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1. Introduction

The asymptotic behaviour of eigenvalues of elliptic operators has been investigated
by a number of authors. Combining an asymptotic expansion theorem for resolvent
kernels, established by S. Agmon and Y. Kannai [3], and Malliavin’s tauberian theorem
together with the formula of A. Pleijel [8], S. Agmon [2] deduced asymptotic formulas
with remainder estimates for eigenvalues of operators whose coefficients are infinitely
differentiable. Recently K. Maruo and H. Tanabe [7] have devised a method of estimat-
ing resolvent kernels of a class of operators with wider domains and improved the results
of S. Agmon to obtain estimates for remainders in the asymptotic formulas under less
smoothness assumptions on the coefficients of operators. And these results were extended
to the case of some non-symmetric operators and the remainder estimates were streng-
thened further by K. Maruo [6]. We refer to the above results for our discussion.

The above authors have, however, always confined themselves to the case where
operators dealt with are self-adjoint in some sense or other. From the viewpoint of pure
theory at least we consider it desirable to extend the above results to more general non-
symmetric cases. The purpose of this paper is to deal with operators which are not
necessarily symmetric but satisfy the condition (3) stated below and to deduce asymp-
totic formulas for their eigenvalues slightly different from those obtained by the above
authors.

Let 2 be a bounded domain in the real space R*. We denote by Hw(R2) for an
integer m=0 the subclass of functions ¥=L2(2) with distribution derivatives D*uc L2(2)
for all |a|<m, where and in the following a=(ay,..., @») is a multiindex of length |a|=
|ay| +-+++ |an| and D*=D*1...Du*», De=(8/0xx), k=1,..., n.

In Hn(2) we introduce as usual the inner product and the norm:

(% vIm=(u, v)m,g=(sglg‘_,§mD"‘u Day dx)l/z; llim=ll2lm, o= (Cu, u)m)1/2
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I;’m(.Q) denotes the closure of Cy*(2) in Hu(2).
Let B be an integro-differential sesquilinear form of order m
Blw, v] =S 3 aup(%) Dou Dfv dx
Olaf,|plsm
and satisfy

(1) Re Blu, u]1=06|%|m for any wucwv

for some positive constant é independent of », where » is a closed subspace of Hn(2)
containing Am»(2). We assume that

for |a|, |B|=m a.p belongs to L=(2)
which implies that '
(2) | Blu, v]1| <K|#lmlvlm forany wu, v&Hm(,

where K is some positive constant independent of #, ».

Let A be the operator associated with B: an element # of » belongs to the domain
D(A) of A and Au=fcL2(Q) if Blu, v1=_J, v)y is valid for any v& V. It is easy to see
that the spectrum ¢(A) of A is contained in a sector

I'={2: |arg 1| <8}, 0<0=<cos"1(6/K)

of the complex plane. In this paper we investigate the asymptotic distribution of eigen-
values of this A, or more precisely, the behaviour as #— o of the number N(¢) of eigen-
values whose real parts do not exceed ¢.

The assumptions (1), (2) themselves imply that

Blu, u] belongs to I" for any ue V. a.

With the aid of this fact we obtain an estimate for the resolvent kernel of A in a similar
way to that in the case of self-adjoint operators.

In order to study the behaviour of N(¢), however, we need some modification since
eigenvalues of A distribute in the sector I". Motivated by this problem we have tried to
generalize the tauberian theorem by P. Malliavin [5] and deduced the asymptotic behavi-
our of a positive measure g defined on a sector

Fy={2: |arg 2| <0}, 0=<0<=x/4

in the complex plane from the behaviour of the transform

Sroﬂ%’ z&l

along a curve. Lemma 5.1 is a simple consequence of our recent result [9] and plays
the most important role in the present paper. To apply this lemma we must assume in
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addition to (1), (2) that B satisfies
(3) Blu, w1y forany ucw.

From (1.1) it is easy to see that this condition holds good when é and K in (1), (2)
satisfy /2 K<o0<K. It is also evident that (3) holds for §=0 if B is symmetric.
To clearify our intention we restrict ourselves in this paper to the case where

(4) for |a|=|B|=m, aa.s is uniformly Hoelder continuous of order 4.

Making some other assumptions on 2 itself and following the method of the above
authors, we obtain an estimate of N(¢):

as f—oo
N(#)—Re Co{sin (5-(e— ) ) /(=) — Cy simd } secniam 2g g

=Re G, C, sind secr/zm 24 tn/2m - Q(¢n/2m=h—oh+2))/4m)y/sec 29— 1+ O(¢ (n—)/2m)

for 0<o<lh/(h+2), where p=tan"1y/gsec 20—1 and Cp, C; and C, are some constants

given in Theorem I below.
This estimate for N(¢#) may be vague unless 4 is small enough to satisfy

. - n n
(C1+Cy) singd < sm(m(n—go)) / (_2.;’1_)
but still an extention of some part of the above authors’ results where # was always

assumed to be zero or sufficiently small.

2. Main result

Throughout this paper we assume that 2 is a bounded domain in R” which possesses
the restricted cone property (p. 11 of S. Agmon [1]) and such that dim2<2m. Writing
d(x)=min(1, dist(x, 92)) for =9, we assume that

(5) Saa(x)‘ﬁ dx<oco for some positive number »<1

which will be specified later.

THEOREM 1. Under the assumptions (1)—(5) the following asymptotic formulas for
N(t) hold as t—oo:

NC)—ReCo{sin % (v~ ) /(F2)—Cy sins} secnzm 2wz

<Re C, C, sing secn/2m 29 tn/zm 4 O (n/2m=Ch-oCh+2)/4m)1/Sec 29 —1 +O(t (n=>/2m)



72 M. Watanabe

Jor 0<o<lh/(h+2);
| N(Ct)—ReC, {sin (7”’7@—@) / (% —G sinﬂ}secn/ZM 29 ¢ n/zm
<Re G, C, sing secn/zm 2 tn/zm - Q(t(n=o)/2m)

for 0<o<h/(h+3), where p=tan~1y/sec 260 —1,

Ci=v"2 cos((1—n/2m)(z—¢))/=,
Co=v/2 sin((Q—n/2m)(x—¢))/cos(0+x/4).

Remark 1. If A is self-adjoint, then the above formulas hold true for =0 and are
written as

N(t)=GCy Slﬂ(%%—)/(_% tn/2m 4 O (n=o)/2m)

for 0<lo<<h/(h+2) and 0<o<h/(h+3) respectively. The latter formula coincides with
that obtained by K. Maruo and H. Tanabe [7] or by R. Beals [4]. The former has been
given by K. Maruo [6] under the assumption that 6>>0 is sufficiently small.

RemARrk 2. In case when 6 and K in (1), (2) satisfy v/ 2 K<0<K, the condition (3)
always holds with #=cos™1(6/K) as is easily verified. Therefore we have the above
formulas with # replaced by cos~1(é6/K).

ReMARK 3. The second formula can be written as

Re Co{ Sin(%(n—go)) / (—:;j'::T —(C+C sino}secnmng tn/2m 4 O tin=o)/2m)

=N(t)<Re Co{ Sin(—z?n——(n—go)) / (—ét-:i—)— (Ci—Cp Sinﬂ}secﬂfzm 20tn/2m 4 Q( tin=9)/2m)

as t—oo. In view of this we find that N(¢) is estimated not only from above but from

below and the estimate is strengthened to some sxtent as long as # satisfies in addition to
the condition 0=0<n/4

(C1+Cy) sinfd < sin(T':n—(n——go)) / (%’;— .

A similar thing holds for the first formula.

3. Preliminary results on 4

In this section we study fundamental properties of the operator A associated with B
under the assumptions (1) and (2). Identifying L2(2) with its antidual we consider as
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usual VCL2(2)C V* algebraically and topologically and extend A to a mapping from V
to the antidual V'* of V since it is not necessarily assumed that D(A)C Hym(£2). This
extended operator denoted again by A is defined by

Blu, v]=<Au, v>y forany vV

where <f, v>y astands for the duality between V* and V. The resolvent of A is a
bounded linear operator on V* to ¥V or on L2(2) to V and its norm is denoted by

1A= y*-y or [CA—=D7 L2y

LemMma 3. 1. Eigenvalues {A;}%, of A which have finite multiplicity distribute in the
sector

I'={x: |arga| =60}, 0=0=<cos71(6/K)
and can have only « as a limit point.

Proor. We have only to show that ¢(A) is contained in I" and to recall Rellich’s
theorem. Noting (1. 1) and putting d(4, I')=dist(4, I"), we have for 2&I" and ucD(A)

|((A=Du, w) | = | Blu, ul—2lu|2| =d(2, ID]u|?
that is, ICA—Dul| =d(4, I)|u].

Here and later on we use (%, v), |«| to denote (u, v)o, |#|lo respectively. On the other
hand for the adjoint operator A* associated with the sesquilinear form B*[«, v]=B[v, «]
a similar estimate holds:

ICA*~2Dullzd(4, Illu| for any 2&I" and #ED(A®),

which implies that the null space of (A—2)* consists only of 0 and hence that the resol-
vent set p(A) of A contains the complement of /.
We next have for A" and u=V

ICA=Dulvel|ullm=| <(A—2Du, u>v|=|Blu, u]—2|u|?|,
where |B[u, #]—2|%(2| dominates
| BLu, u]|sin(|arg 2| —0)=|B[«, u1|d(2, I)/|2] if 6<|ang 2| <0+=/2
and
|Blu, u]l|=|Blu, #1|1d24, I/ |2] if 6+=/2<|argi|<~.
Hence by virtue of (1) we obtain
(A—Dully*=0|u|md(a, I')/|2] for A&’ and u&V
and similarly

1CA—D*ully*=08]ullm d(2, I)/|2| for A&T" and uE V.
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Consequently p(A) contains the complement of 7" in this case too. Q. E. D.

LemMA 3. 2. If A&, then
i) 1A-D 1 flm+|2[VHA—-DLfA=CI2|2|f| /d@, ') for fEL2(2),
i) A=D1 flm+ |2V (A=D1 fI=Cla|Iflv+/dQ, ) for fEVH,
where C is a positive constant.

Proor. Putting u=(CA—2)"Yf for FEL2(2), we have
A%l =|(CA—2Du, u)|=|BLu, u]1—2|u|?|.
As was seen in the proof of the preceeding lemma, it generally holds that
| BLu, u]—2||u||2_2_{ a4, Il for any 2¢I" and €V, (3. 1)
Blu, uld(a, ')/ |2]
from which »
C|Blw, u]l—2a||u)2| =(lulm+|4]22|u])2d(2, I')/]2] Q. 2
follows. Thus we conclude
lulm=+ |22l <CIAN | 2]212/dQ, I.
Similarly we have for u=(A—2)"1f, fEV*
Iflvellulm=z| <(A—2Du, u>v|=|Blu, u]—2|u|?|.
Combining this with (3. 2) we get
lulm—+ |22 || <=CIflvelI4] /dQ, T,
which completes the proof.

LeMMA 3.3. There exists a constant C such that for any integers 0<k<m
1) A= fle<C|a|k2m|f| [d(2, ") for fFELXD),
i (A=) flex<C|a|V2R2m|flly+[d(A, ') for fCV*.

Proor. This is a simple consequence of the preceeding lemma and the following
lemma.

LemMmAa 3. 4. For any uEHm_(.Q), integer 0<k<m and positive number M
%l eCM~"~0>2"(|| || m+ M12| w|),
where C is a positive constant independent of u, k and M.

Proor. Under our assumption on 2 the following interpolation inequality holds
leell & < Clluell /™| ul|1-*/m for any u& Hn($2).

From this inequality and Young’s inequality it follows that
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26| o= CCM = =R/2% | g4 || s YR/ (MR Z |00 ]| Y174/
S CM-=R12%(|| || m~+M12| ).
ReMark. This lemma is also true in the case where 2=R=. In fact, from

o+ lepzu@zde=(] .+ iepmluce|2ae)™({ lacoizaep™™

it follows that
lule, g* <Cllu)) ¥™, |u|i ki  forany uc Ha(R™) and 0<k<m.

The following lemma has been proved by K. Maruo and H. Tanabe [7] and plays
essential roles also in the present paper. With the aid of this lemma we find that the
resolvent kernel Ki(x, ) of A is continuous in 2x 2 and estimated as

| Ka(x, )| =C|2|#2m[d(a, ") for any x, yER2 and A& @G3. 3
LemMA 3. 5. A bounded operator S on V* to V has a kernel M:

(SHO={ M rGddy for rELAD.

M(x, y) is continuous in 2 2 and there exists a constant C such that for any x, y=R2
| M (%, 9| S CISIVAR" | S| pRmps™am® || S| p2msneam? | S| Gamizyd?,
Finally we shall deal with the properties of
A%, = 3 aap(x)E*8
laj=]]=m

which we need for later discussion. Under the assumptions (1) and (2) we have

LeMMA 3. 6. For almost all x=2 and for all real vector EER"
i) ReA'(x, 5)=d X} &2,
lalsm

ii) A’(x, &) belongsto .

Proor. The statement i) is well known. See Theorem 7.12 of S. Agmon [1] for
example. The proof of ii). Because of (1.1) for any v&Cy” (2) B[v, v] belongs to I"
and hence satisfies by (3. 1)

| BLw, v]—2|v]2| =d(A,[)|v]2 for any v&Co~(2) and A& 1.

Put v:(x)=eit* xp(x) for an arbitrary v&Cy”(2) and £>0. Then v: belongs to Cy"(2)
and satisfies the inequality just above. Hence letting 2 be such that |1| =#2m, we have

{10012 < | A'Cr, ©m |0 |2ds—( Al |2dx+ 0G| /a2, Ty

_é_{Sg[A’(x, £)— eiarai| lv(x)lzdx+0(t‘1)} /c;,
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where
c {sin(largl]—b’) if 6<|arg1|<60+=x/2,
2:
1 if 0+n/2<|arg 2| <m=.

Letting — oo we have for any v& Cy™(2)
{f14°G ©—east| —Ca Hoco 2 dxzo,

which holds also for any v&L2(R2) since a.s=L"(2).
Thus, for almost all x&=2 it holds that

|A’(x, §)—elarsd| =C3,

where C; is positive as long as 2¢eI". Hence A’(x, £) must belong to I". Q E.D.

4. Estimation of resolvent kernel of 4 '

In this section we estimate Ki(#, #)— Co(2)(—D)#/2m=1, Cy(x)=(2x)n SR,,(A'(x, 13
+1)~1d¢ under the assumptions (1), (2) and (4).

To this end we first estimate the difference between K:(x, ») and the resolvent
kernel Ki9(x, ) of the operator A, associated with B under the Dirichlet boundary condi-
tion. Replacing V, VV'* by ﬁm(Q), the antidual H_.(2) of ﬁm(!}) respectively in the defi-
nition of A, we can define A, by a quite similar method:

Blu, vl=<Ao %, v>m forany u, 'DEﬁm(Q),

where <f, v>>m stands for the pairing between H_.(2) and ﬁm(Q). As is easily seen
the resolvent of A, is a bounded linear operator on H_a.(2) to Iim(g) or on L2(2) to
Ifm(.Q) and the spectrum ¢(Ao) is contained in I. Obviously for this A, the analogues
of Lemmas 3. 2 and 3. 3 hold true with the definition of unchanged.

LEMMA 4. 1. For any positive p there exists a constant Cp depending only on p but not
on x and 2 such that

|a|n/2m ¢ |2|1-V2m  \p
d@a, I \é(x)dQ, I

| Ka(x, x)— KO8 (x, )| <Cp

Sfor any &2 and AT with |2| =1.

Proor. We denote by A4 a class of functions infinitely differentiable in R” whose
supports are contained in the set {x&R”: |x| <1} and which equal to 1 at the origin.
We put &(x)=8((x—xp) /1), v=0(xp) for £& 4 and an arbitrarily fixed x,& 2 and define
the operator Sir by

Surf=E {(A—D f—(Ao—A)N(2f)} forany fEV™,
where 7f is the restriction of f&V* to I;Tm(.Q). Evidently Si- is a bounded operator on
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V* to Ifm(!)) and hence to V.
Putting u=(A—2)"1 f—(Ae—A)71(#f), v==E&ru, we find
. Blv, v]1—24(v, v)=B[v, v]1— Bl «, &v].
Clearly
| D7&(x) | <CrI7l | @ D

with a constant C independent of x, x,. With the aid of these things and the results
given in the preceeding section, we prove:

For any non-negative integer j there exists a constant C; depending only on j but
not on x,, 4 such that

i) o+ 12120 =G AL (B Z Y ir, re L,

2] ([ |A|rVem

4, YN\ 7dA T

if) o+ 12] V2ol =Cigr YWy, rE V>

for 2" with r~1|2|~l2mL],
For j=0 these inequalities hold good because of Lemma 3.2 and the fact

7l -m=f1 v
We pick another function »&=A4 such that »(x)=1 for any x&suppé and denote »,(x)
=n((x—xp)/7). From (4. 1) it follows that

| BLv, v1—2(v, v)| =|BLv, v]1—Blu, &v]|

g]s > ap(x)z:( )Da—r ér DCypi) DFo dxl

Qlal. |8l =m

.3, o £ )DeCrr Do, Do |

Lial. [8lsm
m—‘l m-1
= Ckzb fk'"'”’]f””k”””m'f‘ckgo k=m0, 0| || V]| ke -

Using Lemma 3. 4 and nothing »-1|2|-12m<1, we get

| BLo, v1—4(0, v)|

=Cr Y| ~V2m(| g sl m+ | 2] V2] YN0l m -1 212 0D
and hence by (3. 2)

| A1-1/2m

”va“"ull/znv"éc—W—)—

Clmrsellm+ [ 4] V2] 2]

Thus assuming that i) and ii) hold for some % with 7 in place of § we have them for
k41,
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Applying Lemma 3.5 to the kernel & (x) (Ka(x, y)—K2(x, ¥)) of Si» we have for 2
with r-1|2|-1/2m<1

|A|n/2m ( |2|1-1/2m \j

| Ka(xo, %0)— K(x0, %0) | = C;j A O\ 7d R T ) . 2

On the other hand from (3. 3) it follows that
| Ki(x0, %0) — KL(%0, %0) | =C|2|n/2m[d(4, I').

Since d(a, I')<|2| it follows from this inequality that (4. 2) holds in a trivial way also
when r-1|2|-1/2n>1, | 2| =1.

Thus we have proved (4. 2) for all integers =0. That (4. 2) also holds for non-
integral values of j is obvious. Q. E. D.

We next estimate K2(x, ). Let us consider the sesquilinear form:

B'lu,v]l= X aap(x())S ,Deu DBy dx,
la|=|8]=m R

where x,& R” is an arbitrarily fixed point.

LEMMA 4. 2. B’ satisfies
i) ReB[,u=d|ul2, gr—Caluld gn,.
ii) B'lu,ulerl’
Jor any u&= Hn(R™), where & >0 and C3=0 are constants independent of u, %,.

Proor. We use Lemma 3.6 which is true for any x,&2 and §&R” in the present
case. We have only to show that the lemma holds for any v& CJ'(R"™).
i) is well known. The proof of ii). We have for any v& CJ'(R™)

|Im By, v]|=|Im 3 a,,p(xo)s D=y Dfy dx|
la|=]|8]=m R

= ol Im 4'Cro O] [9(9) |28 tand Re A'Cag, © (08 20

=tand Re >V a.s(xp) SR”Dav DBy dx = tan@ Re B'[v, v],

la|=]g[=m
where ;)\(E) stands for the Fourier transform:
N\
v(&)=r)"/2 San(x) e—i¢-x dx.
That is,
|arg B'[v, v]| <6

for any o0& Cg'(R™). Q. E. D.
For a function ¥EHn(2) let #=u in 2 and =0 in R"—0. Then % belongs to
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Hn(R™) and I}m(!z) may be considered as a closed subspace of H»(R™) by this corres-
pondance.
Let A, be the operator associated with the sesquilinear form:

Bl[u: v]=B’[u, v]+03<u’ v)O,R”
restricted to Hm(2) x Hn(2). By definition we have
B, v]=<Ayw, v>m for u, vEHn(2).

Because of Lemma 4. 2 B[ w, u]=B'[u, #]+ Cs|l»||2 belongs to I" for any uEI}m(Q)
and hence the analogues of Lemmas 3. 2 and 3. 3 hold also for A; with I” unchanged.

We are now in a position to estimate the difference between K(x, ) and the resol-
vent kernel K;'(x, y) of A;.

LemMA 4. 3. For any positive integer j there is a constant C; depending only on j but
not on x, 2 and ¢ such that

| KO(x, 2)— K (x, x)|

[A|n/2m (| 2]|1-1/2m \j

=CiC|2|am b |2 wam 1| 212/ A% I+ Cigry = — g3y

for A& T with e~ 2|1-V2m[d(a, [ <1.

Proor. Putting £&.(x)=£((x—2x0)/&) for EE 4, xy=2 and an arbitrary £>0, we define
an operator S as follows:

Sif=E€c {(Ao— DY — (A1 — D7)

for any fE H_m(R2). Evidently Si is a bounded operator on H_,.(2) to I}m(.Q) whether
the support of &, is contained in 2 or not. Writing v=~§.u, u=C4o— )1 f—(A;—D1f
we find

Bl v, v]—a(y, v)
=(B'—B)[(A1—D)7Y, &1+ Blv, v]—Blu, §.0].

We shall first prove that for any positive integer there exists a constant C; such that
for A" with e-1|2|1-12m/d(2, <1
1) lolm+|2|12)0| <Ci(| 2| -V2mteh)| 2|32/ d(2, )2

[2]2 f |2|1-V2m \j
I T@fy) 171, FE L2,

i) (ollm+|2|V2)0| <Cji(| 2] V2 ek | 2]2/d(2, )2

dclz',”m( Jé(li_lpfz;" 1), FE H-m(SD).

+

From Lemma 3. 4 and
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(BI-B)[(A1— D71, §v]

={ 31 (uCt0)— aap(0ID((Ar— D £ YDFCE)dx

Dal=1pl=m

— Sa,a%}p Gap(DD((Ar— D NDFED)dr+Col| (A=D1 few d

it follows that
|(B1—BOL(A1— D71, &l
<Cet|(Ar— D flml&0lm-+C 23 | (A= D f 41 E0 w11
+CCeh+ 2] 12y ([ (A1— D7 m+ [ 2] 12 (A= DA D€ m+ | 2] 12 €en]).
Hence nothing that
[€evllm~+[2[12| €| =CClvllm~+[2]2]0])
holds because of ¢-1|2|1-1/2m/d(A, ')<1, we get
|(B1—BO[(A1—DY, &w]|
=C(ek+[ 2] 12 (| (A1— DL fllm+ | 2| V2] (A1— D7D ollm+ | 2] 2] 0])D.
On the other hand remembering the proof of Lemma 4. 1 we have
| BLv, v1—Blu, ]| <Ce 2| "V2m(|lullm+ [ 2|12 ] (| ollm+ 2] 2|0])
and hence
lolm+12]12|0]| < C{(| 2] "2+ em) (| (A1— 2D fllm+ | 2] V3| (Ar— D71 11D
72| V(|| ullm+ | 222 %lD} | 2] /d(A, T).
Thus i) and ii) are true for j=1 by Lemma 3. 2.
Let »& 4 be such that 7(x)=1 for any x&Esupp &§ and put 5.(x)=((x—%0)/¢). Then
by a similar method to that in the proof of Lemma 4. 1 we get _
lollm+|2]V2|0]| <C{(| 2] "V2m+-em) (| (A1— 271 fllm+ | 2| V2| (A1— D1 11D
+e7 2| V2m(||pettl m+ | 2|2\ geu] D} | 2] /(2 T,
Thus if ».u satisfies i) or ii) for j=k, then » satisfies i) or ii) for j=k+1.
Using Lemma 3.5 for the kernel £.(x)(K2(x, y)—Ki(x, ¥)) of Si, we coclude the
proof of the lemma.
Finally we estimate Kil(x, y). Let A, be the operator associated with B! on Hn(R"™)
X Hm(R™):
Bl u, vl=<Ayu, v>m g», #, v&Hm(R"),
wher <f, v>>m, g» denotes the duality between H_,(R") and Hn(R™).
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By Lemma 4. 2 B[ «, u] does belong to I" for any #& Hn(R"). Therefore by a similar
argument to that in Section 3 we find that ¢(A,) is surely included in I" and the resol-
vent of A, is a bounded operator on H_»(R"™) to Hx(R™) or on L2(R") to Hx(R™). More-
over, by the regularity theorem on weak solutions (A;— 2)"1L2(R"™) is contained in Hym(R™)
and (A,—2)"! is a bounded linear operator on L2(R") to Ham(R™). As is well known
(A2—2)-1 has a continuous kernel Ki2(x, y) given by

i(x~y)+ ¢
K2(x, y)=(27r)—nSR" YU (:; E)y-l— oy dé.

We define the operator Sz, r=248(x,) as follows
S f=Er{((A1— D17 f))™—(A— D71 f}

for aﬂy JEH_x(R™), where rf is the restriction of f to I;Tm(!)). Evidently S’z is a bounded
linear operator on H_n(R™) to Hu(R"). Putting v==4§u, u=((A1—2)"1(zf))~—(A—A)7f
we find

Bi[v, v]1—2(v, v)o, g»=B[v, v]— B u, &v].
By a quite similar method to that in the proof of Lemma 4. 1, we get
LeMMA 4.4 For any positive p there exists a constant Cp depending only on p but not

on x and A such that

|a]|n/2m ¢ |2|1V2m \p

| K25, )~ Co(a) (Go— D2 <oy St T

for A I" with |2 =1.

Here we denote (—2)#/2n-1 the analytic branch of power in the complex plane cut
along the positive axis which is positive on the negative axis.
Thus we have proved the following

THEOREM II. Under the assumptions (1), (2) and (4) there exist, for any positive
number p, e and positive integer j, constants Cp and Cj independent of x, € and A such that

| Ka(Cx, %) — Co(x) (Cg—2)n/2m=1|

]jln/2m+1+c‘ lzln/Zm/ | 2| 1-1/2m \j

=CiC|4| 7+ e — i+ Ciger py a1

[A|n/2m ¢ |A|1-V2m \p

d(A, I\ é(x)d(2, I')
Jor any x= 2 and A&I" with || =1, e 1|2|17V2m[d(2, ')<]1.

+Cp

This theorem informs us the behaviour as |1|—co with d(4, I")=|2|1-1/2m*2 of the
resolvent kernel Kx(x, y) of A:

K, £)= Co(a)(Cy— M/ am 14 O(| 2| wiam3h=hzmeh] A3, TIWD)
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+0( | a|n2m+1-1i2m | (2, T')2)+ O(|A|#/2m+p-pi2m | d(2, [)p+Y), (4, 3)

This can be verified without difficulty by replacement of ¢ with |2|1-1/2m*¢/d(a, I")
for a large j in the formula of the theorem.

5. Asymptotic formulas for eigenvalues of A

In the last section we shall show under the assumptions (1)—(5) how Theorem II,
when combined with the following modified tauberian theorem yields the asymptotic
formulas for eigenvalues of A. As was mentioned in the introduction, the most important
tool in our paper is the following lemma, which is a simple consequence of our recent

paper [9]:
LemMaA 5. 1. Let {4} 5.9 be a sequence in the sector of the complex plane
I'y={2: |arg 2| <6}, 0<0<n/4

and have only « as a limit point. Suppose that

Ik =aC=D=+012] 4| 17/dC TP

as |[A|—oo with dQA, I'y)=|2|7, where 0<a<f<1, 0<y<1, p>>0 and Re a=0. Then as

|
— o0

31 1—Re a{ sin((A—)@=¢)) _ V' 2 co5a(z—e)) sino}seca—«wz 29 ¢1-a

Rea;st l1—a)x T
<Re ay/ 2 (cos(8+r/4)) 1 sin(a(z—¢)) singd sec(1-=)/2 24 t1-«
+O0(1#)v/sec20—1 +0(¢7"%), o=tan"1y/sec26—1.

In order to verify this lemma we have only to note that |

& 1 _( _pdd) |
27 —Sro -z 2%l

for a positive measure p defined on Iy by

p(ED)= >Y1 for ECI,.
A;EE

As for the eigenvalues {1j}5., of A we have in addition to Lemma 3.1

LEMMA 5. 2.

. & 1
i) | K Dd=317=7 1€l

i) ]}“:30 x,iz = Co(— Dn/am=14-Q( | 2| n-B>/2m+1+h+eh | d(A, ToIh*2)+
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+O([2| = D2mH1/d(2, )2+ O([A| =2 2m+2[d(Z, [')?*1)

as | 2| —oo with d(a, [ =1"V2m+*2e, where c0=Sg Co(%)dx.

Proor. The first equality i) is proved in p. 228 of S. Agmon [1] for example. On
the other hand a simple computation shows

(Cg—Dn/2m=1=(—Dn/2m=1LO(|2|»'2m[d(2, 's)?)

as || —oo with 2¢I"y. Hence using the assumption of (5) and integrating (4. 3) on 2
we obtain ii). Q. E. D.

In view of this lemma we find that

S\ 7= Co— Dmm= i 0141 #1217/ dCh T+

+0(|2[~2(]2]7/d(2, I'0))®D+O(| 2| ~#s(|2|7/d(A I'9))#*1)
as |2| oo with d(2, I'g)=|a1-1/2m*2s, where
1—pi=n/2m—(h—o(h+2))/2m—e(h+4),
1—Bo=n/2m—(1—20)/2m—A4e,
1—gs=n/2m—(p—o(p+1))/2m—2¢(p+1),
r=1—0/2m+42¢, 0<a<1.

It is to be noted that Re C, is positive since Re (A’(x, §)-+1)-1 is positive for all x& and
§ER".
We are now ready to apply Lemma 5. 1.

THEOREM III. Under the assumptions (1)—(5) N( t)=RZ}§1 satisfies as t— oo
edjst

N(t)—ReC, { Sin(—g%—(n'—go)) / (—2“7’;— —ct sin0}secnf2m 20 tn/2m

=<Re C, C, sing secn/2m 20 tn/2m 4 Q(¢(n—a)/2m’)
+ Ot n/2m—(h=a(h+2))/2m 4 n/2m=(p=o(p+1)/2m )/ SeC 20—1, p=tan-14/sec 29—1
Jor 0<a<h/(h+2), 0<o<p/(p+1), where C,, C, are constants given in Theorem 1.

Assuming (5) for k/2<p<1, we obtain the first formula of Theorem I. Similarly
assuming (5) for 24/3<p<1 we obtain the second.
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