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UNIQUENESS OF SOLUTIONS FOR AN ELLIPTIC EQUATION

MODELING MEMS∗

PIERPAOLO ESPOSITO†
AND NASSIF GHOUSSOUB‡

Abstract. We show among other things, that for small voltage, the stable solution of the basic
nonlinear eigenvalue problem modelling a simple electrostatic MEMS is actually the unique solution,
provided the domain is star-shaped and the dimension is larger or equal than 3. In two dimensions,
we need the domain to be either strictly convex or symmetric. The case of a power permittivity
profile is also considered. Our results, which use an approach developed by Schaaf [13], extend and
simplify recent results by Guo and Wei [7], [8].
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1. Introduction. We study the effect of the parameter λ, the dimension N , the
profile f and the geometry of the domain Ω ⊂ R

N , on the question of uniqueness of the
solutions to the following elliptic boundary value problem with a singular nonlinearity:







−∆u = λf(x)
(1−u)2 in Ω

0 < u < 1 in Ω
u = 0 on ∂Ω.

(S)λ,f

This equation has been proposed as a model for a simple electrostatic Micro-
Electromechanical System (MEMS) device consisting of a thin dielectric elastic mem-
brane with boundary supported at 0 below a rigid ground plate located at height
z = 1. See [10, 11]. A voltage – directly proportional to the parameter λ – is applied,
and the membrane deflects towards the ground plate and a snap-through may occur
when it exceeds a certain critical value λ∗, the pull-in voltage.

In [9] a fine ODE analysis of the radially symmetric case with a constant profile
f ≡ 1 on a ball B, yields the following bifurcation diagram that describes the L∞-
norm of the solutions u – which in this case necessarily coincides with u(0) – in terms
of the corresponding voltage λ.

The question whether the diagram above describes realistically the set of all so-
lutions in more general domains and for non-constant profiles, and whether rigorous
mathematical proofs can be given for such a description, has been the subject of many
recent investigations. See [3, 4, 5, 7, 8].

We summarize in the following two theorems some of the established results con-
cerning Figure 1. First, for every solution u of (S)λ,f , we consider the linearized
operator

Lu,λ = −∆ −
2λf

(1 − u)3
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Fig. 1. Plots of u(0) versus λ for profile f(x) ≡ 1 defined in the unit ball B1(0) ⊂ RN with
different ranges of N . In the case N ≥ 8, we have λ∗ = 2(3N − 4)/9.

and its eigenvalues {µk,λ(u); k = 1, 2, . . .} (with the convention that eigenvalues are
repeated according to their multiplicities). The Morse index m(u, λ) of a solution u is
the largest k for which µk,λ(u) is negative. A solution u of (S)λ,f is said to be stable
(resp., semi-stable) if µ1,λ(u) > 0 (resp., µ1,λ(u) ≥ 0).

A description of the first stable branch and of the higher unstable ones is given in the
following.

Theorem A [3, 4, 5]. Suppose f is a smooth nonnegative function in Ω. Then,
there exists a finite λ∗ > 0 such that

1. If 0 ≤ λ < λ∗, there exists a (unique) minimal solution uλ of (S)λ,f such that
µ1,λ(uλ) > 0. It is also unique in the class of all semi-stable solutions.

2. If λ > λ∗, there is no solution for (S)λ,f .
3. If 1 ≤ N ≤ 7, then u∗ = lim

λ↑λ∗

uλ is a solution of (S)λ∗,f such that µ1,λ∗(u∗) =

0, and u∗ – referred to as the extremal solution of problem (S)λ,f – is the
unique solution.

4. If 1 ≤ N ≤ 7, there exists λ∗
2 with 0 < λ∗

2 < λ∗ such that for any λ ∈ (λ∗
2, λ

∗),
problem (S)λ,f has a second solution Uλ with µ1,λ(Uλ) < 0 and µ2,λ(Uλ) > 0.
Moreover, at λ = λ∗

2 there exists a second solution U∗ := lim
λ↓λ∗

2

Uλ with

µ1,λ∗

2
(U∗) < 0 and µ2,λ∗

2
(U∗) = 0.

5. Given a more specific potential f in the form

f(x) =

(

k
∏

i=1

|x − pi|
αi

)

h(x) , inf
Ω

h > 0, (1)

with points pi ∈ Ω, αi ≥ 0, and given un a solution of (S)λn,f , we have the
equivalence

‖un‖∞ → 1 ⇐⇒ m(un, λn) → +∞

as n → +∞.
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It was also shown in [4] that the permittivity profile f can dramatically change the
bifurcation diagram, and totally alter the critical dimensions for compactness. Indeed,
the following theorem summarizes the result related to the effect of power law profiles.

Theorem B [4]. Assume Ω is the unit ball B and f in the form

f(x) = |x|αh(|x|) , inf
B

h > 0.

Then we have
1. If N ≥ 8 and α > αN := 3N−14−4

√
6

4+2
√

6
, the extremal solution u∗ is again a

classical solution of (S)λ∗,f such that µ1,λ∗(u∗) = 0.

2. If N ≥ 8 and α > αN := 3N−14−4
√

6
4+2

√
6

, the conclusion of Theorem A-(4) still

holds true.
3. On the other hand, if either 2 ≤ N ≤ 7 or N ≥ 8, 0 ≤ α ≤ αN = 3N−14−4

√
6

4+2
√

6
,

for f(x) = |x|α necessarily we have that

u∗(x) = 1 − |x|
2+α

3 , λ∗ =
(2 + α)(3N + α − 4)

9
.

The bifurcation diagram suggests the following conjectures:
1. For 2 ≤ N ≤ 7 there exists a curve (λ(t), u(t))t≥0 in the solution set

V =
{

(λ, u) ∈ (0, +∞) × C1(Ω̄) : u is a solution of (S)λ,f

}

, (2)

starting from (0, 0) at t = 0 and going to “infinity": ‖u(t)‖∞ → 1 as t → +∞,
with infinitely many bifurcation or turning points in V .

2. In dimension N ≥ 2 and for any profile f , there exists a unique solution for
small voltages λ.

3. For 2 ≤ N ≤ 7 there exist exactly two solutions for λ in a small left neigh-
borhhod of λ∗.

Conjectures 1 and 2 have been established for power law profiles in the radially sym-
metric case [7], and for the case where f ≡ 1 and Ω is a suitably symmetric domain
in R

2 [8]. Indeed, in these cases Guo and Wei first show that

λ∗ = inf{λ > 0 : (S)λ,f has a non-minimal solution} > 0,

and then apply the fine bifurcation theory developed by Buffoni, Dancer and Toland
[1] to verify the validity of Conjecture 1 in that case. The fact that λ∗ > 0 then allows
them to carry out some limiting argument and to prove that the Morse index of u(t)
blows up as t → +∞, which is crucial for showing that infinitely many bifurcation or
turning points occur along the curve. Thanks to Theorem A-(5), we shall be able in
Section 2 to show the validity of Conjecture 1 in general domains Ω, by circumventing
the need to prove that λ∗ > 0. On the other hand, we shall prove in Section 3 that
indeed λ∗ > 0 for a large class of domains, and therefore we have uniqueness for small
voltage. Our proofs simplify considerably those of Guo and Wei [7, 8], and extend
them to general star-shaped domains Ω and power law profiles f(x) = |x|α, α ≥ 0.

Conjecture 3 has been shown in [3] in the class of solutions u with m(u, λ) ≤ k, for
every given k ∈ N, and is still open in general.
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2. A quenching branch of solutions. The first global result on the set of
solutions in general domains was proved by the first author in [3]. By using a degree
argument (repeated below), he showed the following result.

Theorem 2.1. Assume 2 ≤ N ≤ 7 and f be as in (1). There exist a sequence
{λn}n∈N and associated solution un of (S)λn,f so that

m(un, λn) → +∞ as n → +∞.

We now introduce some notation from Section 2.1 of [1]. Set

X = Y = {u ∈ C1(Ω̄) : u = 0 on ∂Ω} , U = (0, +∞) × {u ∈ X : ‖u‖∞ < 1},

and define the real analytic function F : R × U → Y as F (λ, u) = u − λK(u),
where K(u) = −∆−1

(

f(x)(1 − u)−2
)

is a compact operator on every closed subset in
{u ∈ X : ‖u‖∞ < 1} and ∆−1 is the Laplacian resolvent with homogeneous Dirichlet
boundary condition. The solution set V given in (2) rewrites as

V = {(λ, u) ∈ U : F (λ, u) = 0},

and the projection of V onto X is defined as

ΠXV = {u ∈ X : ∃ λ so that (λ, u) ∈ V}.

Proof. In view of Theorem A-(5), we have the equivalence

sup
(λ,u)∈V

max
Ω

u = 1 ⇐⇒ sup
(λ,u)∈V

m(u, λ) = +∞.

Arguing by contradiction, we can assume that

sup
(λ,u)∈V

max
Ω

u ≤ 1 − 2δ, sup
(λ,u)∈V

m(u, λ) < +∞ (3)

for some δ ∈ (0, 1
2 ). By Theorem 1.3 in [3] one can find λ1, λ2 ∈ (0, λ∗), λ1 < λ2, so

that (S)λ,f possesses
• for λ1, only the (non degenerate) minimal solution uλ1

which satisfies
m(uλ1

, λ1) = 0;
• for λ2, only the two (non degenerate) solutions uλ2

, Uλ2
satisfying

m(uλ2
, λ2) = 0 and m(Uλ2

, λ2) = 1, respectively.
Consider a δ-neighborhood Vδ of ΠXV :

Vδ := {u ∈ X : distX(u, ΠXV) ≤ δ}.

Note that (3) gives that V is contained in a closed subset of {u ∈ X : ‖u‖∞ < 1}:

Vδ ⊂ {u ∈ X : ‖u‖∞ ≤ 1 − δ}.

We can now define the Leray-Schauder degree dλ of F (λ, ·) on Vδ with respect to zero,
since by definition of ΠXV (the set of all solutions) ∂Vδ does not contain any solution
of (S)λ,f for any value of λ. Since dλ is well defined for any λ ∈ [0, λ∗], by homotopy
dλ1

= dλ2
. To get a contradiction, let us now compute dλ1

and dλ2
. Since the only
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zero of F (λ1, ·) in Vδ is uλ1
with Morse index zero, we have dλ1

= 1. Since F (λ2, ·)
has in Vδ exactly two zeroes uλ2

and Uλ2
with Morse index zero and one, respectively,

we have dλ2
= 1 − 1 = 0. This contradicts dλ1

= dλ2
, and the proof is complete.

We can now combine Theorem A-(5) with the fine bifurcation theory in [1] to establish
a more precise multiplicity result. See also [2].

Observe that A0 := {(λ, uλ) : λ ∈ (0, λ∗)} is a maximal arc-connected subset of

S := {(λ, u) ∈ U : F (λ, u) = 0 and ∂uF (λ, u) : X → Y is invertible}

with A0 ⊂ S. Assume that the extremal solution u∗ is a classical solution so to have
u∗ ∈ (S̄ ∩U) \ S. Assumption (C1) of Section 2.1 in [1] does hold in our case. As far
as condition (C2):

{(λ, u) ∈ U : F (λ, u) = 0} is open in {(λ, u) ∈ R × X : F (λ, u) = 0},

let us stress that it is a weaker statement than requiring U to be an open subset in
R × X . In our case, the map F (λ, u) is defined only in U (and not in the whole X),
and then condition (C2) does not make sense. However, we can replace it with the
new condition (C2):

U is an open set in R ×X,

which does hold in our context. Since (C2) is used only in Theorem 2.3-(iii) in [1] to
show that S is open in S̄, our new condtion (C2) does not cause any trouble in the
arguments of [1].
Since ∂uF (λ, u) is a Fredholm operator of index 0, by a Lyapunov-Schmidt reduction
we have that assumptions (C3)-(C5) do hold in our case (let us stress that these
conditions are local and U is an open set in R × X).
Setting λ̄ = 0 and defining the map ν : U → [0, +∞) as ν(λ, u) = 1

1−‖u‖∞

, conditions

(C6)-(C8) do hold in view of the property λ ∈ [0, λ∗]. Theorem 2.4 in [1] then applies
and gives the following.

Theorem 2.2. Assume u∗ a classical solution of (S)λ∗,f . Then there exists an

analytic curve (λ̂(t), û(t))t≥0 in V starting from (0, 0) and so that ‖û(t)‖∞ → 1 as
t → +∞. Moreover, û(t) is a non-degenerate solution of (S)

λ̂(t),f except at isolated
points.

By the Implicit Function Theorem, the curve (λ̂(t), û(t)) can only have isolated
intersections. If we now use the usual trick of finding a minimal continuum in
{(λ̂(t), û(t)) : t ≥ 0} joining (0, 0) to “infinity", we obtain a continuous curve
(λ(t), u(t)) in V with no self-intersections which is only piecewise analytic. Clearly,
∂uF (λ, u) : X → Y is still invertible along the curve except at isolated points.

Let now 2 ≤ N ≤ 7 and f be as in (1). By the equivalence in Theorem A-(5) we
get that m(λ(t), u(t)) → +∞ as t → +∞, and then µk,λ(t)(u(t)) < 0 for t large, for
every k ≥ 1. Since µk,λ(0)(u(0)) = µk,0(0) > 0 and u(t) is a non-degenerate solution
of (S)λ(t),f except at isolated points, we find tk > 0 so that µk,λ(t)(u(t)) changes from
positive to negative sign across tk. Since µk+1,λ(t)(u(t)) ≥ µk,λ(t)(u(t)), we can choose
tk to be non-increasing in k and to have tk → +∞ as k → +∞.
To study secondary bifurcations, we will use the gradient structure in the problem.
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Setting (λk, uk) := (λ(tk), u(tk)), we have that (λk, uk) /∈ S. Choose δ > 0 small so
that ‖uk‖∞ < 1 − δ, and replace the nonlinearity (1 − u)−2 with a regularized one:

fδ(u) =

{

(1 − u)−2 if u ≤ 1 − δ ,

δ−2 if u ≥ 1 − δ,

and the map F (λ, u) with the corresponding one Fδ(λ, u). We replace X and Y with
H2(Ω) ∩ H1

0 (Ω) and L2(Ω), respectively. The map Fδ(λ, u) can be considered as a
map from R × X → Y with a gradient structure:

∂uJδ(λ, u)[ϕ] = 〈Fδ(λ, u), ϕ〉L2(Ω)

for every λ ∈ R and u, ϕ ∈ X , where Jδ : R × X → R is the functional given by

Jδ(λ, u) =
1

2

∫

Ω

|∇u|2 dx − λ

∫

Ω

f(x)Gδ(u) dx , Gδ(u) =

∫ u

0

fδ(s)ds.

Assumptions (G1)-(G2) in Section 2.2 of [1] do hold. We have that (λ(t), u(t)) ∈ S
for t close to tk and m(λ(t), u(t)) changes across tk. If λ(t) is injective, by Proposition
2.7 in [1] we have that (λ(tk), u(tk)) is a bifurcation point. Then we get the validity
of Conjecture 1 as claimed below.

Theorem 2.3. Assume 2 ≤ N ≤ 7 and f be as in (1). Then there exists
a continuous, piecewise analytic curve (λ(t), u(t))t≥0 in V, starting from (0, 0) and
so that ‖û(t)‖∞ → 1 as t → +∞, which has either infinitely many turning points,
i.e. points where (λ(t), u(t)) changes direction (the branch locally “bends back"), or
infinitely many bifurcation points.

Remark 2.1. In [7] the above analysis is performed in the radial setting to obtain
a curve (λ(t), u(t))t≥0, as given by Theorem 2.3, composed by radial solutions and so
that mr(λ(t), u(t)) → +∞ as t → +∞, mr(λ, u) being the radial Morse index of a
solution (λ, u). In this way, it can be shown that bifurcation points can’t occur and
then (λ(t), u(t))t≥0 exhibits infinitely many turning points. Moreover, they can also
deal with the case where N ≥ 8 and α > αN .

3. Uniqueness of solutions for small voltage in star-shaped domains.

We address the issue of uniqueness of solutions of the singular elliptic problem







−∆u = λ|x|α
(1−u)2 in Ω

0 < u < 1 in Ω
u = 0 on ∂Ω,

(4)

for λ > 0 small, where α ≥ 0 and Ω is a bounded domain in R
N , N ≥ 2. We shall

make crucial use of the following extension of Pohozaev’s identity due to Pucci and
Serrin [12].

Proposition 3.1. Let v be a solution of the boundary value problem

{

−∆v = f(x, v) in Ω
v = 0 on ∂Ω.
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Then for any a ∈ R and any h ∈ C2(Ω; RN )∩C1(Ω̄; RN ), the following identity holds

∫

Ω

[div(h)F (x, v) − avf(x, v) + 〈∇xF (x, v), h〉] dx

=

∫

Ω

[

(
1

2
div(h) − a)|∇v|2 − 〈Dh∇v,∇v〉

]

dx +
1

2

∫

∂Ω

|∇v|2〈h, ν〉dσ, (5)

where F (x, s) =
∫ s

0 f(x, t) dt.

An application of the method in [13] leads to the following result.

Theorem 3.1. Let Ω ⊂ R
N be a star-shaped domain with respect to 0. If N ≥ 3,

then for λ small, the stable solution uλ is the unique solution of equation (4).

Proof. Since uλ is the minimal solution of (4) for λ ∈ (0, λ∗), setting v = u − uλ

equation (4) rewrites equivalently as







−∆v = λ|x|αgλ(x, v) in Ω
0 ≤ v < 1 − uλ in Ω
v = 0 on ∂Ω,

(6)

where

gλ(x, s) =
1

(1 − uλ(x) − s)2
−

1

(1 − uλ(x))2
. (7)

It then suffices to prove that the solutions of (6) must be trivial for λ small enough.
First compute Gλ(x, s):

Gλ(x, s) =

∫ s

0

gλ(x, t) dt =
1

1 − uλ(x) − s
−

1

1 − uλ(x)
−

s

(1 − uλ(x))2
.

Since the validity of the relation

∇x

(

|x|αGλ(x, s)
)

= α|x|α−2xGλ(x, s) + |x|α∇xGλ(x, s),

for h(x) = x
N

and f(x, v) = |x|αgλ(x, v) we apply the Pohozaev identity (5) to a
solution v of (6) to get

λ

∫

Ω

|x|α
[

(1 +
α

N
)Gλ(x, v(x)) − av(x)gλ(x, v(x)) + 〈∇xGλ(x, v(x)),

x

N
〉
]

dx

=

∫

Ω

[

(
1

2
− a)|∇v|2 − 〈D(

x

N
)∇v,∇v〉

]

dx +
1

2N

∫

∂Ω

|∇v|2〈x, ν〉 dσ (8)

≥ (
1

2
− a −

1

N
)

∫

Ω

|∇v|2dx.

Since easy calculations show that

Gλ(x, s)

gλ(x, s)
=

1 − uλ(x) − s − (1−uλ(x)−s)2(1−uλ(x)+s)
(1−uλ(x))2

1 − (1−uλ(x)−s)2

(1−uλ(x))2
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and

∇xGλ(x, s)

gλ(x, s)
=

1 − (1−uλ(x)−s)2(1−uλ(x)+2s)
(1−uλ(x))3

1 − (1−uλ(x)−s)2

(1−uλ(x))2

∇uλ(x),

we obtain

∣

∣

∣

Gλ(x, s)

gλ(x, s)

∣

∣

∣
≤ C0|1−uλ(x)− s| and

∣

∣

∣

∇xGλ(x, s)

gλ(x, s)
−∇uλ

∣

∣

∣
≤ C0|1−uλ(x)− s|2|∇uλ|

(9)
for some C0 > 0, provided λ is away from λ∗. Since uλ → 0 in C1(Ω̄) as λ → 0+, for
a > 0 from (9) we deduce that for any (x, s) satisfying |1 − uλ(x) − s| ≤ δ

(1 +
α

N
)Gλ(x, s) − asgλ(x, s) + 〈∇xGλ(x, s),

x

N
〉 (10)

≤ gλ(x, s)
[

C0(1 +
α

N
)δ − a(1 − uλ(x) − δ) + 〈∇uλ,

x

N
〉 +

C0

N
δ2|∇uλ||x|

]

≤ 0,

provided δ and λ are sufficiently small (depending on a). Since N ≥ 3, we can pick
0 < a < 1

2 − 1
N

, and then by (8), (10) get that

λ

Z
{0≤v≤1−uλ−δ}

|x|α
�
(1 +

α

N
)Gλ(x, v(x)) − av(x)gλ(x, v(x)) + 〈∇xGλ(x, v(x)),

x

N
〉
�
dx

≥ (
1

2
− a −

1

N
)

Z
Ω

|∇v|2 dx ≥ Cs(
1

2
− a −

1

N
)

Z
Ω

v
2

dx (11)

for δ and λ sufficiently small, where Cs is the best constant in the Sobolev embedding
of H1

0 (Ω) into L2(Ω).

On the other hand, since Gλ(x, s), sgλ(x, s) and ∇xGλ(x, s) are quadratic with respect
to s as s → 0 (uniformly in λ away from λ∗), there exists a constant Cδ > 0 such that

(1 +
α

N
)Gλ(x, v(x)) − avgλ(x, v(x)) + 〈∇xGλ(x, v(x)),

x

N
〉 ≤ Cδv

2(x) (12)

for x ∈ {0 ≤ v ≤ 1−uλ − δ}, uniformly for λ away from λ∗. Combining (11) and (12)
we get that

Cs

(1

2
− a −

1

N

)

∫

{0≤v≤1−uλ−δ}
v2dx ≤ λCδ

∫

{0≤v≤1−uλ−δ}
|x|αv2dx.

Therefore, for λ sufficiently small we conclude that v ≡ 0 in {0 ≤ v ≤ 1 − uλ − δ}.
This implies that v ≡ 0 in Ω for sufficiently small λ, and we are done.

We now refine the above argument so as to cover other situations. To this aim, we
consider the – potentially empty – set

H(Ω) =
{

h ∈ C1(Ω̄, RN ) : div(h) ≡ 1 and 〈h, ν〉 ≥ 0 on ∂Ω
}

,

and the corresponding parameter

M(Ω) := inf
{

sup
x∈Ω

µ̄(h, x) : h ∈ H(Ω)
}

,
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where

µ̄(h, x) =
1

2
sup
|ξ|=1

〈(Dh(x) + Dh(x)T )ξ, ξ〉.

The following is an extension of Theorem 3.1.

Theorem 3.2. Let Ω be a bounded domain in R
N such that M(Ω) < 1

2 . Then,
for λ small the minimal solution uλ is the unique solution of problem (4), provided
either N ≥ 3 or α > 0.

Proof. As above, we shall prove that equation (6), with gλ as in (7), has only
trivial solutions for λ small. For a solution v of (6) the Pohozaev identity (5) with
h ∈ H(Ω) yields

λ

∫

Ω

|x|α
[

Gλ(x, v(x))(1 + α〈
x

|x|2
, h〉) − av(x)gλ(x, v(x)) + 〈∇xGλ(x, v(x)), h〉

]

dx

=

∫

Ω

[

(
1

2
− a)|∇v|2 −

1

2
〈(Dh + DhT )∇v,∇v〉

]

dx +
1

2

∫

∂Ω

|∇v|2〈h, ν〉 dσ (13)

≥

∫

Ω

(
1

2
− a − µ̄(h, x)

)

|∇v|2 dx.

Fix 0 < a < 1
2 − M(Ω) and choose h ∈ H(Ω) such that

1

2
− a − sup

x∈Ω
µ̄(h, x) > 0.

It follows from (9) that for any (x, s) satisfying |1 − uλ(x) − s| ≤ δ|x| there holds

Gλ(x, s)(1 + α〈
x

|x|2
, h〉) − avgλ(x, s) + 〈∇xGλ(x, s), h〉 (14)

≤ gλ(x, s)
[

C0δ|x| + αC0δ|h| − a(1 − uλ − δ|x|) + 〈∇uλ, h〉 + C0δ
2|x|2|∇uλ||h|

]

≤ 0

provided λ and δ are sufficiently small. It then follows from (13) and (15) that

λ

∫

{0≤v≤1−uλ−δ|x|}
|x|α

[

Gλ(x, v(x))(1 + α〈
x

|x|2
, h〉)

−av(x)gλ(x, v(x)) + 〈∇xGλ(x, v(x)), h〉
]

dx

≥ (
1

2
− a − sup

x∈Ω
µ̄(h, x))

∫

Ω

|∇v|2 dx. (15)

On the other hand, there exists a constant Cδ > 0 such that

Gλ(x, v(x))(1 + α〈
x

|x|2
, h(x)〉) − av(x)gλ(x, v(x))+ < ∇xGλ(x, v(x)), h(x) >

=
v2(x)

(1 − uλ(x) − v(x))(1 − uλ(x))2
(1 + α〈

x

|x|2
, h(x)〉) +

av2(x)[v(x) − 2 + 2uλ(x))]

(1 − uλ(x) − v(x))2(1 − uλ(x))2

+
v2(x)(3− 3uλ(x) − 2v(x))

(1 − uλ(x) − v(x))2(1 − uλ(x))3
< ∇uλ(x), h(x) >≤ Cδ

v2(x)

|x|2
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for x ∈ {0 ≤ v ≤ 1 − uλ − δ|x|}, uniformly for λ away from λ∗.
If now N ≥ 3, then Hardy’s inequality combined with (15) implies

(N − 2)2

4
(
1

2
−a−sup

x∈Ω
µ̄(h, x)

)

∫

{0≤v≤1−uλ−δ|x|}

v2

|x|2
dx ≤ λCδ

∫

{0≤v≤1−uλ−δ|x|}

v2

|x|2
dx.

On the other hand, when N = 2 the space H1
0 (Ω) embeds continously into Lp(Ω) for

every p > 1, and then, by Hölder inequality, for α > 0 we get that

∫

Ω

v2

|x|2−α
dx ≤

(
∫

Ω

|x|−(2−α) p

p−2 dx

)

p−2

p
(
∫

Ω

|v|p dx

)
2
p

≤ C−1
N,α

∫

Ω

|∇v|2 dx

provided (2 − α) p
p−2 < 2, which is true for p large depending on α (see [6] for some

very general Hardy inequalities). It combines with (15) to yield

CN,α(
1

2
−a−sup

x∈Ω
µ̄(h, x))

∫

{0≤v≤1−uλ−δ|x|}

v2

|x|2−α
dx ≤ λCδ

∫

{0≤v≤1−uλ−δ|x|}

v2

|x|2−α
dx .

In both cases, we can conclude that for λ sufficiently small v ≡ 0 for x ∈ {0 ≤ v ≤
1 − uλ − δ|x|}, for some δ > 0 small. Since we can assume δ and λ sufficiently small
to have

1 − uλ − δ|x| ≥
1

2
in

{

x ∈ Ω : |x| ≥
1

2
dist(0, ∂Ω)

}

,

we then have

v ≡ 0 in
{

x ∈ Ω : v(x) ≤
1

2

}

∩
{

x ∈ Ω : |x| ≥
1

2
dist(0, ∂Ω)

}

.

Since v = 0 on ∂Ω and the domain {x ∈ Ω : |x| ≥ 1
2dist(0, ∂Ω)} is connected, the

continuity of v gives that

v ≡ 0 in
{

x ∈ Ω : |x| ≥
1

2
dist(0, ∂Ω)

}

.

Therefore, the maximum principle for elliptic equations implies v ≡ 0 in Ω, which
completes the proof of Theorem 3.2.

Remark 3.1. In [13] examples of dumbell shaped domains Ω ⊂ R
N which satisfy

condition M(Ω) < 1
2 are given for N ≥ 3. When N ≥ 4, there even exist topologically

nontrivial domains with this property. Let us stress that in both cases Ω is not starlike,
which means that the assumption M(Ω) < 1

2 on a domain Ω is more general than
being shar-shaped.

The remaining case N = 2 and α = 0, is a bit more delicate. We have the following
result.

Theorem 3.3. If Ω is either a strictly convex or a symmetric domain in R
2,

then (S)λ,1 has the unique solution uλ for small λ.

Proof. The crucial point here is the following inequality: for every solution v of
(6) there holds

∫

∂Ω

|∇v|2 dσ ≥ l(∂Ω)−1

(
∫

Ω

|∆v| dx

)2

.
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Indeed, we have that

∫

∂Ω

|∇v|2 dσ ≥ l(∂Ω)−1

(
∫

∂Ω

|∇v| dσ

)2

= l(∂Ω)−1

(
∫

∂Ω

∂νv dσ

)2

= l(∂Ω)−1

(
∫

Ω

|∆v| dx

)2

,

where l(∂Ω) is the length of ∂Ω. Note that −∆v = λgλ(x, v) ≥ 0 for every solution
uλ + v of (S)λ,1, in view of the minimality of uλ.

By Lemma 4 in [13] for λ small there exists xλ ∈ Ω so that

〈∇uλ(x), x − xλ〉 ≤ 0 ∀ x ∈ Ω. (16)

In particular, for λ small xλ lies in a compact subset of Ω and, when Ω is symmetric,
coincides exactly with the center of symmetries. In both situations, then we have that
there exists c0 > 0 so that

〈x − xλ, ν(x)〉 ≥ c0 ∀ x ∈ ∂Ω.

We use now the Pohozaev identity (5) with a = 0 and h(x) = x−xλ

2 . For every solution
v of (6) it yields

λ

∫

Ω

[

Gλ(x, v(x)) + 〈∇xGλ(x, v(x)),
x − xλ

2
〉
]

dx

=
1

4

∫

∂Ω

|∇v|2〈x − xλ, ν〉 dσ ≥
c0

4

(
∫

Ω

|∆v| dx

)2

. (17)

Since

∇xGλ(x, s) = (1 − uλ(x) − s)−2

[

1 −
(1 − uλ(x) − s)2(1 − uλ(x) + 2s)

(1 − uλ(x))3

]

∇uλ(x),

by (16) we easily see that

〈∇xGλ(x, s), x − xλ〉 ≤ 0

for λ and δ small, provided (x, s) satisfies |1 − uλ(x) − s| ≤ δ. Since Gλ(x, s),
∇xGλ(x, s) are quadratic with respect to s as s → 0 (uniformly in λ small), there
exists a constant Cδ > 0 such that

Gλ(x, v(x)) ≤ Cδv
2(x) , 〈∇xGλ(x, v(x)),

x − xλ

2
〉 ≤ Cδv

2(x)

for x ∈ {0 ≤ v ≤ 1 − uλ − δ}, uniformly for λ small.
Since on two-dimensional domains

(
∫

Ω

|v|p dx

)
1
p

≤ Cp

∫

Ω

|∆v| dx

for every p ≥ 1 and v ∈ W 2,1(Ω) so that v = 0 on ∂Ω, we get that

λ

∫

Ω

〈∇xGλ(x, v(x)),
x − xλ

2
〉 dx ≤ λCδ

∫

Ω

v2 dx ≤ λCδC
2
2

(
∫

Ω

|∆v| dx

)2

. (18)
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As far as the term with Gλ(x, v(x)), fix b ∈ (0, 1) and split Ω as the disjoint union of
Ω1 = {v ≤ b} and Ω2 = {v > b}. On Ω1 we have that

λ

∫

Ω1

Gλ(x, v(x)) dx ≤ λCδ

∫

Ω

v2 dx ≤ λCδC
2
2

(
∫

Ω

|∆v| dx

)2

provided λ and δ are small to satisfy b ≤ 1 − uλ − δ in Ω1.
Since for λ small

Gλ(x, s)2

gλ(x, s)
≤ C ∀ b ≤ s ≤ 1,

we have that

λ

∫

Ω2

Gλ(x, v(x)) dx ≤ λD1

∫

Ω

|v(x)|
3
2 g

1
2

λ (x, v(x)) dx

≤ λD2

(
∫

Ω

|v|3 dx

)
1
2
(
∫

Ω

gλ(x, v(x)) dx

)
1
2

≤ λ
1
2 D3

(
∫

Ω

|∆v| dx

)2

for some positive constants D1, D2 and D3. So we get that

λ

∫

Ω

Gλ(x, v(x)) dx ≤
(

λCδC
2
2 + λ

1
2 D3

)

(
∫

Ω

|∆v| dx

)2

. (19)

Inserting (18)-(19) into (17) finally we get that

(

2λCδC
2
2 + λ

1
2 D3 −

c0

4

)

(
∫

Ω

|∆v| dx

)2

≥ 0,

and then v ≡ 0 for λ small.
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