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1. Introduction

The notion of an extreme point is playing an important role in the theory of topo-
logical vector spaces, in particular, that of Banach spaces. Some properties of a linear
map can be stated in terms of extreme points of a certain convex set of linear maps. For
example, a non-zero representation of a C*-algebra is irreducible if and only if it is spa-
tially equivalent to a GNS-representation associated with a pure state (that is an extreme
point of the state space). R. Kadison gave a characterization of extreme points of the
unit ball of a C*-algebra, and he applied it to classify isometries between C*-algebras.
Thus it is fundamental to characterize extreme points of the unit ball of a (quasi-) Banach
space associated with an operator algebra. For a commutative L?-space I#(X, ) of
measurable functions, the results are well-known. In case of 1< p < o, the unit sphere
is precisely the set of all extreme points of the unit ball. If p =0, the set of all extreme
points is exactly the unitary group of L~(X, p) ([6, Chapter I, Lemma 10.11]). For
0<p<1, there exists an extreme point if and only if the measure space (X, z) has an
atom.

Our first aim in this paper is to give a necessary and sufficient condition for the
existence of an extreme point of the closed unit ball of a non-commutative LP-space.
Secondarily, we shall determine the form of each extreme point completely. However,
when 1< p < oo, it is shown that the Clarkson-McCarthy’s inequality holds for non-
commutative L?-spaces associated with von Neumann algebras (see [1], [3], [7]). There-
fore they are uniformly convex, in particular, strictly convex. Thus the set of all
extreme points coincides with the unit sphere. For p=o0, L*-space was defined to be
the von Neumann algebra itself and so it is a C*-algebra. If S is the unit ball of a C*-
algebra A, the following facts are well-known; (i) there exists an extreme point « in S if
and only if A is unital; and (ii) when A is unital, then x €S is extreme if and only if x*x
is a projection such that (1—x*x) A(1—xx*)= {0} ([6, Chapter I, Theorem 10.2]). There-
fore, we may concentrate our attention to the case of 0<<p< 1. Finally we also consider
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an example for p=1 which satisfies the same consequence as the Klein-Milman’s Theo-

rem.

2. Preliminaries

In this section we recall some basic results as well as definitions of non-commutative
L?-spaces associated with a von Neumann algebra which is not necessarily semifinite.
Let M be an arbitrary von Neumann algebra with a faithful normal semifinite weight ¢.
Denote by N the crossed product M X,¢, R determined by M and the modular auto-
morphism group {crf"},E r With respect to ¢o. Then there exists a canonical faithful nor-
mal semifinite trace r on N satisfying r-0s=e¢—° 7, s& R, where {0s} < is the dual action
of (03%,cp Also, we denote by N the set of all z-measurable operators (affiliated with
N). For 0<p< =, the Haagerup’s L?-space L?(M) is defined by

L»(M)= {aEN; 0s (@)=e~'? a, s& R).

For each ¢ & My, +, a unique Ay ETV+ is given by ;=r(h¢-) where ; is the dual
weight of ¢. The mapping ¢ — Ak, is extended to a linear order isomorphism from M,
onto L'(M ), and so the linear functional #r on I1(M) is defined by tr(hs)=¢ (1), ¢ & Mx.
For 0 < p < =, the (quasi-) norm of L?(M) is defined by

lallp=tr(la|?)V?, e LAM).

When 1<p< o0, IA(M) is a Banach space with the norm |-||» and its dual Banach space
is L7(M ) where 1/p+1/q=1 by the following duality;

(a, b)=tr(ab)=tr(ba), ac (M), b & LI(M).

The space L?(M) is independent of the choice of ¢y up to isomorphism. Furthermore,
if M is semifinite with a faithful normal semifinite trace 7o, the Haagerup L?-space con-
structed by 7y can be identified with the classical non-commutative L?-space L?(M, ).

3. Main Theorem

Let M be an arbitrary von Neumann algebra and let M; (resp. M;) be the discrete
(resp. continuous) direct summand of M. Fix any 0 < p <1 and fix a faithful normal
semifinite trace 7 on M;. We denote by S, Si, S; the unit ball of L?(M), L?(M,, 7),
L? (M), respectively, and we denote by Ext(S) the set of all extreme points of S. Then
the main result of this note is

TueoreMm 1. Keep the situations and notations as above. Then (i) Ext(S) is not
empty if and only if M has a minimal projection. (ii) If M has a minimal projection,
then Ext(S)=Ext (S)®0. For x & L?(M,, 7) with its polar decomposition x = %|x|,
x € Ext (Sy) if and only if e=#*% is minimal and |x|=7(e)"V?e.
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To prove this theorem, we need some lemmas.

LemMA 2. If there exists an element x in Ext(S), then the support projection s(|x|)

of |x| is minimal in M.

Proor. Suppose that s(|#|) is not minimal in M. Thus, there exists a projection e
in M such that 0<e<s(|x|). Putting f=s(|x|)— e, we have 1=|z]5= | |x|?[, = | |x]|#/2
e|x| 2|+ || | x| 22f | x| 2/2)|.  If A =] |x|?/2%|x|?/2|, =0 (resp. 1), then it is easy to see that

e=0 (resp. s(|%|)). Hence we have 0<<21<1. By Holder’s inequality, we have
1_» » P 1.2
x|2e|x |12, < (1212 2l llx]2e|x]2]1ll|5]2 2], <4,

where a= I _2_1’ 5 Thus we obtain a convex combination of two elements in S':

| x| V2e| x| 12 oy x| vef || v
le—l———]—wa—l-(l Z)———————l__'2 .

Let x=u|x| be the polar decomposition of x and let [x| ZSo tde; be the spectral decom-

position of |x|. Then we clearly have

xX=

ulxill2e|xll/2 _ u,x|1/2f|x|1/2
2 . +—nHEL L

Since ¥ € Ext (S), we qonclude that

ulx|V2e|x| V2 _ u|x|V3S|x| V2 .

= 2 T—2

Therefore, we have that |x|=|x|2|x|2. Multiplying on the left and right side by

81/ t—12 de,, we get that AE,=E, eE, with E,= Sl/ de;. Since (E,} converges to s(|x])
n n

strongly, it follows that As(|x|)=s(|x|)es(|x|)=e. This contradiction completes the

proof.

We denote by z the unique central projection in M such that M;=Mz is discrete and
M,=M(1—2) is continuous. Then IL?(M) is isometricaly isomorphic to the /?-direct sum
LP(Mz, )@ LP?(M(1—2)), where r is a faithful normal semifinite trace on Mz. Lemma
2 shows that Ext (S;)=¢. Moreover we have the following lemma.

LemMa 3. Ext(S)=¢ if and only if Ext(Sp)=¢. If Ext(S)#¢, then Ext(S)=Ext
Sy @ 0.

Proor. Suppose that x & Ext(S). Then it follows from Lemma 2 that s(|x|)isa
minimal projection in Mz satisfying s(|x|)<z. This implies that x=xz & Ext(Sy).
Conversely, suppose that x; & Ext(S;). If ;@ 0:—;—3’ +—%—y’ for some elements y, ¥’ in

1 1

S, then we have that x1=—2—yz +? y'z. It follows from the assumption that x;=yz=1y'z
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. y/
and 1=z p=|yzl. Since 1>|yl5=lyzl}+]y(1—2) |5 we have that |y(1—2)]s = 0.
Consequently, we conclude that y=yz ® 0=x; @ 0 and that x, @ 0 & Ext(S).

Therefore, to prove Theorem 1, it is sufficient to consider the case of discrete von
Neumann algebras.

Lemma 4. Let M be a von Neumann algebra of discrete type, and let = be a faithful
normal semifinite trace on M. If ¢ is a minimal projection in M, then 7 (e)~V?e = Ext(S).

Proor. Since e is a minimal projection in M, we have 0<7(¢) << by the semifinite-

ness of 7. Suppose that there exists two elements #; and %, in S such that r(e)—W’ez—zl— X1

+2l %2. From the minimality of e, there exist scalars 2, 4, satisfying that ex;e=4,e and
exse=1oe, 50 7()VPe=—(Li+e. Since |41|?c(e)=lexel;<Inly < 1, we have |4,

|42 < v(e)V2. Tt follows that 1=|-(i+Aell y=-1-|21 +dalw ()2 LI 21] + | 2z e(e)'?
<1, so that |2;]|=[4;] =7(e)~V?. Let A; =exp (6;)|4;| =7(e)~V? exp (i6;) be the polar
form of the complex number 2;. Then we have ez%(exp (10,)+exp(i0s) e, and we have

1=exp (i0))=exp (if;). Consequentry we conclude that z(e)~V?e=ex,e=exse. If (1—e)
x1e#0, then we have

(o) (xe)=e(ex1+(1—e) x)*(ex1+(1—e)x1)e
=exfexietext(l—e)x e
=7(e)~2?e+ex¥(1—e)x;e.
Since exf(1—e)x,e is positive and nonzero, we have |x,e| —7(e)—1V?e is positive and non-

zero, which implies that ||x1e[|§ = 1. This contradicts the choice of x;, hence we have
(1—e)x1e=0. Similarly, ex;(1—e)=1—e)xze =ex(1—e)=0. If (1—e)x,(1—e) =0, then
we have

(1—e) ¥l —e)x(l—e)=(xF—1(e)~V?e) (1—e) (£, —1(e)~V?¢)
=x¥(1—e)x;.
Thus #(1—e) x, is a nonzero positive operator. Hence x; x¥=x; exF+x,(1—e)x¥= x; ex¥,

. . . /2 p/2 p/2 ..
which implies that Hxlllﬁ= lei"llﬁ 2 lxiextlyo=llextri el o =IIr(e)~??e|,,, = 1. Thisis a
contradiction, hence we have (1—e)x; (1—e)=0. Similarly, (1—e)x;(1—e)=0. Finally
we have x;=ex;=ex1e=1(e)~VPe=ex,e=x,, and we conclude that 7 (e)—V?e & Ext(S).

Proor of THEOREM 1. (i) It immediately follows from Lemmas 2, 3 and 4.
(ii) The first statement is precisely Lemma 3. If x & Ext(S;), then, by Lemma 2,
we have that |x| =ae for some >0, thus 1=a?7(e). Conversely, suppose that e is
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minimal in M and that |x|=7(e)~V?e. If there exist x;, y1 & S; such that x =~%— (%1 + 1),

then we have z(e)~1/?¢ =% (u*x%1+wu*y,). It follows from Lemma 4 that r(e)~1?Pe=u*x,
=u¥*x;=u*y,. Putting f=wu*, we have f(x;—»:1)=0. Since f is also minimal in M, and
since x*z%—(dt’f-%ﬁ% we similarly obtain that =(f)~V2f= |x*| =ux¥=uy}¥ which implies
that xju*=y,u*=7(f)~V2f. It follows that the range projection of x; is a subprojection
of f. Thus we conclude that A—f)x;=(1—f)»=0, and so x;=y;. This completes the
proof.

4. An example

In this section, we give a familiar example for p =1 which satisfies the same con-
sequence as the Klein-Milman’s Theorem. Let M=B(H), the set of all bounded operators
on a Hilbert space H, and let = =T7, the canonical trace. Then it is well-known that
L?(B(H), Tr) is the trace ideal C?, where C? consists of compact operators which the
sum of p-th power of its singular number is finite. We denote by S? the unit ball of C2.
Of course, unless H is finite dimensional, S! is not compact in the Ll-norm topology, so
that the Klein-Milman’s Theorem is not applicable.

ProrosiTION 5. St is precisely the L'-norm closure of Conv(Ext(S?)) for all 0<p<1.

Proor. For two vectors &, 7 in H, we donote by ¢, the operator #¢, ,({)=({|7)E. Note
that the set of all minimal projections in B(H ) consists of | 4| =#4,4, Where § and 7 are
unit vectors in H, and note that Tr(¢#,,)=1. Hence for any 0<p<1, it follows from
Theorem 1 that Ext (S?) coincides with the set of all # 5, where §, 7 EH and |§|=|7|=1.
Thus Conv(Ext (S?)) is included in S, because C? is contained in C. Any x & S! has
the canonical expansion ¥ = X5_, pn(¥)Ze,, 7 Where {§x} and {7.} are suitable orthonor-
mal sets and px(x) is the #-t4 singular number of x as a compact operator (that is the »n-t4
large eigenvalue of |x| with the multiplicity counted). Then by X ux(x)=|x]:=1, it

is easy to see that the above expansion converges in Ll-norm. Put xn= Xh_;pr (%) tes, n
and Zl=xn_1+ A—X%2% #6(%) e, 2, then it is clear that %n € Conv (Ext (S?)). Since

| %n— =1 (D 41 6t 7l = 25— pt+14e(x) — 0 as n — oo, we conclude that |x
—xxll1 — 0 and that x is in the Il-norm closure of Conv(Ext(S?)) as desired.
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