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HIGHER ORDER DERIVATIVE ESTIMATES FOR
FINITE-DIFFERENCE SCHEMES FOR LINEAR ELLIPTIC AND
PARABOLIC EQUATIONS*

ISTVAN GYONGY! AND NICOLAI KRYLOV#

Abstract. We give sufficient conditions under which solutions of finite-difference schemes in
the space variable for second order possibly degenerate linear parabolic and elliptic equations admit
estimates of spatial derivatives up to any given order independent of the mesh size.
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1. Introduction. This is the second part of a series of papers devoted to study-
ing the smoothness of solutions to finite difference schemes for parabolic and elliptic
partial differential equations given on the whole R?. These equations can degenerate,
for example be just first order PDEs. As in [14], the first part of this series, we con-
sider a grid in R? and a large class of monotone finite difference schemes in the space
variable z in R%.

For each small parameter h > 0 the given grid is dilated by A and for each = € R¢
it is shifted so that x becomes a mesh point. We are interested in the smoothness
in x of the solution uy(t,x) of the difference scheme. In [14] estimates, independent
of h, for the first order derivatives of uj in x were obtained under general conditions
introduced there. In the present paper we investigate the higher order derivatives
of up in x. The main results give estimates, independent of h, for the derivatives
of up, in x up to any given order m. The conditions extend those from [14]. Using
these results in the continuation of this paper we estimate the derivatives of uj in
h, and that allows us to develop a new method of obtaining the power series of
up, in h. Hence we get accelerated finite-difference schemes by using Richardson’s
extrapolation. Namely, under general conditions we show that the accuracy of finite
difference schemes for parabolic and elliptic PDEs can be improved to any order by
taking suitable linear combinations of finite difference approximations with different
mesh-sizes. For elliptic PDEs this result is announced by Theorem 2.4 in [14] and for
parabolic PDEs by Theorem 2.3 below. We hope to develop these results in domains
for uniformly nondegenerate equations later.

Derivative estimates for finite-difference approximations for linear and for non-
linear PDEs play the paramount role in establishing the rate of convergence of the
approximations. The importance of such estimates is demonstrated recently by [20],
[21] and [22], presenting the first rate of convergence result in the sup norm of finite-
difference approximations for fully nonlinear degenerate Bellman equations. Ideas
from these publications are used and developed further in [2], [17], [3], [7], [8], [9]
and [16]. Recent results on estimating the Lipschitz constant and second order differ-
ences of finite-difference approximations for a large class of fully nonlinear degenerate
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188 I. GYONGY AND N. KRYLOV

PDEs, including the normalized Bellman equations are presented in [24]. In [8] first
order derivatives of finite-difference approximations to degenerate linear parabolic and
elliptic PDEs are estimated and are used to establish sharp estimates on the rate of
convergence of the approximations in the sup norm.

Finite-difference methods for solving PDEs have been extensively studied since the
first half of the last century. Let us mention the pioneering papers by R. Courant, K.O.
Friedrichs and H. Lewy [6], S. Gerschgorin [12], and publications by D.G. Aronson, J.
Douglas, F. John, H.O. Kreiss, O. Ladyzhenskaya, P.D. Lax, W. Littman, Lyusternik,
J. von Neumann, I.G. Petrovskii, A.A. Samarskii, G. Strang, A.N. Tikhonov, V.
Thomée, O.B. Widlund and many others (see, e.g., [1], [10], [18], [19], [27], [28],
[29], [30], [32], [33], [36], [40], [41] and the references there.) We refer also to the
review paper [38], handbook [39], and well-known monographs and textbooks for
more information on the subject ([5], [11], [13], [26], [31], [34], [35], [37])-

The paper is organized as follows. The main results, Theorems 2.1 and 2.2 are
presented in Section 2. Here we formulate also a result, Theorem 2.3, on accelerated
finite difference schemes, which we will prove in the continuation of this paper by using
Theorem 2.1. As we have pointed out above, the idea of the proof of Theorem 2.3 is
based on a power expansion of uy in h. This idea was already applied by the authors
to show how to accelerate other approximation schemes (see, for instance, [15]) and it
seems to the authors that it was never used before in the framework of finite difference
schemes in the sup norm for degenerate elliptic and parabolic equations although much
effort was applied to developing this and other methods of improved approximation for
uniformly nondegenerate equations in domains (see, for instance [4] and the references
therein). It is worth saying that, in contrast with [4] and many other papers dealing
with the expansion, we do not use any information from the theory of PDE and, as a
matter of fact, the existence of smooth solutions for degenerate elliptic and parabolic
equations follows directly from our results. We deduce Theorem 2.2 from Theorem
2.1, and conclude Section 2 with verifying the rather delicate conditions of the main
results, Assumptions 2.4 and 2.5, for a class of examples, given in Remark 2.2 before
the formulation of the theorems. The proof of Theorem 2.1 is given in Section 3, and
the final section, Section 4, is devoted to further discussions of Assumptions 2.4 and
2.5.

The authors are sincerely grateful to the referees for many useful comments and
suggestions.

2. Formulation of the main results. We take some numbers hg,T € (0, c0)
and for each number h € (0, ho] we consider the integral equation

u(t,z) = gn(x) —l—/o (Lhu(s, @) + fa(s,z))ds, (t,z) € Hr (2.1)

for u, where ¢ = gp, = gn(z) and f = fr, = fu(s,z) are given real-valued Borel
functions of z € R? and (s,x) € Hr = [0, T] x R?, respectively, and L = Ly, is a linear
operator defined by

Lh(/)(ta I) = L%(p(t, I) - C(tv I)‘P(:C)v

1
LO@(tJ) = L?L‘P(ta I) = E Z q)\(ta I)5h7A</)($) + Z pk(tvx)ah-)\@(x)a
AEA; AEA;
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for functions ¢ on R%. Here A; is a finite subset of R? such that 0 ¢ Ay, and py(t, ),
qx(t, z) are real-valued functions of (t,z) € Ho, = [0,00) x RY given for each A € Ay,
and

p(x) = dnap(@) = +(p(x + hA) — p(2)), A€ A

| =

As usual, for multi-indices a = (a1, ...aq), a; = 0,1, ..., we use the notation

@ « « 8
D* = D" ...Dg", Di:a_xi’ |a|:;0@, D;; = D;D;.

For smooth ¢ and integers k > 0 we introduce D*y as the collection of partial
derivatives of ¢ of order k, and define

IDF@> = Y7 D, ¢l = sup [DFo()], ol = [¢hi-
lal=k zERY i<k

Let m > 0 be a fixed integer and let K7 € [1,00) be a constant. We make the
following assumptions.

ASSUMPTION 2.1. For any A € Ay the derivatives in x of px, qx, ¢, f,g up to order
m are continuous functions in (t,z) € Hyp and, for k = 0,...,m and some constants
M. we have

sup (3 (ID*as + 1D*paP) + [DFef?) < M2, (22)
Hr AEA,

By Theorem 2.3 of [14] under Assumption 2.1 for each h € (0, ho], there exists a
unique bounded solution wuy, of (2.1) and this solution is continuous in Hr along with
all its derivatives in z up to order m. However, the bounds, provided by this theorem
for these derivatives depend on the parameter h. Our aim is to show the existence of

bounds, independent of A, if in addition to Assumption 2.1, the assumptions below
also hold.

ASSUMPTION 2.2. For allt € [0,T]

Z Aga(t,x) is independent of . (2.3)
AEA

This assumption may look to be a very restrictive condition. Note, however, that
a simple application of Taylor’s formula shows that if our finite difference operators
LY appear as finite-difference approximations of a second-order differential operator,
then not only the sum appearing in the assumption does not depend on x but it is
just identically zero. It is also worth noting that Assumption 2.2 is satisfied in many
other cases, say if ¢ (x) are just independent of x or they are independent of A and
> xea, A = 0. The reader can find in [14] many more interesting cases when this and
our other assumptions are satisfied.

Introduce

XA = Xh,A = qx + hpa.
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ASSUMPTION 2.3. For all (t,z) € Hr, h € (0, hg], and \ € Ay,
xa(t,z) > 0. (2.4)

There exists a constant cog > 0 such that ¢ > cg.

Obviously Assumption 2.3 implies that gy > 0. Note also that Assumption 2.3 is
a standard condition to have a monotone finite-difference approximation schemes to
elliptic differential operators.

REMARK 2.1. The above assumption: ¢ > ¢y > 0, is almost irrelevant if we
only consider (2.1) on a finite time interval. Indeed, if ¢ is just bounded, say |c¢| <
C = const, by introducing a new function v(t,z) = u(t,r)e”2¢* we will have an
equation for v similar to (2.1) with L% — (¢ + 2C)v and fe~2¢* in place of Lu and
f, respectively. Now for the new ¢ we have ¢+ 2C > C.

Take a function 7 defined on A; taking values in [0, 00) and for A € A; introduce
the operators

Thy = Thy)\gﬁ(ilf) = (p(IE + h/\), g)\ = Shﬁ)\ = T)\hil(T)\ — 1)

We introduce weights 7 in order to be able to prove such estimates of finite differences
of solutions, which are applicable to estimating the finite differences with respect to
a parameter entering the equation (see Remark 5.3 of [14]).

Apart from estimating finite differences of solutions we also estimate their deriv-
atives and for uniformity of notation we also introduce A, as the set of fixed distinct
vectors £1, ..., ¢4 none of which is in A; and define

Sgi = Shﬁli =T10D;, Ty =Tp e =1, A=A UA,
where 73 is a fixed parameter satisfying
70 > 0,

so that the derivatives of solutions will be always present in our estimates. For integers
k=1,2,...and X' € A, i=1,2,..., k, introduce the multi-vectors

A= (AL ) e AP
and the operators
T)\ — Thﬁ)\ - Th7)\1...Th7)\k, S)\ - gh,)\ - gh,)\l-"gh,)\k'

It is also convenient to set A} = AJ = A? = {0} and to introduce &y = 5o and Ty as
unit operators. For u € A¥ and k < m we set

Qe=0""> " ade, Qup=h"> (5,020,

A€EA A€EAL

Po= " pdrp, Pup =Y (6up2)0r0,
AEA AEA

L?L:Qu'i'P;u



DERIVATIVE ESTIMATES 191

Aclp) =2 Y () L8Tae,  Q(9) = D xuldup)?.

AEAF HEAL

Below B(R?) is the set of bounded Borel functions on R? and K is the set of
bounded operators K = Kj, = Kp,(t) mapping B(R?) into itself preserving the cone of
nonnegative functions and satisfying X1 < 1. Set

AP =00 D AP =) AP

AEA: A€EA

Finally, fix a constant ¢ € (0, 1].

ASSUMPTION 2.4. We have m > 1 and for any h € (0, hg], there exists an
operator KK = Kp m € R, such that

mAi(p) < (1-6) ) Qoap) + K1Q(p) +2(1 = )k (Y [orn¢l*) (2.5)

AEA AEA

on Hr for all smooth functions ¢.

ASSUMPTION 2.5. We have m > 2 and, for any h € (0,ho] and n = 1,...,m,
there exists an operator K = Kj,,, € R, such that

n Y Ai(ue) +n(n—1) Y (rxp)QaTae < (1-6) Y Q(drp)

veEA AEA2 AEA2

K1Y Q(0xngp) +2(1 = 8)ek( Y 10apl?) + KK (D 16r0l?) (2.6)

AEA AEAZ AEA
on Hr for all smooth functions .

Obviously Assumptions 2.4 and 2.5 are satisfied if ¢, and p) are independent of
2. In the general case, as it is discussed in [14], the above assumptions impose not
only analytical conditions, but they are related also to some structural conditions,
which can somewhat easier be analyzed under the following symmetry condition:

(S) A1 = —A; and g\ = ¢g_, for all A € A;.
Notice that, if condition (S) holds then

Y aat o)) = (1/2) Yt @) Asp(e),
AEA A€

where Ay = A, and

Aprp(z) = oz + hA) — 2g2(2:v) + o(x — hA) — o nela).

Notice also that (S) implies that the sum in (2.3) in Assumption 2.2 is identically zero
since the sum changes sign if we replace A with —A\.

REMARK 2.2. Assumption 2.4 is discussed at length and in many details in [14].
In this remark we suppose that Assumptions 2.1, 2.2, and 2.3 hold and m > 2. At the
end of this section we show that if condition (S) holds and, for all A € A, 75 > 0 and
qx > Kk, where k > 0 is a constant, then both Assumptions 2.4 and 2.5 are satisfied for
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any ¢o > 0 and ¢ € (0,1), if hg is sufficiently small and 79 > 0, K1, and K are chosen
appropriately. In the case 7, =1 it follows immediately from Remark 6.4 of [14] and
Remark 4.3 that the above condition £ > 0 can be dropped, provided, additionally,
that ¢ is large enough (this time we need not assume that h is small).

By the way, as we have seen in Remark 2.1, the condition that ¢y be large is,
actually, harmless as long as we are concerned with equations on a finite time interval.

Mixed situations, when c is large at those points where some of g can vanish are
considered in Section 4 along with the analysis of Assumption 2.4 as h | 0.

Now we are in the position to formulate our main results. Recall that as we have
pointed out after Assumption 2.1 all derivatives of uj with respect to & up to order
m are continuous in Hr.

THEOREM 2.1. Let Assumptions 2.1 through 2.5 hold. Then for h € (0, hg] we
have

sup > [DFup| < N(Fp + Gi), (2.7)
T k=0

where

Fp =Y sup|D*fy|, G,= ZSEEID’CQ;LI,

k<n HT k<n

and N depends only on 19, m, 8, co, K1, |A1], [A1]l, Mo, ..., My,

We prove this theorem in Section 3. Now we derive from it an estimate for the
solution of the equation

L+ fn=0 inR% (2.8)

when ¢y, px, ¢, and f are independent of .

THEOREM 2.2. Let Assumptions 2.1 through 2.4 be satisfied. Suppose that qy,
D, ¢, and f are independent of t. Then the following statements hold.

(i) There exists a unique bounded solution v = vp(x) of (2.8). Moreover, all
derivatives in x of v up to order m are bounded continuous functions on R®.

(i) Let Assumption 2.5 be also satisfied. Then

m

sup > |DFuy| < NF,,,
R k=0

where
F, = Zsup|Dkfh|
k=0 B
and N depends only on 19, m, 8, co, K1, |A1], [A1ll, Mo, ..., Mo,

Proof. Statement (i) is proved in [14] (see Theorem 2.3 there). To prove (ii) take
v = ¢y, where v > 0 is so small that ¢ — v > ¢¢/2 and conditions (2.5) and (2.6)
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vt

hold with ¢ — v and §/2 in place of ¢ and ¢, respectively. Define u(t, z) := v(x)e’* and

observe that u satisfies

9 _ 70 vt
EU_LU (c—v)u+e’f.

By Theorem 2.1 for z € R?
T " |DMo(x)| = |DMu(T, )| < Ne*"Fp + N Y sup |D*v(z)].
k=0 k=0 E<m

v

By multiplying the extreme terms by e 7 and letting T — oo, we get the result. O

The above theorems have important applications in the numerical analysis of finite
difference schemes for parabolic and elliptic PDEs. Using them in the continuation
of the present paper we obtain accelerated finite difference schemes for second order
(possibly) degenerate parabolic and also for second order (possibly) degenerate elliptic
PDEs. In particular, we will consider the Cauchy problem

&u(t, x) = Lu(t,z) + fo(t,z), t€(0,T], x € R? (2.9)

u(0,z) = go(z), x€R? (2.10)
with the operator
d d
L= % Z Z AN D;D; + Z Zpk)\iDi —c.
€A 4,j=1 A€A; i=1

By a solution of (2.9)-(2.10) we mean a continuous function u(t,z) on Hr, such that
for each ¢ it is twice continuously differentiable in z, is bounded in Hr along with its
derivatives in x up to second order and satisfies

ult, z) = gol) + / (Cu(s, 2) + fols, )] ds
in HT.

To formulate one of the main results of the continuation of the paper we fix an
integer k > 0 and set fr = fo, gn = 9o,

k
Up = E bjtug—ip,
i=o

where 1y, is the solution to (2.1) with 277h in place of h,
(bo, b1, ..., bx) :== (1,0,0,...,0) V1,
and V! is the inverse of the Vandermonde matrix with entries

Vil == =DU=D =1 k41
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THEOREM 2.3. Let Assumptions 2.8 and 2.1 with m > 3(k + 1) hold. Also let

condition (S) be satisfied. Then (2.9)~(2.10) has a unique solution ug, and

|an(t,x) — up(t, z)| < NRpF+1

(2.11)

holds for all (t,x) € Hr, h € (0, ho], where N is a constant depending only on T, k,
d, |A1], ho, the number of elements in A1, on My, ....My,, on supycp 1) |fo(t)|m and

on |90|m

Now we prove our claim made in Remark 2.2. Instead of condition (S) we assume

the following weaker condition
(S"): Ay = —Ay and Dgy = Dq_» for X € Ay,
and proceed with the proof as follows. Clearly,

> () L8 Tap = I + I,
AEA

with

L= ) Tag, L= (a)Le

AEA; A€,

Due to condition (')
L = Z (6xp)LSp + R Z (6xp) L3 0rp

AEN; AEA;

:% Z (gMD)(SAQH)AMSD‘i‘ Z (SMO)((;APH)‘SHSD
A EA A pEN

+ 3 @) Ex)dubne = IV + 1) 4 1),
A uEAY

I =1V + 17,

where in the notation £ = Dy /|Dy| and 1) = & D;1p,

d
= %T Z Djqu)Aup = % |D<P| Z Qu(e) App
Jj=1 #GAI HEAL
d
2
) :ng JpH 5HSD_TO|DSD| Z pu HSD-
j=1 MEAl HEAL

Set

T:=maxTy, 7T := min 7y,
AEA; A€A1

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)
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and observe that ) > k/2 > 0 for sufficiently small h, and that ¢ > ¢g > 0. Then by
Young’s inequality, we obtain

amI?) < 158 3" Q(3ap) + NQ(p) for j=1,3, 2mI” < NQ(y),
AEAL

2m12(1) <1 Z Q(8,p) + eNcy e Z |ox|?,
peEAL AEAs

2m12(2) < 1oNeg'le Z 6%,
AEA

where N is a constant depending only on m, k, §, 7, 7, the number of elements in Ay,
and on the supremum norm of the gradients of p) and ¢ in . Summing up these
inequalities and taking 79 > 0 sufficiently small we get (2.5) with K; = 3N, unit
operator I, and with § as close to 1 as we wish.

This result is obviously applicable to §,¢ in place of ¢ for any v € A. It follows
that for any 0 € (0,1) and appropriate constant K; we have

mYy AGp) < (1-6) Y Qdry)

vEA AEAZ
K1Y Q0p) +2(1-d)c > [l (2.17)
AEA AEA2

Now we show that Assumption 2.5 holds. Clearly,

Y Gre)Tae= > Grx)Tae+2 > (6rp)@The

AEA2 AEA? AEA1 XAz

+ Y () =T+ +1Ts
AEAZ

Using
AT =Ap+hdxi10x2(0, + 1) + (0x1 +0x2) (5, +6-,)

for A = (A\},\?) € A7 and p € Ay, we have

L= (r)QuTap=1" + 117,
AEA2
with
[1(1) =1 Z (6x0) (02 qu) (4631 — 6_,)d,¢p,

AEAZ e

07 =h > (59)(62gu)020u¢.

AEAZ pEA
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As above, we have

Yl <N Y 00PN Y Q0ne),

AEA2 A\, nEA AEA

S 100l <N Y Q).

AEAZ, e AEA?

and hence, by Young’s inequality

n(n - DIY < N3 Q(xp), (2.18)
AEA
n(n = DIP AN Y- Qap) + N Y Qbre), (2:19)
AEA? A€A

where N is a constant depending only on m, x, 7, the number of elements in A; and
on the supremum norm of |D?g,|. Similarly,

d
n(n — 1)[2 = n(n — 1)7’0 Z Z (SUTODiSD)(SuDiqM)TVAu(p

=1 v,u€N;

<N > Q) + N7ocK( D | 8,¢), (2.20)
AEA HEN?

d
n(n—1I = nn— 173 > Y (75 Di)(Dijqu) Apg
i.=1 nehs

< N7ge Y 1ol (2.21)
AEA?

where N denote some constants depending on m, d, ¢, k, T, T, the number of elements
in A; and on the supremum norm of |D?gy|. Summing up the inequalities (2.17)
through (2.21) and choosing 7y and hg sufficiently small we obtain (2.6).

3. Proof of Theorem 2.1. For m = 1 estimate (2.7) holds by virtue of Theorem
2.1 from [14], proved by the aid of the following version of the maximum principle
(Corollary 3.2 in [14]).

LEMMA 3.1. Let Assumption 2.1 with m = 0 be satisfied and let xx > 0 for
all A € Ay. Let v be a bounded function on Hr, such that the partial derivative
Div := 0v(t,x)/0t exists in Hr. Let F be a nonnegative integrable function on [0,T],
and let C be a nonnegative bounded function on Hr such that

v:=sup(C —¢) < 0.
Hr
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Assume that for all (t,z) € Hr we have
Dt’U S LU+C?7+ +F, (31)
where v(t) = sup{v(t,r) : * € R?}. Then in [0,T] we have

0(t) < 04(0) + |[v| " sup F, (3-2)
[0,1]

where ay := (|a| + a)/2 for real numbers a.

For the proof of this lemma we refer to [14]. In order to obtain Theorem 2.1 for
m > 2 we need some more lemmas. First we prove a lemma which will be used a few
times in the future. By K in the lemma and later in the article we mean a generic
operator of class £. This operator may change each time it is mentioned even in one
line (cf. the use of o(n)). Thus, for example, for nonnegative functions «, 3 on R?¢
the formula ak 4+ SK = (a + §)K means the simple fact that for any K1,Ks € B

aly + Kz = (a4 B)Ks
with

Ksi= 25K+ 225K € 8 (§:=0).

LEMMA 3.2. Let Assumption 2.1 be satisfied. Let n > 1 be an integer. Set
A? =M% + 75
Then for any ¢ € C™ we have

Y el <MD el?), Y el < ATK(ID"eP). (3.3)

AEAT AEA™

Furthermore, if 1 <n < m, then for any ¢ € C"

> IPATael? < [APA* (sup Y [D"pul*)K(IDg|?)
AeA™ T pen,

< 762|A1|2A2"(S;Ilp DD KD 16ael), (3.4)

T pen AEA
and if assumption (2.3) holds,

D 1QaTagl* < [A[*A*" (sup > |D"q,*)K(ID*¢]?)

AEA™ T peM

< TJ4|A1|4A2"(S};1P ST ID ) 16al?). (3.5)

T pe AEA2

Finally,
(Y aa(0:x0)?)” < M2 Y ()t < ME( Y (6a9)%)".

AEA €A AEA;
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Proof. 1t is easy to see that for A € AT we have
S =" [ a0,
[07]1]71

where, for y(X,0) = A0 + ... + A\"0" and 7, = T\1T2 - ... - Tan,

d
ox(0,x) =T Z M AP Dy Dy (x4 y(A,6)).

T genes in=1
By Cauchy’s inequality

Bap(a)2 < b / (0, )2 db,
[07h]n

oA (0, 2)] < TA[A[[D™ (2 + y(A, 0))],

where |A| := |A!|-...- |A\"|. It follows that the first inequality in (3.3) holds with with
Dy, in place of K, where

Dptp(z) = [ Ag]| 72" > TflAIQh*"/ bz +y(r0)do (L:=0).

AEAT [0,R]"

Since

Y TR = (A

AEAT

Dr1 <1, that is Dy, € £ and the first inequality in (3.3) is proved.

To prove the second one introduce Dy,  as the operators for which first inequality
in (3.3) holds with k in place of n, recall that A9 = AJ = {0} and Jy is the identity
operator, and observe that the left-hand side of the second inequality equals

n

Yok T 108l <D CHIMIPDuR( D [6,D )

k=0 )\GAIICHU‘GA;L*IC k=0 ,uEAg*k

=N IR Dy k(1D 0?) =2 (A2 + 7)€ (1D ),
k=0

with &, € K. This proves the first assertion of the lemma.
To prove (3.4) notice that by Cauchy’s inequality and (3.3) for A € A™

|PxTxp|? = | Z (SAPH)T,\%SDF
HEAL

< Y G’ Th 3 (0,9 < 1P S Gap)*TDia (IDe]):

HEAL HEAL HEAL
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Hence the left-hand side of (3.4) is less than

AP Y (6ap)*TaDaa (D))
HEA AEAT

= |A1[?A%" (sup Y [D"pul*)Ha(|Del?).
Hr HEAL

Here H), € R, since by (3.3)

> (apu)? S ATDup( D ID"pul?) < A¥sup Y [D"pul*.

HWEA AEAD HEA Hr eny
This proves (3.4). To prove (3.5), notice that EHEAI 1#0xq, = 0, which implies that
Trp =" Y (aqu)Ta(0pp — Dip) = Y (0xq) oy,
HEAL HEAL
where
Y =W (8up — piDigp).

Hence as above the left-hand side of (3.5) is less than

Z Z (SAQH)2T>\ Z |1/’u|2 = A2"(sup Z |anu|2)'7:h( Z |1/’u|2)7

AEA™ pEAL HEA Hr jen, HEA

where F;, € R. Furthermore,

h
0uw) =172 [ (b= )i Dot + ) do
0
h 1
< uPh! / D2 (z + u)| 0 = |uf? / D2 (e + hyub)| db,
0 0

1
(@) < Juf* / D%l + hub)? do),

and we obtain (3.5) with the operator
1
0 = Ml ALYl [0+ ) db),
HEAL 0

which is in K because

KL< MY |u* <1

HEAL

Since the last assertion of the lemma is obvious, the lemma is proved. O
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The following lemma can be proved easily by induction on n. (Sums over empty
sets of indices are defined to be 0 in the lemma, and everywhere in the article.)

LEMMA 3.3. Let n > 1 be an integer, ¥ and ¢ be n times continuously differen-
tiable functions on R, and A € A™. Then

ox (V) = hdrp + Z(S/\”/))SM)T/\“P

i=1

+ Z 5>\ i) ¥) )35 ) Ingig) o + -

1<i<j<n

+ Z (On(ir i) VIO (ir i) TGP

1< <...<ix<n

+ (3T, (3.6)
where A(it,...,ir) = (A8, .., A%), (i1, ...,ix) is the sequence of vectors ', ..., A"
from which the vectors standing on the places with numbers i1, ..., 1 are removed, and

g;(l) =1 forn=1.
Proof of Theorem 2.1. Recall that A° = {0} and &y = T} is the unit operator.
Fix h € (0, hol, for 0 < k < m set
U = Up, f:fhu V0:u27 Vk = Z |5AU|2, Vk(t):SU.ka(t,(E),
AEAF R4

and recall that F), is introduced in Theorem 2.1. Take an integer n € [1,m]. Then we
have

LyVa =2 (Gau)Lhoru+ Y Q(dau). (3.7)
AEAN AEA™
By Lemma 3.3
2 Z (SAU)L?IS)\U =2 Z (SAu)g,\L?lu — Z Imk, (3.8)
AEA™ AEA™ n>k>1
where

‘U,EA"*IC

By Assumption 2.4,

nA;(G,u) < (1=6) Y Q(6rd,u) + K1Q(5,u)
AEA

+2(1 = 8)ek( ) [6x6,ul). (3.9)

AEA
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Hence,

I, <(1 ZQ&U + K, Z Q(0xu) + 2(1 — 6)cV,.
€A™ AEAn—1
Next, if n > 2, then
Inl—l—fng—n Z A1 #u)—l— nn—l Z A2

pneAn—1 HEAN—2

= Z (n Z A1(0,(6,u)) + 3n(n — 1)Az(6,u)),

peEAT—2 veEA

so that by Assumption 2.5

i+ Ina<nn—1) Y Y (0x6,u)PATxd,u
HEA™—2 A€ A2

+1=0) > Q)+ K1 > Q(0xu) +2(1 = 6)cVy + Ky V1.
AEA™ AEAn—T

By Lemma 3.2
nn—1) > > (@abuu)PTadu+ > Ink<5V+NZVk,
HEAT—2 NEA2 n>k>3

where and below by the sum over an empty set we mean zero. It follows that, for
€ [1,m],

LYV, >2 Z (6xu)drLiu+ 0 Z Q(0yu) — Ky Z Q(6xu)

AEA™ AEA™ AEAR—T
n—1
—(2c = 20c+ )V, = N Y V. (3.10)
k=1
Next,
2 Y (Sau)drLju = D;Vy + Ry — Ra, (3.11)
AEA™
where

Ry :=2 Z (6au)dx(cu), Rg:=2 Z (6au)dxf.

AEA™ AEA™

Similarly to (3.8)

Ry =2cV, +2)  CFRy,
k=1
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where

le = Z Z (SMSAU)(SMC)TH((%\U).

AEA"—k peAk
By our assumptions, (3.3), and Cauchy’s inequality

Z 10, 03ulTyldxul < ( Z (SMSW)Q)l/zTM( Z (&u)z)l/z

AEAN—k AEAN—F AEAN—k

<V20CY @Gubaw)?

AEA—K

Rur < VAVI2(0S 16,e2)? < AF(sup [DFe))V, /2T,
Hr
HEAF

Cauchy’s inequality also allows us to estimate Ry and conclude from (3.10) that,
for n € [1,m],

LYV, —2cV,, — DV, > 6Q,

n—1
~K1Qp1— (2¢—20c+ 26V, = N Y Vi — NF2, (3.12)
k=0
where
Qr = Z Q(0ru).
AEAF
We now prove (2.7) by showing that for each n € [1,m]
Vi SN(FF+GP), k=0,1,..n (3.13)

We prove this by induction on n. By Lemma 3.1 we have
Vo < N(F§ +G3).
Using this, from (3.12) we obtain (see more details in [14])
Vi < N(Ff +GY)
by Lemma 3.1, provided that 0 < 2¢ — 26c + 262 < 2¢ — 62 which is true indeed if
35 < 2¢o. (3.14)

This may look like a nontrivial restriction on §. However, obviously, if our assumptions
are satisfied with a ¢ € (0,1), they are also satisfied with any ¢’ € (0,d]. Therefore,
without losing generality we suppose that (3.14) is valid. Thus we have obtained
(3.13) for n = 1. Let n > 2 and assume that (3.13) holds with n — 1 in place of n.
Then from (3.12) for k =1, ...,n we get

LOVi — 2¢Vi — DiVi, > 6Ok — K1Qp 1 — Cslj—p Vi, — N(F2 + G?), (3.15)
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with C5 = 2(c — §c + 62). Actually, (3.15) is true also for k = 0 if we set Q_1 = 0,
since

LY (u?) — 2cu® — Dy(u?) = 2u(LYu — cu — Dyu) + Qo(u)

= —2uf + Qo(u) > —N(FZ + G?) + Qo (u).

Next we set p = K7 /8, multiply (3.15) by "% and sum up the resulting inequalities
with respect to k£ =0, ...,n. Then, for

Wy = Zﬂnikvlm
k=0

n

we obtain

LYW, — 2eW,, — DiW,, > 6Q,, — CsV,, — N(F2 + G?)

> —CsW, — N(F} +G2).

Recalling (3.14) and using Lemma 3.1 shows that (3.13) holds. This justifies the
induction and proves the theorem.

4. Discussion of Assumptions 2.4 and 2.5.

REMARK 4.1. It may be instructive to see what happens with Assumption 2.4
as h | 0. We suppose that Assumption 2.1 and condition (S) are satisfied and m = 1.
For simplicity we concentrate on the case that o = 7, = 1.

Take a smooth function ¢ and at a fixed point of Hy let A | 0 in (2.5). Since all

terms apart, possibly, from K involve the values of ¢ and its derivatives only at the
chosen point the last term in (2.5) will become 2(1 — §)c(A71E, ), where

A=D"M, = ADy,
AEA

A* is a row vector transpose of A\ and Dy is a column vector of the first-order partial
derivatives. Also introduce

a= > Maq, b= > Ap.

A€EAL A€EA

Then as is easy to see for h | 0 we have
A1() = D (D) A Y [N Daup* D*ppt + 2X\* Dppuy” Dy
AEA HEAL
= ¢'ftr (Dia)D?p) +2(b, AT€)] = tr (ae) D*p) + 2(b(e), A1€),
where D?¢ is the Hessian matrix of ¢ and we use the notation uey = (§, Du). Next,

Qp) — (&, A7 aAd™1Y),
> Q6re) = > Y quN DPoup Do) = tr A(D*p)aD?p

A€A AEA peEN
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and (2.5) for m = 1 becomes

tr (a(e)D*¢) + 2(be), A71€) < (1 — 0)tr A(D*p)aD’p

+KL(€ A aATIE) +2(1 — §)e(A71¢,€). (4.1)

At our fixed point the values of D?p have no relation to £&. This implies that
tr ABaB > 0 for any symmetric matrix B. For B = nn* with nonzero n € R?¢
this yields tr Ann*ann™ = trn* Ann*an = (An,n)(an,n) > 0 and since (An,n) > 0, the
matrix a is nonnegative. Furthermore, simple manipulations show that

sup [traB — (1 — 6)tr ABaB|
B

1

1
= =0 hmtrA agy(a+el)ag = ——tr A aga Tae),

4(1-9)
where I is the unit matrix and a~! is the pseudo inverse of a. Thus we come to the
condition

1

A(1—0) tr A agga ae) + 2(bee), A7HE)

< Ki(€, A7 aATIE) +2(1 = 8)c(AT1E, €), (4.2)

which should hold for all vectors ¢ € R?. Condition (4.2) is much easier to analyze
than (2.5) but unfortunately (4.2) alone is not enough to obtain our estimates for
finite-difference equations.

In [14] there are many sufficient conditions for Assumption 2.4 to be satisfied. In
the rest of this section we suppose that only Assumptions 2.1 and 2.3 are satisfied
and m > 2. Assume also that for a number 7 > 0 we have that, for any A\ € Ay,

either 70 >7 or Dq(t,x) = Dpx(t,z) =0 forall (¢ x). (4.3)

In other words this condition says that if 7, = 0 for a A € A; then for that A the
functions ¢y and py do not depend on z € R

Recall that by K we denote a generic operator from class K, which may depend
on h and ¢, and may change each time it is mentioned even in one line.

REMARK 4.2. Assume that m > 2, A; = —Aq, ¢» = ¢_» and that for a constant
6 > 0 we have gn < Oxx (= 0(gx + hpy)) for all h € (0,ho] and A € A;. Then,
since ¢ are twice continuously differentiable in x and nonnegative by Assumption
2.3, we know that 7y := /g is Lipschitz continuous in z with the Lipschitz constant
independent of ¢.

In this situation the following may be useful. Conditions (2.5) and (2.6) involve a
mixture of finite differences and derivatives. Therefore, it is reasonable to try to find
conditions in terms only of finite differences which would imply (2.5) and (2.6).

We claim that (2.5) and (2.6) are satisfied with a 70 > 0 and, perhaps, different
0, I, Ky if for all smooth ¢ on Hp andn =1,...,m we have

2m > (Grp)L3The < (1—0) Y Q(dryp)

AEA; AEN;
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+E1Q(0) + (1= 8)ek( Y [8rel), (4.4)

AEAL

2n Z (SAgl,cp)LnggVQD +n(n—1) Z (SA(p)Q)\TA(p
A vEMN )\EA?

<(1=6) > Q0.0) + K1 > Q)

veA? veEA;
H(1 = 8)ek( D 1oael®) + K1k (D [oagl). (4.5)
AEA2 AeEA

(Notice that the term 2(1 — §) in (2.5) and (2.6) is replaced now with 1 —4§.)
To prove that (2.5) holds we follow the computations given in (2.12) through
(2.16) to get

mAi(p) =2m Z(g,\cp)LgTMp =2ml + 2mI2(1) + 2mI2(2),
AEA

where 2ml; is the expression on the left-hand side of (4.4), and IQ(J) are given by
(2.15) and (2.16). Observe that, for any unit £ € R? and gy¢) = & D;qx we have
laae)] < 2C7Tx where C' is the Lipschitz constant of ry. Thus due to (4.3) and the
assumption that g, < 0x, we have

(Y quedne)” < N(Y. vamlduwl)’ <N Y. 0@,9), (4.6)
HEAL HEAL HEAL

where N is a generic constant depending on 7, 6, the Lipschitz constants of r) and
on the number of vectors in A;. Furthermore,

(D puedue)” SN 10ue)* <N Y 100l
HEAL HEAL HEAL

where £ := Dy/|Dyp| and N is a constant depending only on the Lipschitz constants
of p,, 7, and and on the number of vectors in A;. Using these inequalities we obtain

2
omI{Y < mrd| Dol + rom( Y que Auep)
HEAL

< emmocy Z 16,0* + TomN Z 9(8,¢),
HEA2 HEAL

2
mI{? < mr3|Dy|? + Tom( Z Pue)Due)
HEAL

< cromey'N Z |ox|?
AEA
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with a constant N depending on 7, 6, the Lipschitz constants of 7y, py and on the
number of vectors in A;. Taking here 7y > 0 sufficiently small we get

2m]2(1) + 2m]2(2) < % Z Q(8,0) + gc Z LNl
HEAL AEA

Adding this inequality to inequality (4.4) we see that there exist constants 6, 7y € (0, 1]
(6 can be taken half of the one in (4.3)), such that

mAi(p) < (1-8) Y Qoag) + K1Q(p) + (1= 0)ek (DY [0el®)  (4.7)

AEA AEA

on Hy for all smooth functions ¢ provided that 7y € (0, 7p]. Thus, a condition even
somewhat stronger than (2.5) is satisfied. We note that by using Remarks 5.1 and
5.2 of [14], one can also see that due to (4.4) and the above mentioned properties of
rx and py and due to (4.3), condition (4.7) holds.

Next, observe that the left-hand side of (2.6) equals

B+ A"+ A + A7 + B+ B”,
where B is the left-hand side of (4.5),
A=nd A0p), Aj=2n > (6,0:0)Quorg,

vEAs AEAL,VEAS

A;/ =2n Z (SVSA@)Png%
AEA1,VEA:

B’ =2n(n—1) Z (0rp) Q2T

AEAL X A2

B"=n(n—1) Y (0rp)Qxe.

AEA3

Here by (4.7)

A< (1=68) > Q6rbp)+ K1Y Qup)

vEA2,AEA veAs

+(1=8)ek( D Ioael®).
AEAZ
Then

)

d
A;’:ZnTg Z Z(ngA@)(DjT#)[T#A“SAw]

A€M j=1

d
< (1/16)3erd > Y (Dioae)? + N8 > qu(8u0xp)?

AEA; j=1 HEAL,NEA?



DERIVATIVE ESTIMATES 207

=(1/16)5c Y (o)’ + N5 > qu(0u0x0)°

AEAL,vENL HEAL, NEA?

< (1/16)5c > (3xp)? + N7 Y Q(6r9),

AEA2 AEA?

where and below by N we denote various generic constants independent of ¢, (¢, ),
and 79. Next, quite similarly

d
AP =2n75 > (D;6x@)(Djpu)0uoae

Apu€AL j=1

< (1/16)dcrg Z Z (D;érp)* + N7 Z (6xr)?

AEA; j=1 AEA2

< (1/16)5c Y (0rp)* + N5 Y (0rp)?

AEA? AEA?

Now we estimate B’ and B”. We have

B =n(n—1)7 Z Z D;i6xp)(D;0xq) A Trp.
)\,LLGAl_] 1

Here
AT = A+ (6, +6-,)0x,

and it is seen that

d
B < (1/16)derg > > (Diorg)* + N75 Y (Orp)?

A€EA; j=1 AEA?

< (1/16)5c Y (5rp)* + N3 Y (5ap)*.

AEA2 AEA2
Similarly,
d
"= 1/2nn =15 D D> (D) (Dinda) A
G k=1 pEAy

< (1/16)5c Y (0rp)* + N7g Y (0rp)?

AEA2 AEA?

By combining the above estimates we see that the left-hand side of (2.6) is ma-
jorated by

L=6+N13) > Qup) + K1 > Qb)) + K1k () [oxel?)

veEA? veA AEA
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+e[20 = O)K( D [0apl?) + (/45 + N73) > 16repl].

AEA? AEA2

It follows easily that by choosing 79 small enough we will satisfy (2.6) as well as (2.5)
with /2 in place of 6 and appropriate K.

REMARK 4.3. In [14] we have seen that even Assumption 2.4 imposes certain
nontrivial structural conditions on ¢) which cannot be guaranteed by the size of ¢g if
@ is only once continuously differentiable.

In contrast, given that Assumptions 2.1, 2.2, 2.4 are satisfied and m > 2, we
claim that Assumption 2.5 is also satisfied if cq is large enough.

To prove our claim we notice that by (3.5)

DTl < NECY . (8,01,
AEA? HEA?

so that

n(n—=1) Y (rp)The

AEAZ

<m(m—1)[ Y 180l + NE( Y 18u0P)] = N'E(Y 16u0)-

AEA? HENA? HEA?
Now assume that c is so large that
N’ < de.
Then it follows from (2.5) that the left-hand side of (2.6) is majorated by
(1=08) > xlorbel>+ K1 D xaldadel* +1,
AEAL,VEA? AEALVEA
where

I=2(1-8)cK( Y [oxpl?) +6ck( D 18,0?)

AEA? nEAN?

=:2(1-6/2)cK( Y |orepl?).

AEAZ

We thus obtain (2.6) with §/2 in place of é.

REMARK 4.4. It is interesting to have sufficiently simple conditions on the co-
efficients of differential operators £ which guarantee that there exist finite-difference
schemes for which our assumptions hold. Here we will only give a one dimensional
example. This example is based on the results of Remark 4.5 below, which can also
be used to analyze many multi-dimensional situations as well in the spirit of the
comments in [14].

Take d =1 and

Lo(x) = a(z)@"(x) + b(x)¢' (z) — c(z)p(z).
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We assume that a > 0 and r := /a, b, and ¢ are m-times continuously differentiable
with bounded derivatives. We take A; = {£1} and define

q,u = a7 p,u. = (1/2)/11) + 97

where 6 is a constant such that p, > 1. By using an argument in Remark 6.7 of [14]
and using our Remark 4.5, one can easily derive that, for a sufficiently small 79 and
T, = 1, Assumptions 2.4 and 2.5 are satisfied for all sufficiently small h (with perhaps
different ¢ and K;) if, for n < m,

7502 (") 4+ 2nb’ < (1 — 8)c+ Kia

(cf. (4.2)). Again as in [14] we see that at points where a is close to zero either ¢
should be large or &’ be sufficiently negative.

REMARK 4.5. Condition (4.4) and its implications are discussed in many details
in [14] (with 2c in place of ¢). Here we give sufficient conditions for (4.4) and (4.5) to
be satisfied without involving test functions ¢. For simplicity, we only do it in case

=1 forall A € A;.

It is obvious that if we define £y, = 61J,¢, then condition (4.5) can be rewritten in
terms of £y,. What is nontrivial is that one can give sufficient conditions for (4.5) to
hold in terms of £, and not the two-parameter object . In addition, we will see that
these sufficient conditions are obtained just by slightly strengthening the corresponding
conditions from [14] guaranteeing the first-order derivatives estimates. As in [14] one
could extract further implications and simplifications of the new conditions of the
type that on the set where c is small we need x) to be uniformly bounded away from
zero or py be sufficiently strongly monotone (see [14] for more details).

As in Remark 4.2 we assume that A; = —Aj, ¢x = ¢— (> 0) and, for a constant
6 > 0, we have gy < Oy, for all h € (0,hy] and A € A;. Moreover, we assume
additionally that ry := /gx is twice continuously differentiable in x and is bounded
on Hp along with first and second-order derivatives in z. Also we fix a constant
d € (0,1/4] and assume that on Hp there are functions rx, = Thau, Pap = Phrp > 0,
A, it € Aq, such that

m(m — 1)h2(6x1,)* < 6(xx + xu) + h%‘iu, Z sup riu < dc, (4.8)
wEAL AEA
R?10xpul < 6% (Xa + Xu) + 0h°pau, Y sup pau < de. (4.9)
HEA; AEA;

By virtue of Remark 6.1 of [14] one can always find approximations L} of the zero
operator such that Lj, + L} will still be approximating £ and for the coefficients p/,
of Ly, + L}, we will have p) > 1. Obviously, for L + L}, conditions (4.8) and (4.9) are
satisfied with ry, = px, = 0 for sufficiently small h.

For a function &) given on A let us write

67 =" [l

AEA

and let us drop the summation sign over repeated indices in A;. Then we claim that
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Conditions (4.4) and (4.5) are satisfied with appropriate K1, K, and § if on Hr
for all functions €x and n =1, ...,m we have

28n2(1 — 48) "1y + (9/2)n?(1 — 46) 1 Ja + (1/2)nJ3

+26n* Z 5,2\|5/\pu| + 2n8xEu (Oapy + (5/\7%)2)
A pEAL

< (1 —40)clé]® + K1&xa + Sh>xalén + €, (4.10)

where

S 8@t k=Y (Y aar)h Ji= Y (i)

P AEAN pEAL  AEA A pEN

To prove this claim, introduce

Tlp) = D (6rp)?(0ar)?,

HAEAN

2(0) = > (Y (0x@)anr)’s Jsl0) = D (8,9)%(Gar)?

HEAT  AEA; A uEA

and first recall that by Remarks 6.2 and 6.3 of [14] after replacing there ¢ with ¢/2
we obtain

20 3" (0a¢) LT + 18021 () + (5/2)na() + (1/2)n2 ()
AEAL

—68) > Qorp) + K1Q(0) + (1= 8)cK( > [6r¢l?)

AEA; A€EA

In particular condition (4.4) is satisfied. Furthermore, by substituting §, ¢ in place of
¢ and summing up over v € Ay, we get

2n D (6,050) L3N0 + 1807 Y Ji(6,0)
A vEA veA

5/2 Z JQ y</7 1/2 Z JB u‘/’

veEA veEA
—08) Y Qong) + K1 Y Q) + (1—0)ek( D |oxel?)
AEA? veh AeAZ

It follows that to prove our claim, it suffices to prove that

TL(TL— 1) Z (5AQD)Q)\T)\QD S 18n2 Z Jl(dl,ga 5/2 Z JQ ,/90

)\GA% veA veEA
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+(1/2)n > J3(0,0) + (2/3)5 Y Q(0,¢)

veA vEA?

+(1/3)6eK (D 10,012 + N Y Q0up) + NE( D 10,6l?), (4.11)

vEA? veEA, veEA,

where and below by N we denote generic constants independent of ¢ and (¢,z) (and
various €’s once they appear). Observe that for A = (A!,; A\?) € A} and p € A4,

Th=1+h%658x2 +h(dx +6x2), Ay =h""(6, +6_,)
and hence

ATy = A+ hox6x2(0, +0-p) + (0x1 +0x2) (0, +0-p),
implying that

D (0xp)QaTap = Si + S,

AEA?

where

S1=(1/2) Y (rp)(6aau)(40x = 3-)8p,

AEAZ e

Se=h Z (5A<P)(5AQAL)5>\5MQ-

AEAZ pEA
Next, as it is easy to see for A € A}

Igu = 2(0x17u)0521y + 2r 0T,

+2h(5>\1TH + 6)\27°H)5>\7'u + hz(é)\ru)Q'

Estimating So. First we estimate the term Sy, which contains the third-order
differences of . For the main term in Se we have

B; :=2h Z (630) (6x171) (027 )00 pp
AEA2

<16 Y (0x6,9)%(6ar)? + (1/16)h% > (5a7)* (6x0,00)*

A, vEN A\, vEN

=116 Y J1(6,) + (1/16)E,

veA

where by assumption (4.8) and Lemma 6.1 of [14]

n(n—1)E <25 Y Q(6,0) +45cK( D> (6rp)%).

veA? AeA?
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Hence,

n(n —1)B; < 16n2 Z J1(6,9)
veEA

+(1/8)8 > Q) + (1/4)3eK( Y (6x¢)?). (4.12)
veEAS AEA?

Next, obviously, for any € > 0, (here we use that ¢\ < 0x»)

By :=2h Z (0x@)Tu (0271 ) OO uep
AEAT, nEM

<e 'R DT (Ga)P0arn)’ e Y qu(0a0up)’?

AEAZ pEAL AEAZ pEA

gstllC(Z (6xp)? —i—sz Q(0,¢p).

AEA, UEA2

It follows that (with ¢ > 0 different from the one from above but still arbitrary)

n(n—1)By < Ne 'K ( Z (6rp)?) + ¢ Z Q(b,9). (4.13)

AEAL UEA2

Also

n(n — 1)h? Z [(0xp)0x0,0|

AEAZ pEA

<ede Y (Gap)” + Ne 'K (D (0rp)?).

A€A2 A€M,

Upon combining this with (4.12) and (4.13) we obtain

n(n—1)S; < (e +6/8) > Qo) +16n* > J1(6,¢)

veEA? veEA
e+ 1/4)6cK( D (0x)?) + Ne'K( D (6x9)?). (4.14)
AEA2 AEA

Estimating S;. We again start with the main term in S7, which we split into two
parts writing

(45}\1 — 57#)5#@ = 45}\15#(/7 + Ap‘gﬁ
We have

4 Z (0x) (Ox27) (Ox174) 0100

AEAZ pEAL
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=4 Z [ Z (5)(51/(%7))5)\7"#} (5uru)5v5#<ﬂ

v,uEN1  AEA;

IN
)

(Y 000003 +2 3 (0,102 (0,8,0)°

v,u€A1 AEA; INTISVINY

<2 Z Jg(&,@) +2 Z (51/7%)2(51/5)\90)2

veA v, ANEA

=2 Ja(b,0)+2 Y Ji(drg).

veEA AEA

Furthermore,

Z (63p) (Oa17) (Ox2m) A

AEAZ pEAL

= Z [2(5,\5:190)5)\7“#](51/7“#)AM90

v, uENT  AEA

<1/2) 3 [ Y 03800+ (1/2) Y ()2 (Aup)?

v, uENT  AEA v,uEN

<(1/2) Y F(69) + (1/2) Y Ja(6,0)-

veEA veA

Next, obviously

4 ) 1O Bar)lrudaidup <ecs Y (Gap)? +eTIN Y Qo).

AeAZpe AEA? AEN

S G Gar)lrudup < ced 3 (ap)? +e7IN Y Q(0ag).

AeA? AeA? A€M

Finally,
h Z [(dxp)dr1duep| < ecd Z (6rp)® +e 'NK( Z (6r¢)?).

AEAZ, e AEA? A€M

Upon combining the above estimates we obtain

n(n—1)8 <n® Y [211(0,0) + (5/2)J2(du) + (1/2)J3(6,9)]
veA

+ecd Z (6rp)* + a_lN( Z Q(drp) + K( Z (5A<P)2)>~

AEA? AEAy AEAy

213

This along with (4.14) leads to (4.11) after appropriately choosing € and proves our

claim.
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