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Introduction

In [6], as a special case of Theorem 1, the author proved the following:

Let Q be an even integral quadratic form of signature (2, q) with level N, let D be the
symmetric domain attached to Q, and let I'Q be the group of proper units for Q. Then there
are elliptic cusp forms of weight 2+ q)/2 with respect to a certain congruence subgroup of
level N, whose Fourier coefficients are period integrals of holomorphic q-forms on the modu-
lar variety I'Q\D.

In this note, we prove a variant of the Siegel formula, which fits in with the above
result:

There is an Eisenstein series of level N of weight (2+q)/2, whose Fourier coefficients
%, %) type differential form on I'Q\D.

Though our result is substantially a paraphrase of the result of Siegel [10], the

are period integrals of a certain (

author believes that there is some meaning to write it in this form, if one is interested
in the Hodge components of the dual cocycles of certain cycles I";\X ¢ of I'Q\D obtained
by embedding (cf. [5]).

Notation

Z is the ring of integers, and Q (resp. R, resp. C) is the field of the rational (resp.
real, resp. complex) numbers. Throughout in this paper, # denotes the number of the
variables of a quadratic form @, SO(Q) the special orthogonal group for @ over the real
number field and G the connected component of the identity of it. We write by D the
symmetric space G/K, where K is a maximal compact subgroup of G. If @ is of signa-
ture 2+, g—) (2+g=mn), then D has a G-invariant complex structure.

§1 Geometric Preliminaries

1.1 G-invaeriant forms on D

Let G be SOy(2, ¢) and K a maximal compact subgroup of G. Denote by g and f, the
Lie algebras of G and K, respectively. Let g=f®p be a Cartan decomposition of p, and
let ko be an element of the center of K such that /=ad(k,)|p defines the complex structure
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on p. Let pt be the eigenspaces with respect to J in pc =p@rC with eigenvalues +v/—1,
respectively.

Let us consider the bigraded relative cohomology H?-a(g, f: C) of ¢ mod f, with
coefficients in a trivial g-molule C (cf. [2], Chap. I § 1, and Chap. II §2).

Then the space of G-invariant (p, ¢) type differential forms on the Hermitian sym-
metric domain D=G/K, is isomorphic to H?:4(g, t; C) (cf. [2], Chap.I § 1.6). Consider-
ing similarly for the compact dual g¢ of g defined by

ge=tPV—1),
and noting a natural isomorphism
Hp-a(g, t; C)—> Hp-a(ge, ; ©),

we can show that the space of G-invariant (p, q) type differential forms on D, is isomor-
phic to the space of Ge—invariant (p, q) type differential forms on the compact Hermitian
symmetric space V=G¢/K, where G¢ is the compact dual of G. Moreover, by the the-
orem of de Rham, the latter space is isomorphic to the (p, ¢) type cohomology group
H?1-a(V') of the projective variety V.

Since V is a complex quadric in our case, a result of Cartan [3] shows the following
proposition.

ProposiTION (1. 1).

There exists (1, 1) type G-invariant real form w on D, which is unique up to constant
multiple. Moreover if we put q=2Kk, there exist two linearly independent G—-invariant real
(B, B) type forms & and n on D, such that

e=Fw, pp=(—1kE & and £ . 7=0.
1.2 Totally real submanifolds X,

Let @ be a real quadratic form on Lg =R", of signature 2+, ¢g—) with g=n—2, and
let G be the connected component of the identity in the real orthogonal group SO(Q).

Let o, &, and 7 be the differential forms on D=G/K obtained by Proposition (1. 1) of
the previous section. Let £ be an element of Lg with Q(£)>0. Put G, = {gEG|g(h)=4¢}.
Then, by the theorem of Witt, G; is isomorphic to SOy(1, q) for any ¢ with Q(£)>0.
Choose a point x of D, and define X, as G, -orbit of x: X, =G, (x). Let Kx be the iso-
tropy subgroup of G at x. Then

Xi =Gy |Gy NKx == S0(1, 9)/SO(g).

Hence X, is also a symmetric space of BD type of real dimension gq.
LemMma (1. 2).
Restrict o, &, and n 1o X,. Then we have

o|x¢ =0, accordingly  §|x, =0,

and 7| x4 is an everywhere non-vanishing Gg-invariant q-form on X,. Especially n|x,
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defines a Gy—invariant measure on Xg.

Proor. Evidently, the G-invariance of o, & and 7 implies the G,—-invariance of
w|xy,&lxe,and 5| x,, respectively. Therefore it suffices to show the vanishing or non-
vanishing of w|x,, §|x,, and 7| x, at one point x of D.

Fix a maximal compact subgroup K of G. Let p, and £, be the Lie algebras of Gy
and G, NK, respectively. It is easy to check that there exist Cartan decompositions:

ge=%t,Ppy, and g=1Dyp,
such that f,Cfand g, Cp. And we can easily verify that

peUJpe=1{0},and p,DJps =1,

for the complex structure J (cf. [4], pp. 238-239, and 527). Therefore X, is a totally real
submanifold. Namely X, is defined in D, locally by the equations:

Im x1=0, ..... , Im Zq:(),

where (24, ..... , 2¢) is a holomorphic local coordinate at a point x&X, of D.

Take a basis of pj; and ist conjugate basis of p; , such that with respect to these
bases the action of the factor SO(g) of K ~x SO(2)xSO(g) is given by the standard one,
and the action of the SO(2) factor of K is given by multiplication by exp (if) (& R).

Let {dzy,..... , dzq} be a basis of the holomorphic cotangent space of D at x, corres-
ponding to the dual basis of the above basis of p} by means of the natural identification
of p{ with the holomorphic tangent space at . Then o is represented locally at x by

w=(a real number)x/ =1 {dzy~dz1+ ... +d2q~d2q}.

Along X, we have dz;=dz,. ..., dzg—=dzq, because X, is totally real. Hence w|x,; =0
at x, and accordingly over all X,. Consequently, é|x; =%w|x; =%(0|x,)=0. Itis
easy to show that a local presentation of 7 is given by

n=(a real number) X N wrydzr~dzj,
wy=1.....q,
Inj=¢
where the summation runs over all partitions of the set {1,..., ¢} into two ordered sub-
sets [ and J with cardinality %:k, and dz;j (resp. dzy) is defined by
dzr=dzi; ~dzis . . . ~dziy, (vesp. dz;=dzj, ~d2js. .. ~AZjr)
for I=(iy, i, ... ix)resp. J=(j1, Jo,--.,Jk)). Moreover w;;=sgn il’ T ’E’kk}{;l’ T ']’-kq is

the signature of permutation. (See [3].) We can choose a local coordinate {x, %, ... .,
xq) of X, such that dzi=dzi=dxi(i=1,...,q). Hence

»=(an non-zero real number) X dx; ~dxs... ~dxq#0,

which completes the proof of the lemma.
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REMARk (1.3). Put 'y =19MNGy.
n|x, is G¢-invariant, and a fortiori I' 4-invariant. Thus an integral

{7

Fg\X,

is defined. On the other hand, the groups G; and G, N K are unimodular, because G, is
semisimple and G, NK is compact. Therefore there exists a G,-invariant measure on
X4, which is unique up to constant multiple. Accordingly, it is a constant multiple of
the measure which is obtained by means of the differential form »|x,. Thus

{7

£\ ¢

is a constant multiple of the volume of I";\X, with respect to a G, -invariant measure,
which is known to be finite (cf. Siegel [13], for example).
§ 2 The main result

Let Q be an even integral quadratic form on L=Z", with signature 2+, 2k—) (n=
242k, and k=1). And when k=1, we assume that @ is not a kernel form. Let % be an
element of L*, the dual latlice of L. For any rational number r=a/b with (¢, b)=1 and
b>0, we put

r(r)=i0"R |det Q|12p—"2 > exp [7iQ(4+A)].
¢ €BL/L

Let M (I'(N)) be the space of elliptic cusp forms of weight w with respect to the princi-
pal congruence subgroup I'(N), and let Mw(I"¢(N), (—Ai)) be the space of elliptic cusp
forms of weight w with respect to I"y(N) with the multiplicator (A—Q). Then we have

the following theorem
THEOREM (Siegel formula).
For any point z of the complex upper half plane H, we have

E%u(s i=dtcln) 3§ {7} expriQe)2]
¢E€L*modr,, \Z,

¢£=hmod L, Q(£)>0r4

=08n+ 2rr(rz—r)—""2

And E®,1,(2; h) defined by this equality belongs to My (I"(N)), where N is the level of Q.
Especially when h& L, the Eisenstein series E°,+1(2; 0) belongs to Mp (I o(N), (ﬂ?— ).

Here the summation is taken over all rational numbers r. (When n=4, the sun of r’'s with
fixed denominator is considered first, and next we move denominators.) The number c() is
a constant depending only on v, 8h=1 or 0, according as h & L or heE L.
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2. 1. Weil Representation.

First we re call basic facts on Weil representation (cf. Weil [14])

Let @ be a quadratic form defined over R”, of signature (p+, ¢g—). We assume that
q is even, and for simplicity that p is also even. Then # is even.

Since # is even, in view of the results of Saito [7] on a trivialization of projective
Weil representation of SL,(R), we can define a representation wg of SL,(R) on the
Schwartz-Bruhat space S(R") over R” as follows.

For any f of S(R"), we put

twe((§ 2.)) £ 1w)=a2 f(a) (@ER*, xER")

a-1
we((§ §))f1w=exp riQxp1/(x)  GER),

twe((_Y 3)) 710 =iv=0r2idet Q|2 { exp [2ri(x, )o1 F5)dy,
Rn
where dy is the usual Lebesgue measure on R”, and (%, ¥)¢ is a symmetric bilinear form
associated to @ defined by
_1 _lopn—1
(%, 9)o= B Q(x+y) 2 Q%) 2 QW)
for any x, yER",
Moreover, if ¢#0, we have
[wQ«Z 3 )f](x)=(— 1) P—D2(sgn ¢)p—D72|c|~"/2|det Q|12
 { exp [7i (ac1Q(x)—271(%, 9)o -+ dQUN 1 F()dy
Rn

2.2. Poisson summation formula
We fix a quadratic form @ on L= 2" with values in even integers 2Z, of signature

(p+, ¢g—). Put L=2" and
L*={h&Q"|(h, [)o=Z for all I&Z"}.

Then L is a subgroup of finite index in L*.
Let % be an element of L*., Then we put

6((f, b= 3} f(4+h)
FEL
for any function fES(R"). Especially when A& L, we write
0(f)= 2 f(8).
(EL

ProrosiTiON (2. 1).

(i) Forany T=(Z S)ESLz(Z), we have
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0(w0 (T)f, h):KEZL'/LC(k’ k)T 0(f7 k);

where c(h, k); is a constant given by
Ok, ana™? exp [wiabQ(h)], if ¢=0,

(—D)®=D2(sgn c)»~0/2|det Q|71/2| c| =2
> exp [mi{ac QUh+n—2c71(ht7, K)o+c1dQUR) 1, ifc+0.

r€L/c

Here 0y, % is the Kronecker delta function defined on L*|L.
(ii) Let N be the level of Q. Namely, N is the least positive integer such that NQ~1 is also
a quadratic form on L* with values in even integers (especially we have NL*CL).

Then for r=(‘; ¢ )ESLZ(Z) with c=0 mod N,

c(h, k)r={

3, a;.(é'a@) explriabQ(k)], if d>>0,

hy, k)=
ek, B)r {ak, ,,h(—1)s(i’9_ exp[riabQ(h)], if d<0.

Here s=(p—q)/2, de=(—1)"2|det Q| =(—1)""2 det Q, and (—4,'?—) is the Jacobi symbol.

Proor. The part (i) is identical with the part (i) of Proposition 1.6 of Shintani [9].
(Note that our c(4, k), is different from c(4, k)r of [9].) So we omit the proof.

Now we show the part (ii). Following the argument of [9], we can check that
c(h, B);=0 if kah mod L. Let us calculate c(4, k);. Put k=ah, and assume c#0. Then,
in view of ad—bc=1, we have

ac1Q(h+1r)—2c71(h+7, R+ c~1dQ(k)=ac1Q(r)+abQ(h).

Therefore, the formula of c(4, k), of the part (i) reads

c(h, ah);=(—1) (sign c)°|det Q|712|c|™2 3} expl[riabQ(h)] exp[ﬂi{{a}Q(r)}].
rEL/cL r€LicL c

By the reciprocity law of Gaussian sum (Satz 2 of Siegel [12]),

(—i) (sgnc)’|det Q] ~12|c|="/2 3} exp [ni{f—Q(r)}]
re€LlcL c

— |det Q| ~'(sgna)la]-"2 3 exp [ni{—iQ—l(r)}j.
r€L7aQL a
Here Q of L/aQL is a matrix representing the bilinear form (,)e.
Since (a, N)=(a, detQ)=1, we can write r=Qr,+ar, with »,&L/aL and r,&L/QL.
Therefore the last sum of the above formula is reduced to
5 expri(—$)Qu] N explri(—a)Q@ir)),
r €L/aL a 7, EL/QL

which is equal to
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jdet@] 31 exp[mi(—£)Q0m)].

7 IGL/aL

because cQ1(r,) is even integer by the assumption Njc.

Thus

c(h, ah)r=_sgn a)’la|="2 >} exp{m’(———c— Q)(rl) ]
rIEL/aL a

A standard calculation of the last Gaussian sum shows the part (ii) of the proposition.
2. 3. Intertwining property of certain test functions

Let @ be the quadratic form considered in the previous section. Let R be a minimal
majorant of Hermite of @ We denote by H (resp. H-) the complex upper (resp. lower)
half plane. For any points z&H and {&H—, we define a function f(x; 2, {; @, R)of
S(R™) by

f(x;2,; @ R)y=exp [m’{Q(x) Z;C +R(x)—z—g—c—}].

where x&R”. Then f has the following intertwining property.
ProposiTION (2. 2).

For any gz(f 3)ESL2(R),

[we(£)f1(x; 2 C; @ R)=(ca+d)=p/2(cl+dy—of(x; LEL, LD g ),

Proor. First, note that it suffices to check this for the generators of SL,(R).
For (g 2_1) and ( é [i , the equality of our proposition follows immediately from
the definition of wg. Let us discuss the case (_ (1) % 3

Both sides are holomorphic in z and {. Therefore it suffices to show our equality
when z=iy and {=—iv (y, v>>0). Moreover, by applying a linear transformation on the
variables ¥, we may assume that

Q(x)=x2+x3+... x%——xfbﬂ— e — X5,
and

R(x)=2+23+ ... +254+25,+ ... +44.

Then

f(x; 2, Q Ry=expl—n{ 3 #t)y—=( 31 1)0].

=

In this case, the formula in question is well-known.

2. 4. Theta transformation formulae
Let @ be a quadratic form given in Section 2. 2, and let R be a minimal majorant of
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Q. For z&H, and A= L*/L, we put

0(z; Q, R;h)=e LZ f4;2,2z;Q R)

e
£=hmod L

=, 3 ew[r{awsErreigty]
¢=hmod L

Since f(x; 2, z; Q, R) belongs to S(R") as a function in #, 6(2; @, R; &) converges absolu-
tely on any compact subset of H.

Combining Proposition (2. 1) with Proposition (2. 2), we have the following proposi-
tion.

ProrosiTION (2. 3). (i) For any r:(‘cz 3) & SLy(Z), we have
az+tb. - h)= /2 /2 . .
0(%ZEL; Q B; h)=(catdypa(catdy I <(h By 6(z; Q, R B)

where c(h, k), is a constant depending only on h, k, and v, which is defined in Proposition (2.
1.
(ii) Especially when h=0, for any T=(z g)ESLz(Z) with ¢c=0 mod N, we have

0(az+b Q, R; 0):(cz+d)p/z(cz+d)q/z ed)d(z; Q, R;0),

cz+d’
where
40\
o (d),zfd>0,
! (—1)s (42 ) if d<0
td |/ )

2.5. The Siegel formula
Let X be the space of all minimal majorants of @, on which G acts transitively.
Then X is isomorphic to G/K=SO0y(p, q)/SO(p)x SO(q), where K is a maximal compact
subgroup of G. Thus X is a symmetric space of BD type (cf. Borel [1], Helgason [4]).
Now let us recall the main result of Siegel [11]. Let d#(R) be a G-invariant measure
on X, which is unique up to constant multiple, where R is a point of X. Let v be the
volume

{ aucm),
ro\X

which is known to be finite.
In [11], Siegel considered the integral:

I(z; iy=v=1 { 0(2; Q R; Wdu(R),
I‘Q\X

and proved the following formula.
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THEOREM (2. 4). (Satz 1 of [11])
Iy(2; B)y=0n+ ;Th(r)(z—r)—ﬁ/z(é—r)“q/z.
Here r is taken over all rational numbers. When n=4, the summation is first taken over r

with a fixed denominator b, and next the sum over all positive b.

2.6. A differential operator
For any differentiable function F(z) on H, we define a differential operator K of

Siegel [10] by
(K(F)}(2)= (z—2)—p/2 (?Qz—)

Lemma (2.5).
Let 4 be a subgroup of SL2(R). Assume that a differentiable function F(z) on H
satis fies

2 ((z—z)2-1R ().

az+b \_ 12( ¢z /2
F( cz—i—d) (cz+d)?2(cz+d)a2 F(z)

Sfor any (‘cl 3,) of 4. Then the function K(F) satisfies

{K(F)}(az+b) (cz+d)"2 (K(F)) (2)

a b
for any ( d) of 4.
Proor. For any g= ( c d =SL,(R), we put

o (= (ci+d)—p/2(— C,+d)_q/2F( az+b

Then ¢(g) is a left 4-invariant function on SL,(R), and satisfies
¢ ((g-7(0))=¢(g) exp[ird],
for any 6= R, where

_f cos@ sin@
7'(‘9)_(—sin0 cos 4)’

and v=(p—¢q)/2.
Put

yl/z xy—1/2
gz=( )ESLz(R). (z=2++/—19)
0 y*‘l/z

and f(2)=¢(g2).
Then we have

f()=y+d/A F(2).
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Now we consider a differential operator W corresponding to an element < 4 1 f i

of the Lie algebra 1§,(C), which acts on differentiable functions on SL,(R) (cf. Weil [15],
p. 76). Then by a result of [15] (see, p. 81), (W) (g:) is given by

iy vz 2 [y

= (4i) y1—>/2 aiz’r__ [y"—1+p/2 F].
Noting that (W”¢)(g) satisfies

(Wro) (g7 (8))=(W"o)(g) exp [i(v+27)0],
for any ER.

Put r=¢/2. Then

(W eXg-r@)=(Wy)) exp Li () 01.
Therefore the function

y~M4(Wo)(g2),
which is a constant multiple of K(F), satisfies the conclusion of our proposition.

2. 7. Proof of the main theorem.
Assume that p=2 and ¢=2k. Let us recall the integral I4(z; #). Then,

K(8n) =0n(z—2)1— p/z(_a%)qlz (z—zyrr1

=0pek!

and

et ool ) )

=kl(z—r)— "2,
Therefore, we have

%K(Io(z; B)=oh+ 2 1h(r)(z—1)— "2

Let us evaluate the integral I5(z; 4) in a different way. Fix a minimal majorant R,
of @, and let K be the maximal compact subgroup of G which is the stabilizer of R, inG.
Let us identify X=D with G/K and normalize the Haar measures of G and K by dg=
dp(R)dk andS . dk=1. Then,
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I,(z: h)Eu—lgPQ\X 51 exp[ri{Q (8) zf +R(0)E 52} ap(R)
EéfrlflodL
:U_lﬂ eL*Zr"lnod LQeXp l:n—iQw)ijm\Gz g SG@\G/Kdg.r exp[—TtRo(g.'_l(ﬁ))y],

£=hmod L

where z=x-iy, and dg.fg and dg are the Haar measure of G, and the quasi-invariant
measure on G, \G such that dg=dg; dg.
Put

I, =exp[ri Q(Z)xjs dg, S dg exp[—nRy(g~1(8))y]

re\Gy Gi\G/K

for each 4= L*, and let us evaluate it.
Case (i). When 4=0, G, =Gand I, =v—10v=1.
Cace (ii). When ¢==0 and Q(£)=0, we have

Iy =c(8)(z—z)"k

with some constant ¢(4) depending on 4.
Case (iii). When Q(£)<0, we have

Iy =c’ (£)(z—2)"texp [7i Q(4) z ]

by a computation similar to that of case (iv). Here ¢’(4) is a constant depending on 4.
Case (iv). When Q(£)>0, we consider

Te=, o0 S x EXPL—7 (Ro— (&1 (9)y1dg Jdsge

Then I, =], exp [7iQ(4)z]. By a computation similar to (4. 36)—(4.43) of § 4 of [6], we
have

S coc/x XP [—7(Ry—Q)(&~1(8))y1dg=cQ(8)* y—t,

with a constant ¢ independent of 4. On the other hand, we can check readily that

dgg =c

| s
re\Ge reNXe

with a constant ¢’ independent of ¢, comparing the measure forms of the Lie algebras of
G, Gy, K,and KNG,. Hence

I, =" Q(g)—* (z—E)‘k(S 7 )exp[m’Q(ﬂ)z].

ro\X¢

Now, apply the operator K to each I,. Then K(I,)=0, if Q(#)<0, or if Q(£)=0 with
£+0. If Q(£)>0, we have

K(Ip)=cr{f . 7} exp[xi @@z,
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Therefore, after justification of the change of order of summation and integration in

the same way as in [6], we obtain our main theorem.

[11]

[12]

[13]

[14]
[15]

References

Borel, A. Introduction aux groupes arithmétiques. Paris: Hermann. 1969.

Borel, A. and Wallach, N. Continuous cohomology, discrete subgroup, and representations of re-
ductive groups. Annals of Math. Studies. Princeton Univ. Press. 1980.

Cartan, E. Sur les proprietes topologiques des quadriques complexes. Publ. math. Univ. Beglrade,
t. 1, 57-74 (1932)=O0Euvres, completes, partie I, vol. II, Paris: Gauthier-Villars. 1952.
Helgason, S. Differential Geometry, Lie Groups, and Symmetric Spaces. New York, San Fran-
cisco, London: Academic Press. 1978.

Hirzebruch, F. and Zagier, D. Intersection numbers of curves on Hilbert modular surfaces and
modular forms of Nebentypus. Inventiones math. 36, 57-113 (1976).

Oda, T. On modular forms associated with indifinite quadratic forms of signature (2, n-2).
Math. Ann. 231, (1977).

Saito, M. Representations unitaires des groupes symplectiques. J. Math Soc. of Japan 24, 232-
251 (1972).

Schoeneberg, B. Das Verhalten von merfachen Thetareichen bei Modulsubstitutionen. Math.
Ann. 116, 511-523 (1939).

Shintani, T. On construction of holomorphic cusp forms of half integht. Nagoya Math. J. 54,
83-126 (1975).

Siegel, C. L. Indefinite quadratische Formen wund Modulfunktionen. Courant Anniversary
Volume, 395-406 (1948)=Ges. Abh. Bd. III. 55, pp. 85-91. Berlin, Heidelberg, New York:
Springer-Verlag. 1966.

Siegel, C. L. Indefinite quadratische Formen und Funktionentheorie I. Math. Ann. 124, 17-54
(1951)=Ges. Abh. Bd. III. 58, 105-142.

Siegel,C. L. Uber das quadratische Reziprozitatsgesetz in algebraischen Zahlkiorpern. Nachrichten
der Acad. der Wissenschaften in Goéttingen. Mathematischphysikalische Klasse, Nr. 1, 1-16
(1960)=Ges. Abh. Bd. III. 74, pp. 334-349.

Siegel, C. L. Einheiten quadratischen Formen. Abh. Math.=Ges. Abh. Hansischen Univ. 13,
209-239 (1940)=Ges. Abh. Bd. 1I. 33, PP. 138-168.

Weil, A. Sur certains groupes d’operateurs unitaires. Acta. Math. 111, 193-211 (1694).

Weil, A. Dirichlet Series and Automorphic Forms. Lecture Notes in Math. 189 Berlin, Heidel-
berg, New York: Springer-Verlag. 1971.

Department of Mathematics
Faculty of Science
Ninigata UNIVERSITY
Niigata. 950-21, Japan



	Introduction
	\S 1 Geometric Preliminaries
	\S 2 The main result
	THEOREM (Siegel ...

	References

