A NOTE ON THE RADON-NIKODYM TYPE THEOREM FOR OPERATORS ON SELF-DUAL CONES

YASUHIDE MIURA

ABSTRACT. Let $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$ be a standard form of a von Neumann algebra. We consider an order for operators preserving a self-dual cone \mathcal{H}^+ . Let A, B be positive semi-definite operators on \mathcal{H} such that A preserves \mathcal{H}^+ and B belongs to a strong closure of the positive part of an order automorphism group on \mathcal{H}^+ . We prove that if A is majorized by B, then there exists a positive semi-definite operator c in the center $Z(Q\mathcal{M}|_{Q\mathcal{H}})$ with $\|c\| \le 1$ such that $QA|_{Q\mathcal{H}} = cB|_{Q\mathcal{H}}$ where Q is a support projection of B.

1. Introduction

Let \mathcal{H} be a complex Hilbert space with an inner product (\cdot, \cdot) . A convex cone \mathcal{H}^+ in \mathcal{H} is said to be self-dual if $\mathcal{H}^+ = \{\xi \in \mathcal{H} | (\xi, \eta) \geq 0 \ \forall \eta \in \mathcal{H}^+ \}$. We denote the isometric involution with respect to \mathcal{H}^+ by J. Put $\mathcal{H}^J = \mathcal{H}^+ - \mathcal{H}^+$. Then $\mathcal{H}^J = \{\xi \in \mathcal{H} | J\xi = \xi\}$. Every element $\xi \in \mathcal{H}$ is written as $\xi = \xi_1 + i\xi_2$ for $\xi_1, \xi_2 \in \mathcal{H}^J$. The set of all bounded linear operators on \mathcal{H} is denoted by $L(\mathcal{H})$. We denote the set of all operators in $L(\mathcal{H})$ preserving \mathcal{H}^J by $L(\mathcal{H})^J$. For a fixed self-dual cone \mathcal{H}^+ , we shall denote for $A, B \in L(\mathcal{H})^J$ by

$$A \leq B$$

if $(B-A)(\mathcal{H}^+) \subset \mathcal{H}^+$. Then the relation ' \leq ' defines an ordered vector space on $L(\mathcal{H})^J$. The group of all order automorphisms on \mathcal{H}^+ is denoted by $GL(\mathcal{H}^+)$. We shall write ' \leq ' as the usual order defined on the set of all Hermitian operators on \mathcal{H} .

Recall a self-dual cone associated with a standard von Neumann algebra in the sense of Haagerup [2], which appears in the form $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$ where \mathcal{M} is a von

²⁰⁰⁰ Mathematics Subject Classification. 46L10, 47B65.

Key words and phrases. Order isomorphism, operator inequality, Radon-Nikodym theorem, self-dual cone, standard form of von Neumann algebra.

Neumann algebra on \mathcal{H} . For example, put for $A \in \mathcal{M}$

$$\hat{A}: \xi \mapsto AJAJ\xi$$
 for all $\xi \in \mathcal{H}$.

Then $\hat{A} \supseteq O$ from the standard form.

In A. Connes [1] and B. Iochum [3], they characterized an element of $GL(\mathcal{H}^+)$ for an orientable or a facially homogeneous cone \mathcal{H}^+ . In this note we shall investigate the strong closure of the positive part of $GL(\mathcal{H}^+)$ from the point of view of the inequality concerned with the order for operators preserving a self-dual cone associated with a standard form.

2. Main Results

We need some lemmas to prove the main theorem.

Lemma 2.1. For a standard form $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$,

$$\parallel XJXJ \parallel = \parallel X \parallel^2$$

holds for all $X \in \mathcal{M}$.

Proof. We first assume $X = X^*$. Then for each spectral projection P of X, the projection PJPJ becomes a spectral projection of XJXJ. Here we remark that $PJPJ \neq O$. Indeed, using the fact that $JZJ = Z^*$ for each element Z in the center of \mathcal{M} , the central support of P is equal to that of JPJ. Hence we have $PJPJ \neq O$. Take the spectral projection P such that the difference $XP - \parallel X \parallel P$ is small. Then the difference $(XJXJ)PJPJ - \parallel X \parallel^2 PJPJ$ is also small and we obtain the desired equality.

In the general case, for X, we obtain that

$$|| XJXJ ||^2 = || (XJXJ)^*(XJXJ) || = || X^*XJX^*XJ ||$$

= $|| X^*X ||^2 = || X ||^4$.

This completes the proof.

Lemma 2.2. For a standard form $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$, if $A, B \in \mathcal{M}$ and $A \geq O, B \geq O$, then the following conditions are equivalent:

- (i) $O \leq A \leq B$.
- (ii) O < AJAJ < BJBJ.

Proof. The implication (i) \Rightarrow (ii) is immediate from the commutativity of A and JAJ. The implication (ii) \Rightarrow (i) is shown as follows:

We may assume A and B to be invertible. Let $B^{-\frac{1}{2}}JB^{-\frac{1}{2}}J$ operate on (ii) by multiplication from the right and left. Then

$$B^{-\frac{1}{2}}AB^{-\frac{1}{2}}JB^{-\frac{1}{2}}AB^{-\frac{1}{2}}J \le I.$$

It follows from Lemma 2.1 that

$$||B^{-\frac{1}{2}}AB^{-\frac{1}{2}}||^2 = ||B^{-\frac{1}{2}}AB^{-\frac{1}{2}}JB^{-\frac{1}{2}}AB^{-\frac{1}{2}}J|| \le 1.$$

Hence
$$\|B^{-\frac{1}{2}}AB^{-\frac{1}{2}}\| \le 1$$
, so $B^{-\frac{1}{2}}AB^{-\frac{1}{2}} \le I$. Consequently $A \le B$.

Lemma 2.3. For a standard form $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$, suppose that $A \in L(\mathcal{H})$, and $B \in \mathcal{M}$ is an injective operator with a dense range. Then, $O \subseteq A \subseteq BJBJ$ if and only if there exists an element $C \in Z(\mathcal{M})$ with $O \subseteq C \subseteq I$ such that A = CBJBJ.

Proof. Consider the polar decomposition B = U|B| of B. By the assumption on B, we obtain that U is a unitary element of \mathcal{M} , and so $\hat{U} = UJUJ \trianglerighteq O$. Hence $\hat{U}^* \trianglerighteq O$ since $(\hat{U}^*\xi, \eta) = (\xi, \hat{U}\eta) \trianglerighteq O$ for all $\xi, \eta \in \mathcal{H}^+$. Then we may assume that B is positive semi-definite. Let $B = \int_0^{\|B\|} \lambda dE_{\lambda}$ be a spectral decomposition of B.

Put $P_n = \int_{\frac{1}{n}}^{\|B\|} dE_{\lambda}$ for $n \in \mathbb{N}$. Since $P_n \in \mathcal{M}$ implies $\hat{P}_n = P_n J P_n J \supseteq O$, it follows that

$$O \leq \hat{P}_n A \hat{P}_n \leq \hat{P}_n \hat{B} \hat{P}_n.$$

Since $P_nBP_n(=BP_n)$ is invertible on $P_n\mathcal{H}$, where the inverse shall be denoted by $(P_nBP_n)^{-1}$ if there is no possibility of confusion, it follows that

$$(\hat{P}_n \hat{B} \hat{P}_n)^{-1} = \widehat{P_n B P_n}^{-1} = ((P_n B P_n)^{-1})^{\hat{}}.$$

This means that $\hat{P}_n\hat{B}\hat{P}_n$ is an order isomorphism of $\hat{P}_n\mathcal{H}$. This yields

$$O ext{ } ext{ } ext{ } \hat{P}_n A \hat{P}_n (\hat{P}_n \hat{B} \hat{P}_n)^{-1} ext{ } ext{ } ext{ } ext{ } \hat{P}_n.$$

Then, under the reduced standard form $(\hat{P}_n \mathcal{M}|_{\hat{P}_n \mathcal{H}}, \hat{P}_n \mathcal{H}, \hat{P}_n J|_{\hat{P}_n \mathcal{H}}, \hat{P}_n \mathcal{H}^+)$, there exists an element c_n in an order ideal $Z_{\hat{P}_n \mathcal{H}^+}$ of $\hat{P}_n \mathcal{H}$ with $||c_n|| \le 1$ such that

$$\hat{P}_n A \hat{P}_n (\hat{P}_n \hat{B} \hat{P}_n)^{-1} \xi = c_n \xi$$

for all $\xi \in \hat{P}_n \mathcal{H}$. Here, in a standard form $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$, the orrder ideal of \mathcal{H} is defined as

$$Z_{\mathcal{H}^+} = \{ T \in L(\mathcal{H}) | \exists \alpha > 0, -\alpha I \leq T \leq \alpha I \}.$$

By [3, Theorem VI.1.2 (iii)] we obtain that $c_n \in Z(\hat{P}_n \mathcal{M}|_{\hat{P}_n \mathcal{H}})$. We note that $Z(\hat{P}_n \mathcal{M}|_{\hat{P}_n \mathcal{H}}) = Z(\mathcal{M})|_{\hat{P}_n \mathcal{H}}$. Since $\hat{P}_n \leq \hat{P}_{n+1}$ and \hat{P}_n commutes with \hat{B} and c_m for $m \geq n$, it follows for $\xi \in \hat{P}_n \mathcal{H}$ that

$$c_{n+1}\xi = \hat{P}_n c_{n+1} \hat{P}_n \xi = \hat{P}_n \left(\hat{P}_{n+1} A \hat{P}_{n+1} (\hat{P}_{n+1} \hat{B} \hat{P}_{n+1})^{-1} \right) \hat{P}_n \xi$$
$$= \hat{P}_n A \hat{P}_n (\hat{P}_n \hat{B} \hat{P}_n)^{-1} \xi = c_n \xi.$$

Put $S = \bigcup_{n=1}^{\infty} \hat{P}_n \mathcal{H}$, which is a dense set in \mathcal{H} . Then we define the operator

$$C\xi = \lim_{n \to \infty} c_n \hat{P}_n \xi$$
 for all $\xi \in \mathcal{S}$.

From the boundedness of $\{c_n\hat{P}_n\}$ the operator C has a continuous extension on \mathcal{H} , which shall be denoted by the same notation. Thus $0 \leq C \leq I$. Furthermore, when $m \geq n$, $c_m\hat{P}_m$ commutes with both $\hat{P}_nX\hat{P}_n$ and $\hat{P}_nJXJ\hat{P}_n$ with all $X \in \mathcal{M}$. This yields that $C\hat{P}_nX\hat{P}_n = \hat{P}_nX\hat{P}_nC$ and $C\hat{P}_nJXJ\hat{P}_n = \hat{P}_nJXJ\hat{P}_nC$. In view of $\hat{P}_n \to I$ as $n \to \infty$, we have CX = XC and CJXJ = JXJC, and so $C \in Z(\mathcal{M})$. Consequently,

$$A = \operatorname{s-}\lim_{n \to \infty} \hat{P}_n A \hat{P}_n$$
$$= \operatorname{s-}\lim_{n \to \infty} c_n \hat{P}_n \hat{B} \hat{P}_n$$
$$= C \hat{B}.$$

The converse implication holds from the following fact. If $C \in Z(\mathcal{M})$ with $O \le C \le I$, then $I - C \ge O$, and so $I - C = (I - C)^{\frac{1}{2}}J(I - C)^{\frac{1}{2}}J \ge O$. Hence $\hat{B} - C\hat{B} = (I - C)\hat{B} \ge O$. This completes the proof.

Theorem 2.4. Suppose that $(\mathcal{M}, \mathcal{H}, J, \mathcal{H}^+)$ is a standard form. Let $A, B \in L(\mathcal{H})$ and $A \geq O, B \geq O$. Suppose that B is a strong limit of a monotone net (in the sense of '\(\leq'\)') of the positive semi-definite operators from $GL(\mathcal{H}^+)$.

- (i) There exists a positive semi-definite operator K from \mathcal{M} such that B = KJKJ.
- (ii) If $O \subseteq A \subseteq B$, then
 - (1) there exits a positive semi-definite operator c from the center $Z(\hat{P}\mathcal{M}|_{\hat{P}\mathcal{H}})$ with $||c|| \le 1$ such that $\hat{P}A|_{\hat{P}\mathcal{H}} = cB|_{\hat{P}\mathcal{H}}$;
 - (2) $O \subseteq (\hat{P}A|_{\hat{P}\mathcal{H}})^{\lambda} \subseteq (B|_{\hat{P}\mathcal{H}})^{\lambda} \text{ for all } \lambda \in [0, \infty).$

Here $\hat{P} = PJPJ$ for the support projection P of K.

Proof. (i): A positive semi-definite operator from $GL(\mathcal{H}^+)$ is written in the form K_0JK_0J for some invertible positive semi-definite operator $K_0 \in \mathcal{M}$ by [1, Theorem 3.3]. In the case that B is a strong limit of a decreasing net $\{K_iJK_iJ\}$ of such invertible positive semi-definite operators K_i , it follows from Lemma 2.2 that $\{K_i\}$ is also decreasing. Since $\{K_i\}$ is bounded, there exists a positive semi-definite operator $K \in \mathcal{M}$ which is a strong limit of $\{K_i\}$. Thus B = KJKJ. In the case that B is a strong limit of an increasing net $\{K_iJK_iJ\}$ of invertible positive semi-definite operators K_i , since a strong limit of a bounded increasing net of invertible positive semi-definite operators is invertible, B belongs to $GL(\mathcal{H}^+)$.

(ii): We first claim that if P is a support projection of K then PJPJ is a support projection of KJKJ. This follows from the fact that for any two positive semi-definite operators A, B such that AB = BA, we obtain s(AB) = s(A)s(B). Here $s(\cdot)$ means a support projection. Indeed consider the abelian von Neumann algebra generated by A and B. Then

$$s(AB) = s - \lim_{n \to \infty} (AB)^{\frac{1}{n}} = s - \lim_{n \to \infty} A^{\frac{1}{n}} B^{\frac{1}{n}} = s(A)s(B).$$

Next, since $\hat{P} = PJPJ \trianglerighteq O$, the assumption $O \unlhd A \unlhd B$ implies $O \unlhd \hat{P}A\hat{P} \unlhd \hat{P}B\hat{P}$. We obtain that the restriction operator $K|_{\hat{P}\mathcal{H}}$ is an injective positive semi-definite operator in $\hat{P}\mathcal{M}|_{\hat{P}\mathcal{H}}$ with a dense range. By Lemma 2.3 we can then choose a positive semi-definite operator c from the center of $\hat{P}\mathcal{M}|_{\hat{P}\mathcal{H}}$ with $||c|| \le 1$ satisfying $\hat{P}A|_{\hat{P}\mathcal{H}} = cB|_{\hat{P}\mathcal{H}}$. Thus (1) holds. Furthermore, since for every $\lambda \in [0, \infty)$,

$$(B|_{\hat{P}\mathcal{H}})^{\lambda} - (\hat{P}A|_{\hat{P}\mathcal{H}})^{\lambda} = (I - c^{\lambda})B^{\lambda}JB^{\lambda}J|_{\hat{P}\mathcal{H}} \trianglerighteq O,$$

we obtain (2). This completes the proof.

Acknowledgements. The author would like to thank the referee for useful suggestions. This work is supported by Grant-in-Aid for Academic Group Research No. 14 of Iwate University.

References

- [1] A. Connes, Caractérisation des espaces vectoriels ordonnées sous-jacents aux algèbres de von Neumann, Ann. Inst. Fourier, 24 (1974), 121–155.
- [2] U. Haagerup, The standard form of von Neumann algebras, Math. Scand., 37 (1975), 271–283.
- [3] B. Iochum, *Cônes Autopolaires et Algèbres de Jordan*, Lecture Notes in Mathematics, 1049, Springer-Verlag, Berlin, 1984.

(Yasuhide Miura) Department of Mathematics, Faculty of Humanities and Social Sciences, Iwate University, Morioka, 020–8550, Japan

E-mail address: ymiura@iwate-u.ac.jp

Received July 27, 2009 Revised November 27, 2009