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1. Introduction

Let (M, g) be Riemannian manifold. By R we denote the Riemannian curvature
tensor. By Tx(M) we denote the tangent space to M at x. Let X, Y&ET=(M). Then
R(X, Y) operates on the tensor algebra as a derivation at each point x. In a locally sym-
metric space (YR=0), we have

*D R(X, Y) - R=0 for any point x&EM and X, YET-(M).

We consider the confrerse under some additional conditions.

THEOREM A (S. Tanno [7]). Let (M, ) be a complete and irreducible 3—dimensional
Riemannian manifold. If (M, &) satisfies (*) and the scalar curvature S is positive and
bounded away from 0 on M, then (M, g) is of positive constant curvature.

TueoreMm B (K. Sekigawa [5]). Let (M, &) be a compact and irreducible 3-dimen-
sional Riemannian manifold of class C* satisfying (*). If the rank of the Ricci tensor Ry is
non-zero on M, then (M, &) is of constant curvature.

In this note, we shall prove the followings

THEOREM C Let (M, &) be a compact and irreducible 3-dimensional Riemannian mani-
fold satisfying (*). If the scalar curvature S is constant, then (M, g) is of constant curvature.

THEOREM D Let (M, 2) be a 3—dimensional homogeneous Riemanian manifold satisfying
). Then (M, g) is either

@Y) a space of constant curvature, or

@) a locally product Riemannian manifold of a 2-dimensional
space of constant curvature and a real line.

It may be noticed that (*) is equivalent to (**) R(X, Y) « R;=0. In this note, (},
£) is assumed to be connected and of class C~.
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2. Preliminaries

Let (M, g) be a 3-dimensional Riemannian manifold. @Assume (*). dim M=3
implies that

@ 1 RX, Y)=RXAY+XARY—(S/2)XN\Y,

where g(RX, Y)=R(X, Y) and (XAY)Z=¢g(Y, 2)Y—g(X, Z)Y.
Let (K3, K, K3) be eigenvalues of the Ricci transformation R! at a point x. Then
(*) is equivalent to

@ 2 (Ki— K;)D)(2(Ki+K;)—S)=0.

Therefore we have only three cases: (K, K, K), (K, K, 0) and (0, 0, 0) at each point.
First, if (K, K, K), K=0, holds at some point x, then it folds on some open neighborhood
Uof x. Hence U is an Einstein space, and K is constant on U and on M. Therefore (M,
2) is of constant curvature (cf. Takagi and Sekigawa [6]). From now we assume that
rank Rl<2on M. Let W= {xEM; rank R'=2 at x}. By W, we denote one component
of W. On W, we have two C*-distributions 77 and T, such that

T1={(X: RRX=KX}, To={Z: R\Z=0}.
For X, YET; and Z& Ty, by (2. 1) we have
e 3 R(X, Y)=KXNY,
R(X, Z)=0.

This shows that T, is the nullity distribution. Since the index of nullity at each
point of M is 1 or 3, the nullity index of M is 1. Thus integral curves of T, are geodesic
(and complete if (M, g) is complete) (cf. Clifton and Maltz [2], Abe [1], etc.).

Let (B, E,, E3)=(E) be a local field of orthonormal frame such that E3&T, (conse-
quently, £y, E,&T;) and

Ve, Ei=0 i=1, 2, 3.
We call this (E) an adapted frame field. If we put VEiEj—‘——-élBijkEk, then we get
Bijr=—Bir; and
@ 4 Bsij=01, j=1, 2, 3.
The second Bianchi identity and (2. 3) give
2. 5) E3sK+ K(B1g1+ B2ss)=0.
By (2. 4) and R(E;, E3) Es=VE,VE,F3—VE,VE;Es—VE; E.1F3=0, we get

@ 6 E3By 51+ (B 8%+ By 52B2 51=0,
E3B; 334 B 31B1 32+ B1 322B2 32=0,
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E3B3 31+ Bj 3181 31+ Bg 32832 31=0,
E3B3 32+ (B3 32)%+ B2 31B1 32=0.
(2. 5) and (2. 6),, (2. 5) and (2. 6)3, (2. 5) and (2. 6),, 4 imply

@ D B 5=CG(EDK, B;3=C(E)K,

2 8 By 31— B2 32=D(EDK,

where Ci(E), C(E) and D(E) are functions defined on the same domain as (£) such

that E3Ci(E)=E3C,(E)=E3D(E)=0. By (2.5) and (2. 8), we get

@ 9 2B; s3=D(E)K—E3K/K.

Now, let 7,3(s) be an integral curve of T, through x=7,3(0) with arc-length para-
meter s. Then (2. 6);, (2. 7) and (2. 9) give

(2. 10 2 ds (Ii’ ) HK2+1(11{ “ds i

where H=H(E)=D(E)?/4+C,(E)C,(E). (2.10) implies that H is independent of the
choice of the adapted frame fields (E£). Solving (2. 10), we get

2. 11 K=y(for H=0), or
(2. 12) K==+1/((as—p)?—Ha?) (for H#*0),

where «, §, and y are constant along 7,3(s).

With respect to our problem, without loss of essentiality, we may assume that M is
orientable. Let (E) ae any adapted frame field which is compatible with the orientation.
We call it an oriented adapted frame field. Then we see that f=(Ci(E)—C,(E))K is
independent of the choice of oriented adapted frame ﬁélds, and hence f is a C*-function
on Wy. f=0 holds on an open set UC W, if and only if T; is integrable on U. Thisis a
geometric meaning of f.

3. Proofs of theorems C, D

In the proofs we can assume that M is orientable. By the arguments of §2, we
assume that rank R1<<2 on M. The assumptions in theorems C, D, follow that S=2K is
constant. Then we see that rank R1=2 on M and W= Wy,=M. f{ is defined on M. Since
K is constant on M, by (2. 11) and (2. 12), we have H=0. If 540, that is, there exists a
point xo&M such that 7(x5)%0. We put V= {x=M; f(x)+#0}. Let V, be one component
of V. H=H(E)=0 implies D(E)2==—4C,(E)C,(E). Put cos20(E)=K(C,(E)+
C,(EY)/f and sin 20(E)=KD(E)/f. Define (E*) by E3*=FE3 and

Ey*=cos8( E)E;—sinf(E) E,, Ex*=sinf(E)E;+cosd(E)E,,
Then we have D(E*)=0. Furthermore, for (E) and (E’), we have E*(E") and
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EX(E)=*+*E*(E)=xFE*(E’). H=0 and D(E*)=0 imply G(E*)C(E*)=0. So we
can assume that C,(E*) =0 (otherwise, change (Ey*, E,*, E3*)—> (Ey*, — Ey*, Es*)).
Then we get

@ D B*; 3p#0, B*; 51=B*1 51=B*; 52=0.
R(Ey*, E;*)Eg*=0 implies B*; =0 and

G 2 E7*B*1 32+ B*1 92B*1 21=0.
R(E*, E;*)E*=— KE;* implies

G 3 E*B*1 a1+ (B*1 21)*=—K.

By B*,i;=0, each trajectory of Ex* is a geodesic in Vo. Let 7,2(¢) be a trajectory of
Eo* through x and parametrized by arc-length parameter ¢ such that 7,2(0)=x. Put
By n*=hon V, From (3. 2) and (3. 3), we have

3. D df|dt+h( ) f(#)=0,

(3. 5) dh/dt+h( )2=—K.
From (3. 4) and (3. 5), we have

@G 6 az(1/f)/dez+ K(1/f )=0.

By the fact of theorem A, in the proof of theorem C, it is sufficient to deal with the
case where K is negative. Then, solving (3. 6), we get

@ D f(2)=1/(crexp (W =K t)+c2exp (—V—K t)),

where ¢; and ¢, are certain real numbers.

We put L:2= {7,2({ )JEM; — o< t<o}. Then, from (3. 7), we can see that L.2C V,
for any x&V, Moreover, by the similar arguments as in [5], we can see that, for each
point x& V, L2 is a closed subset of M and is a compact subset of M, since M is compact.
Thus, there exist two different real numbers #, # such that (df/dt)(t.)=0, a=1, 2. Thus,
from (3. 7), we get ‘

a exp(vV =K h)—c; exp(—vV =K t)=0,
c2 €Xxp(vV' —K lp)—cz eXp(— vV —K t)=0.

exp (V=K t),—exp(—v =K t)

Since exp (v =Rt —exp(— v =K 1) = exp(v = K)(la—h)—exp(v' —K)(th— 1)

#0, we have c;=c;=0. But, this is a contradiction. Therefore, we can conclude that f
is identically 0 on M. This completes the proof of theorem C.

Next, we shall prove theorem D. Let (M, g) be Riemannian homogeneous. Then,
the scalar curvature S is constant on M. Of course, (M, 2) is complete. We assume that
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(M, g) satisfies (**). Then, by the previous arguments, in this paper and the construc-
tion of f, we can see that f is constant on M.

If f4=0, then, from (3. 4), we have A(¢)=0 for all £ Thus, from (3. 5), it must
follow that K=0. But, this is a contradiction. Therefore, f must be 0 on M. This com-
pletes the proof of theorem D.

4. A remark

Let (M, g) be a 3-dimensional non-compact, complete, non-homogeneous, irreducible
Riemannian manifold with constant scalar curvature S satisfying (*) (or (**)). Then,
(M, g) is not always locally symmetric. Because, the following Riemannian manifold
(M, g) is an example of such a Riemannian manifold (cf. K. Sekigawa [47]):

M=R3 (3—-dimensional real number space),

1/22 0 0
(g); 0 1 0 , With respect to the canonical coordinate system
0 0 1

(w1, uy, u3) on RS, where
1/a=exp (V=572 8), t=(cos u)us+(—sin uy)us,

S is a negative real number.
The scalar curvature of the above Riemannian manifold (M, g) is S, and VR0 for
M, 2.
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