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SHAPE ANALYSIS BY CONFORMAL MODULES∗

WEI ZENG† , LOK MING LUI‡ , XIANFENG GU§ , AND SHING-TUNG YAU¶

Abstract. All the surfaces in real life are Riemann surfaces, therefore with conformal structures.
Two surfaces share the same conformal structure, if there exists a conformal (angle-preserving)
mapping between them. Conformal modules are the complete invariants of conformal structures,
which can be treated as shape descriptors for shape analysis applications.

This work focuses on the computational methods of conformal modules for genus zero surfaces
with boundaries, including topological quadrilaterals, annuli, multiply connected annuli. The algo-
rithms are based on both holomorphic 1-forms and discrete curvature flows, which are rigorous and
practical. The conformal module shape descriptors are applied for shape classification and compari-
son. Experiments on surfaces acquired from real world demonstrate the efficiency and efficacy of the
conformal module method.

Key words. Conformal module, holomorphic 1-form, curvature flow, shape classification, shape
analysis.
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1. Introduction. Recently, the 3D geometric acquisition technology has been
becoming much mature. The demands for geometric surfaces classification and in-
dexing have been increased greatly. It is urgent to develop automatic, rigorous and
efficient algorithms to compute geometric invariants of general shapes for classifica-
tion and analysis purposes. In recent decades, there has been a lot of research into
shape invariants [1, 2, 3, 4, 5].

According to Klein’s Erlange program, different geometries study the invariants
under different transformation groups. Shapes can be classified by different geometric
invariants. For the purpose of shape classification, the topological invariants are too
coarse, which are not discriminative; Riemannian geometric invariants are too refined,
it is difficult to compare directly. Conformal geometry is more rigid than topology
and more flexible than Riemannian geometry. Conformal geometry offers a promising
methodology for shape classification and indexing. Recently, conformal geometry has
been successfully applied for surface matching and registration [6, 7, 8, 9, 10, 11].

A conformal mapping between two surfaces preserves angles. Two surfaces are
conformally equivalent, if there exists a conformal mapping between them. Therefore,
all surfaces in real life can be classified by conformal equivalence relation. If two
surfaces are conformally equivalent, then the area distortion (conformal factor) can
be used to further differentiate them, which determines the Riemannian metric. In
theory, two conformally equivalent surfaces, with the same conformal factor and mean
curvature at the corresponding points, differ solely by a rigid motion.

In the current work, we focus on computing the conformal invariants, the so
called conformal module, for genus zero surfaces with all kinds of topologies. The
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major theoretic results postulate the following facts:

1. All genus zero closed surfaces are conformally equivalent. The conformal fac-
tor and mean curvature determine the surface uniquely up to a rigid motion,
which has been used as the shape descriptors in [9].

2. All genus zero surfaces with a single boundary are conformally equivalent, all
of them can be conformally mapped to the unit disk by a Riemann mapping.

3. All genus zero surfaces with a single boundary and four marked points on the
boundary, topological quadrilaterals, are conformally equivalent to rectangles,
with different height-width ratios. The ratio is called the conformal module,
which uniquely determines the conformal structure of the surface. Figures 1
and 2 illustrate the concept.

4. All genus zero surfaces with two boundaries, topological annuli, are confor-
mally equivalent to canonical planar annuli bounded by two concentric circles
with different ratios between the inner and outer radii. The ratio is called
the conformal module, which solely determines the conformal structure of the
surface. Figure 3 demonstrates the conformal module for topological annuli.

5. All genus zero surfaces with multiple boundaries, topological multiply con-

nected annuli, are conformally equivalent to the unit disk with circular holes.
The conformal mapping is unique up to a Möbius transformation. The cen-
ters and radii of the circular holes are the conformal invariants. Figure 4
shows the conformal invariants of multiply connected annuli.

For high genus surfaces, the computation of conformal invariants requires so-
phisticated techniques from Teichmüller theory and hyperbolic geometry. Especially,
discrete hyperbolic surface Ricci flow is essential. We refer readers to [12] for more
details.

The major contributions of the current work are the following general framework
and novel algorithms:

1. A framework to use conformal invariants as the shape descriptors for classi-
fication and analysis.

2. An algorithm for computing conformal modules for topological quadrilaterals
based on exact harmonic 1-forms.

3. An algorithm for computing conformal modules for topological annuli based
on holomorphic 1-forms.

4. An algorithm for computing conformal invariants for multiply connected an-
nuli based on discrete surface curvature flow.

The paper is organized in the following way: Section 2 will briefly introduce
the most related works in the literature; Section 3 will introduce the major theoretic
concepts from differential geometry, Riemann surface theory; details of algorithms are
explained in Section 4; experimental results are reported in Section 5; the conclusion
and future direction are discussed in Section 6.

2. Related work. Our work proposes to compute the conformal modules as
shape descriptors for genus zero surfaces with boundaries, for shape classification
purposes. The research literature on shape descriptors is vast. Here, we will focus only
on the recent shape descriptors which are most relevant to our work using conformal
geometry, and methods for computing conformal maps.

2.1. Conformal geometry related shape descriptors. shape descriptors are
to extract meaningful and simplified representations from the 3D model based on the
geometric and topological characteristics of the object, for the application of 3D shape
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classification and matching. Comprehensive surveys of different shape descriptors and
evaluations of their performance are given by [13], [14], [15] and [16].

Shape descriptors based on conformal geometry for classification is proposed in
[17], where the conformal invariants are represented as the period matrices. Geodesic
spectrum of surfaces under their uniformization metrics is applied as the shape de-
scriptors in [18]. 3D surface matching based on conformal mapping is proposed in
[19, 20].

Laplace-Beltrami operator related descriptors are presented in [21] and [22], which
are invariant to isometric deformations and tolerant to quasi-isometric deformations.
Pose-invariant shape descriptors based on conformal geometry are introduced in [23],
where the histogram of the conformal factor computed from surface uniformization
metric is applied as shape descriptor. Recently, Jin et.al [12] applied Teichmüller
space coordinates as shape descriptors for high genus surfaces using hyperbolic metric,
which are succinct, discriminating and intrinsic, invariant under the rigid motions and
scalings.

2.2. Conformal mapping methods. There are many algorithms for conformal
surface parameterization in the literature. Comprehensive reviews can be found in
[24] and [25]. Here we focus on the approaches to computing holomorphic differential
1-forms and discrete curvature flow.

Holomorphic 1-form. Global method without segmentation is proposed by Gu
et al. [26]. They used holomorphic one-forms as the underlying tool, which is general
for surfaces with arbitrary topologies. One-form has also been used for vector fields
decomposition and smoothing [27]. Discrete one-forms on meshes were studied in [28].
Tong et al. [29] used harmonic one-forms for surface parameterization. They enlarged
the space of harmonic one-forms by allowing additional singular points on the surface.
Kalberer et al. applied one-forms for surface parameterization combining with branch
covering in [30], where the parameter lines are governed by a given frame field. In
[31] Fisher et al. used one-forms for designing tangent vector fields on surfaces with
complicated topologies.

Curvature flow. The theoretic foundations of discrete surface curvature flow
have been introduced in [32, 33, 34, 35]. The engineering applications have been
introduced in [36, 37, 38, 39, 40]. As a powerful tool for shape analysis, Ricci curvature
flow [36, 37] has been successfully used for the applications in computer graphics and
vision, such as surface matching and registration [20, 41], classification and indexing
[12].

3. Theoretic background. This section briefly introduces the background
knowledge in conformal geometry, necessary for the discussion in the work. For more
details, we refer readers to [42] for Riemann surface theory, [43] for Teichmüller theory
and [44] for differential geometry.

3.1. Conformal structure. Suppose S is a topological surface. Uα is an open
set on S, φα : Uα → C maps each point in Uα to its local coordinates on the complex
plane. (Uα, φα) is a local coordinates chart. An atlas A = {(Uα, φα)} is a collection
of local coordinate charts, which cover the whole surface.

Suppose S is embedded in R3, therefore it has the induced Euclidean metric g.
Suppose on a local chart (Uα, φα) with local coordinates zα,

g = e2λdzαdz̄α,
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then zα is an isothermal coordinates. If all the local coordinates in A are isothermal,
then the atlas is called a conformal structure.

Let (Uα, φα) and (Uβ , φβ) be two local charts in a conformal atlas, with local
coordinates zα, zβ respectively, then the coordinates transition function φαβ = φβ ◦

φ−1
α : zα → zβ is holomorphic, meaning

∂φαβ

∂z̄α
= 0.

Another interpretation of conformal structure is more useful for understanding
the curvature flow method. Let S be a topological surface, we consider all the possible
Riemannian metrics on S, G = {g}. Two metrics g1,g2 are conformally equivalent,
g1 ∼ g2, if there exists a function λ : S → R, such that g1 = e2λg2. Intuitively, the
angle values measured by g1 equals to that by g2. Then each conformal equivalence
class of the Riemannian metrics in G/ ∼ is a conformal structure.

3.2. Conformal mapping. A mapping between two Riemann surfaces f : S1 →
S2 is conformal, if it satisfies the following condition. Arbitrarily choosing a local
isothermal coordinates of S1, (Uα, φα), a local isothermal coordinates of S2, (Vβ , φβ),
then the local presentation of f is φβ ◦ f ◦ φ−1

α is holomorphic.
Conformal mappings preserve angles. Namely, if there exists a conformal mapping

between S1 and S2, then S1 and S2 have the same conformal structure.

3.3. Conformal invariants. In order to verify whether two Riemann surfaces
are conformally equivalent or not, it is unnecessary to really find the conformal map-
ping between them, which is still a widely open problem for general surfaces. Instead,
one can compute some geometric quantities determined by the conformal structure
of the surface, which are called the conformal invariants. By comparing the con-
formal invariants, it is easy to verify whether two Riemann surfaces are conformally
equivalent or not.

All genus zero closed surfaces are conformally equivalent to the unit sphere, there-
fore, all of them are conformally equivalent. All genus zero surface with a single bound-
ary can be conformally mapped to the unit disk by a Riemann mapping, therefore, all
topological disks are conformally equivalent. A topological triangle is a topological
disk with three marked boundary points T (p1, p2, p3). Then we can find a unique Rie-
mann mapping φ : T (p1, p2, p3) → D, such that φ maps p1, p2, p3 to 1, i,−1. Therefore,
all topological triangles are conformally equivalent.

Definition 3.1 (Topological Quadrilateral). Suppose S is a surface of genus

zero with a single boundary, and four marked boundary points p1, p2, p3, p4 sorted

counter-clock-wisely. Then S is called a topological quadrilateral, and denoted as

Q(p1, p2, p3, p4).

The following theorem states the complete conformal invariants of a topological
quadrilateral.

Theorem 3.2 (Conformal Module). Suppose Q(p1, p2, p3, p4) is a topological

quadrilateral with a Riemannian metric, then there exists a unique conformal map

φ : S → C, such that φ maps Q to a rectangle, φ(p1) = 0, φ(p2) = 1. The height of

the image rectangle is called the conformal module of Q(p1, p2, p3, p4).

Similarly, conformal module can be defined for topological annuli.

Definition 3.3 (Topological Annulus). Suppose S is a surface of genus zero

with two boundaries, then S is called a topological annulus.

The complete conformal invariant for a topological annulus is postulated by the
following theorem.
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p1 p2

p3p4

p1 p2

p3p4

(a) (b)

Fig. 1. Conformal modules for topological quadrilaterals. Same surface with different
marked points have different conformal modules, 1.02866 for (a) and 0.770193 for (b).

Theorem 3.4 (Conformal Module). Suppose S is a topological annulus with a

Riemannian metric, the boundary of S are two loops ∂S = γ1 − γ2. Then there exists

a conformal map φ : S → C, which maps S to the canonical annulus, φ(γ1) is the

unit circle, φ(γ2) is another concentric circle with radius r. Then r is the conformal

module of S. The mapping φ is unique up to a rotation.

For a multiply connected annulus, the conformal module is more complicated. All
the conformal mappings from a unit disk to itself are Möbius transformations, and
can be represented as

z → eiθ z − z0

1 − z̄0z
,

where z0 is an interior point in the unit disk.

Definition 3.5 (Multiply Connected Annulus). Suppose S is a surface of genus

zero with multiple boundaries, then S is called a multiply connected annulus.
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p2
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(a) (b)

Fig. 2. Conformal modules for brain cortex surfaces, which are topological quadrilaterals.
Same surface with different marked points have different conformal modules, 1.00898 for (a)
and 1.27361 for (b).

Theorem 3.6. Suppose S is a multiply connected annulus with a Riemannian

metric, then there exists a conformal map φ : S → C, which maps S to the unit disk

with circular holes. The radii and centers of the inner circles are conformal invariants

of S. Such kind of conformal mappings are unique up to Möbius transformations.

3.4. Holomorphic 1-forms.

Harmonic functions. Let f : S → R be a function defined on the surface, then
the harmonic energy of f is defined as

E(f) =

∫

S

|∇f |2dA,

where ∇f is the gradient of f , dA is the area element on S. The harmonic function is
the critical point of the harmonic energy, and satisfies the Laplace equation ∆f = 0,
where ∆ is the Laplace-Beltrami operator on S.

Harmonic 1-form. Suppose S is a Riemann surface with an conformal atlas. Let
(Uα, φα) be a local coordinate chart, the local coordinates are xα + iyα. A differential
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(a) (b)

Fig. 3. Conformal modules for topological annulus, 0.246647 for (a) and 0.262499 for (b).

1-form has the local representation τ = fαdxα + gαdyα. On another chart (Uβ , φβ)
with local coordinates xβ + iyβ, τ = fβdxβ + gβdyβ . such that

(

fβ

gβ

)

=

(

∂xα

∂xβ

∂yα

∂xβ

∂xα

∂yβ

∂yα

∂yβ

)

(

fα

gα

)

.

A differential 1-form is a harmonic 1-form, if locally, it is the gradient of a harmonic
function.

Intuitively, the Hodge star rotates a differential 1-form τ by a right angle, on each
local chart, it is defined ∗τ = −gαdxα + fαdyα. We also say ∗ τ is conjugate to τ .

Holomorphic 1-form. Let ω be a complex-valued differential form on the Rie-
mann surface S, such that on each local chart (Uα, φα) with isothermal coordinates zα,
ω has local representation ω = gα(zα)dzα, where gα is holomorhpic, then ω is called
a holomorphic 1-form. A holomorphic 1-form can be decomposed to two harmonic
1-forms, conjugate to each other, namely ω = τ + i∗τ,

All the holomorphic 1-forms form a group, which is isomorphic to the first coho-
mology group of the Riemann surface.

3.5. Surface Ricci curvature flow. Let S be a surface embedded in R3. S
has a Riemannian metric induced from the Euclidean metric of R3, denoted by g.
Suppose u : S → R is a scalar function defined on S, then ḡ = e2ug is a conformal
metric on S.

The Gaussian curvatures will also be changed accordingly. The Gaussian curva-
ture will become

K̄ = e−2u(−∆gu + K),
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(a) (b)

Fig. 4. Conformal modules for multiply connected annuli (see Table 2 for experimental
results).

where ∆g is the Laplacian-Beltrami operator induced by the original metric g. The
above equation is called the Yamabe equation. Yamabe equation can be solved using
Ricci flow method. The Ricci flow deforms the metric g(t) according to the Gaussian
curvature K(t) (induced by g(t)), where t is the time parameter

dgij(t)

dt
= 2(K̄ − K(t))gij(t).

Ricci flow method can be applied to design Riemannian metrics with prescribed
Gaussian curvatures. For example, if the target curvature K̄ is zero on every interior
point, then the surface can be flattened onto a planar domain with the resulting metric
e2ug.

4. Algorithms. This section introduces the algorithms for computing conformal
invariants for genus zero surfaces with various topologies.

All surfaces are represented as triangular meshes, piecewise linearly embedded in
R3. We use V, E, F to represent the vertex, edge and face sets. We use vi to denote
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the vertex, [vi, vj ] for an oriented edge from vi to vj , and [vi, vj , vk] for a face with
vertices vi, vj , vk, sorted counter-clock-wisely.

4.1. Topological quadrilateral. Given a triangular mesh Q of genus zero, with
a single boundary. Four boundary vertices p1, p2, p3, p4 are chosen as the marked
points. We want to find a conformal mapping φ : Q → C, which maps Q to a planar
rectangle. Assume the boundary of Q consists of four segments ∂Q = γ1+γ2+γ3+γ4,
such that

∂γ1 = p2 − p1, ∂γ2 = p3 − p2,
∂γ3 = p4 − p3, ∂γ4 = p1 − p4.

Then we compute two harmonic functions f1, f2 : Q → R, such that






∆f1 = 0
f1|γ1

= 0
f1|γ3

= 1







∆f2 = 0
f2|γ2

= 0
f2|γ4

= 1
.

We use the cotan formula [45] to approximate the Laplace-Beltrami operator. Ba-

Fig. 5. Level sets of harmonic functions f1 and f2.

sically, for each edge [vi, vj ], the two adjacent triangles are [vi, vj , vk] and [vj , vi, vl],
the angles against the edge are θk

ij and θl
ji in each triangle respectively, then

wij = cot θk
ij + cot θl

ji. (1)

Then the Laplacian of a function f : V → R is defined as

∆f(vi) =
∑

[vi,vj ]∈E

wij(f(vi) − f(vj)).

Then ∇f1 and ∇f2 are two exact harmonic 1-forms. We need to find a scalar λ,
such that ∗∇f1 = λ∇f2. This can be achieved by minimizing the following energy

E(λ) =
∑

[vi,vj,vk]∈F

|∇f1 − λn ×∇f2|
2Aijk,

where ∇f1 and ∇f2 are the constant gradient vector of f1 and f2 on the face [vi, vj , vk];
n is the normal vector to the face, Aijk is the area of the face. By solving a linear
equation, λ can be obtained.

The the desired holomorphic 1-form ω = ∇f1 + iλ∇f2. Then the conformal map-
ping φ : Q → C is given by φ(p) =

∫ p

q
ω, where q is the base point, the path from q

to p is arbitrarily chosen.
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γ0

γ1 γ2

γ0

γ1 γ2

Fig. 6. Harmonic 1-forms. Top row, the cut on the surface. Bottom row, the level sets
of the harmonic 1-form ∇f and its conjugate harmonic 1-form λ(∇g0 + ∇g1).

4.2. Topological annulus. Suppose S is a topological annulus, with boundaries
∂S = γ0 − γ1 as shown in figure 6. First, we compute a path γ2 connecting γ0 and
γ1. Then we compute a harmonic function f : S → R, such that







fγ0
= 0

fγ1
= 1

∆f = 0
.

The level set of f is shown in Figure 6. Then ∇f is a harmonic 1-form.
We slice the surface along γ2 to get a new surface S̃ with a single boundary.

γ2 becomes two boundary segments γ+
2 and γ−

2 on S̃. Then we compute a function
g0 : S̃ → R, such that

{

g0|γ+
2

= 1

g0|γ−

2
= 0

g0 takes arbitrary value on other vertices. Therefore ∇g0 is a closed 1-form defined
on S. Then we find another function g1 : S → R, such that ∇g0 + ∇g1 is a harmonic
1-form ∇ · (∇g0 + ∇g1) = 0.

Then we need to find a scalar λ , such that ∗∇f = λ(∇g0 +∇g1) using the similar
method as for topological quadrilaterals. The holomorphic 1-form is given by

ω = ∇f + iλ(∇g0 + ∇g1).

Let Img(
∫

γ0
ω) = k, the conformal mapping from S to a canonical annulus is given

by

φ(p) = exp
2π
k

R
p

q
ω,

where q is the base point, the path from q to p is arbitrarily chosen.
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γ

γ

γ4

γ1

γ3

γ

γ2

γ5

γ
+

γ
−

γ0

Y

O

(a) (b) (c) (d) (e) (f)

Fig. 7. Computing process for the conformal invariants of a multiply connected annulus.
(a) the input surface with 6 boundaries. (b) a cut path γ connecting the outer boundary and
the longest inner boundary. (c) the flat metric, obtained by curvature flow, which flattens the
surface to a parallelogram on the plane. (d) the complex exponential map that maps (c) to an
annulus. (e) the result after a Möbius transformation. (f) the canonical map for computing
conformal modules using a Möbius transformation.

4.3. Multiply connected annulus. Discrete curvature flow method is applied
for computing the conformal invariants of the multiply connected annuli. On a triangle
mesh, the discrete metric is the edge length function ℓ : E → R+ satisfying triangle
inequality. The vertex discrete curvature is defined as angle deficiency,

Ki =

{

2π −
∑

[vi,vj ,vk]∈F θjk
i vi 6∈ ∂M

π −
∑

[vi,vj ,vk]∈F θjk
i vi ∈ ∂M

where θjk
i is the corner angle at vi in the face [vi, vj , vk], ∂M is the boundary of M .

Let u : V → R be the discrete conformal factor. The edge length of [vi, vj ] is defined

Fig. 8. Conformal modules for multiply connected annuli (see Table 2 for experimen-
tal results). It is obvious that, the human face surfaces with different expressions are not
conformally equivalent. Therefore, expression change is not a conformal transformation.
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as

ℓij := exp(ui) exp(uj)ℓ
0
ij ,

where ℓ0
ij is the original edge length in R3. The discrete Yamabe flow is defined as

dui

dt
= K̄i − Ki,

with the constraint
∑

i ui = 0. The discrete Yamabe flow converges, and the final
discrete metric induces the prescribed curvature. The detailed proof can be found in
[34].

The curvature flow is the gradient flow of the following convex energy,

E(u) =

∫ u

u0

∑

vi∈V

(K̄i − Ki)dui,

where u0 = (0, 0, · · · , 0), as described in [36], [34] and [38]. The energy can be
minimized using Newton’s method directly, where the Hessian matrix is exactly the
discrete Laplace-Beltrami operator in Eqn. 1.

Figure 7 illustrates the processing pipeline. Let S be a multiply connected annu-
lus, its boundary consists of n loops, ∂S = γ0 − γ1 − γ2 · · ·− γn. where γk’s are sorted
by their total lengths.

The target curvature is set in the following way:
1. For all interior vertices vi 6∈ ∂S, K̄(vi) is zero.
2. For all vertices on γ0 or γ1, K̄(vi) is zero.
3. Let vi ∈ γk, k 6= 0, 1, suppose the total length of γk under the current metric

is |γk|, the two boundary edges attaching to vi on γk are li and li+1, then set

K̄(vi) = −π
|li| + |li+1|

|γk|
.

Note that in the curvature flow, the edge lengths are changing, therefore
K̄(vi) are also time variant.

By running discrete curvature flow with time variant target curvature, the proce-
dure will converge, and a unique flat metric will be obtained. Then we find a shortest
path γ2 connecting γ0 and γ1, slice S along γ2 to get a surface S̃. The flat metric will
flatten S̃ onto a planar parallelogram with circular holes. Then we use an exponential
map to map the parallelogram to an annulus with circular holes. Finally, we use Yam-
abe flow to adjust the metric, to make each boundary to be a circle. Figure 8 shows
the conformal mapping between multiply connected annuli, which are human faces
with different expressions with eyes and mouth removed. They are mapped to the
planar unit disk with circular holes. The different radii of the mouth circle indicate
the fact that the expression change is not conformal.

5. Experimental results. All the algorithms are implemented using generic
C++ on Windows XP platform. The linear systems are solved using Matlab C++
library. All the experiments are conducted on a PC with 3.60GHz dual CPUs and
3.00 GB memory.

The surface data are captured by structured light 3D scanner [46], which is capable
of capturing high resolution with high speed. The medical imaging data, such as brain
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(a) Front view (b) Back view

(c) Planar Image (d) Zoomed in

Fig. 9. A brain cortex surface is sliced open along 9 sulci landmarks in (a) and 1 base
boundary in (b). The conformal module is computed using curvature flow method. The planar
image and its zoomed-in are shown in (c) and (d).

cortex surfaces, are reconstructed from MRI images. Table 1 shows the running time
for conformal modules of different geometric data using different algorithms.

Experimental results on conformal modules for topological quadrilaterals are re-
ported in Figures 1 and 2. The four corner points along the boundaries are marked
in the figures. It is clear that the same geometric surface with different markers have
different conformal modules. Furthermore, as shown in Figure 1, if the original surface
is symmetric, and the markers are symmetric, then the conformal mapping preserves
symmetry.

The conformal modules for topological annuli are shown in Figures 3 and 6. The
human face surfaces with mouth cuts are topological annuli, and are conformally
mapped to planar annuli. The outer radii equal to one, the inner radii indicate the
conformal invariants.

Experimental results on multiply connected annuli are reported in Figures 4, 7, 8
and 9. Each surface is conformally mapped to the unit disk with circular holes inside.
The mapping is not unique, different mappings differ by a Möbius transformation.
We use the following procedure to remove the Möbius ambiguity. Suppose ∂M =
γ0 − γ1 − · · · − γn, where γ0 is the outer boundary, γk’s are sorted in the descending
order of their hyperbolic lengths.

We map the outer boundary γ0 to the unit circle, and use Möbius transformation
to move the center of γ1 to the origin, the center of γ2 to the imaginary axis. The
conformal invariants are defined on this canonical setting. Suppose each boundary
γk is mapped to a circle (ck, rk), where ck is the center, rk is the radius, then the
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conformal invariants are represented as

{r1, (y2, r2), (c3, r3), · · · , (cn, rn)}. (2)

The processing pipeline is illustrated in Figure 7, where the conformal modules are
computed on the canonical map shown in (f). Table 2 lists conformal invariants for
each surface.

In Figure 8, we can obviously see that the human face surfaces with different
expressions are not conformally equivalent. The L2 distance between the conformal
invariants is 0.069546.

Table 1
Running Time for Computing Conformal Modules

Mesh Figure Faces Verts Bnds Topology Time(s)

Alex1 Fig.1a 160058 80598 1 quadrilateral 82

Alex2 Fig.1b 160058 80598 1 quadrilateral 88

Brain1 Fig.2a 58558 29393 1 quadrilateral 28

Brain2 Fig.2b 58558 29393 1 quadrilateral 27

Alex3 Fig.3a, 6 160056 80598 2 annulus 107

Luke Fig.3b 265478 133759 2 annulus 136

Sophie Fig.4a 19960 10204 4 multi-connect 52

Alex Fig.4b 24096 12321 4 multi-connect 48

Alex4 Fig.7 22455 11555 6 multi-connect 40

Anna1 Fig.8a 19984 10212 4 multi-connect 42

Anna2 Fig.8b 19992 10227 4 multi-connect 43

Brain Fig.9 13168 66549 10 multi-connect 204

The experiments are performed on a dual Xeon(TM) CPU 3.60 GHz, 3.00 GB memory PC.

6. Conclusion. This paper introduces the computational algorithms for a novel
shape descriptor, conformal modules for topological quadrilaterals, annuli and mul-
tiply connected annuli. The computational algorithms are based on discrete holo-
morphic 1-forms and discrete curvature flow methods. The computational algorithms
are automatic, rigorous and efficient. The conformal invariants can be treated as the
fingerprints of the shapes, and applied for shape classification and geometric database
indexing.

The algorithms for computing the conformal modules for quadrilaterals and an-
nuli are linear, which are efficient and robust. The requirement to the triangulation
quality is low. In contrast, the curvature flow method for multiply connected an-
nuli is highly non-linear, which is as robust as the linear method. The requirements
for the triangulations heavily depend on the target curvature. It will be an impor-
tant direction to establish the theoretic analysis and develop practical algorithm to
automatically improve the tessellation quality for curvature flow method.

The relation between the linear method and non-linear method will be another
direction for further exploration. For topological annuli, both methods give equivalent
results. Curvature flow method is flexible for arbitrary topologies,and holomorphic
forms are efficient. It is highly desirable to combine them together.

In the future, we plan to use our conformal module algorithm for large scale
geometric database indexing and many other real applications in engineering fields.
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Table 2
Conformal Modules for Genus Zero Surfaces with Boundaries

Bnd Sophie Fig.4a Alex Fig.4b

γ1 0.237656 0.233511

γ2 (0.809342) 0.052511 (0.818536) 0.072878

γ3 (0.656531 -0.384748) 0.055294 (0.720324 0.418042) 0.056624

Bnd Anna1 Fig.8a Anna2 Fig.8b

γ1 0.266628 0.360004

γ2 (0.798269) 0.051485 (0.798602) 0.053412

γ3 (0.714065 -0.372099) 0.041063 (0.735581 -0.344529) 0.035383

Bnd Alex4d Fig.7d Alex4e Fig.7e

γ1 0.232286 0.232227

γ2 (0.647122) 0.166061 (0.646042) 0.166510

γ3 (-0.085231 0.662051) 0.226530 (-0.108128 0.654063) 0.229110

γ4 (0.711377 0.393154) 0.074814 (0.703591 0.402676) 0.075556

γ5 (0.396639 0.711987) 0.061296 (0.378273 0.718480) 0.062258

Bnd Brain Fig.9

γ1 0.227251

γ2 (0.810980) 0.064359

γ3 (0.408802 -0.390732) 0.122533

γ4 (0.675160 -0.154978) 0.047408

γ5 (0.405547 -0.153151) 0.045023

γ6 (0.582150 -0.202912) 0.027341

γ7 (0.479104 -0.106130) 0.029712

γ8 (0.486479 -0.216819) 0.008887

γ9 (0.508601 -0.179890) 0.008237

{γi} boundaries sorted by hyperbolic length.

γ1: [r1], γ2: [(v2) r2], γi: [(ui vi) ri].
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