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1. Introduction

The notion of an extreme point is playing an important role in the theory of topo-
logical vector spaces, in particular, that of Banach spaces. Some properties of a linear
map can be stated in terms of extreme points of a certain convex set of linear maps. For
example, a non-zero representation of a $c*$-algebra is irreducible if and only if it is spa-
tially equivalent to a GNS-representation associated with a pure state (that is an extreme
point of the state space). R. Kadison gave a characterization of extreme points of the
unit ball of a $c*$-algebra, and he applied it to classify isometries between $c*$-algebras.
Thus it is fundamental to characterize extreme points of the unit ball of a (quasi-) Banach
space associated with an operator algebra. For a commutative $L^{p}$-space $L^{p}(X, \mu)$ of
measurable functions, the results are well-known. In case of $ 1<p<\infty$ , the unit sphere
is precisely the set of all extreme points of the unit ball. If $ p=\infty$ , the set of all extreme
points is exactly the unitary group of $L^{\infty}(X, \mu)$ ( $[6$ , Chapter I, Lemma 10. 11]). For
$0<p\leq 1$ , there exists an extreme point if and only if the measure space (X, $\mu$) has an
atom.

Our first aim in this paper is to give a necessary and sufficient condition for the
existence of an extreme point of the closed unit ball of a non-commutative $L^{p}$-space.
Secondarily, we shall determine the form of each extreme point completely. However,
when $ 1<p<\infty$ , it is shown that the Clarkson-McCarthy’s inequality holds for non-
commutative $L^{p}$-spaces associated with von Neumann algebras (see [1], [3], [7]). There-
fore they are uniformly convex, in particular, strictly convex. Thus the set of all
extreme points coincides with the unit sphere. For $p=\infty,$ $L^{\infty}$-space was defined to be
the von Neumann algebra itself and so it is a $c*$-algebra. If $S$ is the unit ball of a $c*$.
algebra $A$ , the following facts are well-known; (i) there exists an extreme point $x$ in $S$ if
and only if A is unital; and (ii) when A is unital, then $x\in S$ is extreme if and only if $X^{*}X$

is a projection such that $(1-x^{*}x)A(1-xx^{*})=\{0\}$ ( $[6$ , Chapter I, Theorem 10. 2]). There-
fore, we may concentrate our attention to the case of $0<p\leq 1$ . Finally we also consider
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an example for $p=1$ which satisfies the same consequence as the Klein-Milman’s Theo-
rem.

2. Preliminaries

In this section we recall some basic results as well as definitions of non-commutative
$L^{p}$-spaces associated with a von Neumann algebra which is not necessarily semifinite.
Let $M$ be an arbitrary von Neumann algebra with a faithful normal semifinite weight $\varphi_{0}$ .
Denote by $N$ the crossed product $M\rangle\triangleleft\sigma^{\varphi_{0}}R$ determined by $M$ and the modular auto-
morphism group $\{\sigma_{t^{0}}^{\varphi}\}_{t\in R}$ with respect to $\varphi_{0}$. Then there exists a canonical faithful nor-
mal semifinite trace $\tau$ on $N$ satisfying $\tau\circ\theta_{s}=e^{-s}\tau,$ $s\in R$ , where $\{\theta_{S}\}_{s\in R}$ is the dual action
of $\{\sigma_{t}^{\varphi_{0}}\}_{t\in R}$. Also, we denote by $\tilde{N}$ the set of all $\tau$-measurable operators (affiliated with
$N)$. For $ 0<p\leq\infty$ , the Haagerup’s $L^{p}$-space $L^{\rho}(M)$ is defined by

$L^{p}(M)=\{a\in\tilde{N};\theta_{S}(a)=e^{-S/p}a, s\in R\}$ .
For each $\varphi\in M_{*,+}$ , a unique $h_{\varphi}\in\tilde{N}+is$ given by $\sim\varphi=\tau(h_{\varphi}\cdot)$ where $\varphi\sim$ is the dual

weight of $\varphi$ . The mapping $\varphi\rightarrow h_{\varphi}$ is extended to a linear order isomorphism from $M_{*}$

onto $L^{1}(M)$ , and so the linear functional $tr$ on $L^{1}(M)$ is defined by $tr(h_{\varphi})=\varphi(1),$ $\varphi\in M_{*}$ .
$For0<p<\infty$ , the (quasi-) norm of L $(M)$ is defined by

$\Vert a\Vert p=tr(|a|^{p})^{1/p}$, $a\in L^{p}(M)$ .
When $1\leq p<\infty,$ $L^{p}(M)$ is a Banach space with the norm $\Vert\cdot\Vert p$ and its dual Banach space
is $L^{q}(M)$ where $1/p+1/q=1$ by the following duality;

$(a, b)=tr(ab)=tr(ba)$ , $a\in L^{p}(M),$ $b\in L^{q}(M)$.
The space $L^{p}(M)$ is independent of the choice of $\varphi_{0}$ up to isomorphism. Furthermore,
if $M$ is semifinite with a faithful normal semifinite trace $\tau_{0}$ , the Haagerup $L^{\rho}$-space con-
structed by $\tau_{0}$ can be identified with the classical non-commutative $L^{\rho}$-space $L^{p}(M, \tau_{0})$ .

3. Main Theorem

Let $M$ be an arbitrary von Neumann algebra and let $M_{1}$ (resp. $M_{2}$ ) be the discrete
(resp. continuous) direct summand of $M$. Fix any $0<p\leq 1$ and fix a faithful normal
semifinite trace $\tau$ on $M_{1}$ . We denote by $S,$ $S_{1},$ $S_{2}$ the unit ball of $L^{p}(M),$ $L^{p}(M_{1}, \tau)$ ,
$L^{p}(M_{2})$ , respectively, and we denote by $Ext(S)$ the set of all extreme points of $S$. Then
the main result of this note is

THEOREM 1. Keep the situations and notations as above. Then (i) $Ext(S)$ is not
empty if and only if $M$ has a minimal projection. (ii) If $M$ has a minimal projection,
then $Ext(S)=Ext(S_{1})\oplus 0$ . For $x\in L^{p}(M_{1}, \tau)$ with its polar decomposition $x=u|x|$ ,

$x\in Ext(S_{1})$ if and only if $e=u^{*}u$ is minimal and $|x|=\tau(e)^{-1/p}e$ .
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To prove this theorem, we need some lemmas.

LEMMA 2. If there exists an element $x$ in Ext(S), then the support projection $s(|x|)$

of $|x|$ is minimal in $M$.

PROOF. Suppose that $s(|x|)$ is not minimal in $M$. Thus, there exists a projection $e$

in $M$ such that $0<e<s(|x|)$ . Putting $f=s(|x|)-e$ , we have $1=\Vert x\Vert_{p}^{p}=\Vert|x|^{p}\Vert_{1}=\Vert|x|^{p/2}$

$e|x|^{P/2}\Vert_{1}+\Vert|x|^{P/2}f|x|^{P/2}\Vert_{1}$ . If $\lambda=\Vert|x|^{P/2}e|x|^{P/2}\Vert_{1}=0$ (resp. 1), then it is easy to see that
$e=0$ (resp. $s(|x|)$). Hence we have $0<\lambda<1$ . By H\"older’s inequality, we have

$\Vert|x|^{1/2}e|x|^{1/2}\Vert p\leq\Vert|x|^{\frac{1}{2}-\frac{p}{2}}\Vert_{\alpha}$ I
$|x|^{\frac{p}{2}}e|x|^{\frac{p}{2}}\Vert_{1}\Vert|x|^{\frac{1}{2}-\frac{p}{2}}\Vert_{a}\leq\lambda$ ,

where $\alpha=\frac{2p}{1-p}$ . Thus we obtain a convex combination of two elements in $S$ :

$|x|=\lambda\frac{|x|^{1/2}e|x|^{1/2}}{\lambda}+(1-\lambda)\frac{|x|^{1/2}f|x|^{1/2}}{1-\lambda}$ .

Let $x=u|x|$ be the polar decomposition of $x$ and let $|x|=\int_{0}^{\infty}tde_{t}$ be the spectral decom $\cdot$

position of $|x|$ . Then we clearly have

$x=\lambda\frac{u|x|^{1/2}e|x|^{1/2}}{\lambda}+(1-\lambda)\frac{u|x|^{1/2}f|x|^{1/2}}{1-\lambda}$ .

Since $xEExt(S)$ , we conclude that

$x=\frac{u|x|^{1/2}e|x|^{1/2}}{\lambda}=\frac{u|x|^{1/2}f|x|^{1/2}}{1-\lambda}$ .
Therefore, we have that $\lambda|x|=|x|^{1/2}e|x|^{1/2}$ . Multiplying on the left and right side by

$\int_{1/n}^{\infty}t^{-1/2}de_{t}$ , we get that $\lambda E_{n}=E_{n}eE_{n}$ with $E_{n}=\int_{1/n}^{\infty}de_{t}$ . Since $\{E_{n}\}$ converges to $s(|x|)$

strongly, it follows that $\lambda s(|x|)=s(|x|)es(|x|)=e$ . This contradiction completes the
proof.

We denote by 2 the unique central projection in $M$ such that $M_{1}=Mz$ is discrete and
$M_{2}=M(1-z)$ is continuous. Then $L^{P}(M)$ is isometricaly isomorphic to the $l^{p}$-direct sum
$L^{p}(Mz, \tau)\oplus L^{p}(M(1-z))$ , where $\tau$ is a faithful normal semifinite trace on $Mz$ . Lemma
2 shows that $Ext(S_{2})=\phi$ . Moreover we have the following lemma.

LEMMA 3. $Ext(S)=\phi$ if and only if $Ext(S_{1})=\phi$ . If $Ext(S)\neq\phi$ , then $Ext(S)=Ext$

$(S_{1})\oplus 0$ .

PROOF. Suppose that $x\in Ext(S)$ . Then it follows from Lemma 2 that $s(|x|)$ is a
minimal projection in $Mz$ satisfying $s(|x|)\leq z$ . This implies that $x=xz\in Ext(S_{1})$ .
Conversely, suppose that $x_{1}\in Ext(S_{1})$ . If $x_{1}\oplus 0=\frac{1}{2}y+\frac{1}{2}y^{\prime}$ for some elements $y,$ $y^{\prime}$ in
$S$, then we have that $x_{1}=\frac{1}{2}yz+\frac{1}{2}y^{\prime}z$ . It follows from the assumption that $x_{1}=yz=y^{\prime}z$
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and $1=\Vert x_{1}\Vert p=\Vert yz\Vert_{p}$. Since $1\geq\Vert y\Vert_{p}=p\Vert yz\Vert_{p}p+\Vert y(1-z)\Vert_{p}^{p}$, we have that 1 $y(1-z)\Vert_{p}=0$ .
Consequently, we conclude that $y=yz\oplus 0=x_{1}\oplus 0$ and that $x_{1}\oplus 0\in Ext(S)$ .

Therefore, to prove Theorem 1, it is sufficient to consider the case of discrete von
Neumann algebras.

LEMMA 4. Let $M$ be a von Neumann algebra of discrete type, and let $\tau$ be a faithful
normal semifinite trace on $M$. If $e$ is a minimal projection in $M$, then $\tau(e)^{-1/P}e\in Ext(S)$ .

PROOF. Since $e$ is a minimal projection in $M$, we have $ 0<\tau(e)<\infty$ by the semifinite $\cdot$

ness of $\tau$ . Suppose that there exists two elements $x_{1}$ and $x_{2}$ in $S$ such that $\tau(e)^{-1/P}e=\frac{1}{2}x_{1}$

$+\frac{1}{2}x_{2}$. From the minimality of $e$ , there exist scalars $\lambda_{1},$ $\lambda_{2}$ satisfying that $ex_{1}e=\lambda_{1}e$ and

$ex_{2}e=\lambda_{2}e$, so $\tau(e)^{-1/P}e=\frac{1}{2}(\lambda_{1}+\lambda_{2})e$ . Since $|\lambda_{1}|^{P}\tau(e)=\Vert ex_{1}e\Vert_{p}^{p}\leq\Vert x_{1}\Vert_{p}^{p}\leq 1$ , we have $|\lambda_{1}|$ ,

$|\lambda_{2}|\leq\tau(e)^{-1/P}$. It follows that $1=\Vert\frac{1}{2}(\lambda_{1}+\lambda_{2})e\Vert_{p}=\frac{1}{2}|\lambda_{1}+\lambda_{2}|\tau(e)^{1/P}\leq\frac{1}{2}(|\lambda_{1}|+|\lambda_{2}|)\tau(e)^{1/P}$

$\leq 1$ , so that $|\lambda_{1}|=|\lambda_{2}|=\tau(e)^{-1/P}$. Let $\lambda_{1}=\exp(i\theta_{1})|\lambda_{1}|=\tau(e)^{-1/P}\exp(i\theta_{1})$ be the polar
form of the complex number $\lambda_{1}$ . Then we have $e=\frac{1}{2}(\exp(i\theta_{1})+\exp(i\theta_{2}))e$, and we have
$1=\exp(i\theta_{1})=\exp(i\theta_{2})$. Consequentry we conclude that $\tau(e)^{-1/p}e=ex_{1}e=ex_{2}e$. If $(1-e)$

$x_{1}e\neq 0$, then we have

$(x_{1}e)^{*}(x_{1}e)=e(ex_{1}+(1-e)x_{1})^{*}(ex_{1}+(1-e)x_{1})e$

$=ex_{1}^{*}ex_{1}e+ex_{1}^{*}(1-e)x_{1}e$

$=\tau(e)^{-2/p}e+ex_{1}^{*}(1-e)x_{1}e$.
Since $ex_{1}^{*}\langle 1-e$) $x_{1}e$ is positive and nonzero, we have $|x_{1}e|-\tau(e)^{-1/P}e$ is positive and non-
zero, which implies that $\Vert x_{1}e\Vert_{p}^{p}\neq>1$ . This contradicts the choice of $x_{1}$ , hence we have
$(1-e)x_{1}e=0$ . Similarly, $ex_{1}(1-e)=(1-e)x_{2}e=ex_{2}(1-e)=0$. If $(1-e)x_{1}(1-e)\neq 0$ , then
we have

$(1-e)x_{1}^{*}(1-e)x_{1}(1-e)=(x_{1}^{*}-\tau(e)^{-\iota/p}e)(1-e)(x_{1}-\tau(e)^{-1/P}e)$

$=x_{1}^{*}(1-e)x_{1}$ .
Thus $x_{1}^{*}(1-e)x_{1}$ is a nonzero positive operator. Hence $x_{1}x_{1}^{*}=x_{1}ex_{1}^{*}+x_{1}(1-e)x_{1}^{*}\geqq x_{1}ex_{1}^{*}$,

which implies that $\Vert x_{1}\Vert_{p}^{p}=\Vert x_{1}^{*}\Vert_{p}p\geqq\Vert x_{1}ex_{1}^{*}\Vert_{p/2}^{p/2}=\Vert ex_{1}^{*}x_{1}e\Vert_{p/2}^{p/2}=\Vert\tau(e)^{-2/P}e\Vert_{p’ 2}^{p/2}=1$ . This is a
contradiction, hence we have $(1-e)x_{1}(1-e)=0$ . Similarly, $(1-e)x_{2}(1-e)=0$ . Finally
we have $x_{1}=ex_{1}=ex_{1}e=\tau(e)^{-1/P}e=ex_{2}e=x_{2}$, and we conclude that $\tau(e)^{-1/P}e\in Ext(S)$ .

PROOF of $THEOR+M1$ . (i) It immediately follows from Lemmas 2, 3 and 4.
(ii) The first statement is precisely Lemma 3. If $x\in Ext(S_{1})$ , then, by Lemma 2,

we have that $|x|=\alpha e$ for some $\alpha>0$ , thus $1=\alpha^{p}\tau(e)$ . Conversely, suppose that $e$ is
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minimal in $M$ and that $|x|=\tau(e)^{-1/p}e$ . If there exist $x_{1},$ $y_{1}\in S_{1}$ such that $x=\frac{1}{2}(x_{1}+y_{1})$ ,

then we have $\tau(e)^{-1/p}e=\frac{1}{2}(u^{*}x_{1}+u^{*}y_{1})$ . It follows from Lemma 4 that $\tau(e)^{-1/p}e=u^{*}x_{1}$

$=u^{*}x_{1}=u^{*}y_{1}$ . Putting $f=uu^{*}$ , we have $f(x_{1}-y_{1})=0$ . Since $f$ is also minimal in $M$, and
since $x^{*}=\frac{1}{2}(x_{1}^{*}+y_{1}^{*})$ , we similarly obtain that $\tau(f)^{-1/P}f=|x^{*}|=ux_{1}^{*}=uy_{1}^{*}$ which implies
that $x_{1}u^{*}=y_{1}u^{*}=\tau(f)^{-1/P}f$. It follows that the range projection of $x_{1}$ is a subprojection
of $f$. Thus we conclude that $(1-f)x_{1}=(1-f)y_{1}=0$ , and so $x_{1}=y_{1}$ . This completes the
proof.

4. An example

In this section, we give a familiar example for $p=1$ which satisfies the same con-
sequence as the Klein-Milman’s Theorem. Let $M=B(H)$ , the set of all bounded operators
on a Hilbert space $H$, and let $\tau=Tr$, the canonical trace. Then it is well-known that
$L^{P}(B(H), Tr)$ is the trace ideal $C^{P}$ , where $C^{P}$ consists of compact operators which the
sum of p-th power of its singular number is finite. We denote by $S^{P}$ the unit ball of $C^{p}$ .
Of course, unless $H$ is finite dimensional, $S^{1}$ is not compact in the $L^{1}$-norm topology, so
that the Klein-Milman’s Theorem is not applicable.

PROPOSITION 5. $S^{1}$ is precisely the $L^{1}$-norm closure of Conv $(Ext(S^{P}))$ for all $0<p\leq 1$ .

PROOF. For two vectors $\xi,$
$\eta$ in $H$, we donote by $t_{\xi\eta}$ the operator $ t_{\xi\eta}(\zeta)=(\zeta|\eta)\xi$ . Note

that the set of all minimal projections in $B(H)$ consists of $|t_{\xi\eta}|=t_{\eta,\eta}$ , where $\xi$ and $\eta$ are
unit vectors in $H$, and note that $Tr(t_{\eta,\eta})=1$ . Hence for any $0<p\leq 1$ , it follows from
Theorem 1 that $Ext(S^{P})$ coincides with the set of all $t_{\xi,\eta}$ , where $\xi,$ $\eta\in H$ and $\Vert\xi\Vert=\Vert\eta\Vert=1$ .
Thus Conv $(Ext(S^{P}))$ is included in $S^{1}$ , because $C^{P}$ is contained in $C^{1}$ . Any $x\in S^{1}$ has
the canonical expansion $x=\Sigma_{n=1}^{\infty}\mu_{n}(x)t_{\xi_{n},\eta_{n}}$ , where $\{\xi_{n}\}$ and $\{\eta_{n}\}$ are suitable orthonor-
mal sets and $\mu_{n}(x)$ is the n-th singular number of $x$ as a compact operator (that is the n-th
large eigenvalue of $|x|$ with the multiplicity counted). Then by $\Sigma_{n=1}^{\infty}\mu_{n}(x)=\Vert x\Vert_{1}=1$ , it

is easy to see that the above expansion converges in $L^{1}$-norm. Put $x_{n}=\Sigma_{k=1}^{n}\mu_{k}(x)t\epsilon_{k,\eta_{k}}$

and $x_{n}=x_{n-1}+\sim(1-\Sigma_{k=1}^{n-1}\mu_{k}(x))t_{\xi_{n}\eta_{n}}$ , then it is clear that $ Xn\sim\in$ Conv $(Ext(S^{p}))$ . Since
$\Vert x_{n}-x_{n}\Vert_{1}=\sim\Vert(\Sigma_{k=n+1}^{\infty}\mu_{k}(x))t_{\xi_{n}\eta_{n}}\Vert_{1}=\Sigma_{k=n+1}^{\infty}\mu_{k}(x)\rightarrow 0$ as $ n\rightarrow\infty$ , we conclude that $\Vert x$

$-x_{n}\Vert_{1}\rightarrow 0$ and that $x$ is in the $L^{1}$-norm closure of Conv $(Ext(S^{P}))$ as desired.
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