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1. Introduction

In the dynamic game theory, the multiperson game model with a discount factor on
infinite horizon has been studied by many authors. The literature in this area is mostly
concerned with the noncooperative equilibrium point. Such an equilibrium point gives
the individual stability to each player, but it does not guarantee the collective stability.
Actually, in many cases, the players may find a multistrategy which will yield a smaller
total expected discounted loss if they cooperate. So, in [9], we proposed to find the D-
solution which is analogous to the domination structure for a multiobjective decision
problem.

In the paper, we introduce the distance from the total expected discounted loss con-
structed by all players to some given point as their collective loss function. All players
cooperate in choosing a multistrategy to minimize this distance. But, in general, it would
seem difficult to us to find directly such an optimal multistrategy. So, using some
weighting factor vector, we modify our game system to a new one with the loss function
weighting by this vector. Then, we develop the theory to find an optimal multistrategy,
which is called a weak optimal multistrategy in the paper, in the modified game system.
Moreover, we discuss the relation between an optimal multistrategy and a weak optimal
multistrategy in the case which there exists an optimal one in the original game system.
Finally, we show that a weak optimal stationary multistrategy in Theorem 1 is a $D$ .
solution under a domination structure determined by some convex cone D.

This paper is organized in the following way. In Section 2, we give a standard
formulation for a cooperative m-person discounted Markov game. In Section 3, we
give the necessary lemmas and definitions. In Section 4, we show the existence of a
weak optimal multistrategy and discuss the relation between an optimal multistrategy
and a weak optimal multistrategy. Finally, we show that a weak optimal multistrategy
is a D-solution.
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2. Formulation of a cooperative m-person Markov game

A cooperative m-person Markov game with a discount factor is given by a set of
$2m+3$ objects:

$(S, A^{1}, A^{2}, \ldots , A^{m}, q, r^{1},r^{2}, \ldots , r^{m}, \beta)$ , (2. 1)

where
$(i )$ $S=\{1,2, \ldots , s, \ldots\}$ is a countable set of states in the game system, namely, the

state space.
(ii) $A^{i}$ is the action space of the ith player, $i=1,2,$ $\ldots$ , $m$ . We assume that each $A^{i}$

is a compact metric space.
(iii) $q$ is a transition probability measure which governs the law of motion in the

game process, in other words, for any state $s$ and any multiaction $\overline{a}$ such that

$(s,\overline{a})=(s, a^{1}, a^{2}, \ldots , a^{m})\in S\times\prod_{i=1}^{m}A^{i}=S\times A$ , (2. 2)

there corresponds a probability measure $q(\cdot|s,\overline{a})$ defined on $S$ which decides
the transition from $s$ to a new state.

(iv) $r^{i}$ is the loss function of the ith player, $i=1,2,$ $\ldots$ , $m$ , it is a real valued func-
tion defined at $(s,\overline{a})\in S\times A$ .

(v) $\beta$ is a given discount factor, $0<\beta<1$ .
Throughout this paper, we assume that all multistrategies chosen by the players are

Markov multistrategies, that is, each multistrategy is independent of the past history in
the game process, it depends only on the present state. We denote the Markov multi-
strategy by it $=$ $(\pi^{1}, \pi^{2}, \ldots , \pi^{m})$ , where $\pi^{i}$ is a Markov strategy of the ith player and
each strategy $\pi^{j}$ is specified by a sequence of probability measures $\pi_{t}^{i}(\cdot|s_{t})$ on $(A^{i}, B(A^{i}))$

for a given state $s_{t}$ at the time $t$, where $B(A^{i})$ is the Borel field of $A^{i}$ . If each $\pi_{t}^{i}$ is in-
dependent of the time $t$, that is, $\pi_{t}^{i}=\mu^{i}$ is stationary, we write

$\pi^{i}=(\mu^{i}, \mu^{i}, \ldots\ldots)=\mu^{i}$ , (2. 3)

namely, stationary strategy. This is $\mu^{i}\in[P(A^{i})]^{S}$ . For simplicity, we write $P(A^{j})$

instead of $[P(A^{i})]^{S}$ as the stationary strategy space of the ith player. $P(A^{i})$ is the set
of all probability measures on $(A^{i}, B(A^{i}))$ . We denote by $\Pi i$ the class of all Markov
strategies of the ith player, $i=1,2,$ $\ldots$ , $m$ .

Then the Markov game process is interpreted as follows: If a Markov multistrategy
it $=$ $(\pi^{1}, \pi^{2}, \ldots , \pi^{m})$ is chosen, at the successive discrete time $t,$ $t=1,2,$ $\ldots$ , all players

observe the state of the game system and classify the state $s_{t}$ for the game process.
Then, at the present state $s_{t}$ , each player $i$ chooses an action $a_{t}^{i}\in A^{i}$ by the probability
measure $\pi_{t}^{i}(\cdot|s_{t})$ . As a sequence of the chosen $at=(a_{t}^{1}, a_{t}^{2}, \ldots , ai^{n})\in A$ at the state $s_{t}$ ,

the ith player will have loss $r^{j}$ ( $s_{t}$ , at) and then the game process moves to a new state
$s_{t+1}$ according to the transition probability measure $q(\cdot|s_{t},\overline{a}_{t})$ . After that the whole
process of the game is restarted from the state $s_{t+1}$ . So, for any initial distribution
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$p_{1}(\cdot)$ , the sequence of the states $\{s_{t}\},$ $t=1,2,$ $\ldots$ , in the game process makes a Markov
chain with the distribution $p_{t}(\cdot|\overline{\pi}),$ $t=1,2,$ $\ldots\ldots$ , which is repeatedly given by

$p_{t}(s_{t}|\overline{\pi})=_{s\prime}\sum_{\in s}q_{t-1}(s_{t}|s^{\prime},\overline{\pi})p_{t-1}(s^{\prime}|\overline{\pi})$ (2. 4)

and

$p_{1}(s_{1}|\overline{\pi})=p_{1}(s_{1})$ for all $s_{1}ES$,

where, for all $\overline{\pi}=$ $(\pi^{1}, \pi^{2}, \ldots , \pi^{m})$ , $\pi^{j}=(\pi_{1}^{i}, \pi_{2}^{i}, \ldots\ldots)$ and all $s^{\prime},$ $s\in S$,

$q_{t}(s^{\prime}|s,\overline{\pi})=\int_{A}q(s^{\prime}|s, \overline{a})d\overline{\pi}_{t}(\overline{a}|s)$ (2. 5)

and

$d\overline{\pi}_{t}(\overline{a}|s)=\prod_{i=1}^{m}d\pi_{t}^{i}(a^{j}|s)$ , (2. 6)

$\overline{a}=(a^{1}, a^{2}, \ldots, a^{m})\in A=\prod_{i=1}^{m}A^{i}$

(the probability that the chain moves from the state $s$ at time $t$ to a new state
$s^{\prime}$ at the next time).

And, the expected loss of the ith player at each time t, $t=1,2,$ $\ldots$ , is given by

$E_{\overline{\pi}}[r^{i}(s_{t}, t,\overline{\pi})]=\sum_{s_{t}}r^{i}(s_{t}, t,\overline{\pi})p_{t}(s_{t}|\overline{\pi})$ (2. 7)

where,

$r^{j}(s, t,\overline{\pi})=\int_{A}r^{i}(s,\overline{a})d\overline{\pi}_{t}(\overline{a}|s)$

(the loss of the ith player at the state $s_{t}=s$).

So, if a multistrategy $\overline{\pi}=$ $(\pi^{1}, \pi^{2}, \ldots , \pi^{m})$ is chosen, under the discount factor $\beta$ , the total
expected discounted loss of the ith player is defined by

$I^{j}(\overline{\pi})=\sum_{t=1}^{\infty}\beta^{t-1}E_{\overline{\pi}}[r^{j}(s_{t}, t,\overline{\pi})]$ (2. 8)

$=\sum_{t=1}^{\infty}\beta^{t-1}\sum_{s}r^{i}(s, t,\overline{\pi})p_{t}(s|\overline{\pi})$

$=E_{\overline{\pi}}[ \sum_{t=1}^{\infty}\beta^{t-1}r^{i}(s_{t}, t,\overline{\pi})]$ .

The vector expresion for $I^{i}(\overline{\pi})$ is given by

$I(\overline{\pi})=(I^{1}(\overline{\pi}), I^{2}(\overline{\pi}),$ $\ldots I^{m}(\overline{\pi}))$ (2. 9)

$=\sum_{t=1}^{\infty}\beta^{t-1}E_{\overline{\pi}}[r(s_{t}, t,\overline{\pi})]$ ,

where

$r(s_{t}, t,\overline{\pi})=(\ldots, r^{i}(s_{t}, t,\overline{\pi}), \ldots)_{i=1}^{m}$

In our game system, all players cooperate in choosing a multistrategy it to minimize
the distance from $I(\overline{\pi})$ to some given point $z\in R^{m}$ . This means that no other multi-
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strategy yields a smaller total expected discounted loss in the sense of the distance from
the point 2. In other words, for the given point $z=(z^{1}, z^{2}, \ldots , z^{m})\in R^{m}$ , the players make
a collective loss function

$\Vert I(\overline{\pi})-z\Vert=\sqrt{\sum_{i1}^{m}|I^{i}(\overline{\pi})-z^{i}|^{2}}=$ (2. 10)

in which they wish to find an optimal multistrategy to minimize (2. 10) over $\overline{\pi}\in\Pi$

$=\prod_{i=1}^{m}\Pi i$ . But, in general, it is difficult to find an optimal multistrategy. So, we would

develop the discussion to find a weighting factor $d_{*}$ and a multistrategy $\overline{\pi}^{*}$ such that

$\inf_{l}\Vert I(\overline{\pi})-z\Vert=\max_{||d||\leqq 1}m_{\frac{i}{\pi}}n[<d, I(\overline{\pi})>-<d, z>]$ (2. 11)

$=<d_{*},$ $I(\overline{\pi}^{*})>-<d_{*},$ $z>$ ,

where, in $(2. 11),$ $<\cdot,$ $.$ >denotes the inner product.

3. Preliminary lemmas in the game system

In order to prove the necessary lemmas in the game system, we need an assumption
on the convexity of the set of all total expected discounted multiloss. So, we introduce
a notation as follows

$K=$ { $I(\overline{\pi})$ for all $\overline{\pi}\in\prod_{i=1}^{m}\Pi^{;}=\Pi$ }. (3. 1)

and impose the following assumption on the set $K$

(A1) $K$ is a convex subset in $R^{m}$ , that is, for all $\overline{\pi}_{1},\overline{\pi}_{2}\in\Pi$ and all $\alpha,$ $0<\alpha<1$

$aI(\overline{\pi}_{1})+(1-a)I(\overline{\pi}_{2})\in K$.
For the set $K$, the function $\delta(d|K)=\inf_{\overline{\pi}}<d,$

$I(\overline{\pi})>$ defined on $R^{m}$ is said to be the

support function of $K$.
LEMMA 1. If the distance $\rho_{0}$ from the origin to $K$ is positive under (A1), then

$\rho_{0}=\inf_{l}\Vert I(\overline{\pi})\Vert=\max_{||d||\leqq 1}\delta(d|K)$ , (3. 2)

where the maximum on the right side of (3. 2) is attained by some $d_{*}\in R^{m},$ $\Vert d_{*}\Vert=1$ , that is,

$\rho_{0}=\delta(d_{*}|K)$ .
PROOF. In order to show that $\rho_{0}\geqq\delta(d|K)$ for all $d\in R^{m},$ $\Vert d\Vert\leqq 1$ , we may limit to

those $d’ s$ which render the support function $\delta(d|K)$ positive. If $\delta(d|K)>0$ , the half-
space $H_{+}$

$H+=\{x\in R^{m}|<d, x>\geqq\delta(d|K)\}\supset K$.
$AndO\oplus H+becauseof<d,$ $0>=0$ . So, sinceK is convex, the hyperplane H

$H=\{x\in R^{m}|<d, x>=\delta(d|K)\}$

separates $K$ and the origin $0$ . Now, let $S(\epsilon)$ be an open sphere with radius $\epsilon>0$ centered
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at $0$ . For any $d\in R^{m},$ $\Vert d\Vert\leqq 1$ , having $\delta(d|K)>0$ , let $\epsilon^{*}$ be the supremum of those $\epsilon’ s$

for which the hyperplane $H$ separates $K$ and $S(\epsilon)$ . Then, $0\leqq\epsilon^{*}\leqq\rho_{0}$ , and $\delta(d|K)$

$=\sup_{||x||<\epsilon^{*}}<d,$
$x>\leqq\epsilon^{*}$ . Thus, for every $d\in R^{m},$ $\Vert d\Vert\leqq 1$ , we have $\delta(d|K)\leqq\rho_{0}$ .

On the other hand, since $ K\cap S(\rho_{0})=\phi$ , there is a hyperplane separating $S(\rho_{0})$ and $K$.
Therefore, there is a $d_{*}\in R^{m},$ $\Vert d_{*}\Vert=1$ , such that $\delta(d_{*}|K)=\rho_{0}$ , that is,

$\max_{||d||\leqq 1}\delta(d|K)=\delta(d_{*}|K)=\rho_{0}$ .
Whence the proof is completed.

LEMMA 2. If the distance $\rho_{1}$ from the given point $z\in R^{m},$ $z\neq 0$ , to $K$ is positive under
(A1), then

$\rho_{1}=\inf_{\overline{\pi}}\Vert I(\overline{\pi})-z\Vert=\max_{||d||\leqq 1}[\delta(d|K)-<d, z>]$ , (3. 3)

where the maximum on the right side of (3. 3) is attained by some $d_{*}\in R^{m},$ $\Vert d_{*}\Vert=1$ .
PROOF. Putting $K^{\prime}=K-z,$ $K^{\prime}$ is a convex set in $R^{m}$ according to (A1). So, from

Lemma 1, it follows that

$\rho_{1}=\inf_{x\in K^{\prime}}\Vert x\Vert=\max_{||d||\leqq 1}\delta(d|K^{\prime})$ (3. 4)

$=\delta(d_{*}|K^{\prime}),$ $\Vert d_{*}\Vert=1$ .
Then, (3. 4) can be rewritten as follows

$\rho_{1}=\inf_{\overline{\pi}\in\Pi}\Vert I(\overline{\pi})-z\Vert=\max_{||d||\leqq 1}$ $[ \inf_{\overline{\pi}\in\Pi}<d, I(\overline{\pi})-z>]$

$=\max_{||d||\leqq 1}[\delta(d|K)-<d, z>]$

$=\delta(d_{*}|K)-<d_{*},$ $z>$ .
Thus, this completes the proof.

Now, it is necessary to introduce the definitions of an optimal multistrategy and
a weak optimal multistrategy.

DEFINITION 1. A multistrategy $\overline{\pi}^{*}$ is called an optimal multistrategy for the point $z$

in the game system if $\overline{\pi}^{*}$ satisPes

$\Vert I(\overline{\pi}^{*})-z\Vert\leqq\Vert I(\overline{\pi})-z\Vert$ for all $\overline{\pi}\in\Pi$ .
DEFINITION 2. A multistrategy $\overline{\pi}^{*}$ is called a weak optimal multistrategy for the

point $z$ (with respect to a weighting factor d) if $\overline{\pi}^{*}$ satisfies

$\inf_{\overline{\pi}}\Vert I(\overline{\pi})-z\Vert=<\overline{d},$
$I(\overline{\pi}^{*})>-<\overline{d},$ $z>$ .

4. The existence of a weak optimal multistrategy in the game system

In this game system, we assume that each player uses the stationary multistrategy
so that the stationary multistrategy is specified as a multiprobability measure:

$\overline{\mu}=(\mu^{1}, \mu^{2}, \ldots, \mu^{m})\in\prod_{i=1}^{m}P(A^{i})=P(A)$
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which is depending on the state. For this stationary mulistrategy $\overline{\mu}$ and the state $s$, we
may write the loss function of the ith player and the transition probability measure as
follows

$r^{i}(s,\overline{\mu})=\int_{A}r^{i}(s,\overline{a})d\overline{\mu}(\overline{a}|s)$ (4. 1)

and

$q(\cdot|s,\overline{\mu})=\int_{A}q(\cdot|s,\overline{a})d\overline{\mu}(\overline{a}|s)$ , (4.2)

where

$a\in\prod_{i=1}^{m}A^{i}=A$ and $d\overline{\mu}(\overline{a}|s)=\prod_{i=1}^{m}d\mu^{j}(a^{j}|s)$ .
Since we have assumed that each $A^{i}$ is a compact metric space, it is separable and

so $C(A^{i})$ , the space of all continuous functions on $A^{i}$ , is a separable Banach space with
the supnorm. The dual space $C(A^{i})^{*}=M(A^{i}, B(A^{j}))$ of $C(A^{i})$ is a bounded regular
measure space, so that the probability measure space $P(A^{i})$ in $C(At)^{*}$ is weak* com-
pact. Since $C(A^{i})^{*}$ is separable, the unit sphere $P(A^{i})$ in $C(A^{j})^{*}$ is weak* compact

metrizable subspace, it follows that $P(A)=\prod_{i=1}^{m}P(A^{i})$ is weak* compact metrizable sub-

space in $C(A)^{*}$, where $C(A)=\prod_{i=1}^{m}C(A^{i})$ .

In order to prove main results in the game system (2. 1), we need some additional
assumptions on $q$ and $r^{i},$ $i=1,2,$ $\ldots$ , $m$ .

(A2) Let $q(s^{\prime}|s,\overline{a})$ be continuous function on $\overline{a}\in A$ for every $(s^{\prime}, s)\in S\times S$.
(A3) The loss function $r^{i}(s,\overline{a})$ of the ith player is bounded on Sx $A$ and is continu-

ous on $A$ for every $ s\in$ S.
Then, we would show that there exists a weak optimal multistrategy which minimizes
the distance $\rho_{0}$ from the origin to K. From Lemma 1, it is sufficient to find an optimal
multistrategy of the total expected discounted numerical loss function $<d_{*},$ $I(\overline{\pi})>$

weighting by the factor $d_{*}$ on $\Pi$ . And, from (2. 9), this numerical loss function can be
rewritten as

$<d_{*},$ $I(\overline{\pi})>=\sum_{i=1}^{m}d_{*}^{i}I^{i}(\overline{\pi})$ , $d_{*}=(d_{*}^{1}, d_{*}^{2}, \ldots, d_{*}^{m})$ (4. 3)

$=\sum_{i=1}^{m}d_{*}^{i}\sum_{t=1}^{\infty}\beta^{t-1}\sum_{s}r^{i}(s, t,\overline{\pi})p_{t}(s|\overline{\pi})$

$=\sum_{t=1}^{\infty}\beta^{t-1}E_{\overline{\pi}}$ [ $<d_{*},$ $r$ ( $s_{t},$
$t$ , it) $>$].

So we modify our game system (2. 1) to one with the numerical loss function

$(S, A, q, <d_{*}, r>, \beta)$ , (4. 4)

where
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$A=\prod_{i=1}^{m}A^{j}$ and $<d_{*},$ $r>=\sum_{i=1}^{m}d_{*}^{i}r^{j}$ .

In the new game system, the form of the collective function is different from the original
game system (2. 1) and, from (A2) and (A3), $<d_{*},$ $\gamma>is$ a bounded and continuous loss
function on $S\times A$ .

Let $C(S)$ be the set of all bounded (continuous) real valued function on the count-
able state space S. Then, for a weighting factor $d_{*}$ in Lemma 1, we dePne an operator
$T_{0}$ on $C(S)$ by

$T_{0}u(s)=\min_{\overline{\mu}\in P(A)}[<d_{*}, r(s,\overline{\mu})>+\beta\sum_{S^{r}}u(s^{\prime})q(s^{\prime}|s,\overline{\mu})]$ , (4. 5)

where

$P(A)=\prod_{i=1}^{m}P(A^{j})$

and

$<d_{*},$ $r(s,\overline{\mu})>=\sum_{i=1}^{m}d_{*}^{i}r^{i}(s,\overline{\mu})=\int_{A}\sum_{i=1}^{m}d_{*}^{i}r^{j}(s,\overline{a})d\overline{\mu}(\overline{a}|s)$ .

Evidently, $T_{0}u(s)\in C(S)$ whenever $uEC(S)$ . For simplicity, we let

$L(\overline{\mu})u(s)=<d_{*},$ $r(s,\overline{\mu})>+\beta\sum_{S^{J}}u(s^{\prime})q(s^{\prime}|s,\overline{\mu})$ . (4. 6)

Thus, the expression of (4. 5) can be rewritten by

$T_{0}u(s)=\min_{\overline{\mu}\in P(A)}L(\overline{\mu})u(s)$ .
In our discussion, it is important that $T_{0}$ is a contraction operator on $C(S)$ .

THEOREM 1. Suppose that the game system (2. 1) satisfies Assumptions (A1), (A2) and
(A3). Then, if the distance $\rho_{0}$ from the origin to $K$ is positive, there exisls a weak optimal
stationary mullistrategy $\overline{\mu}^{*}\in\Pi$ with respect to a weighting factor $d_{*}$ such that

$\rho_{0}=\inf_{\overline{\pi}}\Vert I(\overline{\pi})\Vert=\max_{||d||\leqq 1}\delta(d|K)$
(4. 7)

$=<d_{*},$ $I(\overline{\mu}^{*})>$ ,

where $\delta(d|K)$ is the support function of $K$.
If the infimum in the left side in (4. 7) is attained by some multistrategy $\overline{\pi}_{0}$, that is, $an$

optimal multistrategy, then,

$\rho_{0}=\Vert I(\overline{\pi}_{0})\Vert=<d_{*},$ $I(\overline{\mu}^{*})>=<d_{*},$ $I(\overline{\pi}_{0})>$ . (4. 8)

PROOF. By Lemma 1, (4. 7) can be rewritten as

$\rho_{0}=\inf_{\overline{\pi}}\Vert I(\overline{\pi})\Vert=\max_{||d||\leqq 1}\delta(d|K)$

$=\delta(d_{*}|K)$

$=\inf_{\pi}<d_{*},$
$I(\overline{\pi})>$ .

So, we would find a weak optimal multistrategy to minimize $<d_{*},$ $ I(\overline{\pi})>on\Pi$ . The
operator $T_{0}$ defined by (4. 5) is a contraction operator on $C(S)$ because of the discount
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factor $\beta,$ $0<\beta<1$ . Since $C(S)$ is a Banach space with supnorm, it follows that $T_{0}$ has a
unique fixed point in $C(S)$ , say $u^{*}$, then for each $s\in S$ we have

$u^{*}(s)=T_{0}u^{*}(s)=m_{\frac{i}{\mu}}nL(\overline{\mu})u^{*}(s)$ . (4.9)

Moreover, since $L(\overline{\mu})u(s)$ is continuous on the compact set $P(A)$ by (A2) and (A3), the
minimum of (4. 9) is attained by a stationary multistrategy $\overline{\mu}^{*}$, whence for each $s\in S$

$u^{*}(s)=L(\overline{\mu}^{*})u^{*}(s)$ (4. 10)

$\leqq L(\overline{\mu})u^{*}(s)$ for all $\overline{\mu}\in P(A)$ .
Consequently, from the iterative substitution for $u^{*}$ in the first equation of (4. 10), we
obtain

$u^{*}(s)=<d_{*},$ $I(\overline{\mu}^{*})(s)>$ for all initial state $s\in S$.
On the other hand, using a similar argument to the inequality of (4. 10), we obtain

$u^{*}(s)\leqq<d_{*},$ $I(\overline{\pi})(s)>$ for all initial state $s\in S$.
These iterative methods are given, in detail, in the proof of Theorem 4. 1 in [9]. Since,
for any probability measure $p\in P(S)$ ,

$\sum_{s}<d_{*}$, I(it) $(s)>p(s)=<d_{*}$, I(it) $>$ ,

we have

$<d_{*},$ $I(\overline{\mu}^{*})>\leqq<d_{*},$ $I(\overline{\pi})>$ for all $\overline{\pi}\in\Pi$ .
To prove (4. 8), suppose that $\overline{\pi}_{0}$ is an optimal multistrategy such that

$\rho_{0}=\Vert I(\overline{\pi}_{0})\Vert=\inf_{\overline{\pi}}\Vert I(\overline{\pi})\Vert$ .
Since $I(\overline{\pi}_{0})\in K$, we have

$<d_{*},$
$I(\overline{\pi}_{0})>\geqq\inf_{\overline{\pi}}<d_{*},$

$I(\overline{\pi})>$ (4. 11)

$=<d_{*},$ $I(\overline{\mu}^{*})>=\inf_{\overline{\pi}}\Vert I(\overline{\pi})\Vert=\rho_{0}$.
However, since $\Vert d_{*}\Vert\leqq 1$ , we have

$<d_{*},$ $ I(\overline{\pi}_{0})>\leqq\Vert d_{*}\Vert\Vert I(\overline{\pi}_{0})\Vert$ (4. 12)

$\leqq\inf_{\overline{\pi}}\Vert I(\overline{\pi})\Vert=<d_{*},$
$I(\overline{\mu}^{*})>=\rho_{0}$.

So, from (4. 11) and (4. 12), we obtain (4. 8). Whence, the proof is completed.
Now, in order to find a weak optimal multistrategy which minimizes the distance $\rho_{1}$

from the given point $z\neq 0$ to $K$. From Lemma 2, we would find an optimal multi-
strategy $\overline{\pi}^{*}$ of the total expected discounted numerical loss function $<d_{*},$ $I(\overline{\pi})-z>$ on
$\Pi$ . And, this numerical loss function can be rewritten as

$<d_{*},I(\overline{\pi})-z>=<d_{*},$ $I(\overline{\pi})>-<d_{*},$ $z>$ (4. 13)
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$=\sum_{t=1}^{\infty}\beta^{t-1}\sum_{s}p_{t}(s|\overline{\pi})[<d_{*}, r(s, t,\overline{\pi})-(1-\beta)z>]$

$=\sum_{t=1}^{\infty}\beta^{t-1}E_{\overline{\pi}}[<d_{*}, r(s, t,\overline{\pi})-(1-\beta)z>]$ .

So, we modify game system (2. 1) to one with the collective loss function

$(S, A, q, <d_{*}, r-(1-\beta)z>, \beta)$ . (4. 14)

Then, for a weighting factor $d_{*}$ in Lemma 2, we define an operator $T_{1}$ on $C(S)$ by

$T_{1}u(s)=\min_{\overline{\mu}\in P(A)}[<d_{*}, r-(1-\beta)z>+\beta\sum_{S^{\prime}}u(s^{\prime})q(s^{\prime}|s,\overline{\mu})]$ .
Using a similar argument to the proof of Theorem 1 with the operator $T_{1}$ instead of $T_{0}$ ,

we can prove the following theorem.
THEOREM 2. Suppose that the game system (2. 1) satisfies Assumptions (A1), (A2) and

(A3). Then, if the distance $\rho_{1}$ from a given point $z\neq 0$ to $K$ is positive, there exists a weak
optimal stationary multistrategy $\overline{\mu}^{*}with$ respect to a weighting factor $d_{*}such$ that

$\rho_{1}=\inf_{\pi}\Vert I(\overline{\pi})-z\Vert=\max_{||d||\leqq 1}[\delta(d|K)-<d, z>]$

$=\delta(d_{*}|K)-<d_{*},$ $z>$ .

If there exists an optimal multistrategy $\overline{\pi}_{1}^{*}$ in the game system (4. 14), then

$\rho_{1}=\Vert I(\overline{\pi}_{1}^{*})-z\Vert=<d_{*},$ $I(\overline{\mu}^{*})-z>$

$=<d_{*},$ $I(\overline{\pi}_{1}^{*})-z>$ .

5. The relation between a D-solution and a weak optimal multistrategy in the game
system

In order to show that a weak optimal stationary multistrategy in Theorem 1 is a
D-solution under a domination structure determined by some convex cone $D$ , we need
the concept of convex cone.

A subset $F$ in $R^{m}$ is said to be a cone with vertex at the origin $0$ if $\chi\in F$ implies
that $\lambda x\in F$ for all $\lambda\geqq 0$ . A convex cone is, of course, defined as a set which is both con-
vex and cone.

Now, in this section, consider a subset $L\subset R^{m}$ such that
$(i)$ $L\ni 0$

(ii) $L+=$ { $y\in R^{m}|<x,$ $y>>0$ for all $x\in L$ } $\neq\phi$

(iii) $L\cup\{0\}=D$ is a convex cone with vertex at the origin $0$ , where $<\cdot,$ $>$

denotes the inner product.

Note that this $L$ is a convex cone without the vertex $0$ in $R^{m}$ .
DEFINITION 3. A multistrategy $\overline{\pi}^{*}$ is a D-solution if there is no other multistrategy

$\overline{\pi}\in\Pi$ such that

$I(\overline{\pi}^{*})\in I(\overline{\pi})+L$. (5. 1)
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REMARK. For a given closed convex cone $F$ in $R^{m}$ , if $L=intF$ (resp. $L=F-\{0\}$ ),

the multistrategy $\overline{\pi}^{*}$ in (5. 1) is usually said to be a F-weak solution (resp. F-strong
solution), where intF denotes the interior of the set $F$. See Part II in Aubin [1] for the
concepts of a weak Pareto solution and a strong Pareto solution in a game system.

Now, in Theorem 1, under Assumptions (A1), (A2), (A3) and $\rho_{0}>0$ , we show that
there exists a weak optimal stationary multistrategy $\overline{\mu}^{*}\in\Pi$ with respect to a weighting
factor $d_{*}$ such that

$\rho_{0}=\inf_{\overline{\pi}}\Vert I(\overline{\pi})\Vert=\delta(d_{*}|K)=<d_{*},I(\overline{\mu}^{*})>$ , (5. 2)

where $\delta(d_{*}|K)$ is the support function of $K$.
Then, for a weighting factor $d_{*}$ and a weak optimal multistrategy $\overline{\mu}^{*}$ in Theorem 1,

we can prove the following theorem.
THEOREM 3. For a weighting factor $d_{*}$ and a weak optimal stationary multistrategy

$\overline{\mu}^{*}$ in Theorem 1, if $d_{*}\in L+$ , the multistrategy $\overline{\mu}^{*}$ is aD-solution.
PROOF. Suppose that $\overline{\mu}^{*}$ is not $D\cdot solution$ . Then, from (5. 1), there is a ii $\in\Pi$ such

that

$I(\overline{\pi}^{*})\in I(\overline{\pi})+L$,

that is, there exists $\overline{d}\in L$ such that

$I(\overline{\pi}^{*})=I(\overline{\pi})+\overline{d}$. (5. 3)

Taking an inner product on both sides of (5. 3) with the weighting factor $d_{*}\in L+$ ,
we obtain an inequality

$<d_{*},I(\overline{\pi})><<d_{*},$ $I(\overline{\mu}^{*})>$ .
This contradicts to the fact that

$\delta(d_{*}|K)=<d_{*},$ $I(\overline{\mu}^{*})>$

and the proof is completed.
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