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1. Introduction

Let $A$ and $B$ be complex Banach algebras with an identity. A linear map $\phi$ : $A\rightarrow B$ is
called a Jordan homomorphism if $\phi(ab+ba)=\phi(a)\phi(b)+\phi(b)\phi(a)$ for all $a$ and $b$ in $A$ ,
(equivalently, $\phi(a^{2})=(\phi(a))^{2}$). It is well known that such maps preserve the power struc-
ture, that is $\phi(a^{n})=(\phi(a))^{n}$, for every positive integer $n$ . But the following proposition
is valid.

PROPOSITION 1. Let $A$ and $B$ be complex Banach algebms with an idenhty $e_{A},$ $e_{B}$ respec-
tively and $\phi$ be a continuous linear map from $A$ into $B$ such that $\phi(e_{A})=e_{B}$ . Suppose that there
exists a positive integer $k(\geqq 2)$ such that $\phi(a^{k})=(\phi(a))^{k}$ for all element $a$ in A. Then $\phi$ is a
Jordan homomorphism.

PROOF. We shall use the vector-valued exponential functions. For each element $a$ of

a Banach algebra $C,$ $\exp(a)$ is defined by $\exp(a)=e_{C}+\sum_{n-1}^{\infty}\frac{1}{n!}a^{n}$ where $e_{C}$ denotes the

identity element of $C$. Then it is well known that $\exp(a)=\lim_{n\rightarrow\infty}(e_{C}+\frac{1}{n}a)^{n}$ . Now, by in-

duction, we have

$\phi(a^{kn})=(\phi(a))^{kn}$ for $n=1,2,3,$ $\cdots$ and $a\epsilon A$ .
Thus,

$\phi(\exp(a))=\lim_{n\rightarrow\infty}\emptyset((e_{A}+\frac{1}{k^{n}}a)^{kn})$

$=\lim_{n\rightarrow\infty}\phi(e_{B}+\frac{1}{k^{n}}\phi(a))^{kn}$

$=\exp\phi(a)$ for each $a$ in $A$ .

Replace $a$ by $\lambda a$ with complex number $\lambda$, expand in power of $\lambda$, and equate coefficients of $\lambda$

to obtain $\phi(a^{n})=(\phi(a))^{n}(n=1,2,3, \cdots)$ . We completes the proof.
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In the next section, we shall specialize the above results to the case of Banach
$*$-algebras.

2. A specialization to Banach*-algebras

Throughout this section, we consider complex $*$-Banach algebras with an identity
(namely, complex Banach *-algebras with an isometric involution and an identity of norm
one). By a $C^{*}\cdot homomorphism$ of one*-Banach algebra into another, we mean a self.adjoint
linear map preserving squares of self-adjoint elements in $A$ .

Let $A$ be a complex *-Banach algebra, we recall that $A^{+}$ is the subset of $H_{A}$ consisting
of all finite sums of elements of $A$ , and that an element of $A^{+}$ is said to be positive.

A linear map of one $*$-Banach algebra into another is said to be positive lf it carries
positive elements into positive elements (See [5]). Such a map is self-adjoint $(\phi(a^{*})$

$=(\phi(a)^{*})$ .
Several authors have studied the condition that a linear maps of a $c*$ -algebra becomes

$C^{*}\cdot homomorphism$ . For example, let $\phi$ be a self.adjoint linear mapping of a Von Neumann
algebra $A$ into a $C^{*}$-algebra $B$ with an identity $e_{B}$ which preserves invertible operators and
$\phi(e_{A})=e_{B}$ then $\phi$ is a $C^{*}$-homomorphism (Russo [31).

PROPOSITION 2. Let $A$ and $B$ be two complex $*$ -Banach algebras with an identity $e_{A},$ $e_{B}$

respectively, and $\phi$ : $A\rightarrow B$ be a posihve linear map such lhat $\phi(e_{A})=e_{B}$. Moreover suppose $B$

is commutative $and^{*}\cdot semi$-smple.

Then the following statements are equivalent.
(1) $\phi$ is C’-homomorphism.
(2) There exzsts a posihve integer $k(\geqq 2)$ such that

$\phi(h^{k})=(\phi(h))^{k}$ for each self-adioint $h\epsilon A$ .
(3) $\phi(\exp(-h))=(\phi(\exp(h)))^{-1}$ for each self-adjoint $h\epsilon A$ .
(4) $Sup\{\Vert\phi(\exp(\xi h))\phi(\exp(-\xi h))\Vert-\infty<+\infty\}<+\infty$ for each self-adjoint $h\epsilon A$ .
REMARK. We should remark that when $B$ is a $C^{*}$ -algebra, $\sup\{\Vert\phi(\exp\xi h)\Vert\Vert\phi(\exp$

$(-\xi h)\Vert;-\infty<+\infty\}$ is always divergent for self-adjoint element $\phi(h)$ whose spectrum $con$ .
tains more than two points.

We need some lemmas. For the moment, let $A$ and $B$ be $C^{*}$ -algebras. Then a posi-
tive linear map such as $\phi(e_{A})=e_{B}$ is bounded and $\Vert\phi\Vert=1$ . For each self-adjoint $h$ in $A$ ,
$\exp(h)$ is positive element. Suppose that the identity element of a $c*$-algebra acting on a
Hilbert space $H$ is the identity operator on $H$

LEMMA 3. Let $A$ and $B$ be $C^{*}$-algebras and $\phi$ : $A\rightarrow B$ be a posiitve linear map such as
$\phi(e_{A})=e_{B}$ . Suppose $B$ is commutative. Then $\phi(exph)\geqq exp\phi(h)$ for each $seIf\cdot adjoint$ element
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$h$ of $A$ .
PROOF It follows from “generalized Schwartz inequality” and boundedness of $\phi$ .
LEMMA 4. Let $A$ and $B$ be $C^{*}$ -algebras. Suppose that $B$ acts on $sme$ Hilbert space and $\phi$

is completely positive.
Then $\phi(x^{*})\phi(x)\leqq\phi(x^{*}x)$ for each $x\epsilon A$ .

PROOF Let the canonical expression of $\phi$ be $V^{*}\pi V$, where $\pi$ is $a^{*}\cdot representation$ of $A$

on some Hilbert space $K$ and $V$ is a bounded linear operator from $H$ into $K$ such that
$\pi(A)VH$ generates $K$

Sinoe $(e_{A})=V^{*}\pi(e_{A})V=V^{*}V=e_{B},$ $V$ is an isometry. Thus $VV^{*}$ is a projection. We
have

$\phi(x^{*})\phi(x)=V^{*}\pi(x^{*})VV^{*}\pi(x)V$

$\leqq V^{*}\pi(x^{*}x)V$

$=\phi(x^{*}x)$ for each $x\epsilon A$ . $q$ . $e$. $d$.
Now we proceed to proof of proposition 2.

(1) $\rightarrow(2)$ It is well known.
(2) $\rightarrow(3)$ Sinoe $A$ has an identity and $B$ is $\cdot semi$-simple, $\phi$ is continuous. [5]. Henoe it is
contained in proposition 1.
(3) $\rightarrow(4)$ Since $\phi$ is continuous, it is clear.
(4) $\rightarrow(1)$ Since $B$ is $\cdot semi$-simple, we may assume that $B$ is a $C^{*}\cdot algebra$. Let $h$ be a self.
adjoint element of $A$ . We consider the complex variable B-valued entire function $\Psi(\lambda)$

$=\exp(\lambda\phi(h))\phi(exp\cdot\lambda h)$ .
Then

$\Vert\Psi(\lambda)\Vert^{2}=\Vert\phi(\exp(-\overline{\lambda}h))\exp\overline{(\lambda}\phi(h))\exp(\lambda\phi(h))\phi(\exp(-\lambda h))\Vert$

$=\Vert\phi(\exp(-\overline{\lambda}h))\exp(2Re\lambda\phi(h))\phi(\exp(-\lambda h))\Vert$

$\leqq\Vert\phi(\exp(-\overline{\lambda}h))\phi(\exp(2Re\lambda(h)\phi(\exp(-\lambda h))\Vert$

$=\Vert\phi(\exp(-\overline{\lambda}h))\phi(\exp(-\lambda h)\phi(\exp(2{\rm Re}\lambda(h))\Vert$

Sinoe $\phi$ is positive and $\exp(2{\rm Re}\lambda h)\geqq 0$, there exists a positive square root $(\phi(\exp 2{\rm Re}\lambda.h))^{f}$

$\Vert\Psi(\lambda)\Vert^{2}\leqq\Vert(\phi(\exp 2{\rm Re}\lambda.h))^{+}\phi(\exp(-2{\rm Re}\lambda)h)(\phi(\exp 2{\rm Re}\lambda h))^{\$}\Vert$

$=\Vert\phi(\exp(-2{\rm Re}\lambda)h)\phi(\exp(2{\rm Re}\lambda)h\Vert$

Consequently $\Psi(\lambda)$ is bounded in the whole plane. Thus $\Psi(\lambda)$ is contant by Liouville’s
theorem for vector-valued entire functions. Sinoe $\Psi(0)=e_{B}$, we have $\exp\lambda\phi(h)=\phi(\exp\lambda h)$ .
Equate coefficients of $\lambda$ to obtain $\phi(h^{2})=(\phi(h))^{2}$. $q$ . $e$. $d$.
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