z$ is discrete and $M_{2}=M(1-z)$ is continuous. Then $L^{p}(M)$ is isometricaly isomorphic to the l^{p}-direct sum $L^{p}(M z, \tau) \oplus L^{p}(M(1-z))$, where τ is a faithful normal semifinite trace on $M z$. Lemma 2 shows that $\operatorname{Ext}\left(\mathrm{S}_{2}\right)=\phi$. Moreover we have the following lemma.

Lemma 3. $\operatorname{Ext}(S)=\phi$ if and only if $\operatorname{Ext}\left(S_{1}\right)=\phi$. If $\operatorname{Ext}(S) \neq \phi$, then $\operatorname{Ext}(S)=\operatorname{Ext}$ $\left(S_{1}\right) \oplus 0$.

Proof. Suppose that $x \in \operatorname{Ext}(S)$. Then it follows from Lemma 2 that $s(|x|)$ is a minimal projection in $M z$ satisfying $s(|x|) \leq z$. This implies that $x=x z \in \operatorname{Ext}\left(S_{1}\right)$. Conversely, suppose that $x_{1} \in \operatorname{Ext}\left(S_{1}\right)$. If $x_{1} \oplus 0=\frac{1}{2} y+\frac{1}{2} y^{\prime}$ for some elements y, y^{\prime} in S, then we have that $x_{1}=\frac{1}{2} y z+\frac{1}{2} y^{\prime} z$. It follows from the assumption that $x_{1}=y z=y^{\prime} z$
and $1=\left\|x_{1}\right\|_{p}=\|y z\|_{p}$. Since $1 \geq\|y\|_{p}^{p}=\|y z\|_{p}^{p}+\|y(1-z)\|_{p}^{p}$, we have that $\|y(1-z)\|_{p}=0$. Consequently, we conclude that $y=y z \oplus 0=x_{1} \oplus 0$ and that $x_{1} \oplus 0 \in \operatorname{Ext}(S)$.

Therefore, to prove Theorem 1, it is sufficient to consider the case of discrete von Neumann algebras.

Lemma 4. Let M be a von Neumann algebra of discrete type, and let τ be a faithful normal semifinite trace on M. If e is a minimal projection in M, then $\tau(e)^{-1 / p} e \in \operatorname{Ext}(S)$.

Proof. Since e is a minimal projection in M, we have $0<\tau(e)<\infty$ by the semifiniteness of τ. Suppose that there exists two elements x_{1} and x_{2} in S such that $\tau(e)^{-1 / p} e=\frac{1}{2} x_{1}$ $+\frac{1}{2} x_{2}$. From the minimality of e, there exist scalars λ_{1}, λ_{2} satisfying that $e x_{1} e=\lambda_{1} e$ and $e x_{2} e=\lambda_{2} e$, so $\tau(e)^{-1 / p} e=\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right) e$. Since $\left|\lambda_{1}\right|^{p} \tau(e)=\left\|e x_{1} e\right\|_{p}^{p} \leq\left\|x_{1}\right\|_{p}^{p} \leq 1$, we have $\left|\lambda_{1}\right|$, $\left|\lambda_{2}\right| \leq \tau(e)^{-1 / p}$. It follows that $1=\left\|\frac{1}{2}\left(\lambda_{1}+\lambda_{2}\right) e\right\|_{p}=\frac{1}{2}\left|\lambda_{1}+\lambda_{2}\right| \tau(e)^{1 / p} \leq \frac{1}{2}\left(\left|\lambda_{1}\right|+\left|\lambda_{2}\right|\right) \tau(e)^{1 / p}$ ≤ 1, so that $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=\tau(e)^{-1 / p}$. Let $\lambda_{1}=\exp \left(i \theta_{1}\right)\left|\lambda_{1}\right|=\tau(e)^{-1 / p} \exp \left(i \theta_{1}\right)$ be the polar form of the complex number λ_{1}. Then we have $e=\frac{1}{2}\left(\exp \left(i \theta_{1}\right)+\exp \left(i \theta_{2}\right)\right) e$, and we have $1=\exp \left(i \theta_{1}\right)=\exp \left(i \theta_{2}\right)$. Consequentry we conclude that $\tau(e)^{-1 / p} e=e x_{1} e=e x_{2} e$. If (1-e) $x_{1} e \neq 0$, then we have

$$
\begin{aligned}
\left(x_{1} e\right)^{*}\left(x_{1} e\right) & =e\left(e x_{1}+(1-e) x_{1}\right) *\left(e x_{1}+(1-e) x_{1}\right) e \\
& =e x_{1}^{*} e x_{1} e+e x_{1}^{*}(1-e) x_{1} e \\
& =\tau(e)^{-2 / p} e+e x_{1}^{*}(1-e) x_{1} e .
\end{aligned}
$$

Since $e x_{1}^{*}(1-e) x_{1} e$ is positive and nonzero, we have $\left|x_{1} e\right|-\tau(e)^{-1 / p} e$ is positive and nonzero, which implies that $\left\|x_{1} e\right\|_{p}^{p} \supsetneqq 1$. This contradicts the choice of x_{1}, hence we have $(1-e) x_{1} e=0$. Similarly, $e x_{1}(1-e)=(1-e) x_{2} e=e x_{2}(1-e)=0$. If $(1-e) x_{1}(1-e) \neq 0$, then we have

$$
\begin{aligned}
(1-e) x_{1}^{*}(1-e) x_{1}(1-e) & =\left(x_{1}^{*}-\tau(e)^{-1 / p} e\right)(1-e)\left(x_{1}-\tau(e)^{-1 / p} e\right) \\
& =x_{1}^{*}(1-e) x_{1} .
\end{aligned}
$$

Thus $x_{1}^{*}(1-e) x_{1}$ is a nonzero positive operator. Hence $x_{1} x_{1}^{*}=x_{1} e x_{1}^{*}+x_{1}(1-e) x_{1}^{*} \geqq x_{1} e x_{1}^{*}$, which implies that $\left\|x_{1}\right\|_{p}^{p}=\left\|x_{1}^{*}\right\|_{p}^{p} \geqq\left\|x_{1} e x_{1}^{*}\right\|_{p / 2}^{p / 2}=\left\|e x_{1}^{*} x_{1} e\right\|_{p / 2}^{p / 2}=\left\|\tau(e)^{-2 / p} e\right\|_{p / 2}^{p / 2}=1$. This is a contradiction, hence we have $(1-e) x_{1}(1-e)=0$. Similarly, $(1-e) x_{2}(1-e)=0$. Finally we have $x_{1}=e x_{1}=e x_{1} e=\tau(e)^{-1 / p} e=e x_{2} e=x_{2}$, and we conclude that $\tau(e)^{-1 / p} e \in \operatorname{Ext}(S)$.

Proof of Theorem 1. (i) It immediately follows from Lemmas 2,3 and 4.
(ii) The first statement is precisely Lemma 3. If $x \in \operatorname{Ext}\left(S_{1}\right)$, then, by Lemma 2, we have that $|x|=\alpha e$ for some $\alpha>0$, thus $1=\alpha^{p} \tau(e)$. Conversely, suppose that e is
minimal in M and that $|x|=\tau(e)^{-1 / p} e$. If there exist $x_{1}, y_{1} \in S_{1}$ such that $x=\frac{1}{2}\left(x_{1}+y_{1}\right)$, then we have $\tau(e)^{-1 / p} e=\frac{1}{2}\left(u^{*} x_{1}+u^{*} y_{1}\right)$. It follows from Lemma 4 that $\tau(e)^{-1 / p} e=u^{*} x_{1}$ $=u^{*} x_{1}=u^{*} y_{1}$. Putting $f=u u^{*}$, we have $f\left(x_{1}-y_{1}\right)=0$. Since f is also minimal in M, and since $x^{*}=\frac{1}{2}\left(x_{1}^{*}+y_{1}^{*}\right)$, we similarly obtain that $\tau(f)^{-1 / p} f=\left|x^{*}\right|=u x_{1}^{*}=u y_{1}^{*}$ which implies that $x_{1} u^{*}=y_{1} u^{*}=\tau(f)^{-1 / p} f$. It follows that the range projection of x_{1} is a subprojection of f. Thus we conclude that $(1-f) x_{1}=(1-f) y_{1}=0$, and so $x_{1}=y_{1}$. This completes the proof.

4. An example

In this section, we give a familiar example for $p=1$ which satisfies the same consequence as the Klein-Milman's Theorem. Let $M=B(H)$, the set of all bounded operators on a Hilbert space H, and let $\tau=T r$, the canonical trace. Then it is well-known that $L^{p}(B(H), T r)$ is the trace ideal C^{p}, where C^{p} consists of compact operators which the sum of p-th power of its singular number is finite. We denote by S^{p} the unit ball of C^{p}. Of course, unless H is finite dimensional, S^{1} is not compact in the L^{1}-norm topology, so that the Klein-Milman's Theorem is not applicable.

Proposition 5. $\quad S^{1}$ is precisely the L^{1}-norm closure of $\operatorname{Conv}\left(\operatorname{Ext}\left(S^{p}\right)\right)$ for all $0<p \leq 1$.
Proof. For two vectors ξ, η in H, we donote by $t_{\xi, \eta}$ the operator $t_{\xi, \eta}(\zeta)=(\zeta \mid \eta) \xi$. Note that the set of all minimal projections in $B(H)$ consists of $\left|t_{\xi, \eta}\right|=t_{\eta, \eta}$, where ξ and η are unit vectors in H, and note that $\operatorname{Tr}\left(t_{\eta, \eta}\right)=1$. Hence for any $0<p \leq 1$, it follows from Theorem 1 that $\operatorname{Ext}\left(S^{p}\right)$ coincides with the set of all $t_{\xi, \eta}$, where $\xi, \eta \in H$ and $\|\xi\|=\|\eta\|=1$. Thus $\operatorname{Conv}\left(\operatorname{Ext}\left(S^{p}\right)\right.$) is included in S^{1}, because C^{p} is contained in C^{1}. Any $x \in S^{1}$ has the canonical expansion $x=\sum_{n=1}^{\infty} \mu_{n}(x) t_{\xi_{n}, \eta_{n}}$, where $\left\{\xi_{n}\right\}$ and $\left\{\eta_{n}\right\}$ are suitable orthonormal sets and $\mu_{n}(x)$ is the n-th singular number of x as a compact operator (that is the n-th large eigenvalue of $|x|$ with the multiplicity counted). Then by $\sum_{n=1}^{\infty} \mu_{n}(x)=\|x\|_{1}=1$, it is easy to see that the above expansion converges in L^{1}-norm. Put $x_{n}=\sum_{k=1}^{n} \mu_{k}(x) t_{\xi_{k}, \eta_{k}}$ and $\widetilde{x_{n}}=x_{n-1}+\left(1-\sum_{k=1}^{n-1} \mu_{k}(x)\right) t_{\xi_{n}, \eta_{n}}$, then it is clear that $\widetilde{x}_{n} \in \operatorname{Conv}\left(\operatorname{Ext}\left(S^{p}\right)\right)$. Since $\left\|\widetilde{x}_{n}-x_{n}\right\|_{1}=\|\left(\sum_{k=n+1}^{\infty} \mu_{k}(x)\right) t_{\xi_{n}, \eta_{n} \|_{1}}=\sum_{k=n+1}^{\infty} \mu_{k}(x) \rightarrow 0$ as $n \rightarrow \infty$, we conclude that $\| x$ $-x_{n} \|_{1} \rightarrow 0$ and that x is in the L^{1}-norm closure of $\operatorname{Conv}\left(\operatorname{Ext}\left(S^{p}\right)\right)$ as desired.

References

[1] U. Haagerup, Lp-spaces associated with an arbitrary von Neumann algebra, Colloq. Internat. CNRS, No. 274, 175-184.
[2] R. Kadison, Isometries of operator algebras, Ann. Math., 54 (1951), 325-338.
[3] H. Kosaki, Applications of uniform convexity of non-commutative Lp-spaces, Trans. Amer. Math. Soc., 283 (1984), 265-282.
[4] J. Lindenstrauss-L. Tzafriri, Classical Banach Spaces I, II, Springer, Berlin-Heiderberg-New York, 1977, 1979.
[5] E. Nelson, Notes on non-commutative integration, J. Funct. Anal., 15 (1974), 103-116.
[6] M. Takesaki, Theory of Operator Algebras I, Springer, Berlin-Heiderberg-New York, 1979.
[7] M. Terp, Lp-spaces associated with von Neumann algebras, Notes, Copenhagen Univ., 1981.

Keiichi Watanabe
Department of Mathematics
Faculty of Science
Niigata University
Niigata, 950-21
Japan

