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SOLVABILITY OF HYPERBOLIC IBVPS THROUGH FILTERING∗

DENIS SERRE†

To Joel Smoller, with admiration.

Abstract. In a recent paper in collaboration with S. Benzoni, F. Rousset and K. Zumbrun, we
uncovered the amazing fact that besides the classes of Hadamard unstable (no estimate at all) and
of strongly stable hyperbolic IBVPs (estimates without loss of derivatives), there is a third “open”
class, in the sense that it is stable under small disturbances of the coefficients (we apologize for the
use of the word “stable” with two different meanings) in the PDEs and in the boundary conditions.
We called the latter class (WR), because it has a Weak stability property (estimates with loss of
one derivative) and because it is characterized by a “Real” characteristic set for the Lopatinslĭı
determinant.

We show here that with an appropriate filtering, systems in the class WR can be recast as
strongly stable ones. It is remarkable that the same filtering is applied to both the solution and the
data. Thus there is a hope to apply this linear theory to fixed point methods in non-linear problems,
like the stability of two-dimensional vortex sheets when the jump in the velocity is larger than 2

√
2

times the sound speed.
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1. Introduction. We consider in this paper linear hyperbolic boundary value
problems. We deal with operators having constant coefficients, while the domain
Q = Ω×R is the half-space defined by (x, t) ∈ Rd×R with xd > 0. Recall that in this
framework, estimates are obtained through the construction of a symbolic dissipative
symmetrizer, together with the inversion of the Laplace–Fourier transform.

Let us take for definiteness a first-order operator

(1) L := ∂t +

d
∑

α=1

Aα∂α,

where A1, . . . , Ad are real n × n matrices. In the sequel, we often denote y =
(x1, . . . , xd−1) the space variables along the boundary. We are given also a p× n real
matrix B of maximal rank p, and we consider the boundary value problem (BVP)

Lu = f, xd > 0, y ∈ R
d−1, t ∈ R,(2)

Bu = g, xd = 0, y ∈ R
d−1, t ∈ R.(3)

Since we do not want to add several levels of difficulty, we shall assume that the
boundary is non-characteristic, that is Ad ∈ GLn(R). Likewise, we ask L to be
hyperbolic with characteristics of constant multiplicities, which means that the symbol

A(ξ) :=
∑

α

ξαA
α
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is diagonalisable for every ξ ∈ Rd, with real eigenvalues of multiplicities not depending
of ξ 6= 0. The latter hypothesis is fulfilled for instance in linearized gas dynamics,
but not in MHD. It ensures that the pure Cauchy problem (in spatial domain Rd) is
strongly well-posed in L2.

As is well-known, the theory is much more complicated for the BVP than for the
Cauchy problem. Following Kreiss [10], we say that the BVP is strongly well-posed
in L2 if there exists a constant C such that, for every γ > 0 and every test function
u : Ω̄ → Rn, we have the estimate

(4) Outγ [u] ≤ C Inγ [u],

where

Outγ [u] := γ

∫

R

∫

Ω

e−2γt|u(x, t)|2dx dt+

∫

R

∫

∂Ω

e−2γt|u(y, t)|2dy dt,

Inγ [u] :=
1

γ

∫

R

∫

Ω

e−2γt|Lu(x, t)|2dx dt+

∫

R

∫

∂Ω

e−2γt|Bu(y, t)|2dy dt.

In view of the potential applications to nonlinear problems such the stability of shock
waves, it is crucial that in (4), we estimate the output u and γ0u (its trace) in the
same norms in which the input Lu and Bγ0u are given.

Since the work by Kreiss (see also Sakamoto [12] for the theory of scalar equations
of arbitrary order), it has been known that a necessary condition for strong well-
posedness is the so-called Lopatinskĭı condition. To describe it, we need to introduce
the space Ei(τ, η) of incoming modes at frequencies τ ∈ C (with ℜτ > 0) for the time
variable and η ∈ Rd−1 for the space variable. Taking the Fourier–Laplace transform
of the homogeneous equation Lu = 0, we obtain the ODE

(τIn + iA(η))v +Adv′ = 0.

The incoming modes are precisely the values of solutions v that tend to zero as
xd → +∞. Thus Ei(τ, η) is nothing but the stable subspace of the matrix

A(τ, η) := −(Ad)−1(τIn + iA(η)).

Since L is hyperbolic, we know that this matrix has no purely imaginary eigenvalues.
This implies that Ei(τ, η) depends analytically (and therefore holomorphically in τ)
on its arguments, and has constant dimension p, the number of positive eigenvalues of
Ad (we point out that it is the same p than the number of scalar boundary conditions).

The restriction of B to Ei(τ, η) is a linear map between two spaces of dimension
p. We say that the Lopatinskĭı condition is satisfied at point (τ, η) if this restriction
is invertible. When it fails at some frequency pair, the BVP is strongly ill-posed in
the Hadamard sense, see Hersh [8]. It is not hard to see that a necessary condition
for strong well-posedness is that the Lopatinskĭı condition be satisfied uniformly in
the sense that the inverse

(

B|Ei(τ,η)

)−1

exist and is bounded independently of (τ, η), as a linear map from Cp to Cn. In other
words, one needs a constant C1 such that, for every τ with ℜτ > 0, for every η ∈ Rd−1

and every v ∈ Ei(τ, η), we have

|v| ≤ C1|Bv|.
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When L has characteristics of constant multiplicities, Métivier has shown [11] that
the uniform Lopatinskĭı condition (UKL) is also sufficient for strong well-posedness.
See again Kreiss [10] for the strictly hyperbolic case. Within this framework, there is
a practical way to check whether (UKL) holds or not. The constancy of multiplicities
allows to extend the map (τ, η) 7→ Ei(τ, η) to non-zero boundary points (τ, η) ∈
iR × Rd−1. We warn the reader that if τ ∈ iR, the space Ei(τ, η) contains the stable
subspace of A(τ, η), but the latter can be of dimension strictly less than p. This
happens in particular when τ = iρ and ρ >> |η|, since then A(iρ, η) has only pure
imaginary eigenvalues. We also know that Ei(iρ, η) is contained in the central-stable
subspace, but the latter may be too big. Therefore the determination of the extension
is a delicate point in explicit computations. Within this framework, (UKL) amounts
to saying that the Lopatinskĭı condition is satisfied at every non-zero point (τ, η) with
ℜτ ≥ 0 and η ∈ R

d−1.

1.1. Recalls about the WR class. For a few decades, a common belief was
that problems satisfying the Lopatinskĭı condition in a non-uniform way1 were non-
generic, in the sense that they could be converted in strongly ill/well-posed problems
by slightly tuning their coefficients ; this “fact” was explicitly stated in [10]. Even-
tually the opposite was observed in [1], namely that these problems form a set of
non-void interior. To explain what is going on, we need the notion of Lopatinskĭı
determinant.

We begin with the observation that a basis {R1(τ, η), . . . , Rp(τ, η)} can be chosen
for the space Ei(τ, η), with the maximal regularity. In particular, each of the vector
fields Rk is analytic for ℜτ > 0 and continuous up to ℜτ = 0 if Ei is (particularly
if characteristics have constant multiplicities). Additionally, they can be chosen ho-
mogeneous of degree zero. The Lopatinskĭı condition at a point (τ, η) amounts to
saying that BR1(τ, η), . . . , BRp(τ, η) are linearly independant. We therefore define
the Lopatinskĭı determinant by

∆(τ, η) := det(BR1(τ, η), . . . , BRp(τ, η)).

Let S+ be the half-sphere defined by ℜτ ≥ 0, |τ |2+|η|2 = 1. The Lopatinskĭı condition
at a given point P means that ∆(P ) 6= 0, and (UKL) tells that ∆ does not vanish for
(τ, η) ∈ S+.

Let char(L) be the characteristic cone of L, defined as the set of pairs (ρ, ξ) ∈
R × Rd such that det(ρIn + A(ξ)) = 0. The connected component C+ of (1, 0) in
the complement of char(L) is called the forward cone of L. It turns out that C+ is
convex, and every element of C+ is a direction of hyperbolicity of L (see [3, 7, 9] or
[2], Chapter 1).

Let Γ+ be the image of C+ under the projection onto the d first components:

Γ+ = πC+, π(ρ, η, ξd) = (ρ, η).

This is a convex open cone called the hyperbolic component of the boundary frequencies.
Then it is proved in [2], Chapter 9, that for (ρ, η) ∈ Γ+, the generalized stable subspace
Ei(iρ, η) is of real type, meaning that it is spanned by a basis made of real vectors. It
is therefore possible to choose the basis above in such a way that Rk(iρ, η) be real for
every k = 1, . . . , p and every (ρ, η) ∈ Γ+. We notice also that within Γ+, Ei is actually
analytic, although analyticity is lost at the boundary of Γ+. Indeed analyticity is lost

1They form the complement of the two classes of strongly ill/well-posed problems.
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along an analytic set of the boundary ℜτ = 0 called the glancing set, which is defined
as the set of singular values of the map2 π : char(L) → R × Rd−1.

An important consequence is that the restriction D(ρ, η) of ∆ to the hyperbolic
boundary set Γ+ is a real analytic function. When D vanishes in a non-degenerate
way (namely D = 0 together with ∇D = 0 has no solution), then its zero set is an
analytic manifold3, isolated in the zero set of ∆. Therefore the vanishing of ∆ in
Γ+ is compatible with the non-uniform Lopatinskĭı condition. Since non-degenerate
analytic sets are stable under small analytic disturbances, we see that the class WR
of systems for which L has characteristics of constant multiplicities and such that ∆
vanishes only on Γ+, in a non-trivial and non-degenerate way, is open in the set of
hyperbolic BVPs of constant multiplicities.

1.2. Filtering systems of WR class. Since (UKL) is a necessary condition
for strong well-posedness, there is no hope that Estimate (4) holds true for systems
of the class WR. Coulombel and Secchi [4, 5, 6] have proved in various settings that
an estimate with a loss of one derivative does hold. However, this loss of derivative
creates difficulties when applying it to non-linear problems, where we have to iterate
linear problems. Although there is a hope to overcome these difficulties through a use
of Nash–Moser techniques, we think that it can be useful to have an analogue to (4),
without any loss of derivative, to the price that both the data and the solutions are
filtered with the same operators.

We see at least two motivations to this work. First of all, our estimates are more
accurate than those of Coulombel and Secchi, in the sense that an L2 data yields L2-
microlocal regularity (instead ofH−1) of the solution, except along some characteristic
cone determined by the Lopatinskĭı determinant. Additionally, it shows that certain
components are microlocally in L2 even around this characteristic cone: our estimate
describes a polarisation phenomenon. At last, we do not really need that the data be
L2 ; it only needs to have the same kind of regularity as described above, that is L2

off this characteristic cone, and some polarized form of the data being genuinely L2.
Our goal in the forthcoming sections is therefore to show that an appropriate

filtering of both the input and the output converts a BVP of class WR into a strongly
well-posed BVP. We present first our strategy in the case of the wave equation and
then develop it in the setting of first-order systems. It is remarkable that this strategy
is partly successful also in the case of strongly ill-posed problem, yielding a new notion
of “ghost solution” of the IBVP.

2. BVPs for the wave equation. We illustrate our strategy with the wave
operator, and expect to adapt it to first-order operators in a future work. The fact
that L is scalar of second order is harmless, as the theories of Kreiss and Sakamoto [12]
are essentially parallel. Besides, the wave operator is always a source of illuminating
examples. It is also the only non-trivial scalar second-order hyperbolic operator, up
to changes of coordinates.

Our boundary value problem is thus

Lu := (∂2
t − c2∆x)u = f, xd > 0,(5)

∂νu = β∂tu+ v · ∇yu+ g, xd = 0,(6)

where c is the light speed and ∂ν is the outer normal derivative, here ∂ν = −∂d.

2Note that we identify R×R
d−1 with the boundary set of pairs (τ, η) such that ℜτ = 0, although

the later is iR × R
d−1.

3Actually, one proves in [2], Chapter 4, that it is contained in an algebraic variety.
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Depending on the parameters (β, v) ∈ R×Rd−1 the BVP is strongly ill/well-posed
or weakly well-posed. Specifically, it is strongly well-posed when β < 0 together with
|v| < |β|c. If d ≥ 3, it is strongly ill-posed when βc ≥ 1, and of class WR in the
interior of the complement of the two previous classes. If d = 2, the strong ill-
posedness concerns the parameters (β, v) such that 1 + |v|2 < β2c2 with β > 0 ; the
class WR is again the interior of the complement of the two previous classes. See for
instance [1] for calculations.

Our strategy is based on the following polynomial identity, where ǫ is a parameter
to be chosen later:

(ǫ2 − 1)(Z2 −X2) + 4(X + Y )(Y + ǫZ)(7)

= (2Y + (1 + ǫ)X + (ǫ− 1)Z)(2Y + (1 − ǫ)X + (ǫ+ 1)Z).

In the context of the wave equation, we replace X and Z by ∂d and

Ω := ω

(

∂t,
1

i
∇y

)

, ω(τ, η) :=

√

τ2

c2
+ |η|2

respectively. In the latter formula, the square root is the holomorphic determination
of positive real part, defined in the complement of (−∞, 0]. The function ω is well-
defined and analytic for η ∈ Rd−1 and ℜτ > 0, and can be extended by continuity to
(τ, η) ∈ iR × Rd−1. With this choice, we have Z2 −X2 = c−2L. Then Y is the part
of the boundary operator B that acts tangentially to the frontier: Y = β∂t + v · ∇y,
so that B = X + Y . Because of (7), we introduce the following operators

R := Y + ǫZ = β∂t + v · ∇y + ǫΩ,(8)

P := 2Y + (1 + ǫ)X + (ǫ− 1)Z = (1 + ǫ)∂d + (ǫ− 1)Ω + 2Y,(9)

E := 2Y + (1 − ǫ)X + (ǫ+ 1)Z = (1 − ǫ)∂d + (1 + ǫ)Ω + 2Y.(10)

The fact that the operator R acts only in the variables (t, y), but not in xd, will allow
us to apply it to functions defined on the physical boundary xd = 0.

For the moment, we rewrite (7) as

(11)
ǫ2 − 1

c2
L+ 4BR = PE

and introduce an auxiliary unknown, using the operator P as a filter:

z := Pu.

We point out that when β ∈ [0, 1/c), the symbol of P vanishes at those boundary
points where the Lopatinskĭı condition is violated. Therefore z does not see the
singularities that are propagated in u.

Applying P to the wave equation, we see that z obeys to a wave equation with a
filtered data:

(12) Lz = Pf, (t, x) ∈ Q.

Of course, we are not allowed to apply P to the boundary condition (6) since P
contains an xd-derivative. However, we may apply R, yielding

(13) BRu+Rg = 0.
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We now use (11) to convert (13) into a boundary condition for z:

(14) Ez =
ǫ2 − 1

c2
f − 4Rg, (t, x) ∈ ∂Q.

At this stage, we have decomposed our boundary value problem (5,6) into two
sub-problems. In the first one, we construct the auxiliary unknown z by solving the
BVP (12,14), while in the second one we reconstruct u through

(15) Pu = z, (t, x) ∈ Q,

We point out that the trace of f along the boundary is involved in the boundary
condition (14).

Our expectation is to find an ǫ ∈ R such that both (12,14) and (15) be strongly
stable BVPs. For (5,6), this means the (UKL) condition. Since P is a homogeneous
first order ΨDO, of the form ∂d +Q(∂t,∇y), the boundary is non-characteristic; we
thus ask that the Cauchy problem be well-posed for P , and that the waves be outgoing,
which implies that the BVP with no boundary condition is strongly well-posed.

Theorem 2.1. Assume that |v| < βc < 1/2. Then there exists an ǫ such that both
(12,14) and (15) are strongly stable BVPs. In particular, the BVP (5,6) is uniquely
solvable when Pf ∈ L2

γ(Q) and g ∈ L2
γ(∂Q), where Q ∈ Rt ×Rd

x is defined by xd > 0.
There holds the following estimates:

γ‖∇x,tPu‖2
L2

γ(Q) + ‖∇x,tPu‖2
L2

γ(∂Q) ≤ C

(

1

γ
‖Pf‖2

L2
γ(Q) + ‖Rg‖2

L2
γ(∂Q)

)

,(16)

γ‖∇x,tu‖2
L2

γ(Q) + ‖∇x,tu‖2
L2

γ(∂Q) ≤
C

γ2

(

1

γ
‖Pf‖2

L2
γ(Q) + ‖Rg‖2

L2
γ(∂Q)

)

.(17)

Remarks.

• In the above result, we may take any ǫ ∈ (0, 1 − 2βc).
• In (17), we estimate ∇x,tu in terms of Pf and Rg instead of f and g. Since
P and R are first-order, we have a loss of one derivative, compared to the
strongly stable case. However, asking Pf ∈ L2

γ(Q) is clearly a weaker assump-

tion than asking f ∈ Ḣ1
γ(Q), since the symbol of P vanishes along a cone.

Likewise, the assumption that Rg ∈ L2
γ(∂Q) is weaker than g ∈ Ḣ1

γ(∂Q).
Notice that the loss of one derivative is associated to an extra factor γ−2,
which preserves the homogeneity in the estimates.

• The solution u that is constructed in the above procedure does satisfy the
original BVP (5,6). On the one hand (12) and (15) give P (Lu − f) = 0,
whence Lu = f since P is injective on Hs

γ(Q). On the other hand, (13) and
(11) yield R(Bu+ g) = 0, which gives Bu+ g = 0 because R is injective (this
will be proved below) on Hs

γ(∂Q).

Proof.
UKL for (12,14). Since the wave operator is hyperbolic with characteristics

of constant multiplicities, and since the boundary is not characteristic (there is a ∂2
d

in L), we only need to check that (UKL) holds true. This means verifying that the
Lopatinskĭı determinant4 ∆(τ, η) does not vanish for ℜτ ≥ 0.

4We apologize for the multiple use of the letter ∆, hoping that it will not be confusing.
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The function ∆ is obtained by taking the symbol of the boundary operator E,
while replacing ∂d by −ω(τ, η), since incoming waves at Laplace–Fourier frequencies
(τ, η) correspond to solutions of

∂dZ = −ω(τ, η)Z.

Thus we have

∆(τ, η) = 2(βτ + iv · η + ǫω(τ, η)).

This is precisely the Lopatinskĭı determinant for (L, Y − ǫ∂d). From [1], we know that
(UKL) holds true if, and only if,

(18) βǫ > 0 and |v| < |β|c.

Cauchy problem for P . The symbol of P is i(1+ǫ)ξ+(ǫ−1)ω(τ, η)+2(βτ+iv·η),
where ξ is the variable dual to xd. We have to check that given (η, ξ) ∈ Rd and ℜτ > 0,
the symbol does not vanish. Since ξ is an arbitrary real number, this means that

ℜ((ǫ− 1)ω(τ, η) + 2(βτ + iv · η)) 6= 0,

namely

ℜ((ǫ− 1)ω(τ, η) + 2βτ) 6= 0

for every pair (τ, η). We easily find the equivalent condition that

(19)
ǫ− 1

β
6∈ [−c, 0].

BVP for P . Since P = ∂d + · · · , the boundary is non-characteristc for the
first order operator P . Since P is scalar, it displays either outgoing waves at every
frequency (τ, η), or incoming waves. From Laplace–Fourier transform and Paley–
Wiener theorem, the BVP (15) with no boundary condition is strongly well-posed in
Hs

γ provided the waves are outgoing. Since the incoming/outgoing character does not
depend on the frequency, it is enough to consider waves with frequency (τ, η = 0).
These are governed by the transport operator

P0 = (1 + ǫ)∂d + ((ǫ− 1)/c+ 2β)∂t,

whose wave velocity is

c(1 + ǫ)/(ǫ− 1 + 2βc).

We therefore find the condition

(20) (1 + ǫ)(ǫ− 1 + 2βc) < 0.

Uniqueness for R in Hs
γ(∂Q). Here, we only need that the symbol r(τ, η) :=

βτ + iv · η+ ǫω(τ, η) does not vanish for η ∈ Rd−1 and ℜτ 6= 0. This is clearly true at
least when βǫ > 0 (take the real part of r). Since this inequality is implied by (18),
we do not push forward our analysis.
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Choice of ǫ. We match now Conditions (18,19,20). Since β is positive, we must
have ǫ > 0, whence ǫ < 1−2βc. Since 1−2βc < 1−βc, (19) is automatically satisfied.
Hence any ǫ ∈ (0, 1 − 2βc) works.

Estimates. With ǫ ∈ (0, 1− 2βc), both BVPs are strongly well-posed. For (15),
we have an estimate

(21) γ‖w‖2
L2

γ(Q) + ‖w‖2
L2

γ(∂Q) ≤
C

γ
‖Pw‖2

L2
γ(Q).

From the (UKL) property of (12,14), we have the estimate

γ‖∇x,tz‖2
L2

γ(Q) + ‖∇x,tz‖2
L2

γ(∂Q) ≤ C

(

1

γ
‖Pf‖2

L2
γ(Q) + ‖(ǫ2 − 1)f − 4Rg‖2

L2
γ(∂Q)

)

.

Combining this inequality with (21) applied to w = f , we obtain (16) since z = Pu.
Then (21) applied to w = u, together with (16), give (17).

Remarks.

• It is remarkable that the first step works even if βc ≥ 1/2, although the
original BVP is strongly ill-posed in the case βc ≥ 1 ! In particular, there
exists always a “ghost solution” z, even in cases where u cannot be recovered.
This reveals that every bad or good feature is concentrated within Problem
(15).

• When 1/2 ≤ βc < 1, we can chose ǫ in such a way that (12,14) is strongly
well-posed, as well as the Cauchy problem for P , but then the waves of P
are ingoing. To solve a BVP for P , we need a boundary data u = u0 on ∂Q.
This data is obtained by eliminating ∂du between (15) and (6) to obtain

(22) (Ω − Y )u =
z + (ǫ+ 1)g

ǫ− 1
.

This is an evolution equation along ∂Q, which turns out to be uniquely solv-
able. As a matter of fact, the operator Ω − Y is a first-order factor of

L := Ω2 − Y 2 =
1

c2
∂2

t − ∆y − (β∂t + v · ∇y)2.

This operator is wave-like, with a forward cone containing the characteristic
cone of L. In other words, the waves travel faster under L than under ∂2

t −
c2∆y. For instance, if v = 0, then

L = ∂2
t − c̃2∆y,

where the boundary velocity c̃ is given by

c̃ :=
c

√

1 − β2c2
,

which is larger than the light speed!
Notice that in this case, the norm of f |∂Q in L2

γ cannot be estimated from
that of Pf . Therefore the estimates of Theorem 2.1 are not valid or at least
have not been proved so far. We may state nonetheless that

γ‖∇x,tz‖
2
L2

γ(Q) + ‖∇x,tz‖
2
L2

γ (∂Q) ≤ C

�
1

γ
‖Pf‖2

L2
γ (Q) + ‖f‖2

L2
γ (∂Q) + ‖Rg‖2

L2
γ(∂Q)

�
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and

γ‖∇x,tu‖2
L2

γ(Q) ≤
C

γ2

(

1

γ
‖Pf‖2

L2
γ(Q) + ‖f‖2

L2
γ(∂Q) + ‖Rg‖2

L2
γ(∂Q)

)

.

• Since Ω − Y is an operator of principal type with a non-trivial characteristic
cone when β ∈ (0, 1/c), there are non-trivial solutions of (Ω−Y )φ = 0. Such
φ’s are solutions of the wave equation along the boundary, with wave velocity
c̃. This observation is not incompatible with the uniqueness result in weighted
spaces Ḣs

γ because this wave equation preserves the energy and therefore the
only solution whose (constant) energy is in L1(e−2γtdt) for some γ > 0, is the
trivial one.

• In both (12,14) and (15), the solution obeys to the causality principle, which
tells that its restriction to times t ∈ (−∞, T ) depends only on the restriction
of the data on the same interval. This is due to the analyticity of the symbols
in the half-space ℜτ > 0 and to the Paley–Wiener Theorem. In particular, it
is possible to solve the initial-boundary value problem (IBVP) with homoge-
neous data u(0, x) ≡ 0. However, we do not exclude that the general IBVP
suffers an additional loss of regularity in the WR case.

3. Variable coefficients, general domains. The procedure described in the
previous section adapts easily to BVPs for general second order scalar hyperbolic
operators, with smooth variable coefficients. In particular, it is efficient in solving
noncharacteristic BVPs in smooth bounded domains.

After localisation and change of variables, we may assume that the domain Q
is defined as above by xd > 0. Up to a multiplication by a smooth non-vanishing
function, we may assume that L writes

L = −∂2
d + · · · ,

where the remainder has variable coefficients. The principal symbol, a quadratic form,
can be rewriten as

ℓ = (ξd + w(t, x) · η + w0(t, x)ξ0)
2 −Q(ξ0, η; t, x),

where Q(·, ·; t, x) is a non-degenerate quadratic form of signature (1, d − 1). When
ℜτ 6= 0, Q(−iτ, η; t, x) 6∈ (−∞, 0]. We wish to apply the identity (7) with

X = ∂d + w(t, x) · ∇y + w0(t, x)∂t, Z := Op(Ω), Y (∂t,∇y) := B −X,

where B = ∂d + · · · is the boundary operator and Ω(τ = iρ, η; t, x) :=
√
Q is defined

for ℜτ > 0 as the square root of positive real part, and by continuity along ℜτ = 0. We
point out that since Ω is analytic in τ as ℜτ > 0, the definition of Z is unambiguous
in spite of variable coefficients. Since Ω has singularities along ℜτ = 0, we begin by
defining a one-parameter family of operators

Zγ := Opt,y(Ω(γ + i·, ·; t, x)).

Because of holomorphy, we have Zγ = e−γZeγ for some operator Z, where eγ is the
multiplication by exp(γt).

We now define operators R,P and E as in (8,9,10). Because of variable coeffi-
cients, the identity (11) is true up to a reminder of order one r:

(23) (ǫ2 − 1)L+ 4RB = EP + r.
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Notice that since Y , Z, Q and X − ∂d are operators in the variables (y, t) only,
r = r(∂t,∇y) does not act on the xd variable.

With (23), we can embed the problem

(24) Lu = f (xd > 0), Bu = g (xd = 0)

into the following coupled BVP

Lz + au = Pf (xd > 0),(25)

Pu = z (xd > 0),(26)

Ez + ru = (ǫ2 − 1)f + 4Rg (xd = 0),(27)

where a is pseudo-differential of first order.
The principal part in System (28,26,30) is obtained by dropping the operators

a and r. When the assumption of Theorem 2.1 is satisfied pointwisely, a symbolic
symmetrizer can be constructed, which depends smoothly on its arguments. Thus
strong stability holds for the system

Lz = F (xd > 0),(28)

Pu = z (xd > 0),(29)

Ez = G.(30)

Then the full sytem (25,26,27) can be analyzed by means of the Duhamel formula,
treating the lower order terms au and ru as source terms and iterating in L2

γ . This
iteration is a contraction provided γ > 0 is large enough. At the end, we obtain
the well-posedness of the BVP (24) in the same filtered terms as in the constant
coefficients case.

4. Filtering first-order systems of class WR. We go back to first order
BVPs (2,3), with a hyperbolic operator L of the form (1), for which the boundary
is not characteristic. We assume that its characteristics have constant multiplicities.
Being interested in estimates, we work directly with the Laplace–Fourier counterpart

(τIn + iA(η))v +Adv′ = f, xd > 0,(31)

Bv(0) = g.(32)

We assume that the Lopatinskĭı condition is satisfied everywhere in ℜτ ≥ 0 but along
an algebraic subset Λ of the hyperbolic part Γ+ of the boundary frequencies. We
assume in fact that the Lopatinskĭı determinant ∆ vanishes only at first order along
Λ ; in particular, Λ is a compact smooth real variety of codimension one in Γ+.

The micro-local counterpart of (4) is an estimate of the form

(33) γ

∫ +∞

0

|v|2dxd + |v(0)|2 ≤ C

(

1

γ

∫ +∞

0

|f |2dxd + |g|2
)

for the L2 solutions of (31,32), where C does not depend either on the data (f, g) or
the parameter (τ, η) (here γ := ℜτ > 0). Because L has characteristics of constant
multiplicities, we know (see [11, 2]) that (33) near a given (τ0, η0) is equivalent to the
fact that the Lopatinskĭı condition ∆(τ0, η0) is satisfied. Therefore (33) holds true,
except when we approach Λ. Actually, we could write (33), with a constant C that
depends on (τ, η) and blows up as the distance from (τ, η) to Λ tends to zero.
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We now restrict to points in a neighbourhood of Λ. In particular, (τ, η) keeps
away from the glancing set and we can project on Ei(τ, η) and on the outgoing space
Eo(τ, η) in a smooth way. We call πi,o(τ, η) the corresponding projections. There
holds πi + πo = In. Each of πi,o depends analytically on (τ, η) as long as we keep
away from the glancing set. From now on, we decompose v into incoming/outgoing
modes vi,o := πi,ov. We point out that such a decomposition of f must be made only
after multiplying by (Ad)−1 ; we thus define fi,o := πi,o(A

d)−1f .
We then rewrite (31 in the following form, using projections:

v′i = Ai(τ, η)vi + fi,(34)

v′o = Ao(τ, η)vo + fo,(35)

where Ai,o(τ, η) is the restriction of A(τ, η) to its stable/unstable subspace Ei,o(τ, η).
Here the data fi,o are square integrable, and we look for solutions vi,o with the same
property. It is well-known that such a vo is uniquely determined by the ODE (no
need of a boundary condition here) through the Duhamel formula

(36) vo(x) = −
∫ +∞

x

(exp((x − z)Ao)) fo(z) dz.

However, the square-integrable solutions of (34) form a large family, given by the
formula

(37) vi(x) = (exp(xAi)) vi(0) +

∫ x

0

(exp((x − z)Ai)) fi(z) dz,

where vi(0) must be determined through the boundary condition (32). Specifically,
we have to solve

(38) Bvi(0) = g +B

∫ +∞

0

(exp(−zAo)) fo(z) dz.

Since the operator B : Ei(τ, η) → Cp remains uniformly bounded, its inverse is
bounded by a constant times |∆(τ, η)|−1, a quantity that blows up precisely on Λ.
We therefore have

(39) |vi(0)| ≤ C

|∆|

(

|g| +
∫ +∞

0

|(exp(−zAo))fo(z)| dz
)

.

Let Ko(τ, η)) be the kernel defined as exp(−zAo) if z > 0 and 0 otherwise. Likewise,
we define the kernel Ki(τ, η) as exp(−zAi) if z < 0 and 0 otherwise. From Cauchy–
Schwarz and (39), we have

(40) |vi(0)| ≤ C

|∆| (|g| + ‖Ko‖2‖fo‖2),

where ‖ · ‖2 stands for the L2-norm on R+. Since (36) and (37) involve convolution
products, we also have

‖vo‖2 ≤ ‖Ko‖1‖fo‖2, ‖vi‖2 ≤ ‖Ki‖2|vi(0)| + ‖Ki‖1‖fi‖2.

These inequalities are completed by the obvious following bounds, which are optimal
near Γ+:

‖Ki,o‖1 ≤ C

γ
, ‖Ki,o‖2 ≤ C√

γ
.
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Hence we find

(41) ‖vo‖2 ≤ C

γ
‖fo‖2, ‖vi‖2 ≤ C

γ

(‖fo‖2 + γ1/2|g|
|∆| + ‖fi‖2

)

.

This, together with (40), clearly show that only the incoming modes pay the loss of
uniformity in the Lopatinskĭı condition. This suggest to introduce a filtering symbol
p(τ, η) defined (at least in a neighbourhood of Γ+) as

(42) p(τ, η) := πo(τ, η) + ∆πi(τ, η).

With this operator in hands, we have the estimate

‖pv‖2 ≤ C

γ
(‖fo‖2 + γ1/2|g| + |∆| ‖fi‖2),

or in other words

(43) ‖pv‖2 ≤ C

γ
‖p(Ad)−1f‖2 +

C√
γ
|g|.

We emphasize that (43) is precisely, up to the boundary terms, the estimate (33) where
v and f are replaced by filtered solution pv and filtered data p(Ad)−1f . Likewise we
have

(44) |pv(0)| ≤ C√
γ
‖p(Ad)−1f‖2 + |g|,

which is again the adaptation of (33) with filtered data and solution.
The definition (42) makes p the symbol of a pseudo-differential operator of zero

order, which is micro-locally elliptic, except along Λ. It might be singular, and even
unbounded, along the glancing set since the projectors blow up there. However this
singularity is irrelevant since we know that Estimate (33) does hold near the glancing
set. Therefore we feel free to smooth out the symbol p along the glancing set, in such
a way that p be C∞, homogeneous of degree zero, and its characteristic cone be Λ
where it vanishes only at first order.

4.1. The analytic case. Let us assume for the moment that we do not need to
smooth out the symbol p near the glancing set. This will be case whenever ∆ can be
chosen5 in such a way that ∆ ≡ 1 along the glancing set6. As a matter of fact, the
formula

p(τ, η) = In + (∆(τ, η) − 1)πi(τ, η)

shows that p remains bounded because, the scalar factor cancels the singularity of the
projector.

In this analytic case, let us define a pseudo-differential operator P := p(∂t,−i∇y)
from the trace of the symbol p on ℜτ = 0. Then analyticity tells that

Pγ := p(γ + ∂t,−i∇y) = eγtPeγt.

5Recall that ∆ is defined only up to an analytic non-vanishing factor.
6This amounts to prescribing values of an analytic function on some analytic varieties of codi-

mension one in the boundary.
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Hence our microlocal estimates exactly mean that (4) holds true with

Outγ [u] := γ

∫

R

∫

Ω

e−2γt |P [u(x, t)]|2 dx dt+

∫

R

∫

∂Ω

e−2γt |P [u(y, t)]|2 dy dt,

Inγ [u] :=
1

γ

∫

R

∫

Ω

e−2γt
∣

∣P [(Ad)−1Lu(x, t)]
∣

∣

2
dx dt+

∫

R

∫

∂Ω

e−2γt|Bu(y, t)|2dy dt.

We point out that the data comes out through the operator

L̃ := (Ad)−1L =
∂

∂xd
+ · · · ,

which seems to be a canonical form for a first-order BVP with a non-characteristic
boundary.

We also notice that because of the analyticity of the symbol in the whole half-space
ℜτ > 0, and thanks to the Paley–Wiener Theorem, P has the causality property.

The role of the “filtered” estimate (33) is, as in Section 2, to provide an existence
and uniqueness result for the auxiliary unknown z := Pu, when f̃ := L̃u is given such
that P f̃ ∈ L2

γ and g ∈ L2
γ .

4.2. Reconstruction. From z, which is known to exist in L2
γ , we have to re-

construct the solution u from the equation

(45) Pu = z.

This is a ψ-Differential problem with a constant coefficients operator that acts on
(t, y) only. Here xd could be considered as a parameter. A typical estimate is

‖u‖L2
γ(Q) ≤

C

γ
‖∇y,tz‖L2

γ(Q),

the loss of one derivative being due to the order zero of P .
Since P is an operator of principal type with a known smooth characteristic type,

it acts as a hyperbolic operator, except that it is zero order.
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