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ASYMPTOTICS FOR MULTIVARIATE LINEAR PROCESS WITH

NEGATIVELY ASSOCIATED RANDOM VECTORS∗

HYUN-CHULL KIM† , MI-HWA KO‡ , AND TAE-SUNG KIM‡

Abstract. Let Aj be an m × m matrix such that
P∞

j=0 ‖Aj‖ < ∞ and
P∞

j=0 Aj 6= Om×m

where for any m × m, m ≥ 1, matrix A = (aij), ‖A‖ =
Pm

i=1

Pm
j=1 |aij | and Om×m denotes the

m × m zero matrix. For an m-dimensional linear process of the form Xt =
P∞

j=0 AjZt−j , where

{Zt} is a sequence of stationary m-dimensional negatively associated random vectors with EZt = O

and E||Zt||2 < ∞, we prove the central limit theorems.
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1. Introduction. Define a linear process by

Xt =

∞
∑

j=0

ajǫt−j , t = 1, 2, ·, (1)

where {ǫt} is a centered sequence of random variables and {aj} is a sequence of real
numbers. In time-series analysis, this process is of great importance. Many important
time-series models,such as the casual ARMA process (Brockwell and Davis (1990)),
have the type (1) with

∑∞
j=1 |aj| < ∞.

Kim and Baek (2001) established a central limit theorem for a linear process
generated by linearly positive quadrant dependent random variables and Kim, Ko
and Park (2004) also derived almost sure convergence for this linear process.

Let Au be an m × m matrix such that
∑∞

u=0 ‖Au‖ < ∞ and
∑∞

u=0 Au 6= Om×m,
where for any m × m, m ≥ 1, matrix A = (aij), ‖A‖ :=

∑m

i=1

∑m

j=1 |aij | and Om×m

denotes the m × m zero matrix. Let Xt, t = 0,±1, · · · , be an m-dimensional linear
process of the form

Xt =

∞
∑

j=0

AjZt−j (2)

defined on a probability space (Ω, A, P ), where {Zt, t = 0,±1, · · · } is a sequence of
strictly stationary m-dimensional random vectors with mean O : m × 1 and positive
definite covariance matrix Γ : m × m. The class of linear processes defined in (2)
contains stationary multivariate autoregressive moving average processes (MARMA)
that satisfy certain condition (See Brockwell and Davis (1990)).

Notions of negative dependence for collections of random variables have been
much studied in recent years. The most prevalent negatively dependent notion is that
of negative association. A finite collection {Yi, 1 ≤ i ≤ m} of random variables is
said to be negatively associated (NA) if for any disjoint subsets A, B of {1, 2, · · · , m}
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and for all coordinatewise nondecreasing functions f : R
A → R, g : R

B → R

Cov(f(Yi : i ∈ A), g(Yj : j ∈ B)) ≤ 0, where the covariance is defined. An infinite
collection of random variables is negatively associated if every finite subcollection is
negatively associated. This negatively dependent notion was first defined by Joag-
Dev and Proschan (1983). Negatively associated sequences are widely encountered
in multivariate statistical analysis and reliability theory, and the notions of negative
association have more attention recently. We refer to Joag-Dev and Proschan (1983)
for fundamental properties of negatively associated sequences, Newman (1984), Birkel
(1988) and Zhang (2000) for the central limit theorem, Matula (1992) for the three
series theorem, Shao (2000) for the Rosenthal-type maximal inequality and the Kol-
mogorov exponential inequality.

In section 2 we extend this notion of negative association to the random vectors
and derive a central limit theorem for a strictly stationary sequence of negative as-
sociated random vectors. We also prove the central limit theorems for a stationary
multivariate linear process of the form (2) generated by negatively associated random
vectors in section 3.

2. Preliminaries.

Definition 2.1. A finite sequence {Zt, 1 ≤ t ≤ n} of m-dimensional random
vectors is said to be negatively associated if for any disjoint subsets A,B of {1, · · · , n}
and for all coordinatewise nondecreasing functions f and g we have

Cov(f(Zi : i ∈ A), g(Zj : j ∈ B)) ≤ 0,

whenever this covariance is defined. An infinite collection of m-dimensional random
vectors is negatively associated if every finite subcollection is negatively associated.

Lemma 2.2. Let {Y1, · · · , Yn} be a strictly stationary sequence of negatively
associated random variables with EY1 = 0, EY 2

1 < ∞. Then

E( max
1≤k≤n

|Y1 + · · · + Yk|2) ≤ CnEY 2
1

where C is a positive constant.

Proof. See the proof of Lemma 4 of Matula(1992).

Lemma 2.3. Let {Zt : 1 ≤ t ≤ n} be a strictly stationary sequence of negatively
associated m-dimensional random vectors with EZ1 = 0 and E ‖ Z1 ‖2< ∞, where
for a vector x ∈ R

m, denote its Euclidean norm by ‖x‖. Then, there is a positive
constant C such that

E max
1≤k≤n

‖
k
∑

t=1

Zt ‖2≤ Cm2nE ‖ Z1 ‖2 . (3)

Lemma 2.4 (Newman (1984)). Let {Yj , j ≥ 1} be a strictly stationary sequence
of negative associated random variables with EY1 = 0 and EY 2

1 < ∞. If

σ2 = V ar(Y1) + 2

∞
∑

j=2

Cov(Y1, Yj) < ∞
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holds then

n− 1
2

n
∑

j=1

Yj →D N(0, σ2) as n → ∞,

where →D means convergence in distribution.

Theorem 2.5. Let {Zt : t ≥ 1} be a strictly stationary negatively associated
sequence of m-dimensional random vectors with E(Z1) = O and E ‖ Z1 ‖2< ∞. Let
Sn =

∑n

t=1 Zt. If

E ‖ Z1 ‖2 +2

∞
∑

t=2

m
∑

j=1

E(Z
(j)
1 Z

(j)
t ) = σ2 < ∞ (4)

holds, then, as n → ∞,

n− 1
2 Sn

D−→ N(O, Γ)

with covariance matrix Γ = [σkj ], k = 1, · · · , m ; j = 1, · · · , m,

σkj = E(Z
(k)
1 Z

(j)
1 ) +

∞
∑

t=2

[E(Z
(k)
1 Z

(j)
t ) + E(Z

(j)
1 Z

(k)
t )], (5)

where Z
(j)
t denotes the j − th component of Zt.

Proof. By Lemma 2.4 it follows from (4) that, for each j(1 ≤ j ≤ m),

n− 1
2

n
∑

t=1

Z
(j)
t →D N(0, σ

′2
j ) as n → ∞,

where σ′2
j = E(Z

(j)
1 )2 + 2

∑∞
t=2 E(Z

(j)
1 Z

(j)
t ) < ∞.

Hence by the Cramer-Wold device (See Billingsley (1968, page 48-49).) the desired
result follows.

3. Result.

Lemma 3.1. Let {Zt, t ≥ 1} be a strictly stationary sequence of negatively
associated m-dimensional random vectors with E(Z1) = O, E||Z1||2 < ∞. Let Xt =
∑∞

j=1 AjZt−j , Sk =
∑k

t=1 Xt, X̃t = (
∑∞

j=1 Aj)Zt and S̃k =
∑k

t=1 X̃t. Assume

∞
∑

j=1

||Aj || < ∞ and

∞
∑

j=1

Aj 6= Om×m . (6)

Then

n− 1
2 max

1≤k≤n
||S̃k − Sk|| = op(1).
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Proof. First observe that

S̃k =

k
∑

t=1





k−t
∑

j=0

Aj



Zt +

k
∑

t=1





∞
∑

j=k−t+1

Aj



Zt

=

k
∑

t=1





t−1
∑

j=0

AjZt−j



+

k
∑

t=1





∞
∑

j=k−t+1

Aj



Zt

and thus,

S̃k − Sk = −
k
∑

t=1





∞
∑

j=t

AjZt−j



+

k
∑

t=1





∞
∑

j=k−t+1

Aj



Zt

= I1 + I2 (say).

To prove

n− 1
2 max

1≤k≤n
‖I1‖ = op(1), (7)

note that

n−1E max
1≤k≤n

∥

∥

∥

∥

∥

∥

k
∑

t=1

∞
∑

j=t

Aj Zt−j

∥

∥

∥

∥

∥

∥

2

= n−1 E max
1≤k≤n

∥

∥

∥

∥

∥

∥

∞
∑

j=1

j∧k
∑

t=1

Aj Zt−j

∥

∥

∥

∥

∥

∥

2

≤ n−1







∞
∑

j=1

‖Aj‖







E max
1≤k≤n

∥

∥

∥

∥

∥

j∧k
∑

t=1

Zt−j

∥

∥

∥

∥

∥

2






1
2







2

by Minkowski inequality

≤ Am2E ‖ Z1 ‖2





∞
∑

j=1

‖Aj‖
(

j ∧ n

n

)
1
2





2

by (3) and (6) and E ‖ Z1 ‖2< ∞. By the dominated convergence theorem the last
term above tends to zero as n −→ ∞. Thus (7) is proved by the Markov inequality.
Next, we show that

n− 1
2 max

1≤k≤n
‖I2‖ = op(1). (8)

Write

I2 = II1 + II2, where

II1 = A1Zk + A2(Zk + Zk−1) + · · · + Ak(Zk + · · · + Z1)
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and

II2 = (Ak+1 + Ak+2 + · · · ) (Zk + · · · + Z1).

Let pn be a sequence of positive integers such that

pn → ∞ and pn/n → 0 as n → ∞. (9)

Then

n− 1
2 max

1≤k≤n
‖II2‖ ≤

( ∞
∑

i=0

‖Ai‖

)

n− 1
2 max

1≤k≤pn

‖Z1 + · · · + Zk‖

+





∑

i>pn

‖Ai‖



 n− 1
2 max

1≤k≤n
‖Z1 + · · · + Zk‖

= op(1)

by (6), (9) and E ‖ Z1 ‖2< ∞ . It remains to prove that

Yn : = n− 1
2 max

1≤k≤n
‖II1‖ = op(1).

To this end, define for each l ≥ 1

II1,l = B1Zk + B2(Zk + Zk−1) + · · · + Bk(Zk + · · · + Z1),

where

Bk =

{

Ak, k ≤ l
Om×m, k > l.

Let Yn,l = n− 1
2 max1≤k≤n ‖II1,l‖. Clearly, for each l ≥ 1,

Yn,l = op(1). (10)

On the other hand,

n(Yn,l − Yn)2 ≤ max
1≤k≤n

∥

∥

∥

∥

∥

k
∑

i=1

(Ai − Bi) (Zk + · · · + Zk−i+1)

∥

∥

∥

∥

∥

2

≤ max
l<k≤n

(

k
∑

i=l+1

‖Ai‖ · ‖Zk + · · · + Zk−i+1‖

)2

≤

(

∑

i>l

‖Ai‖

)2

max
l<k≤n

max
l<i≤k

‖Zk + · · · + Zk−i+1‖2

≤ 4

(

∑

i>l

‖Ai‖

)2

max
l≤j≤n

‖Z1 + · · · + Zj‖2.

From this result, (6) and E ‖ Z1 ‖2< ∞. , for any δ > 0,
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lim
l→∞

lim sup
n→∞

P (|Yn,l − Yn|2 > δ)

≤ lim
l→∞

lim sup
n→∞

4δ−1

(

∑

i>l

‖Ai‖

)2

n−1E max
1≤j≤n

‖Z1 + · · · + Zj‖2

≤ 4Am2δ−1E ‖ Z1 ‖2 lim
l→∞

(

∑

i>l

‖Ai‖

)2

= 0. (11)

In view of (10) and (11), it follows from Theorem 4.2 of Billingsley (1968, p.25) that
Yn = ◦p(1). This completes the proof of Lemma 3.1.

Theorem 3.2. Let {Zt, t ≥ 1} be a strictly stationary negatively associated
sequence of m-dimensional random vectors with E(Z1) = O, E||Zt||2 < ∞ and {Xt}
an m-dimensional linear process defined in (2). Set Sn =

∑n

t=1 Xt(S0 = O), S̃n =
∑n

t=1 X̃t as in Lemma 3.1. If (6) and (4) hold then

n− 1
2 Sn

D−→ N(O, T ) as n → ∞, (12)

where T = (
∑∞

j=1 Aj)Γ(
∑∞

j=1 Aj)
′ and Γ is defined as in Theorem 2.5.

Proof. First note that n− 1
2 S̃n = n− 1

2 (
∑∞

j=1 Aj)
∑n

t=1 Zt and that n− 1
2 S̃n

D−→
N(O, T ) according to Theorem 2.5. Hence, n− 1

2 Sn
D−→ N(O, T ) follows by applying

Lemma 3.1 and Theorem 4.1 of Billingsley (1968).

We now introduce another central limit theorem.

Theorem 3.3. Let {Zt, t ≥ 1} be a strictly stationary negatively associated
sequence of m-dimensional random vectors with E(Z1) = O, E||Z1||2 < ∞ and let
{Xt} be an m-dimensional linear process defined in (2). If

∞
∑

i=1

∞
∑

j=i+1

||Aj || < ∞ (13)

holds, then

n− 1
2 Sn

D−→ N(O, T ) as n → ∞,

where T = (
∑∞

j=1 Aj)Γ(
∑∞

j=1 Aj)
′ and Γ is defined as in Theorem 2.5.

Proof. Letting Ãi =
∑∞

j=i+1 Aj and Yt =
∑∞

i=0 ÃiZt−i, which is well defined

since
∑∞

i=0 ||Ãi|| < ∞ by (13), we have

Xt = (

∞
∑

i=0

Ai)Zt − Ã0Zt +

∞
∑

i=1

(Ãi − Ãi−1)Zt−i

= (

∞
∑

i=0

Ai)Zt + Yt−1 − Yt
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which implies that

Sn =

( ∞
∑

i=0

Ai

)

n
∑

t=1

Zt + Y0 − Yn.

According to Theorem 2.5 we have n− 1
2

∑n

t=1 Zt → N(O, Γ) as n → ∞ and

thus using this result on n− 1
2 (
∑∞

i=0 Ai)
∑n

t=1 Zt, we have n− 1
2 (
∑∞

i=0 Ai)
∑n

t=1 Zt →
N(O, T ) as n → ∞. Hence, this theorem is proved if

Yn√
n

p−→ O as n → ∞. (14)

To prove (14) it is sufficient to show that

Yn√
n

→ O a.s. as n → ∞. (15)

But (15) follows from the fact that for any ǫ > 0

∞
∑

n=1

P

(

|Yn,j |√
n

> ǫ

)

=

∞
∑

n=1

P (|Y0,j | >
√

nǫ) < ∞,

for all j, where Yn,j denotes the j-th component of Yn.
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