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LARGE-TIME BEHAVIOR OF SOLUTIONS TO AN

INITIAL-BOUNDARY VALUE PROBLEM ON THE HALF LINE FOR

SCALAR VISCOUS CONSERVATION LAW∗

ITSUKO HASHIMOTO† AND AKITAKA MATSUMURA†

Abstract. We study the large-time behavior of the solution to an initial boundary value problem
on the half line for scalar conservation law, where the data on the boundary and also at the far field
are prescribed. In the case where the flux is convex and the corresponding Riemann problem for the
hyperbolic part admits the transonic rarefaction wave (which means its characteristic speed changes
the sign), it is known by the work of Liu-Matsumura-Nishihara (’98) that the solution tends toward
a linear superposition of the stationary solution and the rarefaction wave of the hyperbolic part. In
this paper, it is proved that even for a quite wide class of flux functions which are not necessarily
convex, such the superposition of the stationary solution and the rarefaction wave is asymptotically
stable, provided the rarefaction wave is weak. The proof is given by a technical L

2-weighted energy
method.
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1. Introduction. In this paper, we study the following initial-boundary value
problem on the half line for scalar viscous conservation law:















ut + f(u)x = uxx, x > 0, t > 0,
u(0, t) = u−, t > 0,
lim

x→∞
u(x, t) = u+, t > 0,

u(x, 0) = u0(x), x > 0,

(1.1)

where the flux f is a given C2 function of u satisfying f(0) = f ′(0) = 0, u±
are given constants, and the initial data u0 is assumed to satisfy u0(0) = u− and
lim

x→∞
u0(x) = u+ as the compatibility conditions.

We are interested in the large-time behavior of the solution which is determined
by the shape of the flux f(u) and the given constants u±. It is known that the
asymptotic behavior is closely related to the solution of the corresponding Riemann
problem for the hyperbolic part (c.f. [2], [3]):







ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) =

{

u+, x > 0,
u−, x < 0.

(1.2)

In the case where the flux f is convex (f ′′ > 0) and the Riemann Problem (1.2) has the
rarefaction wave solution, Liu-Matsumura-Nishihara (’98 [2]) showed that depending
on the signs of the characteristic speeds f ′(u±), the large-time behavior of the solution
is classified into the three cases:

(a) f ′(u−) < f ′(u+) ≤ 0, (equivalently u− < u+ ≤ 0),

(b) 0 ≤ f ′(u−) < f ′(u+), (equivalently 0 ≤ u− < u+),
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(c) f ′(u−) < 0 < f ′(u+), (equivalently u− < 0 < u+),

where we again assume f(0) = f ′(0) = 0 without loss of generality. More precisely,
they showed the followings. In the case (a) where all the characteristic speeds of the
rarefaction wave are non-positive, the solution of (1.1) eventually tends toward the
stationary solution φ which connects u− to u+, where φ = φ(x) is defined by the
solution of the corresponding stationary problem to (1.1) :

{

f(φ)x = φxx, x > 0,

φ(0) = u−, φ(+∞) = u+.
(1.3)

In the case (b) where all the characteristic speeds of the rarefaction wave are non-
negative, the solution of (1.1) eventually tends toward the rarefaction wave ψR itself
which connects u− to u+, where ψR = ψR(x

t
) is concretely given by

ψR(
x

t
) =











u−, x ≤ f ′(u−)t,

(f ′)−1(x
t
), f ′(u−)t ≤ x ≤ f ′(u+)t,

u+, x ≥ f ′(u+)t.

(1.4)

In the case (c) where the rarefaction wave is transonic, that is, the characteristic speeds
change the sign, the solution of (1.1) eventually tends toward the linear superposition
of the stationary solution φ connecting u− to 0 and the rarefaction wave ψR connecting
0 to u+.

Focusing on the most interesting case (c), u− < 0 < u+, we can naturally expect
that the superposition φ + ψR is asymptotically stable for more general flux f(u)
which is convex for u > 0 but not necessarily convex for u < 0 as long as positive for
u 6= 0, because even for such general flux the stationary solution φ connecting u− to
0 is easily seen to exist. There have been only a few results on such cases without the
convexity condition. Nagase [7] studied in her master thesis the case where the flux
f(u) satisfies

f(0) = f ′(0) = 0,

∃u∗ < 0 s.t. f(u∗) = 0, and f(u) > 0, u ∈ (u∗,∞), u 6= 0,

∃ū∗ ∈ (u∗, 0) s.t. f ′′(ū∗) = 0,

f ′′′(u) > 0, u ∈ R.

(1.5)

Here, it is noted that the condition (1.5) implies f ′′(u) ≷ 0 for u ≷ ū∗, and ∃ũ∗ ∈
(u∗, ū∗) s.t. f ′(ũ∗) = 0. In this case, the superposition φ + ψR is expected to be
asymptotically stable for u− ∈ (u∗, 0). A typical example which satisfies (1.5) is
f(u) = u2(u − u∗), where ū∗ and ũ∗ are given by u∗/3 and 2u∗/3 respectively. Then
she showed that for sufficiently small ε > 0, if u− ∈ (ũ∗ − ε, 0) and 0 < u+ < ε,
the superposition φ + ψR is asymptotically stable. The proof is given by using a
L2-weighted energy method as in the previous works ([1], [3], [6]) where in order to
show the asymptotic stability of viscous shock profile for non-convex state equations
they manipulate a weight function constructed by viscous shock profile itself. She also
used a suitable weight function constructed by the stationary solution φ. However
the case u− ∈ (u∗, ũ∗ − ε) has been left open. In this paper, it is shown that we can
solve this open question and even can make the condition (1.5) much weaker as

f(0) = f ′(0) = 0, f ′′(0) > 0,

f(u) > 0, u ∈ [u−, 0).
(1.6)
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Under the condition (1.6), we show that if u+ is positive but sufficiently small, then the
superposition φ+ ψR is asymptotically stable. For the proof, we employ a technique
in Matsumura-Mei [4] to obtain the a priori estimate of the solution, where they
manipulate not only a weight function but also a transformation of the unknown
functions in order to prove the asymptotic stability of viscous shock profile for a
system of visco-elasticity with a non-convex nonlinearity.

This paper is organized as follows. We state the main theorem and explain the
scheme of the proof in the Section 2. Making use of the linearized equation with
u+ = 0, we explain the essence how to construct our weight function in the Section
3. We finally prove a priori estimate in the Section 4, which completes the proof of
the main theorem.

Some Notations. We denote by C generic positive constants unless they need
to be distinguished. For function spaces, L2 = L2((0,∞)) and Hk = Hk((0,∞))
denote the usual Lebesgue space of square integrable functions and k-th order Sobolev
space on the half line (0,∞) with norms || · || and || · ||k, respectively. We also denote
by H1

0 = H1
0 ((0,∞)) the space of functions f ∈ H1 with f(0) = 0, as a subspace of

H1.

2. Main theorem. In this section, we state the main theorem and the scheme
of the proof. Let us rewrite our problem:















ut + f(u)x = uxx, x > 0, t > 0,
u(0, t) = u−, t > 0,
lim

x→∞
u(x, t) = u+, t > 0,

u(x, 0) = u0(x), x > 0,

(2.1)

where we assume u− < 0 < u+, and f ∈ C2 satisfies the conditions

f(0) = f ′(0) = 0, f ′′(0) > 0,

f(u) > 0, u ∈ [u−, 0).
(2.2)

We also assume the initial data u0 satisfies

(2.3) u0 − u+ ∈ H1, u0(0) = u−.

Noting that the conditions f ∈ C2 and f ′′(0) > 0 imply the existence of positive
constants r and ν satisfying

(2.4) f ′′(u) ≥ ν > 0, |u| ≤ r,

we further assume

(2.5) u− < 0 < u+ ≤ r.

Under these assumptions, as stated in the Introduction, the asymptotic state of the
solution of (2.1) is expected to be the linear superposition of the corresponding sta-
tionary solution φ connecting u− to 0 and the rarefaction wave ψR connecting 0 to
u+. We first recall the properties of the stationary solution φ which is given by the
solution to the boundary value problem for the ordinary differential equation:

{

f(φ)x = φxx, x > 0,

φ(0) = u−, φ(+∞) = 0.
(2.6)
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If we integrate the equation of (2.6) once, it is easy to see (2.6) is equivalent to the
problem :

{

φx = f(φ), x > 0,

φ(0) = u−.
(2.7)

Then we have the following lemma which is proved in the same way as in [2] and [3],
so we omit the proof.

Lemma 1. Assume u− < 0 and (2.2). Then, the boundary value problem (2.6)
which is equivalent to (2.7) has a unique solution φ ∈ C3([0,∞)) satisfying

{

u− < φ(x) < 0 and φx(x) > 0, x > 0,

|φ(x)| ≤ C(1 + x)−1, x ≥ 0.

Next, we recall the definition of the rarefaction wave ψR. We start with the
rarefaction wave to the Riemann problem for the Burgers equation with the given
end states w± (w− < w+) :

(2.8)











wt + (1
2w

2)x = 0, x ∈ R, t > 0,

w(x, 0) =

{

w+, x > 0,
w−, x < 0.

We denote the solution of (2.8) by wR(x/t;w−, w+) which is exactly given by

(2.9) wR(
x

t
;w−, w+) =











w−, x ≤ w−t,

x
t
, w−t ≤ x ≤ w+t,

w+, x ≥ w+t.

Since f ′′(u) > 0 for |u| ≤ r by (2.4), the rarefaction wave ψR connecting 0 to u+ for
the Riemann problem











ut + f(u)x = 0, x ∈ R, t > 0,

u(x, 0) =

{

u+, x > 0,
0, x < 0

(2.10)

is given by

(2.11)

ψR(x
t
) = (f ′)−1(wR(x

t
; 0, f ′(u+))

=











0, x ≤ 0,

(f ′)−1(x
t
), 0 ≤ x ≤ f ′(u+)t,

u+, x ≥ f ′(u+)t.

Then we define the rarefaction wave for the initial boundary problem (2.1) by the re-
striction of ψR on the half line ψR(x

t
)|x>0, and write it again as ψR without confusion.

Now we are ready to state our main theorem.
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Theorem 1 (Main Theorem). Assume (2.2),(2.3), and (2.5). Then, there exist

a positive constant ε such that, if u+ ≤ ε and ||u0 − φ−ψR(·)||1 ≤ ε, then the initial

boundary value problem (2.1) has a unique global solution in time u satisfying

{

u− u+ ∈ C([0,∞);H1),

ux ∈ L2(0, T ;H1), T > 0

and the asymptotic behavior

(2.12) lim
t→∞

sup
x>0

|u(x, t) − φ(x) − ψR(
x

t
)| = 0.

In what follows, let us show the scheme how to prove the Main Theorem. As in the
previous papers ([2,3,5,6,7]), we first make a smooth approximation of the rarefaction
wave ψR, because the non-smoothness of ψR causes a trouble in the process of handling
the second derivative of the solution. Following the arguments in [5], define a smooth
approximation w(x, t) of wR(x

t
) by the solution of the Cauchy problem

{

wt + (1
2w

2)x = 0, x ∈ R, t > 0,

w(0, x) = f ′(u+) tanhx, x ∈ R,
(2.13)

and a smooth approximation ψ(x, t) of ψR(x
t
) by

(2.14) ψ(x, t) = (f ′)−1(w(x, t)), x ≥ 0.

Then we have the next lemma which is proved in the same way as in [5].

Lemma 2. Assume (2.2) and 0 < u+ ≤ r. Then we have the followings:

1) ψ(x, t) is the smooth solution of the initial boundary value problem

(2.15)











ψt + f(ψ)x = 0, x > 0, t > 0,

ψ(t, 0) = 0, t > 0,

ψ(0, x) = (f ′)−1(f ′(u+) tanhx), x > 0.

2) 0 < ψ(x, t) < u+ and ψx(x, t) > 0, x > 0, t > 0.

3) For 1 ≤ p ≤ ∞, there exists a positive constant Cp such that

‖ ψx(t) ‖Lp≤ Cp min(u+, u
1
p

+(1 + t)−1+ 1
p ),

‖ ψxx(t) ‖Lp≤ Cp min(u+, (1 + t)−1).

4) lim
t→∞

sup
x>0

|ψ(x, t) − ψR(
x

t
)| = 0.

Now if we put

(2.16) Φ(x, t) = φ(x) + ψ(x, t)

as the expected asymptotic state, it follows from the definitions of φ and ψ that Φ
approximately satisfies the equation of (2.1) as

(2.17) Φt + f(Φ)x − Φxx = −F (φ, ψ),
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where

(2.18) F (φ, ψ) = −(f ′(φ + ψ) − f ′(φ))φx − (f ′(φ + ψ) − f ′(ψ))ψx + ψxx.

Define the deviation v of u from Φ by

(2.19) v(x, t) = u(x, t) − Φ(x, t).

Then the problem (2.1) is reformulated in terms of v in the form










vt + {f(Φ + v) − f(Φ)}x − vxx = F (φ, ψ), x > 0, t > 0,

v(0, t) = 0, t > 0,

v(x, 0) = v0(x) := u0(x) − φ(x) − ψ(x, 0), x > 0,

(2.20)

where we can see v0 ∈ H1
0 by the assumption (2.3). The theorem for the reformulated

problem (2.20) we shall prove is

Theorem 2. Assume (2.2),(2.3), and (2.5). Then, there exists a positive con-

stant ε such that, if ||v0||1 ≤ ε and 0 < u+ ≤ ε, then the initial boundary value

problem (2.20) has a unique global solution in time v satisfying














v ∈ C([0,∞);H1
0 ),

vx ∈ L2(0,∞;H1),

lim
t→∞

sup
x>0

|v(x, t)| = 0.
(2.21)

If we note

||v0||1 = ||u0 − φ− ψ(·, 0)||1 ≤ ||u0 − φ− ψR(·)||1 + C|u+|

and particularly 4) of the lemma 1.4, the Main Theorem is a direct consequence of
the Theorem 2. The Theorem 2 itself is proved by combining the local existence
theorem together with the a priori estimate as in the previous papers. To state the
local existence theorem precisely, we define the solution set for any interval I ⊂ R
and constant M > 0 by

XM (I) = {v ∈ C(I;H1
0 ); vx ∈ L2(0, T ;H1), sup

t∈I

||v(t)||1 ≤M},

and also generalize the initial boundary value problem for any constant τ ≥ 0 as










vt + {f(Φ + v) − f(Φ)}x − vxx = F (φ, ψ), x > 0, t > τ,

v(0, t) = 0, t > τ,

v(x, τ) = vτ (x), x > 0, vτ ∈ H1
0 .

(2.22)

Then we state the local existence theorem.

Proposition 1 (local existence). For any positive constant M, there exists a

positive constant t0 = t0(M) which is independent of τ such that if ||vτ ||1 ≤ M , the

initial boundary value problem (2.22) has a unique solution v ∈ X2M ([τ, τ + t0]).

It is noted that the problem (2.22) is reduced to the integral equation

v(x, t) =

∫ ∞

0

G(x, y, t− τ)vτ (y)dy +

+

∫ t

τ

∫ ∞

0

G(x, y; t− s)(−(f(φ+ v) − f(φ))x + F (φ, ψ))(s) dyds,
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where G(x, y; t) is the Green kernel of the Dirichlet zero boundary value problem for
the linear heat equation on the half line, which is concretely given by

G(x, y; t) =
1√
4πt

(e−
(x−y)2

4t − e−
(x+y)2

4t ).

Since we can prove the Proposition 1 by a standard iterative method, we omit the
proof of the Proposition 1. Next, let us state the a priori estimate which is essential
in this paper.

Proposition 2 (a priori estimate). Under the condition (2.2), there exist pos-

itive constants ε and C such that if 0 < u+ < ε and v ∈ Xε([0, T ]) is the solution of

the problem (2.22) for some T > 0, then it holds

||v(t)||21 +

∫ t

0

(||
√

Φxv(s)||2 + ||vx(s)||21) ds

≤ C(||v0||21 + |u+|
1
6 ), t ∈ [0, T ].

Here we should note Φx = φx + ψx > 0 by the Lemmas 1 and 2. The proof of
the Proposition 2 is given in the sections 3 and 4. Once the Propositions 1 and 2
are proved, the Theorem 2 is proved in a standard way as in the previous works. In
fact, combining the local existence and a priori estimate, we can first prove the global
existence of the solution in time by choosing ||v0||1 and u+ suitably small. Then we
can see the estimate (2.23) holds even for t ∈ [0,∞), that is,

(2.23) sup
t≥0

||v(t)||1,
∫ ∞

0

||vx(t)||21 dt <∞.

By using the equation and the estimate (2.23), we can also have (cf. (4.23),(4.26))
∫ ∞

0

| d
dt
||vx(t)||2| dt <∞

which implies

(2.24) lim
t→∞

||vx(t)|| = 0.

Using Sobolev’s embedding lemma, the estimates (2.23) and (2.24), we can easily have

sup
x>0

|v(x, t)| ≤
√

2||v(t)||
1
2 ||vx(t)||

1
2 ≤ C||vx(t)||

1
2 → 0, t→ ∞,

which shows the asymptotic behavior of the solution. Thus, we can show the proof of
the Theorem 2 by the Propositions 1 and 2.

3. Weight function. In this section, we explain how to make the weight func-
tion which plays an essential role in our technical L2-energy method. For simplicity
of explanation, noting that v and u+ is sufficiently small in the a priori estimate,
we take the linearized equation of the problem (2.22) with u+ = 0 (accordingly,
Φ(x, t) = φ(x))











vt + {f ′(φ)v}x − vxx = 0, x > 0, t > 0,

v(0, t) = 0, t > 0,

v(x, 0) = v0(x), x > 0, v0 ∈ H1
0 .

(3.1)
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Let v ∈ C([0, T ];H1
0 ) ∩ L2(0, T ;H2) be a solution of (3.1). The most typical way to

have the L2 estimate which does not depend on T is one to multiply the equation of
(3.1) by v and integrate it with respect to x over (0,∞). Then, the integration by
parts gives

d

dt

∫ ∞

0

1

2
v2dx+

1

2

∫ ∞

0

f ′′(φ)φxv
2dx+

∫ ∞

0

v2
x dx = 0.(3.2)

If we note φx > 0, the estimate of (3.2) works well in the case f ′′ > 0, but not
in the case f is not convex because f ′′ changes its sign. In order to overcome this
difficulty, we try to apply a weighted energy method as in ([1], [3], [6]) where to show
the asymptotic stability of viscous shock profile for non-convex state equations, a
weight function w is manipulated as a function of the viscous shock wave itself. Take
a weight funtion w(φ) as a function of φ, and multiply the equation of (3.1) by vw
and integrate it over (0,∞). Then, noting the relation φx = f(φ), we have

d

dt

∫ ∞

0

1

2
w(φ)v2dx+

∫ ∞

0

(
1

2
f ′′w − f ′w′ − 1

2
fw′′)(φ)φxv

2 dx

+

∫ ∞

0

w(φ)v2
x dx = 0.

(3.3)

Under the condition (1.5), Nagase [7] succeeded in making a positive and smooth
weight function w(u) for u ∈ [u−, 0], u− ∈ (ũ∗ − ε, 0) so that it holds in (3.3)

(3.4) (
1

2
f ′′w − 1

2
w′′f − f ′w′)(u) > 0, u ∈ [u−, 0].

Roughly speaking, she constructed w(u) as almost identically constant in the region
f ′′ > 0, and −f ′ + constant in the remaining region, and then patch them up on
the whole [u−, 0]. In fact, even in the region f ′′ < 0, the term −w′′f/2 − f ′w′(=
f ′′′w/2 + f ′f ′′) in (3.4) is positive as long as f ′ < 0 and f ′′′ > 0, and so plays a nice
role to control the negative term f ′′w and show the positivity of (3.4), which is a basic
technical idea in [7]. However this choice of weight function can not be easily extended
to a region f ′′ < 0 and f ′ > 0 because the term −f ′w′(= f ′f ′′) becomes negative and
so causes a problem, which is a main reason why the case u− ∈ (u∗, ũ∗ − ε) has been
left open. In order to overcome this difficulty, we employ a technique in Matsumura-
Mei [4] where they manipulated not only a weight function but also a transformation
of the unknown functions in order to prove the asymptotic stability of viscous shock
profile for a system of visco-elasticity with a non-convex nonlinearity. Following their
technique, we introduce a new unknown function ṽ by

(3.5) v(x, t) = χ(φ(x))ṽ(x, t),

where χ(u) is a positive and smooth function on [u−, 0]. Substitute (3.5) into (3.1),
then we have the equation of ṽ as in the form

ṽt +
1

χ
(f ′χṽ)x −

1

χ
(χṽ)xx = 0.(3.6)

Multiply (3.6) by wṽ and integrate it over (0,∞), then we have

d

dt

∫ ∞

0

1

2
wṽ2dx+

∫ ∞

0

{(1

2
f ′′w − f ′w′ − 1

2
fw′′)+

+
χ′

χ2
(χf ′w + χfw′ − χ′fw)}φxṽ

2dx+

∫ ∞

0

wṽ2
x dx = 0.

(3.7)
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So we may choose positive functions χ(u) and w(u) on [u−, 0] so that

(3.8) {1

2
f ′′w − 1

2
w′′f − f ′w′ +

χ′

χ2
(χf ′w + χfw′ − χ′fw)}(u)

is positive on [u−, 0]. Now let us choose χ = w, then (3.8) becomes

(3.9)
1

2
(f ′′w − fw′′).

Hence it is enough to seek a positive weight function w(u) which makes (3.9) positive
on [u−, 0]. Under the condition (2.2), we choose the function w(u) by

(3.10) w(u) = f(u) + δg(u), u ∈ [u−, r]

where δ is a positive constant and

(3.11) g(u) = −u2m + r2m, u ∈ [u−, r], m ≥ 1.

Here it is noted that the interval [u−, 0] is extended to [u−, r] to treat the case u+ > 0,
and that the constant δ and the integer m are properly chosen later.

Lemma 3 (weight function). Under the condition (2.2), if we take δ sufficiently

small and m sufficiently large, the functions 1
2 (f ′′(u)w(u)− f(u)w′′(u)) and w(u) are

positive for u ∈ [u−, r].

Proof. First it is easy by the condition (2.2) to see that there exists a positive con-
stant ν such that f ′′(u) ≥ ν for |u| ≤ r, and f(u) ≥ ν for u ∈ [u−,−r]. Substituting
(3.10) into (3.9), we have

(3.12)
f ′′w − fw′′ = f ′′(f + δg) − f(f + δg)′′

= δ(f ′′g − fg′′).

We divide the interval [u−, r] into [u−,−r] and [−r, r]. For u ∈ [u−,−r], substituting
(3.11) into (3.12), we obtain

δ(f ′′g − fg′′) = δ(f ′′(−u2m + r2m) + 2m(2m− 1)fu2(m−1))

= 2m(2m− 1)δu2(m−1){
−1 + | r

u
|

2m(2m− 1)
u2f ′′ + f}.

(3.13)

Because f ′′ is bounded, |r/u| ≤ 1 and f(u) ≥ ν for u ∈ [u−,−r], we can choose m
sufficiently large so that

(3.14)
−1 + | r

u
|

2m(2m− 1)
u2f ′′(u) + f(u) ≥ 1

2
ν, u ∈ [u−,−r].

Therefore, (3.13) and (3.14) imply

(3.15) δ(f ′′g − fg′′) ≥ m(2m− 1)δr2(m−1)ν > 0, u ∈ [u−,−r].

For |u| ≤ r, we further divide the interval to |u| ≤ r/2 and r/2 ≤ |u| ≤ r. For
|u| ≤ r/2, since f ′′ > 0, g > 0 and f ≥ 0, g′′ ≤ 0, it clearly holds

(3.16) δ(f ′′g − fg′′) > 0, |u| ≤
r

2
.
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On the other hand, for r/2 ≤ |u| ≤ r, since f ′′ > 0, g ≥ 0 and f > 0, g′′ < 0, it easily
holds

(3.17) δ(f ′′g − fg′′) > 0,
r

2
≤ |u| ≤ r.

Thus, it follows from (3.15), (3.16) and (3.17) that

(3.18) (f ′′w − fw′′)(u) = δ(f ′′g − fg′′)(u) > 0, u ∈ [u−, r].

Next, we prove w(u) = f(u) + δg(u) to be positive. To do that, we again divide the
interval [u−, r] to [u−,−r], r/2 ≤ |u| ≤ r and |u| ≤ r/2. Noting f ≥ ν and g is
bounded for u ∈ [u−,−r], we can take δ sufficiently small so that

w(u) = f(u) + δg(u) ≥ ν

2
> 0, u ∈ [u−,−r].(3.19)

Because f > 0, g ≥ 0 for r/2 ≤ |u| ≤ r and f ≥ 0, g > 0 for |u| ≤ r/2, we can easily
have

w(u) = f(u) + δg(u) > 0, |u| ≤ r.(3.20)

Thus (3.18),(3.19) and (3.20) complete the proof of the Lemma 3.

Applying the Lemma 3 to (3.7) with χ = w, we can obtain a basic L2-estimate of
ṽ which is equivalent to the estimate of v. In the next section, we establish the desired
a priori estimate for the nonlinear problem by making use of the weight function w(u)
in the Lemma 3.

4. Proof of a priori estimate. In this section, we give the proof of the Propo-
sition 2. First, put

N(T ) = sup
0≤t≤T

||v(t)||1,

and then we suppose N(T ) ≤ 1 throughout this section. Now, motivated by the
argument in the Section 3, we introduce a new unknown function ṽ by

(4.1) v(x, t) = w(Φ(t, x))ṽ(x, t),

where Φ(t, x) = φ(x) + ψ(t, x) and w = f + δg is the weight function in the Lemma
3. Since the Lemmas 1 and 2 imply Φ(x, t) ∈ [u−, r], x ≥ 0, t ≥ 0, we note that
w(Φ(x, t)) is well defined as weight function by the Lemma 3, that is, smooth and
satisfies

(4.2) ν ≤ w(Φ(x, t)) ≤ C, x ≥ 0, t ≥ 0

for some positive constants ν and C. Substituting (4.1) into the equation of (2.20),
we get

(4.3) (w(Φ)ṽ)t + (f(Φ + w(Φ)ṽ) − f(Φ))x − (w(Φ)ṽ)xx = F (φ, ψ).

Multiplying ṽ by (4.3) and integrating it over (0,∞), we have

(
1

2

∫ ∞

0

w(Φ)ṽ2dx)t +

∫ ∞

0

1

2
w′(Φ)ψtṽ

2dx

+

∫ ∞

0

−(f(Φ + w(Φ)ṽ) − f(Φ))ṽxdx+

∫ ∞

0

(w(Φ)ṽ)xṽxdx =

∫ ∞

0

ṽFdx.

(4.4)
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By using the fact that

−
(

∫ ṽ

0

(f(Φ + w(Φ)η) − f(Φ)) dη
)

x
= −(f(Φ + w(Φ)ṽ) − f(Φ))ṽx

−
∫ ṽ

0

(

f ′(Φ + w(Φ)η)(1 + w′(Φ)η) − f ′(Φ)
)

Φx dη,

we rewrite the third term on the left hand side of (4.4) as

∫ ∞

0

−(f(Φ + w(Φ)ṽ) − f(Φ))ṽx dx

=

∫ ∞

0

(

∫ ṽ

0

(

f ′(Φ + w(Φ)η) − f ′(Φ)) dη
)

Φx dx

+

∫ ∞

0

(

∫ ṽ

0

f ′(Φ + w(Φ)η)w′(Φ)η dη)Φx dx

=: I1 + I2.

(4.5)

We further rewrite I1 and I2 by the Taylor’s formula as

I1 =

∫ ∞

0

(

∫ ṽ

0

f ′′(Φ)w(Φ)η +O(η2) dη)Φx dx

=

∫ ∞

0

1

2
f ′′(Φ)w(Φ)ṽ2Φx dx+

∫ ∞

0

O(|ṽ|)ṽ2Φx dx.

(4.6)

and

I2 =

∫ ∞

0

(

∫ ṽ

0

f ′(Φ)w′(Φ)η +O(η2) dη)Φx dx

=

∫ ∞

0

1

2
f ′(Φ)w′(Φ)ṽ2Φx dx+

∫ ∞

0

O(|ṽ|)ṽ2Φx dx.

(4.7)

Hence, substituting (4.6) and (4.7) into (4.5), we have

∫ ∞

0

− (f(Φ + w(Φ)ṽ) − f(Φ))ṽx dx

=

∫ ∞

0

1

2
(f ′′w + f ′w′)(Φ)ṽ2Φx dx+

∫ ∞

0

O(|ṽ|)ṽ2Φx dx.

(4.8)

We also rewrite the fourth term on the left hand side of (4.4) as

∫ ∞

0

(w(Φ)ṽ)xṽx dx

=

∫ ∞

0

(wṽ2
x + w′Φxṽṽx) dx

=

∫ ∞

0

(wṽ2
x − 1

2
w′Φxxṽ

2 − 1

2
w′′Φ2

xṽ
2) dx

=:

∫ ∞

0

wṽ2
x dx+ I3 + I4.

(4.9)
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Now, recalling the relation Φt + f(Φ)x − Φxx = −F , we further rewrite I3 as

(4.10)

I3 =

∫ ∞

0

−1

2
w′Φxxṽ

2 dx

=

∫ ∞

0

1

2
w′(−Φt − f ′(Φ)Φx − F )ṽ2 dx

=

∫ ∞

0

(−
1

2
w′f ′(Φ)Φxṽ

2 −
1

2
w′ψtṽ

2 −
1

2
w′F ṽ2) dx

and I4 as

I4 =

∫ ∞

0

−1

2
w′′Φ2

xṽ
2 dx

=

∫ ∞

0

−
1

2
w′′(φx + ψx)Φxṽ

2 dx

=

∫ ∞

0

−1

2
w′′(f(Φ) + φx + ψx − f(φ+ ψ))Φxṽ

2 dx

=

∫ ∞

0

−1

2
w′′f(Φ)Φxṽ

2 − 1

2
w′′(f(φ) − f(φ+ ψ) + ψx)Φxṽ

2 dx

=

∫ ∞

0

−
1

2
w′′f(Φ)Φxṽ

2 dx+

∫ ∞

0

O(|ψ| + |ψx|)Φxṽ
2 dx.

(4.11)

Substituting (4.10) and (4.11) into (4.9), we have

∫ ∞

0

(w(Φ)ṽ)xṽx dx

=

∫ ∞

0

−1

2
(w′′f + w′f ′)(Φ)Φxṽ

2 dx+

∫ ∞

0

O(|ψ| + |ψx|)Φxṽ
2 dx

+

∫ ∞

0

(−1

2
w′ψtṽ

2 + wṽ2
x − 1

2
w′F ṽ2) dx.

(4.12)

Thus, by (4.8) and (4.12), (4.4) reads

(
1

2

∫ ∞

0

w(Φ)ṽ2dx)t +

∫ ∞

0

1

2
(wf ′′ − w′′f)(Φ)Φxṽ

2 dx+

∫ ∞

0

wṽ2
x dx

=

∫ ∞

0

(ṽF +
1

2
w′F ṽ2) dx+

∫ ∞

0

O(|ṽ| + |ψ| + |ψx|)Φxṽ
2 dx.

(4.13)

Noting that the Sobolev’s embedding lemma and Lemma 2 easily imply

∫ ∞

0

O(ṽ + |ψ| + |ψx|)Φxṽ
2 dx ≤ C(N(T ) + |u+|)

∫ ∞

0

Φxṽ
2 dx(4.14)

and also the Sobolev’s embedding lemma and Young’s inequality imply

|
∫ ∞

0

(ṽF +
1

2
w′F ṽ2) dx| ≤ C

∫ ∞

0

|ṽ||F | dx

≤ C||ṽ|| 12 ||ṽx||
1
2 ||F ||L1

≤ 1

2
||
√
wṽx||2 + C||F ||

4
3

L1 ,

(4.15)
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we can estimate (4.13) due to the Lemma 3 as

(
1

2

∫ ∞

0

w(Φ)ṽ2 dx)t + ν

∫ ∞

0

Φxṽ
2dx+

1

2

∫ ∞

0

w(Φ)ṽ2
x dx

≤ C(N(T ) + |u+|)
∫ ∞

0

Φxṽ
2 dx+ C||F ||

4
3

L1

(4.16)

for a positive constant ν. Therefore, taking N(T ) + |u+| suitably small, we have

(4.17)
(
1

2

∫ ∞

0

w(Φ)ṽ2 dx)t +
ν

2

∫ ∞

0

Φxṽ
2dx+

1

2

∫ ∞

0

w(Φ)ṽ2
x dx

≤ C||F ||
4
3

L1 .

Using the positivity of w (4.2) and the fact

(4.18) ||vx||2 = ||(wṽ)x||2 = ||wxṽ + wṽx||2 ≤ C(||
√

Φxṽ||2 + ||ṽx||2),

and integrating (4.17) with respect to t over (0, t), we have

||v(t)||2 +

∫ t

0

(||
√

Φxv(τ)||2 + ||vx(τ)||2) dτ

≤ C(||v0||2 +

∫ t

0

||F (τ)||
4
3

L1 dτ).

(4.19)

Next, we proceed to the estimate of vx. Multiplying −vxx by the equation of
(2.20) and integrating it with respect to x over (0,∞), we have

(
1

2

∫ ∞

0

v2
x dx)t +

∫ ∞

0

v2
xx dx = −

∫ ∞

0

Fvxx dx

+

∫ ∞

0

(f ′(Φ + v)(Φx + vx) − f ′(Φ)Φx)vxx dx.

(4.20)

We estimate the right hand side of (4.20) as

(4.21) |
∫ ∞

0

Fvxx dx| ≤
1

4
||vxx||2 + C||F ||2,

and

|
∫ ∞

0

(f ′(Φ + v)(Φx + vx) − f ′(Φ)Φx)vxx dx|

≤
∫ ∞

0

C(|v|Φx + |vx|)|vxx| dx

≤ 1

4
||vxx||2 + C(||

√

Φxv||2 + ||vx||2).

(4.22)

Substituting (4.21) and (4.22) into (4.20), we have

(
1

2

∫ ∞

0

v2
x dx)t +

1

2

∫ ∞

0

v2
xx dx

≤ C(||F ||2 + ||
√

Φxv||2 + ||vx||2).
(4.23)
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Integrating (4.23) with respect to t over (0, t) and combining it with the estimate
(4.19), we obtain

||vx||2 +

∫ t

0

||vxx||2 dτ ≤ C(||v0||21 +

∫ t

0

(||F ||
4
3

L1 + ||F ||2) dτ).(4.24)

Thus by (4.19) and (4.24), we have

||v(t)||21 +

∫ t

0

(||
√

Φxv(τ)||2 + ||vx(τ)||21) dτ

≤ C(||v0||21 +

∫ t

0

||F (τ)||
4
3

L1 + ||F (τ)||2 dτ).
(4.25)

Following the arguments in [2], we finally estimate the right hand side of (4.25) by
using the Lemmas 1 and 2, and eventually can show

(4.26)
||F (t)||

4
3

L1 ≤ C|u+|
1
6 (1 + t)−

7
6 log

4
3 (2 + t),

||F (t)||2 ≤ C|u+|
1
2 (1 + t)−

3
2 .

Noting

(4.27) |F (Φ)| ≤ C(|ψφx| + |ψxφ| + |ψxx|),

we only show the estimates of ||ψφx||L1 and ||ψφx||2 because the other terms can be
obtained in the same way. Using the fact that the Lemma 1 implies

(4.28) |φx(x)| ≤ C

(1 + x)2
, x > 0

and the decay estimates of ψ in the Lemma 2, we have

||ψφx||L1 ≤ C

∫ ∞

0

ψ

(1 + x)2
dx

≤ C

∫ t

0

ψ

(1 + x)2
dx + C

∫ ∞

t

ψ

(1 + x)2
dx

≤ C([− ψ

(1 + x)
]t0 +

∫ t

0

ψx

(1 + x)
dx) + C||ψ||L∞

∫ ∞

t

1

(1 + x)2
dx

≤ C||ψx||L∞ log(1 + t) + C|u+|(1 + t)−1

≤ C||ψx||
1
8

L∞

||ψx||
7
8

L∞

log(2 + t) + C|u+|
1
8 |u+|

7
8 (1 + t)−1

≤ C|u+|
1
8 (1 + t)−

7
8 log(2 + t),

(4.29)
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||ψφx||2 ≤ C

∫ ∞

0

ψ2

(1 + x)4
dx

≤ C

∫ t

0

ψ2

(1 + x)4
dx+ C

∫ ∞

t

ψ2

(1 + x)4
dx

≤ C([− ψ2

3(1 + x)3
]t0 +

∫ t

0

ψψx

3(1 + x)3
dx) + C|u+|2(1 + t)−3

≤ C||ψx||L∞

∫ t

0

ψ

(1 + x)3
dx+ C|u+|2(1 + t)−3

≤ C||ψx||2L∞

∫ t

0

1

(1 + x)2
dx+ C|u+|2(1 + t)−3

≤ C|u+|
1
2 (1 + t)−

3
2 ,

(4.30)

and similarly

||ψxφ||L1 + ||ψxx||L1 ≤ C|u+|
1
8 (1 + t)−

7
8 log(2 + t),

||ψxφ||2 + ||ψxx||2 ≤ C|u+|
1
2 (1 + t)−

3
2 .

(4.31)

Hence (4.29), (4.30) and (4.31) prove the estimate (4.26). Then substituting (4.26)
into (4.25), we finally have the desired a priori estimate for suitably small N(T )+ |u+|

||v(t)||21 +

∫ t

0

(||
√

Φxv(τ)||2 + ||v2
x(τ)||1) dτ

≤ C(||v0||21 + |u+|
1
6 ), t ∈ [0, T ].

(4.32)

Thus the proof of the Proposition 2 is completed.
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