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1. Introduction and Summary

The two-armed bandit problem with finite memory has been investigated by RoBBINs
[107, IseeLL [ 9 ], SmiTH and PykE [117, and SamueLs [ 127, under a time-invariant decision
rule. But a limiting proportion of heads equal to max {p;, p»} was not achieved by such
rules. However if the choice of coin may depend on time, the above fact had been solved
by Cover[1]. And some extensions of his rule were given by K. Tanaka and K. INADA
[13]. Moreover Cover and HELLMAN [ 3 ] solved the two-armed bandit problem under the
assumption of finite memory similar to that used by HELLmaN and Cover [ 7], using a time-
invariant decision rule. Note that this problem combines the hypothesis testing problem
investigated by Cover [2], and HeLLMAN and Cover [7], with a time-invariant learning
algorithm.

In this paper we shall describe the method of solving the following statistical problem
with finite memory with a limiting probability of error zero, using a time-varying decision
rule. That problem is, “Select @ coin with the same propability of coming up head as that of
a given coin among many coins on the basis of an outcome of tossing the given coin and one coin
among many coins in pairs.”’

This paper consists of three sections. In Section 2 the problem that a coin with the
same probability of coming up head as that of a given coin among three coins is selected
is solved. Moreover, in Section 3 the provlem that a coin with the same probability of
coming up head as that of a given coin among more than four coins is selected is solved.

2. Case of three coins

We are given one coin and three coins (coin @), coin @, coin @), coin @) with unknown
probabilities, p=1—gq, p1=1—q1, po=1—¢gs and p3=1—gs of coming up heads. We shall
follow the procedure of tossing two coins successively in each test block 7y, T3, ---. Each
test block T will be begun arbitrariry with coin @ as the favorite. (This precaution yields
independence of the test blocks.) A test block will be broken into m subblocks each con-
sisting of 2s tosses. A subblock test will be said to be a success if 2s tosses yield an un-
broken sequence of HT’s or TH’s. At the termination of each subblock, the new favorite
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coin is used to begin the next subblock until » subblock tests have been performed. A test
block consists of this collection of subblocks. Thus ms tosses of the coins are made in the
test block T. Now, we shall state the details of the test subblock.

Let the sequence of coins tossed (84, 61, 05, -, 0s5),04=®, 8ie (D, @, @}, and outcomes
observed (X4, Xi, Xo, -+, Xs), Xa, Xie{H, T}, be divided into pairs

(324) 01)(0A’ 02) <0A’ Os
A Xl XA’ X2 XA, Xs
The memory of the past at time # is the state
<0n_1, 01;) On_q ) ( On
or
Xn_l, Xn Xn_]_ Xn
accordingly as # is even or odd. Thus the memory is of length r=2. In figure 1 we shall

give the explicit description of this rule in which the details of the orderly transition from
the current favorite coin to the new favorite coin are made clear.

coin @: p=1—gq
coin @: p1=1—(11, coin @: ﬁ2=1—q2, coin ®: p3=1—q3

& & @d
(HT) (HT)--(HT) @@:@@ % (pq)s

@® % (pa)*
(TH) (TH)--(TH) @@—\*@@ ¥ (gap0)*

@® ¥ (gp)s
otherwise AO-BD 1—{(pg)s+(ap0)%)
A2 B2 O® @200 3 (pg)s
(HT) (HT)---(HT) N
A® % (pg)s
(TH) (TH)--(TH) ®®<®® % (gp2)s
A® ¥ (gpr)s
otherwise B@-B®@ 1—{(pg)s+ (gp2)%)
A® A® A® AC—-BD % (pgs)s
(HT) (HT)--(HT) N
AP % (pgs)s
(TH) (TH)---(TH) ®®<®® 3 (gps)s
A® ¥ (gps)s
otherwise A®—-@® 1—{(pgs)s+(gps)s}

Fig. 1. Coin transition in the test subblock.

Let M be the coin transition probability matrix in which P;; is the transition probabil-
ity from the current favorite coin @ to the new favorite coin @ (3, j=1, 2, 3).

P11, P12, P13
. 1 M=| Py, Py, P

P31) P32s P.



Some statistical method with finite memory 29

1= (0 @) +(ap), 4 (Pa)y+(ap)), 5 ((ba)+(ap)?)

2
((ba)*+(ap2>), 1= (g +(a2)), L((Da)+(at)?)

[CIEN I

{(Paz)s+(qp3)}, %{CP%)S'F(QPQS} , 1—{(pgs)s+(aps)s}

And let P: be the stationary probability of coin @) being the favorite (i=1, 2, 3). In order
to calculate P;, we at first consider the following

P1=P1P11+P;P5 + P3Py
P,=P;P154P,P2+PsPs,
P3=P; P13+ P;P23+P3Ps3

2. 2)

P1+P2+P3:1.
From (2. 1) and (2. 2) we obtain

Py= {(042)°+(gp2)°} {(Pgs)s+(qps)s} /T {(Pg2)s+(qp2)%} {(Pgs)s+ (aps)s)
+ {(Pq1)s+(gp1)s} {(Pas)s+(gps)s} + {(Pg1 )5+ (gp1)s} {(Pg2)s+(ap2)%) ]

(2-‘ 3 Po= {(#q1)s+(ap1)%} {(bgs)s+ (aps)s} /T {(Bg2)s+(ab2)%) {(Pgs)s+(aps)s)
+ {(Pq1)s+(gp1)s} {(Pgs)s+ (gps)s} + {(Pg1)s+ (g p1)%} {(Pg2)s+(gb2)s} ]

Ps= {($q1)5+(gp1)%} {($g2)5+ (gp2)%} /L {(Pg2)s+ (ap2)s} {(Pgsds+(gbs)s}
+{(0q1)5+(gp1)%} {(Pgs)s+(gps)s} + {(Ba1ds+(gb1)%} {(Pg2ds+ (gp2)s} )

That is, the stationary probabilities of coin @, coin @ and coin ®) are P;, P, and P3in (2. 3)
respectively.
Here we shall assume p; >p, >ps. And let Pyé, P,i and Psi be the probabilities of coin
@, coin @ and coin @ being the favorite coins in the test block T} respectively. Clearly
Pyi, P,i and P3¢ depend on p, p1, pa, ps, mi and si, and approach P;, P, and Pj respectively as
mi— o,
Now we must consider the following cases.
Case 1. If coin @ coincides with coin® (i.e. p=p;), we hope
to hold X Pyi= o0, 31Pyi<C 0 and Psi< oo,
Case 2. If coin @ coincides with coin @ (i.e. p=p2,), we hope
to hold > P;i<{ oo, 31Pyi= 00 and 3 Psi< 0.
Case 3. If coin @ coincides with coin ® (i.e. p= fa), we hope
to hold > P;i<C 0, 3 1Pyi<C o and Y Psi= 0.
If one of the above three cases is realized, from the Borel zero-one law we may conclude
that with probability one only a finite number of test block 7; will result in an incorrect
choice of coin as the block tests have been made independent, by letting coin @ be the
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favorite at the beginning of each test block.

So lastly we must indicate each of the above three cases being realized.
Case 1.
When coin @ coincides with coin @ (i.e. p=p1), from (2. 3) we obtain

Pyi=A,/(A;1+Az+As)
. 4 Pyi=A,/(A;1+A+A3)

Pgi=As/(A1+A2+As)
where

A= {(51g2)5i+(q102)%} {(D1g8)5i+ (@1 P3)5i)
A2=2(5141)% {( 143)%+ (q1 P3)si}
A3z=2(h1q1)5 {(( 51g2)5i+ (g1 P2)%} .

And further we can transform the above equations into the following

Pyi (aysi+Bysi)(api+ %)
= Carsit Brs)Cagsit Bsi)+ 2Cagsi+ Boi )+ 2Cari+ Broi)
2(agsi+ Bg%i)
@5 P = e T B0 ar T o)+ Xagei+ Br) F ZCari T B
Py 2(ay5i+B15)
= Carsit B agsit+ Paoi)+ 2Cagsi+ Bz5i) + 2arsi+ i)
where
ay=pa/ 1<1, az=p3/11<1
and

Bi=aq2/ 1 >1, Bo=qa/ g1 >1.

Here we find

Pi—1— 2Capsi+Bpsi)
! Carsi+ Brsid(azsi+ Basi)+2Caz’i+ B2 ) + 2(arsi+ Br5i)

2(ay%i+Brsi)
"~ Carsit Brri(agsi+ Bri)+ 2(agsi+ Bosi)+ 2(arsi+ Brsi)

—=1—P,—Py.

So that, from the above thing, if it is assured that >}P,< oo and > Psi< 0, it follows that
>'Pi=o0. For that reason, it is enough to show that > P;i< o and X Pzi<{. From (2. 5)

we obtain

P, 2(az5i+-Bp%i)
= Carsit B (agsit Bi) + 2Cazsi+ Bi) 1 2Carsi+ Brr)
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_ 2 . 1 <2
Bisi  1+4aysi/BySi+2/ Brsi+2(eysi+ Bri5i) [ BrsiCagsi+- Bosi) Bisi
and
Pyi 2Consi+ %)
= Carsit i agsit Bi )+ 2Cagsi+ By 2Carsi+ Broi)

2 1

=B THari Bt 2Bt it B B Cart B ﬁfsi
As it is found from (2. 5) that 1/8;<<1 and 1/8,<1, we have
22P5i<C233(1/ B )si<< oo
and
2 Psi<C231(1/ Bp)si< 0, e.g., si=i.

Case 2.
When coin @ coincides with coin @ (i.e. p=p,), from (2. 3) we obtain

Pyi=B;/(B1+B;+B3s)
2. 6) Pyi=B,/(B1+ Bs+ B3s)

Psi=B3/(B;+ B+ Bs)
where
B1=2(02q2)% {($293)%+ (g2 035}

Ba= {(02g1)%i+ (g2 p1)%} {(D2g3)%+ (q203)%}
B3=2( $2q2)5 {( p2q1)%i+ (g2 15}

And further we can transform the above equations into the following

(ERD

Pyi= Si Si § S
1 2( Zfsz gist )+( apSi + Bisi )( Zf& gf—‘: ) (a]_st + Brsi )

§$+WX$ )

@ P,i= : ‘
T ( zfz: gfs' )+ a}s‘ Brsi (Zfs' 1915‘ ) (af' 15'
. 2 g ot
Fe= 2( agsi | B ) ( “13 )( 5;3‘ 825 )-I— )
s TS @t T s Nags Ty 0‘15' + Brsi
where

a1=pa/ 11<<1, az=p3/11<1

31



32 K. Tanaka and K. Inada

and

Bi=az/ n>1, Bo=qs/ @1 >1.

Here, of course, P,i=1—P;i—Pg holds. So that, from the above thing, if it is assured that
21Pi<Coo and >Psi<{oo, it follows that > Py=oco0. For that reason, it is enough to show
that 3 P;i< and X Pgi<. From (2. 7) we obtain

; 2 1
P11= .
Versi o, g4 &% 4 1195, L/aa®+1/81%
it prsi tltem agsi[aySi+ BoSi/ BySi
<2aysi
and
B2i[Br5i  2B1%i(as’i aySi+ Bo%i/ B15i) +14+ agsifySi +2 9 Br%i
B25i(1/aysi+1/By5:) aSifosi T Bosi
o brtt
< Ba5i
As it is found from (2. 7) that ;<1 and B8;/8:<1, we have
TPy <2 i< oo
and
SIP< 238/ B < o0, €.g., Si=i.
Case 3.

When coin @ coincides with coin @ (i.e. p=p3), from (2. 3) we obtain
Pyi=C1/(C1+C2+C3)
2. 8 Pyi=C,/(C1+C2+Cs)

Psi=C3/(C1+Ca+C3)
where

C1=2( p3q3)%i {( p3q2)5i+(gsp2)%i}
Co=2(p3q3)% {( paqr)si+(ga p1)%i}
Cs= {(Psqr)%i+(gsp1)5i} {( P3q2)%i+ (g3 p2)%i}.

And further we can transform the above equations into the following
alst' ﬁlsi
2( azs' + B2% )
o Si i | By
(azst ﬂ Si ) (azs: + Bsi ) (azs, ﬁzst )( apsi ﬁgsi )

o 1 )
. 9 Pyi= 5 i azs‘ ‘st’ ] i
Coa(a B (L ) (o (S B

Pyi=
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‘ ' (al.sz + ﬁist )( Zzz: + gzz: ) ' '
2( Z;s:- + g;s: ) (azst + Besi ) (azss + Bosi )( z;s:‘ + g;s: )

Pyi=

where

ar=p2/11<1, az=ps/$1<1
and

Bi=a2/ 1>1, fa=1s/ 1.

Here, of course, Pgi=1-—P;i—P, holds. So that, from the above thing, if it is assured that
2Pi<<o and X1P;i<{ o, it follows that >1Pgi=o0. For that reason, it is enough to show
that 31P,i<<c and 3IP;i<c. From (2. 9) we obtain

Pi=—_2_. 1
VT Taps Qassi +2“23'C1/“23'+1/1923') a’i 4 q
Corsi/agsi-t Brsi[ B | By

<L2aysi
and
assifagsSi 2a%i [ oy 5i(aySi [ agSi+By15i  Bo%i) qoagt | g% prsi
(1/apsi+1/8o5i) arsi | apSi 132"
agsi
<2 o

As it is found from (2. 9) that a;<<1 and a,/«;<1, we have
P2 agsi < oo

and

2.P5i <22 (/o )5i< 0, €.8., Si=i.

3. Case of m coins (General case)

We are given one coin and m coins (coin @, coin @, coin @), --+, coin @) with un-
known probabilities p=1—¢q, p1=1—q1, po=1—¢q5, -, Pm=1—gm, of coming up heads. We
shall follow the same procedure as used in Section 2. In Figure 2, we shall give the details
of the orderly transition from the current favorite coin to the new favorite coin in the test
subblock.
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coin @: p=1—¢q
coin @: p1=1—q,, coin @: p,=1—¢,, -+, coin @: pm=1—gm

ao 6 60

(HT) (HT)-(HT) @®@0-@®® ($9)%/(m—1)
06 (pa)*/(m—1)
(TH) (TH)-(TH) @@-\’@@ (qpl)‘/:(m-l)
[N (gp1)s/(m—1)
otherwise A0->@0 1—{(pg)*+ (a01)%}
®® @0 @®
(HT) (HT)--(HT) @®-@D (ﬁqx)S/:(m—l)

\g( x—1) (pg=)s/(m—1)
(XFL) (#a0)*/(m—1)

. ® (5gx)*/(m—1)
(TH) (TH)(TH) @®—>@® (gpx)3/(m—1)

\%c X—1) (46)%/(m—1)
( X+1) (gp)/(m—1)

(ap2)*/(m—1)

oth:erwise ®®—>®® 1—{(paz)s+ (gp=)*)
(%?) (%?)--- (g?) @@q@(}) (pgm)*/(m—1)
®(@m=1) (pam)*/(m—1)
TH THATD  GBIE0 (apm)s/(m=1)
®(m—1) (gom)*/(m—1)
otherwise AD—->A® 1—{(pgm)s+ (gpm)s}

Fig. 2. Coin transition in the test subblock.

Let N be the coin transition probability matrix in which P;; is the transition probability
from the current favorite coin @ to the new favorite coin @ (G, j=1, 2,---, m).

P11:P1z ............... Pim
3. D N = P,-lfp,-2 ...... Pij"""fPim
Pm]_ | S Pom
where
Pij=—"3-{(pg>s+(apid}  CFd, i, 7=1,2,-, m)
and

Pii=1—‘ {(Pq:)s'{'(qpt)s} <i=1: 2’ "ty m)
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And let P; be the stationary probability of coin @ being the favorite (i=1, 2, ---, m).
In order to calculate P;, we at first consider the following.

Pi=31PPsi  (i=1,2, -, m)
(3. 2) 7=t

ﬁ Pi=1
i=1

From (3. 1) and (3. 2), we obtain

i {Cpgrdsi+ (g pr)si}
e
Pi=

31 1T {Coardsi+(apr)si)
j=1kxj

1T {(pgrdsi+(qpr)si)
k<2
P2=

3 11 {(pag)si+Cap)si)
j=1k>xj

T {(pae)si+Capr)s)
k<t

3. 3 P:=
2 ﬁ,{(Mk)si+(q.bk)$f}
j=1kaxj
T (Cpardsi+Capr)si)
Ppe k>xm

2 11 (Coaw+ Capw)
That is, the stationary probabilities of coin @, coin @), -+, coin (m—1) and coin @ are P;,
Py, ---, Pm_1 and Pwm in (3. 3) respectively.

Here we shall assume p; >p, >-->pm. And let Pyi, Pyi, --- , Pm_4, and P be the pro-
babilities of coin @, coin @), ::+, coin (m—1) and coin @ being the favorite coins in the test
block T: respectively. Clearly Pyi, Py, ---, Pm_yi, and Pni depend on p, p1, ps, **+, Dm, mi
and s;, and approach Py, Py, :-- , Pm_y, and P respectively as mi— co.

Now we must consider the following m cases.

Case x. If coin @ coincides with coin ® (i.e. p=px), we hope

to hold X Pxi=co and X Pri<co (¢=x, t=1,2, -, m, x=1,2, -, m)
If one of the above m cases is realized, from the Borel zero-one law we may conclude that
with probability one only a finite number of test block 7: will result in an incorrect choice
of coins as the block tests have been made independent, by letting coin @ be the favorite at
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the beginning of each test block.

So lastly we must indicate each of the above m cases being realized.
Case x.
When coin @ coincides with coin ® (i.e. p=p=x), from (3. 3) we obtain

T {(brgr)si+(aupr)si)
P1i= kel

31 11 {Corae)si+(gupr)si)
F=1kj

T {(Dxq)si+(asbr)ss)
ket

@G3. 9 Psi=
31T { (Drqe)si+ Cgupn)si)
j=1koej

M {Cpxar)si+(gspr)si)
Poi— kem

m m '
2 I {(Dxgr)si+(gxdr)si}
J=1kicj
And further we can transform the above equations into the following

i {(ar-1/ax_1)5i+ (Br-1/Bx-1)%}
Py

Pyi=
ﬁ ﬁ,{(ak-1/ax-1)s"+(ﬁk—l/ﬁxq)si}
J=1kej

T {Catk-1/tx-1)5i+(Bra/ Bx-1)%i}
k3t

(3. 5) Pri=
ﬁ I”'i A{ar_y/ax_1)%i+(Br-1/Bx-1)5}
J=1kj
ﬁ {Car-1/ax_1)si+ (Br-1/ Bx-1)%}
Ppi— k3m
3% 1T {eko/ax-1)%i+ (Bror/Br-1)%)
j=1k=ej
where

a0=p1/p1=1; a1=p2/p1) Tty at:pt/ply B am_1=Pm/p1

and
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Bo=aq1/01=1, p1=qs/q1, "+, Bt=qt/q1, **- , Bm-1=qm/ q1.

Here, of course, Pxi=1—(Pyi+Pyi+---4Px_1i+Px i+ ---+Pin) holds. So that, from the
above thing, if it is assured that X P;i< oo, +++, 31Px <0, 31Px1i<Co0, -+, and D Pmi<
oo, it follows that Y1Psi=occ. For that reason, it is enough to show that >'P,i< e, :--,
S1Px_4i<<oo, 31Px 4i<C 0, -+, and X Pmi<{co. From (3. 5) we obtain

1

T (Carot/axrdsi+(Booa/Br1)%) 33 M1 {Cathor/atx1)5i+( Bror/ 1))
k2ex J:chkéel

+
i {(ar-1/ax_1)5i+(Br-1/Bx-1)%} m {(ar-_1/ax_1)%i+ (Br_1/Bx-1)%}
kel Pres]

Pyi =

<2(az-1/a0)s

1

kf:Ix {(ar-y/ax_1 )%+ (Br-1/Bx-1)%} jgkﬁj{(akq/ ax_1 )i+ (Br-1/ Br-1)5i}

+
kI:Ixi(lakq/ax-l)si + (Br-1/ Bx-1)5i} kgi(lak_l/ax_l)s;_l_ (Br-1/Bx-1)5i}

Px_li el

<2(ax_1/ax_p)si

1
kI:ix{(ak_l/ax_1>5f+(ﬁk_l/ﬁx_ow} éﬁj{(ak_l/ax-oﬁ+(ﬁk-l/ﬂx_os:'}

+
T {Caky/otx1D5i+ (Br-1/Bx-1)%i} i {(ar-1/z-1)5+ (Br-1/ Bx-1)5}
kivai R+l

Pxiyi=

<L2(Bx-1/Bx)si

1

kﬁx {Cathor/@x-1)%i+ (Broy/ Br-1)%i) ékﬁj{cak_l/ax-oss+ (Br1/Br-1)s1}

+
I {Carr/aza)si+ (Boa/Bra)s) M1 {Cahor/n-1)si+(Bho1/Br-1)5i}
k¥m kaem

Pmi =

<2(Bx-1/Pm-1)%

As it is found from (3. 5) that ax_1/ap<<1, ax_1/a;<1, -, ax_1/ax_a<1, fz_1/B2<1,---, and
Bx-1/Bm-1<1, we have the following equations
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P23 (ax 1/ )%
ZPx_1i:<22(ax_1/ax_2)si

2P0 <<233(Bx-1/ B )si

2P mi<:22(13x—1/ Bm-1)si, e.g., si=i.
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