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UNIQUENESS OF SOLUTIONS FOR AN ELLIPTIC EQUATION
MODELING MEMS*

PIERPAOLO ESPOSITO' AND NASSIF GHOUSSOUB#

Abstract. We show among other things, that for small voltage, the stable solution of the basic
nonlinear eigenvalue problem modelling a simple electrostatic MEMS is actually the unique solution,
provided the domain is star-shaped and the dimension is larger or equal than 3. In two dimensions,
we need the domain to be either strictly convex or symmetric. The case of a power permittivity
profile is also considered. Our results, which use an approach developed by Schaaf [13], extend and
simplify recent results by Guo and Wei [7], [8].
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1. Introduction. We study the effect of the parameter A, the dimension N, the
profile f and the geometry of the domain Q C R, on the question of uniqueness of the
solutions to the following elliptic boundary value problem with a singular nonlinearity:

—Au= 21 0
O<u<l in Q (S)af
u = on 0f).

This equation has been proposed as a model for a simple electrostatic Micro-
Electromechanical System (MEMS) device consisting of a thin dielectric elastic mem-
brane with boundary supported at 0 below a rigid ground plate located at height
z =1. See [10, 11]. A voltage — directly proportional to the parameter A — is applied,
and the membrane deflects towards the ground plate and a snap-through may occur
when it exceeds a certain critical value A\*, the pull-in voltage.

In [9] a fine ODE analysis of the radially symmetric case with a constant profile
f =1 on a ball B, yields the following bifurcation diagram that describes the L°°-
norm of the solutions « — which in this case necessarily coincides with «(0) — in terms
of the corresponding voltage A.

The question whether the diagram above describes realistically the set of all so-
lutions in more general domains and for non-constant profiles, and whether rigorous
mathematical proofs can be given for such a description, has been the subject of many
recent investigations. See (3, 4, 5, 7, 8].

We summarize in the following two theorems some of the established results con-
cerning Figure 1. First, for every solution u of (S)x,r, we consider the linearized
operator
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f(x) = 1 with different ranges of N

u(o)

z
v
]
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T
N A, AT A" = (6N—8)/9

Fic. 1. Plots of u(0) versus X for profile f(x) = 1 defined in the unit ball By(0) C RV with
different ranges of N. In the case N > 8, we have \* = 2(3N —4)/9.

and its eigenvalues {ug a(uw);k = 1,2,...} (with the convention that eigenvalues are
repeated according to their multiplicities). The Morse index m(u, \) of a solution w is
the largest k for which g »(u) is negative. A solution u of (5), ¢ is said to be stable
(resp., semi-stable) if py x(u) > 0 (resp., p1 x(u) > 0).

A description of the first stable branch and of the higher unstable ones is given in the
following.

THEOREM A [3, 4, 5]. Suppose f is a smooth nonnegative function in 2. Then,
there exists a finite A* > 0 such that
1. If 0 < X < N*, there exists a (unigque) minimal solution uy of (S)x ; such that
i (ux) > 0. It is also unique in the class of all semi-stable solutions.
2. If X > \*, there is no solution for (S)x .
8. If1 < N <7, thenu* = AhTI)l\l* uy 18 a solution of (S)x=  such that pq x(u*) =

0, and u* - referred to as the extremal solution of problem (S)xj — is the
unique solution.

4. If 1 < N <7, there exists N with 0 < X5 < A\* such that for any X € (A5, \*),
problem (S)x,r has a second solution Uy with p1 x(Ux) < 0 and pa x(Ux) > 0.
Moreover, at A\ = X5 there exists a second solution U* := }1&1 Uy with

2

p1ag(U") <0 and  pgxy (U*) = 0.

5. Given a more specific potential [ in the form

k
fl@) = (H @ —mm’) M), infh >0, 1)
i=1

with points p; € Q, a; > 0, and given uy, a solution of (S)x,, ¢, we have the
equivalence

lunlloo =1 <= m(up, A\n) — +00

as n — 400.
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It was also shown in [4] that the permittivity profile f can dramatically change the
bifurcation diagram, and totally alter the critical dimensions for compactness. Indeed,
the following theorem summarizes the result related to the effect of power law profiles.

THEOREM B [4]. Assume Q) is the unit ball B and f in the form

f(z) = |z|“h(|z|) , iréfh > 0.

Then we have

1. If N > 8 and a > ay = W, the extremal solution u* is again a

classical solution of (S)a ¢ such that pi x=(u*) =0.
2. If N >8 and a > ay := %“\}2‘6, the conclusion of Theorem A-(4) still
holds true.

s _ 3N—14-4V6
3. On the other hand, if either2 < N <T7TorN >8,0<a<ay = Thave

for f(x) = |x|* necessarily we have that

24«

wt(z) = 1 — [o| 5 )\*:(24‘04)(31\7—1-04—4)'

9

The bifurcation diagram suggests the following conjectures:
1. For 2 < N < 7 there exists a curve (A(t), u(t)):>0 in the solution set

V= {()\,u) € (0,+00) x C*(Q) : u is a solution of (S),\)f}, (2)

starting from (0,0) at ¢ = 0 and going to “infinity": ||u(t)||cc — 1 ast — +oo,
with infinitely many bifurcation or turning points in V.

2. In dimension N > 2 and for any profile f, there exists a unique solution for
small voltages .

3. For 2 < N < 7 there exist exactly two solutions for A in a small left neigh-
borhhod of A*.

Conjectures 1 and 2 have been established for power law profiles in the radially sym-
metric case [7], and for the case where f = 1 and Q is a suitably symmetric domain
in R? [8]. Indeed, in these cases Guo and Wei first show that

A =inf{A > 0: (S)x,s has a non-minimal solution} > 0,

and then apply the fine bifurcation theory developed by Buffoni, Dancer and Toland
[1] to verify the validity of Conjecture 1 in that case. The fact that A, > 0 then allows
them to carry out some limiting argument and to prove that the Morse index of u(t)
blows up as t — 400, which is crucial for showing that infinitely many bifurcation or
turning points occur along the curve. Thanks to Theorem A-(5), we shall be able in
Section 2 to show the validity of Conjecture 1 in general domains €2, by circumventing
the need to prove that A, > 0. On the other hand, we shall prove in Section 3 that
indeed A, > 0 for a large class of domains, and therefore we have uniqueness for small
voltage. Our proofs simplify considerably those of Guo and Wei [7, 8|, and extend
them to general star-shaped domains  and power law profiles f(x) = |z|*, a > 0.

Conjecture 3 has been shown in [3] in the class of solutions u with m(u, \) < k, for
every given k € N, and is still open in general.
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2. A quenching branch of solutions. The first global result on the set of
solutions in general domains was proved by the first author in [3]. By using a degree
argument (repeated below), he showed the following result.

THEOREM 2.1. Assume 2 < N <7 and f be as in (1). There exist a sequence
{An}nen and associated solution u, of (S)x, s so that

M (U, A\p) — +00 as n — +oo.

We now introduce some notation from Section 2.1 of [1]. Set
X=Y={uecCQ): u=00n0Q}, U= (0,+00)x {ucX:|ulo <1},

and define the real analytic function F : R x U — Y as F(\u) = u — AK(u),
where K (u) = —A~" (f(2)(1 — u)~?) is a compact operator on every closed subset in
{u€ X :||ul|s < 1} and A™! is the Laplacian resolvent with homogeneous Dirichlet
boundary condition. The solution set V given in (2) rewrites as

V={(\u)eU: F(\u) =0},
and the projection of V onto X is defined as
IxV ={ue X : I Xsothat (\,u) € V}.
Proof. In view of Theorem A-(5), we have the equivalence

sup maxu =1 = sup m(u, \) = +oo.
(Auwey 9 (Au)ey

Arguing by contradiction, we can assume that

sup maxu < 1 — 26, sup m(u, \) < +00 (3)
Auwey @ (Au)ey

for some & € (0,3). By Theorem 1.3 in [3] one can find A1, Az € (0, 1), A1 < Az, so
that (S)x, 5 possesses
e for A;, only the (non degenerate) minimal solution wy, which satisfies
m(uAl,)\l) = 0;
e for )Xo, only the two (non degenerate) solutions wuy,, U, satisfying
m(ux,, A2) = 0 and m(Ux,, A2) = 1, respectively.
Consider a §-neighborhood Vs of IIx V:

Vs :={u e X : distx(u,IxV) < d}.
Note that (3) gives that V is contained in a closed subset of {u € X : |Jullc < 1}:
Vs C{ue X |ulloo <1-96}.

We can now define the Leray-Schauder degree dy of F'(),-) on Vs with respect to zero,
since by definition of IIxV (the set of all solutions) Vs does not contain any solution
of (S)x, s for any value of X. Since d) is well defined for any A € [0, A*], by homotopy
dx, = dyx,. To get a contradiction, let us now compute dy, and dy,. Since the only
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zero of F(\1,-) in Vs is uy, with Morse index zero, we have dy, = 1. Since F()2, ")
has in Vs exactly two zeroes uy, and Uy, with Morse index zero and one, respectively,
we have dy, =1 —1 = 0. This contradicts dx, = dy,, and the proof is complete. O

We can now combine Theorem A-(5) with the fine bifurcation theory in [1] to establish
a more precise multiplicity result. See also [2].

Observe that Ag := {(A,uy) : A € (0, A*)} is a maximal arc-connected subset of
S:={(\u)eU: F(\u)=0and 9,F(\u) : X =Y is invertible}

with A_o C S. Assume that the extremal solution u* is a classical solution so to have
u* € (SNU)\S. Assumption (C1) of Section 2.1 in [1] does hold in our case. As far
as condition (C2):

{(\u) €U : F(\u) =0} isopen in {(\,u) ER x X : F(\,u) = 0},

let us stress that it is a weaker statement than requiring U to be an open subset in
R x X. In our case, the map F(A,u) is defined only in U (and not in the whole X),
and then condition (C2) does not make sense. However, we can replace it with the
new condition (C2):

U is an open set in R x X

which does hold in our context. Since (C2) is used only in Theorem 2.3-(iii) in [1] to
show that S is open in S, our new condtion (C2) does not cause any trouble in the
arguments of [1].

Since 9, F(A, u) is a Fredholm operator of index 0, by a Lyapunov-Schmidt reduction
we have that assumptions (C3)-(C5) do hold in our case (let us stress that these
conditions are local and U is an open set in R x X).

Setting A = 0 and defining the map v : U — [0, +00) as v(\, u) = m, conditions
(C6)-(C8) do hold in view of the property A € [0, \*]. Theorem 2.4 in [1] then applies
and gives the following.

THEOREM 2.2. Assume u* a classical solution of (S)x«s. Then there exists an
analytic curve (A(t),@(t))i>0 in V starting from (0,0) and so that ||a(t)||sc — 1 as
t — +00. Moreover, G(t) is a non-degenerate solution of (S)S\(t) ¢ except at isolated
points.

By the Implicit Function Theorem, the curve (A(t),4(t)) can only have isolated
intersections. If we now use the usual trick of finding a minimal continuum in
{(A(t),a(t)) : t > 0} joining (0,0) to “infinity", we obtain a continuous curve
(A(t),u(t)) in ¥V with no self-intersections which is only piecewise analytic. Clearly,
OuF (AN u) : X — Y is still invertible along the curve except at isolated points.

Let now 2 < N < 7 and f be as in (1). By the equivalence in Theorem A-(5) we
get that m(A(t), u(t)) — 400 as t — 400, and then puy \ (u(t)) < 0 for ¢ large, for
every k > 1. Since puy, z(0)(u(0)) = pr,0(0) > 0 and u(t) is a non-degenerate solution
of (S)xw),r except at isolated points, we find ¢, > 0 so that ju; x¢)(u(t)) changes from
positive to negative sign across tj. Since pu1 a¢) (u(t)) > pir, ) (u(t)), we can choose
tr to be non-increasing in k and to have t;, — 400 as k — +oc.

To study secondary bifurcations, we will use the gradient structure in the problem.
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Setting (Ak,ur) := (M(tr),u(tr)), we have that (g, uxr) ¢ S. Choose § > 0 small so
that ||ug|le <1 — 6, and replace the nonlinearity (1 — u)~2 with a regularized one:

(1—u)"2 fu<l-46,
f(;(u):{

52 ifu>1-4,

and the map F'(\, u) with the corresponding one Fs(\,u). We replace X and Y with
H2(Q) N HY(Q) and L2(R), respectively. The map Fj5(\,u) can be considered as a
map from R x X — Y with a gradient structure:

FuTs (A w)lg] = (F5(Au), ) 120

for every A € R and u, p € X, where Js5 : R x X — R is the functional given by

Ts(Au) = %/Q|Vu|2 dx — )\/Q f(2)Gs(u) dx Gs(u) = /Ou fs(s)ds.

Assumptions (G1)-(G2) in Section 2.2 of [1] do hold. We have that (A(t),u(t)) € S
for ¢ close to t;, and m(A(t), u(t)) changes across ti. If A(t) is injective, by Proposition
2.7 in [1] we have that (A(¢;),u(tx)) is a bifurcation point. Then we get the validity
of Conjecture 1 as claimed below.

THEOREM 2.3. Assume 2 < N < 7 and f be as in (1). Then there exists
a continuous, piecewise analytic curve (A(t),u(t))i>0 in V, starting from (0,0) and
so that ||4(t)]lec — 1 as t — +o00, which has either infinitely many turning points,
i.e. points where (A(t),u(t)) changes direction (the branch locally “bends back”), or
infinitely many bifurcation points.

REMARK 2.1. In [7] the above analysis is performed in the radial setting to obtain
a curve (A(f),u(t))i>0, as given by Theorem 2.3, composed by radial solutions and so
that m,(A\(t),u(t)) — 400 as t — 400, m,(A,u) being the radial Morse index of a
solution (A, u). In this way, it can be shown that bifurcation points can’t occur and
then (A(¢), u(t))¢>0 exhibits infinitely many turning points. Moreover, they can also
deal with the case where N > 8 and a > ay.

3. Uniqueness of solutions for small voltage in star-shaped domains.
We address the issue of uniqueness of solutions of the singular elliptic problem

—Au = (iﬁlsz in Q
O<u<l in Q (4)

u=20 on 01},

for A > 0 small, where a > 0 and € is a bounded domain in RY, N > 2. We shall
make crucial use of the following extension of Pohozaev’s identity due to Pucci and
Serrin [12].

PROPOSITION 3.1. Let v be a solution of the boundary value problem

—Av = f(x,v) in Q
v=20 on 0N).
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Then for any a € R and any h € C2(;RN)NCHQRY), the following identity holds
/ [div(h)F(z,v) — avf(z,v) + (Vo F(z,v),h)] dx
Q

= liV —a)|Vu|* - v, Vv :vl v|?(h,v)do
= [ |G = aIwep - (onve, v ao s g [ 9opinde

where F(xz,s) = [ f(z,t)dt.
An application of the method in [13] leads to the following result.

THEOREM 3.1. Let Q C RY be a star-shaped domain with respect to 0. If N > 3,
then for X small, the stable solution uy is the unique solution of equation (/).

Proof. Since wu) is the minimal solution of (4) for A € (0, A*), setting v = u — )
equation (4) rewrites equivalently as

—Av = Nz|%gx(z,v) in Q

0<v<1—uy in (6)
v=20 on 02,
where
1 1
N e R A (e o ©

It then suffices to prove that the solutions of (6) must be trivial for A small enough.
First compute G(z, s):

s 1 1 S
G,\(%S) :/0 g,\(:v,t) dt = I—UA($) —s 1—UA(33) - (1 _UA(‘T))Q'

Since the validity of the relation

V. (Ial"Gae. ) = alal"2aGx(z,5) + [11°V4Ga(z 5).

for h(z) = & and f(z,v) = |z|*ga(z,v) we apply the Pohozaev identity (5) to a

a
solution v of (6) to get

)\/Q || [(1 + %)G)\(I, v(x)) — av(x)ga(z,v(z)) + (V.Gr(z,v(x)), %ﬂ dx
= [ [ = a)vof = (D(5) Vo Vo)ldo + 5 [ 9ol o) do (s)

Since easy calculations show that

—ux(z)—8)2(1—ux(z)+s
Gi(z, s) _ 1—uy(z) — s — d=ual ()1—;((;))2“ )+5)
NER) 1 — O-us(@)—5)?

(1—ux(z))?
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and
1—ux(z)—s)2(1—ux(x)+25)
VoGalz,s) 1- e (1*31;(1))?( :
on(z,s) 1— (—mae)=s? Vet
’ T I-ua@)?

we obtain

G VIG I

’ AL 2) < Co[l —ux(z)—s| and VaGi(@,5) —Vauy| < Coll —ux (@) = s*[Vuy|
ga(z,5) g (x, )

(9)
for some Cy > 0, provided A is away from A*. Since uy — 0 in C1(Q2) as A\ — 07, for
a > 0 from (9) we deduce that for any (z, s) satisfying |1 — ux(z) — s| < ¢

(1+ %)GA(Q;,S) — asga(z, s) + (Vo Ga(z, ), %> (10)
< a9 [Col1 + )3 a1 = u(a) =8) + (Var, 5+ Vs ol <0,

provided ¢ and A are sufficiently small (depending on a). Since N > 3, we can pick
0 <a<i— =, and then by (8), (10) get that

)\'/{Oﬁvﬁlfukfé} 217 [(1+ ), 0(@)) = av(@)ga(w, v(2)) +(VeGi (@, v(x)), )] de
> (om0 Wl dez oG —am 1) [ (i

for § and A sufficiently small, where C is the best constant in the Sobolev embedding
of H}(Q) into L?(Q).

On the other hand, since Gx(z, s), sgx(x, s) and VG (z, s) are quadratic with respect
to s as s — 0 (uniformly in A away from A*), there exists a constant Cs > 0 such that

(1+ %)G,\(:C, v(x)) — avga(x,v(x)) + (V.Ga(x,v(x)), %> < C5v*(z) (12)

for x € {0 < v < 1—wuy—0d}, uniformly for A away from A*. Combining (11) and (12)
we get that

1 1
C's(— —a— —) / v2dr < )\Cg/ |:17|°‘v2d:c.
2 N {0<v<1—u)—46} {0<v<1—wux—46}

Therefore, for A sufficiently small we conclude that v = 0 in {0 < v < 1 —uy — §}.
This implies that v = 0 in Q for sufficiently small A, and we are done. O

We now refine the above argument so as to cover other situations. To this aim, we
consider the — potentially empty — set

H(Q) = {h € CY(Q,RY) : div(h) = 1 and (h,») > 0 on aﬂ},
and the corresponding parameter

M(Q) := inf { sggﬁ(b,x} che H(Q)},
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where

) = 3 sup ((DA(z) + Dh())6,).

The following is an extension of Theorem 3.1.

THEOREM 3.2. Let Q be a bounded domain in RN such that M(Q) < 5. Then,
for X small the minimal solution uy is the unique solution of problem (4), provided
either N > 3 or a > 0.

Proof. As above, we shall prove that equation (6), with gx as in (7), has only
trivial solutions for A small. For a solution v of (6) the Pohozaev identity (5) with
h € H(Q) yields

3 [ 12 [Gaa @) (1 + 0l 1) = @)oo 0(a) + (VoG o). )] da

—l—avz—l Tuvxl v|*(h,v) do
= [ [G = aIvel = 5(Dh+ DAT)Ve. Vo) ds+ 5 [ [VoR(h)d (13)

> /Q(% —a— fi(h,2))|Vo|® dz.

Fix 0 < a < 3 — M(Q) and choose h € H(2) such that

1
— —a —sup fi(h,x) > 0.
2 zeQ

It follows from (9) that for any (z, s) satisfying |1 — ux(z) — s| < §|x| there holds

i
Ga(z,s)(1 +04<W,

< g,\(x,s)[Co(5|x| + aCodlh| — a(l — uy — 6|z|) + (Vur, h) + 0052|:v|2|Vu,\||hH <0

h)) — avgx(z, s) + (V.Ga(x, s), h) (14)

provided A and § are sufficiently small. It then follows from (13) and (15) that

A /{ RN G v@) 1+l )

—av(z)ga(z,v(x)) + (ViGa(z,v(x)), h)| do
1

(5 —a — sup fi(h, a:))/ |Vv|? da. (15)
zeQ Q

Y

On the other hand, there exists a constant Cs > 0 such that

T

G (a1 + a3 () — avl@)g (o, 0D+ < TGl () ) >
_ (@) N (@) [o(z) — 2 + 2us (x))]
T w@ o) wm@?E e " T @ v@ R - un @)
02 (2)(3 = 3ux(z) — 2v(x)) v (z)

< Vua(z),h(z) >< Cs EE
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for v € {0 < v <1—wuy— d|z|}, uniformly for A away from A\*.
If now N > 3, then Hardy’s inequality combined with (15) implies

N —2 2 1 2 2
u(——a—sup f(h, x)) / —=dx < )\05/ v—2d:v.
4 2 e {0<v<1—uy—46|z|} |‘T| {0<v<1—ux—46|z|} |£L'|

On the other hand, when N = 2 the space H}(Q2) embeds continously into LP(f2) for
every p > 1, and then, by Hoélder inequality, for o > 0 we get that

[z () () <cs e
Q Q

provided (2 — a) 5 < 2, which is true for p large depending on « (see [6] for some
very general Hardy mequahtles). It combines with (15) to yield

2 ,UQ

1
CN,Q(——CL—SUP,EL(h,I))/ —dx < AO(S/ —_d;p
2 zeQ {0<v<1—uy—6|z|} |$|2 * {0<v<1—ux—5|z|} |$|2 a

In both cases, we can conclude that for A sufficiently small v = 0 for z € {0 < v <
1 —uy — d|z|}, for some § > 0 small. Since we can assume § and A sufficiently small
to have

1
1—wuy—dlz| > in {x eQ: |z| > §dist(0,3ﬂ)},

N =

we then have
v=0 in {z€Q:v()< %} N{zeqQ: |z|> %dist(o,aﬂ)}.

Since v = 0 on 99 and the domain {z € Q : |z > 1dist(0,0)} is connected, the
continuity of v gives that

1
v=0 in {zeQ: |z]> gdist(O,aQ)}.
Therefore, the maximum principle for elliptic equations implies v = 0 in €2, which

completes the proof of Theorem 3.2. 0O

REMARK 3.1. In [13] examples of dumbell shaped domains € R™ which satisfy
condition M (Q) < % are given for N > 3. When N > 4, there even exist topologically
nontrivial domains with this property. Let us stress that in both cases 2 is not starlike,
which means that the assumption M(Q) < % on a domain 2 is more general than
being shar-shaped.

The remaining case N = 2 and a = 0, is a bit more delicate. We have the following
result.

THEOREM 3.3. If Q is either a strictly convex or a symmetric domain in R?,
then (S)x1 has the unique solution uy for small .

Proof. The crucial point here is the following inequality: for every solution v of

(6) there holds
/ |Vo|? do > 1(0Q)~ (/ |Av|d:c)



UNIQUENESS FOR AN ELLIPTIC EQUATION MODELING MEMS 351

Indeed, we have that

/m |Vo|? do > 1(09)* (/BQ |Vl da>2 =1(09)~* ( " v da>
=1(00)~* ( Q|Av| d:v>2,

where [(0) is the length of 9Q. Note that —Av = Agx(x,v) > 0 for every solution
ux + v of (S)a,1, in view of the minimality of wuy.

2

By Lemma 4 in [13] for A small there exists xx € € so that

(Vup(z),z —xx) <0 Vel (16)

In particular, for A small x lies in a compact subset of 2 and, when (2 is symmetric,
coincides exactly with the center of symmetries. In both situations, then we have that
there exists ¢y > 0 so that

(x—zx,v(z)) > co Ve o

We use now the Pohozaev identity (5) with a = 0 and h(x) = 5. For every solution
v of (6) it yields

T — )

)\/Q [Ga(z,v(z)) + (VoGa(z, v(z)), Tﬂ dx

2
= 1/ Vo2 @ — 2y, ) do > 2 (/ |Av|d:v> : (17)
4 Joq 4 \ Jq

Since

(1 —ux(x) — 8)%(1 — ur(z) + 25)
(1 —ux(z))?

V.Ga(o,8) = (1= r(a) )2 1= Vit

by (16) we easily see that
(VzGr(z,8),x —x2) <0

for A and 6 small, provided (z,s) satisfies |1 — ux(z) — s| < 4. Since Gi(z,s),
V.Ga(z, s) are quadratic with respect to s as s — 0 (uniformly in A small), there
exists a constant Cs > 0 such that

T — )

Gi(z,v(z)) < Csv* () , (VaGa(z,v(x)), ) < Csv?(2)

for € {0 < v <1—wuy— 4}, uniformly for A small.
Since on two-dimensional domains

(/ |v[? dgc) ’ < Cp/ |Av| dx
Q Q

for every p > 1 and v € W21(Q) so that v = 0 on 99, we get that

T — )

)\/Q<V1G>\(x,v(:1:)), ) dx < /\O(;/ v? dx < \C5C3 (/Q |Av| d:c)Q. (18)

Q
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As far as the term with G (z,v(z)), fix b € (0,1) and split © as the disjoint union of
Oy = {v <b} and Q2 = {v > b}. On 2 we have that

2
)\/ Ga(z,v(z)) dx < AC(;/ v? dx < \C5C% </ |Av] dz)
Q1 Q Q

provided A and § are small to satisfy b <1 —uy — 4 in €.
Since for A small

we have that

A/ G (@, 0(z)) dz < ADy [ |u(@)|2 g3 (z,v(x)) da
Qo Q

< ADg < v d:c) </ gx(z,v(x)) d:c)
Q Q
) 2
< A2Dj3 </ |Av| d:c)
Q

for some positive constants Dy, Do and D3. So we get that

A/QGX(:C,U@)) dr < (AC5C3 + X1 Dy) (/Q|Av|d:c)2. (19)

Inserting (18)-(19) into (17) finally we get that

2
(2>\05022 FAED, - %0) </ | Av| dz) >0,
Q

and then v =0 for A small. O
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