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1. Introduction

In this paper we generalize the theorem by P. Malliavin together with the formula
of A. Pleijel to deduce the behaviour of a positive measure p defined on a sector of the
complex plane:

I'={a: |arga|<6}, 0<0<xn/4

from the behaviour of a transform

f(z)=8 g@l@_, 26,

r A—z
P. Malliavin [1] proved the following
THEOREM A. Let () be a non-decreasing function for 2=0. Suppose that
(72D —a(—2ye+0(| 2] )

0o A—z
as z—oo with |Im z|=|z| and Re 2=0, where 0<a<g<1, 0<y<1, a>0.
Then as X—o

0 (X)=a M2 X1-e 1 07~ +0(X ).

A. Pleijel [2] proved this theorem in a very elementary way. His proof uses the
following approximate inversion formula for the Stieltjes transform of a positive mea-
sure:

THEOREM B. Let 0(2) be a non-decreasing function for 2=0 and put

r@="2D, zq(, .

0 Ai—z2

Then for X, Y >0

eGO—a(0)— 5L\ rdz+-T - Re A2 Im £(2),
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where L(Z) is an oriented curve in the complex plane from Z to Z=X+iY not intersecting
[0, o).

These theorems have already been used to derive asymptotic formulas with remain-
der estimates for eigenvalues of elliptic operators by S. Agmon and R. Beals, and recently
by K. Maruo and H. Tanabe. But these authors restrict themselves to the case where
elliptic operators dealt with are assumed to be formally self-adjoint in some sense or
other. In a study of eigenvalues of more general elliptic operators we consider it
necessary to generalize the above theorems in such a manner as was mentioned in the
beginning. In the present paper we will prove Theorems I and II stated in the next
section and leave applications of them to a following paper.

2. Main results

Consider a sector in the complex plane: I'={4: |arg 2]<#8} and suppose throughout
this paper that @ statisfies 0=<6< = /4.
The following theorem is a generalization of Theorem B:

THEOREM 1. Let p be a positive measure defined on I and put

r=| £, aqr.

r A—z

Then, for X, Y such that Y >v/sec26—1 X >0

#AET: Re i=X) — Reobe|  f(Ddz+—3LRelf(D)+/(Z))

=(2 cos(@+=/D)* Y Im{f(Z)—f(2))

as long as p{AEIr:Re 2=X}=0. Here L(Z) is an oriented curve from Z to Z=X-+iY not
intersecting I' and if 0=0, cos(0+x/4) can be replaced by 1.

REMARK. If #=0, then the conclusion of the theorem is written as

1 Y
20, X1—~2n—i§mf<z> dz+—Y Re £(Z)|<Y Im f(Z)

as long as p{X} =0, from which Theorem B follows.
Applying Theorem I to a function f(z)=a(—2)"*+0(|z|7?~8/d(z, I")?), we have the
following

THEOREM II. Let p be a }osiﬁve measure defined on I'. Suppose that

|, 298 —a(—zy=e+0( 2|28/ dCz, 1))

as |z|—oco with d(z, IN)=|z|7, where 0<a<f<1, 0<y<1, p>>0 and Re a=0. Then as
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X-—-)OO

p{AEr: Re i=X}—Rea {sm((l OE—9) V2 2 siné cos (a(:r—go))}secd‘a)/z 20X 1~

1—a)x
=Re ay/ 2 (cos(0+n/4))1 sind sin(a(n—¢)) sec(l-a)/2 20X 1-«
+O0X1B)vsec 26— 1+ 0(X77%), p=tan"ly/sec 20—1
as long as p{A&l':Re 1=X}=0. Here d(z, I") denotes dist(z, I").

RemaRrk. If @ satisfies, in addition to the assumption of 0<<6<z/4,

sin(A—d(—¢)) _ = { cos(a(r—g)) _ sin(a(z—p) |
(A—a)x V/ 2sind T cos(0+x/4) >0
which holds good for sufficiently small ¢, then the above estimate may be strengthened
to some extent. In this case p{A&I": Re 2<X} can be estimated not only from above
but also from below. Particularly if @ is equal to zero, the above formula implies that as
X~—o0

¢#(0, X]=Re a Sin((l(i-;)an?n) X1-e O (X1=)

aslong as p{X}=0. Compare this with Theorem A.
On the other hand the term O(X18)4/sec 26—1 in the above formula can be dropp-

ed when pg—a+r=0.
3. Proof of Theorem I
Let us consider f(z)-—:S -@, 2z’ and pﬁt
(2= _.2}2_8 L, @

From the assumption of X >0 and Y >+/sec 26—1 X, Z=X+iY and Z do not belong

to I" and, moreover, L(Z) is included surely in the complement of I".
Letting v;=1(4, Z), vo=15(2, Z) be the angles between the negative real direction
and Z—24, Z—2a for A&T respectively, we have

Re I(Z)= - Ga-upa(ad. G D

In fact, by a change of the order of integration I/(Z) can be written as

A=Z | 1(d3).

1Z)= 5 CGuton) plad+ | tog|§=Z

We next prove that
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2Y Re (A(Z)+A(2)) =| sinCur+») C°§js’jl+§§:fz”2 p(d), @G. 2
2Y Im(f(Z2)—f(Z)) =§r‘sin2<v1+»z>-§%§§’lil—c‘—0;—g§— p(dD @G. 3)

hold as long as p{A&I": ReAa=X} =0.
It is evident that

2V =|a—2Z| siny;+|A—Z| siny,,
|A—Z| cosyy=|2—Z| cosvs,.

Hence it follows that if Re 2#X,

1 1 \erla gl o com . com
2¥ Re( L+ )=(1a-2| siny+ |1 2] sinug)(22% +-524,

€082 17 4-Cc0s2 vy
COSy, COSyy

= Sin(vl + Uz)

and

1 1 1 : T siny; sinv,
2Y Im(—z_—Z—+2TZ—)—(|2 Z| sinvy +|2—Z]| s1nv2)(l2_Zl+H_Z[

— cos(vy—vz)
=sin2(yy fyy) —1 4/
( 1 2) COSy; COSyy *

Thus integrating these equalities on I, we have (3. 2) and (3. 3).
We observe here the behaviour of v; and v, It is easy to see that

72y, velm—0, a<lvitve<2a—20; ( G 49

—0<vy, v2<r/2, 0<vitv<r @G. 5

according as Re 4<{X, Re 2>>X respectively. Furthermore we have
LemMma 3.1. y; and v, satisfy

[v1—ve | <z/4+6 @3. 6
for all A&,

Proor. When Re 2=X, 2, and v, are equal to n/2 and the lemma is trivial. Suppose

that Re 2#X. Then combining
|Im 2| <tand |Re 2|
and

Re 1= 2Y cosv; cosvg+X sin(v; +vp)
Sin(91+v2) ’

— Y Sin(u]_—l)z)
Imi sin(v1+v3)
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which is derived from

o = S, - L

we have

Y| sin(y;—vp) | =<tand|2Y cosy; cosyvy+X sin(y;+vz)|.
Noting (3. 4) and (3.5) we have

Y sin vy —p| < tand (¥ cosCuy—g) +v/ XTF YT )

and hence
sin([vl—vzl—ﬁ)é‘_/w sinf < sin(x/4)

because of ¥ >V'sec26—1 X. But (3. 4) and (3. 5) imply that
—0<|v1—v| —0<m/2.

Hence |[v—uy|—60<z/4 follows. Q. E. D.
The most important step in the proof of Theorem I is given in the following
Lemma 3.2. 1) If Rea<X,

|2 cosyy cosvy(vy +vp—21) —sin(vy+vg)(cos? vy +Cos2vy) |
=<Cy sin2(y; +vy) cos(yy;—vy). @E. D
ii) IfRei>X,
|2 cosy; cosya(vy+vz)—sin(y; +vp)(cos?y; €082 vy) |
<Gy sin2(y; +vy) cos(vy—vy). @G. 8
Here Cy équals to x/cos(z/4+0) for 6+0 and to = for =0.
Proor. The proof of ii). From (3. 5)
[ 41— ve | <m—(u1tve), 0<vi+u<lm
and hence
—cos(yvi+ v2)<COS(v1 —uy=1
follows. Noting this and writing as
2 cosy; cosva(v1+vg) —sin(y; +vg)(cos? v +c0s2 vy)
=c08(¥1—v3) {(v1+vp) —sin(v+vp) cos(vy +v2)} + {(v1+vz)cos(vy +vp) —sin(ri+vp)},
we have |

|2 cosvy cosva(vy+ve) —sin(yy+vz)(€os? vy +cos2 vy) |
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=<Max {(v1+vo—sin(v;+v2)) (1 +cos(vi+vs)), sind(vy+vy)}.
Here (v;-+yy—sin(yi+ve))(A4cos(yy+vz)) is dominated by

4 So+ sin?(x/2)dx cosz%iéﬂ sin?(vy +v).

Thus it follows that for Re 2>X
| 2cosy; cosvy(vy+vp) —sin(y; +vp)(COS2 vy +-COS2 vy) |
<= sin2(vy+vp). G. 9
Moreover the right of this inequality is dominated by
M sin2(vy+v,) cos(vy—vy) with M=sup {x/cos(vy—vq)}.

Making use of (3. 6) and replacing M with C,, we get (3. 8). In fact, if §=0, then
=y, and hence (3. 8) reduces to (3. 9).
The proof of i). In view of ii) we have (3. 8) for v; and v, satisfying

0<v2: ))1<7t2, 20<D1+V2<7t, IDI_VZI <0+7t/4.

Replacing v,, vo by 7—y;, T—y, respectively, we have (3. 7) for vy, v, satisfying (3. 4) and
(3. 6). Thus i) has been proved. Q. E.D.
We are now in a position to prove Theorem 1.
Putting I'x= {2€I": Re 2<X} and remembering (3. 1), (3. 2), we can write

Re I(Z)— 5 —Re{ S(Z)+AZ) =T %)

1 o, Sin(y4v)(cos? v; cos? v,)
T 2x Sr X{vl—‘_”z 2m 2 Cosy; COSv, }‘a D
1 __sin(y;4vy)(cos? vy +cos? vy)
2n Sp_['x{ul T 2 COSy; COSyy }F(dl).

Thus assuming p{AEl": Re 2= X} =0 and using Lemma 3. 2, we conclude that

| HT30—Re KZ)+--Re 72D+ F2)|

= ¢S hen) €801 ay=(Gof2m)Y I (£(2)— £ (2D)

because of (3. 3). Q. E.D.

4. Proof of Theorem II

To prove Theorem II we shall apply Theorem I to the function f(2) such that
f(@D=a(—2z2)"*+0(|z|"#7#/d(z, I)?)
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as |z|—oo in the rigion of the complex plane: d(z, I')=|z|7. Here constants «, 8,7, ?
and « have been specified in Section 2. We denote by (—2z)~= the analytic branch of the
power in the complex plane cut along the positive axis which is positive on the negative

axis.
Put Z=X+iY, where X >0 and Y=1/gec20—1 X+ (1+C2)r/2 secd X7 for a constant

C with C>v/sec26—1 and let L(Z) be an oriented curve running from Z to Z through
X+1Y: Y<|y|=<CX}U{z: |2|=vTFC2X Rez<X)}.
Evidently L(Z) does not intersect I and moreover it holds that
d(z, IN)=|z|" for all 2&L(Z)
if X is sufficiently large. Noting that
f(Z)=a(=2)*+0(|Z]|7),
| Z|~a=cos*/2 20 X-«+ O (X7 1),
arg Z=tan"1y/sec 20—14+0(X" D),
we have
f(Z)+f(Z)=2a|Z|~= cos(a(x—arg Z))+0(|Z|7#)
=2a cos*/2 20 cos(a(r— )X 2+ 00X 1)+ 0(XB).

Thus we obtain
YRe{f(Z)+ f(Z))
=21/79 Re a sind sec1-2>/2 26 cos(a(z— ¢)) X172+ O (X1 "6)1/sec 20— 1 +O0(X7~*)
@
and similarly

Y Im{f(Z)—f(2))
=2v/2 Reasing secl-2)/2 20 sin(a(z—¢))X17*+0(X1"8)v/sec 20— 1+ 0 (X" =)
4. 2

as X—roo
On the other hand 7(Z) is written as

1Zy= | U@—a-ardets

271 Jpcz 2ri SL(Z) (=2)7 de=h(Z)+ (2.

Here I;(Z) is evaluated as \

|h(2)|=const. | |zlo-8/dCz, ) dz]
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=const. X7p~8*1-p=const. X78

because of d(z, I')=CX—tan@ X for any z& L(Z). We next find

12<2> =al Z| 1-a Sin((]. —Elf-)_(::)—"rargZ))

=g sectl-a)/2 29 sin((1—a)(z—¢)) X1-af O(X7-2)

(A—a)=x

since |Z|1-a=sec(1-®/2 29X 1-a+ O (X7-%).

Thus we conclude that as X— o

Re I(Z)=Re a sec(-o/22¢ Sin((l(l—“x“‘@) X1t O(X7-2). (4. 3)

—a)xw

Hence combining (4. 1), (4.2) and (4. 3) with the formula of Theorem I, we com-
plete the proof of Theorem II.
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