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THE GENERIC SOLUTION OF THE RIEMANN PROBLEM IN A
NEIGHBORHOOD OF A POINT OF RESONANCE FOR SYSTEMS

OF NONLINEAR BALANCE LAWS ∗

JOHN HONG† AND BLAKE TEMPLE‡

Abstract. We describe the generic solution of the Riemann problem near a point of resonance
in a general 2x2 system of balance laws coupled to a stationary source. The source is treated as a
conserved quantity in an augmented 3x3 system, and Resonance is between a nonlinear wave family
and the stationary source. Transonic compressible Euler flow in a variable area duct, as well as
spherically symmetric flow, are shown to be special cases of the general class of equations studied
here.

1. Introduction. We consider a general 3x3 system of balance laws of the form

at = 0,(1.1)
wt + f(a,w)x = a′g(a,w),(1.2)

where (1.2) is a 2×2 system of conservation laws, w = (u, v) ≡ (w1, w2), f = (f1, f2),
g = (g1, g2) and (1.1) is incorporated to model resonance between a stationary source
a(x) ∈ R and one of the nonlinear wave families of (1.2). Letting U = (a, u, v), system
(1.1), (1.2) is equivalent to the 3 × 3 system

Ut + F (U)x = a′G(U),(1.3)

where F = (0, f1, f2) and G = (0, g1, g2).
Resonance occurs at states U∗ = (a∗, w∗) where an eigenvalue of Df

Dw (U) vanishes.
A special case of system (1.1), (1.2) is given by the equations for compressible flow in
a variable area duct,

at = 0,(1.4)

ρt + (ρv)x = −a′

a
ρv,(1.5)

(ρv)t + (ρv2 + p)x = −a′

a
ρv2,(1.6)

where ρ is the density, p is the pressure, v is the velocity, and a(x) is the diameter
of the duct at position x. System (1.4)-(1.6) results under the assumption that p
is a function of ρ alone, in which case the energy equation (ρE)t + (ρEv + pv)x =
−a′

a (ρEv + pv) uncouples from the mass and momentum equations (1.5) and (1.6).
Spherically symmetric n-dimensional flow arises when −a′

a = n−1
x . System (1.4)-(1.6)

is a 2 × 2 system with sources of form (1.1), (1.2), and the condition of resonance
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for system (1.4)-(1.6) translates into the statement that the flow is transonic in a
neighborhood of U∗, [2].

Here we identify natural generic conditions on f and g at a point of resonance U∗
in system (1.1), (1.2) that guarantee a canonical solution of the Riemann problem in
a neighborhood of U∗, and we then present the solution. As a special case we show
that these conditions are met by system (1.4)-(1.6)—however, with a different choice
of signs, qualitatively different solutions are possible. By identifying the generic local
structure of the Riemann problem near a point of resonance, we accomplish a prelim-
inary step in our program to extend the results in [7] to systems; that is, our program
is to obtain a time independent estimate for the total variation of the conserved quan-
tities near a point of resonance by analyzing approximate Glimm scheme solutions of
system (1.3).

Note that because of the presence of the a′ term in (1.2), the Riemann problem,
(the initial value problem when the data is given by piecewise constant states), appears
to be singular when a is discontinuous. However, because of a re-scaling property
of standing waves for systems of form (1.2), the Riemann problem really does give
the elementary waves that provide the building blocks for more general solutions.
For example, in [6] it was shown that Glimm’s analysis of wave interactions and
the local total variation bound extend to these singular Riemann problems for n ×
n strictly hyperbolic systems of form (1.2), and convergence of the Glimm Scheme
is proven for Lipschitz continuous a, (the case when the weak formulation of (1.2)
applies). Interestingly, the residual converges weakly, by oscillation, rather than by
L1 convergence as in Glimm’s original paper. These results were extended to resonant
scalar balance laws in [7].

2. Generic Conditions. We discuss generic conditions on the functions f(U),
g(U) for system (1.1), (1.2), that guarantee a canonical solution of the Riemann
problem near a point of resonance U∗. This is preparatory to the presentation of the
solution of the Riemann problem in the next section.

To start, let λi ≡ λi(a,w) denote the eigenvalues, and Ri ≡ Ri(a,w), Li ≡
Li(a,w) corresponding right and left eigenvectors, respectively, for the 2 × 2 matrix
Df
Dw ≡

(
∂fi

∂wj

)
at fixed a, i, j = 1, 2. Let Dg

Dw ≡
(

∂gi

∂wj

)
, the differential holding a con-

stant. (We will normalize Ri, Li below, but the conditions to follow are independent
of normalization). We assume the following four generic conditions hold at the state
U∗:

0 = λ1(U∗) < λ2(U∗),(2.1)

∇λi · Ri|U=U∗ �= 0, i = 1, 2,(2.2)

Li · (g − fa)|U=U∗ �= 0, i = 1, 2,(2.3)

Det

[
L1 · (g − fa), L1 · Dg

Dw · R1

L2 · (g − fa), L2 · Dg
Dw · R1.

]
�= 0.(2.4)
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Our main result can be stated as follows:

Theorem 1. Assume that system (1.1), (1.2) satisfies (2.1)-(2.4) at the state
U = U∗. Then the solution of the Riemann problem has a unique canonical structure
in a neighborhood of the state U∗, this being explicitly given in the Figures below.

Before we construct the solution of the Riemann problem for system (1.1), (1.2) in
a neighborhood of U∗, under assumptions (2.1)-(2.3), we first verify (2.1)-(2.4) for the
gas dynamics example (1.5), (1.6) when U = (a, u, v) ≡ (a, ρ, ρv), f(U) = (ρv, ρv2+p),
and g(U) = (−ρv

a ,−ρv2

a ). The eigenvalues and right eigenvectors for system (1.5), (1.6)
at fixed a are given by,

λ1 = v − σ, λ2 = v + σ,(2.5)

R1 = −(1, λ1)tr, R2 = (1, λ2)tr,(2.6)

where the sound speed σ is given by

σ =
√

p′(ρ).(2.7)

Since the left eigenvectors satisfy Li · Rj = 0, i �= j, we can choose

L1 =
1
ρ
(−λ2, 1), L2 =

1
ρ
(−λ1, 1).(2.8)

The coordinate system of Riemann invariants (r, s) can be defined in terms of L1 and
L2 by

∇r = L1,

∇s = L2,(2.9)

which yields

r = v −
∫

ρ

√
p′

ρ
,

s = v +
∫

ρ

√
p′

ρ
.(2.10)

From (2.5)-(2.7) it follows that assumptions (2.1)-(2.4) respectively translate into the
following conditions at U∗ = (a∗, u∗, v∗), (we assume equation of state p = p(ρ),
p′(ρ) > 0, p′′(ρ) > 0):

u∗ = σ∗ =
√

p′(ρ∗),(2.11)

∇λi · Ri =
{

p′′

2σ
+

σ

ρ

}
> 0, i = 1, 2,(2.12)
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L1 · (g − fa) =
1
ρ
(−λ2, 1) · (−ρv

a
,−ρv2

a
) =

vσ

a
> 0,(2.13)

L2 · (g − fa) =
1
ρ
(−λ1, 1) · (−ρv

a
,−ρv2

a
) = −vσ

a
< 0.(2.14)

Finally, to verify (2.4), write

L1 ·
Dg

Dw
=

1
ρ
(−λ2, 1) ·

[
0 − 1

a
v2

a − 2v
a

]
=

1
aρ

(v2, λ2 − 2v),(2.15)

L2 ·
Dg

Dw
=

1
ρ
(−λ1, 1) ·

[
0 − 1

a
v2

a − 2v
a

]
=

1
aρ

(v2, λ1 − 2v).(2.16)

It follows that at U = U∗, λ1 = 0, and so we have

L1 ·
Dg

Dw
· R1 =

1
aρ

(−v2 + λ2
1) = − v2

aρ
< 0,(2.17)

L2 ·
Dg

Dw
· R1 =

1
aρ

(−v2 + λ1λ2) = − v2

aρ
< 0.(2.18)

The condition (2.4) now follows from (2.13), (2.14) and (2.15), (2.18).

3. The Riemann Problem. The Riemann problem is the initial value problem
with initial data given at t = 0 by the jump discontinuity

U0(x) =
{

UL = (aL, uL) if x < 0,
UR = (aR, uR) if x > 0.

(3.1)

We derive the solution of (3.1) for system (1.1), (1.2) within the class of elementary
waves, shock waves, rarefaction waves and standing waves. It is easiest to display
the solution in a coordinate system of Riemann invariants, where, with convenient
conventions for Ri, Li, the solution has a unique local structure.

At each fixed a, system (1.2) is a 2×2 system of conservation laws, and thus, since
the state space is the plane, there exists a coordinate system of Riemann invariants
(r, s). Choose (r, s) such that L1 = ∇r ≡ ( ∂r

∂u , ∂r
∂v ), and similarly, L2 = ∇s. Also,

let T ≡ {U : λ1(U) = 0} denote the transition surface. This is the surface where the
speeds of 1-rarefaction waves change their sign relative to the local speed of standing
waves, c.f. [8]. Since ∇λ1 �= 0, it follows that T is a smooth one dimensional surface
passing through the base point U = U∗ and transversal to R1 at that point, and hence
the one wave curves cut the transition surface transversally in a neighborhood of U∗.

For convenience, choose the signs in (2.1)-(2.3) so that they agree with the signs
in the gas dynamics example (2.11)-(2.13). That is, assume

∇λ1 · R1 > 0,(3.2)

L1 · (g − fa)|U=U∗ > 0,(3.3)
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L2 · (g − fa)|U=U∗ < 0.(3.4)

Under these assumptions, the solution of the Riemann problem is diagrammed
in the figures below. Before discussing the solution of the Riemann problem, we first
show that there is no loss of generality in the choice of signs (3.2)-(3.4), and discuss
the significance of the sign in (2.4).

To start, note that we can fix the sign in (3.2) by choosing the orientation of R1.
We next show that the signs in (3.3) and (3.4) fix the convexity of standing wave
curves relative to the r and s coordinate axes, and the sign in (2.4) then determines
whether the zero speed shock curve, (c.f. [7]), lies inside or outside the corresponding
standing wave curve, both of which eminate from the same point on the transition
surface. More precisely, we show that (3.3) fixes the sign of d2a

dr2 , and then (3.4)
fixes the sign of d2s

dr2 at the point where a standing wave curve Us(r) crosses the
transition surface λ1 = 0. Then, with the choice of signs in (3.2)-(3.4), we show
that the negative, [respectively positive], sign in (2.4) implies that zero speed shock
curves, which emanate from points on the transition surface, break to the inside,
[respectively outside], of the corresponding standing wave curves that emanates from
the same point on the transition surface, in a neighborhood of U = U∗, c.f. [7].

To this end, let Us(x) ≡ (as(x), ws(x)) denote a standing wave curve, obtained
from (1.3) by assuming no temporal dependence. That is, Us satisfies

Df

Dw
· dw = (g − fa)da.(3.5)

Multiplying by Li on the left, i = 1, 2, we obtain

λ1L1 · dw = L1 · (g − fa)da,(3.6)
λ2L2 · dw = L2 · (g − fa)da.(3.7)

Using L1 · dw = dr, L2 · dw = ds, we obtain

λ1dr = L1 · (g − fa)da,(3.8)
λ2ds = L2 · (g − fa)da,(3.9)

which leads to

da

dr
=

λ1

L1 · (g − fa)
,(3.10)

ds

dr
=

λ1 · {L2 · (g − fa)}
λ2 · {L1 · (g − fa)} .(3.11)

Note that (3.10) implies that standing wave curves are tangent to 1-wave curves at
the transition surface λ1 = 0. We now show that (3.4) implies that this tangency
is quadratic. (Since shock wave curves have cubic tangency with rarefaction curves,
this implies that shock curves emanating from left states on Us and crossing into
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the convex side of the standing wave curve, must cross the standing wave curve at a
unique point on the opposite side of T ). So consider the standing wave curve at a
point on the transition surface T . Then (3.10), (3.11) and (3.3) imply that

d2a

dr2
=

1
L1 · (g − fa)

dλ1

dr
> 0,(3.12)

d2s

dr2
=

L2 · (g − fa)
λ2L1 · (g − fa)

dλ1

dr
< 0,(3.13)

gives the curvature in a and s of the standing wave curve at a point on the transition
surface. By (3.12), we have shown that (3.3) determines the sign of d2a

dr2 , and (3.4)
determines the sign of d2s

dr2 along a standing wave curve at the point where it crosses
the transition surface, as claimed.

We can now show that (2.4) determines whether the zero speed shock curves break
to the left or to the right of the standing wave curve at the point on the transition
surface at which they emanate. To define the zero speed shock curve, start with a
fixed standing wave curve Us(r). This curve crosses the transition surface at a unique
point in a neighborhood of U∗, and so as not to introduce more notation, assume
without loss of generality that this point is U∗ itself. By our sign conventions, the
wave speed λ1 increases moving to the right through the transition surface, (that is,
toward increasing r), along the standing wave curve Us(r) in the (r, s)-plane. Consider
the portion of a standing wave curve that lies to the right of the transition surface;
that is, consider Us(r) = (as(r), us(r), vs(r)) for r > r∗, where Us(r∗) = U∗ ∈ T .
Then λ1 increases from λ1(U∗) = 0 as r increases from r = r∗ along Us(r), and thus it
follows that for each r > r∗, there is a unique state Ũs(r) on the left of the transition
surface such that the shock [Us(r), Ũs(r)] is a zero speed shock when the left state of
the shock is Us(r) and the right state is Ũs(r). We call the curve Ũs(r) the zero speed
shock curve associated with the standing wave curve Us(r). (This is diagrammed in
Figures 1 and 2, in the cases when the standing wave curve lies to the left and right
of the zero speed shock curve, respectively, assuming normalization (3.2)-(3.4). The
dotted line denotes the zero speed shock curve, and its associated standing wave curve
is drawn as the parabolic curve through state U −U∗. Our convention is that the zero
speed shock curve is parameterized by values of r > r∗ that parameterize Us on the
right of T , and observe that Us(r) and Ũs(r) are curves that lie at the same value
of a. As a parameterized curve, Ũs(r) lies to the left of T , and emanates from the
state U = U∗, where it is tangent to R1.) Note that since shock curves have third
order tangency with s = const at the state UL, and the standing wave curves have
quadratic tangency, it follows that the shock curves emanating from left states on
Us(r) for r > r∗, always break transversally into the region below the standing wave
curve, and hence, in a sufficiently small neighborhood, such shock curves intersect the
standing wave curve Us at exactly two points: at the left state UL = Us(r) on the
right of T , and at a unique point UR on the left of T . We now show that, (with the
choice of signs in (3.2)-(3.4)), the point Ũs(r) on the zero speed shock curve always
lies on the shock curve emanating from UL between UL and UR when the sign in
(2.4) is negative, (that is, the shock wave [UL, UR] has negative speed), while the
point UR lies on the shock curve emanating from UL between UL and Ũs(r) when
the sign in (2.4) is positive, (so that the shock wave [UL, UR] has positive speed in
this case). To this end, consider the zero speed shock [Us(rs), Ũs(rs)], rs > r∗. (We
use rs in this argument to indicate the r-parameterization of Us on the right of T .)
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Since the shock has zero speed, the Rankine-Hugoniot jump conditions imply that
f(Us(rs)) = f(Ũs(rs)), and as(rs) = ãs(rs), so we can write

f(as(rs), ũs(rs), ṽs(rs)) = f(as(rs), us(rs), vs(rs)).(3.14)

Using the condition for a standing wave df = gda, we can express the increments df
on the left and right sides of (3.14), corresponding to an increment drs, by

df = fa(Ũs)das +
D

Dw
f(Ũs)dw̃s = g(Us)das,(3.15)

which leads to

D

Dw
f(Ũs)dw̃s = [g(Ũs) − fa(Ũs)]das + [g(Us) − g(Ũs)]das.(3.16)

But

[g(Us) − g(Ũs)] =
D

Dw
g(Ũs) · (Ws − W̃s) + O(|Ws − W̃s|2),(3.17)

and

Ws − W̃s = εR1(Ũs) + O(|Ws − W̃s|2),(3.18)

where

ε = O(|Ws − W̃s|).(3.19)

Multiplying (3.16) by Li, i = 1, 2, using L1 · Df
Dw = λ1 ·L1 = λ1∇r, L2 · Df

Dw = λ2 ·L2 =
λ2∇s, and using (3.17) and (3.18), we obtain the derivatives of a and s with respect
to the value of r on the zero speed shock curve to the left of T ,

da

dr
=

λ1

L1 · (g − fa)da + ε
(
L1 · Dg

Dw · R1

) + O(ε2),(3.20)

ds

dr
=

λ1

λ2

L2 · (g − fa) + ε
(
L2 · Dg

Dw · R1

)

L1 · (g − fa) + ε
(
L1 · Dg

Dw · R1

) + O(ε2).(3.21)

Note that setting ε = 0 in (3.20), (3.21) gives the formulas (3.10), (3.11) for the
corresponding derivatives of the standing wave curve at U = U∗. Furthermore, taking
the derivative of (3.21) with respect to ε at ε = 0, we see that the zero speed shock
curve will break transversally to one side or the other of the standing wave curve at
U = U∗ if the determinant in (2.4) is non-zero. Using the choice of signs in (3.2)-
(3.4), it follows that Ũs(r) lies to the right, [respectively left], of Us(r) for r < r∗ if
the determinant in (2.4) is positive, [respectively negative], (diagrammed in Figures
1 and 2, respectively), as claimed.
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The solution of the Riemann problem is diagrammed in Figures 3-10, assuming
the normalization (3.2)-(3.4). As an entropy condition we take the condition that the
change in a is monotone along standing waves in a solution. This allows for what we
call triple composite standing waves, and also entails a non-uniqueness of solutions,
and a corresponding lack of continuous dependence of the solutions on UL and UR.
This was observed in the scalar case in [14, 7], and represents an interesting compli-
cation in the structure of the possible time asymptotic wave patterns. Even so, the
analysis here shows that this interesting structure is canonical in a neighborhood of
a state of resonance. The analysis of the Glimm scheme for the scalar case treated
in [14, 7] leads to additional entropy conditions that further restrict the admissible
solution of the Riemann problem. In particular, the Lw minimization principle in-
troduced in [7], determined a unique solution of the Riemann problem, except for an
inherent duplicity of solutions at boundaries where the qualitative wave structure of
solutions changes. For our purposes here, we make no further entropy restrictions,
c.f. [7].

Figures 3-6 give the solution of the Riemann problem in the case when the zero
speed shock curve, (drawn as a dashed, downward parabolic curve to the left of T
in each diagram), lies to the right of the standing wave curve, (the case of a positive
sign in (2.4)), and Figures 7-10 give the case when the zero speed shock curve lies to
the right of the standing wave curve, (the case of a negative sign in (2.4)), according
to the four cases aL less than or greater than aR, and UL left or right of T . (The
gas dynamics system (1.4)-(1.6) is of the type diagrammed in Figures 3-6.) To keep
the diagrams as simple as possible, we make the following idealizations. First, the 1-
wave curves and 2-wave curves are drawn as horizontal and vertical lines, respectively.
More specifically, the third order tangency of shock curves and rarefaction curves is
neglected as a higher order effect relative to the quadratic tangency of standing wave
curves and 1-wave curves in each diagram. Also, the states at level a = aR are drawn
along a single horizontal line. In fact, the 1- and 2-wave curves lie at constant a, so the
change in a in a Riemann problem enters as a jump across the standing waves. Thus,
the states at level a = aR would actually be a curve of states obtained by maintaining
the condition ∆a=aR − aL along the standing wave in the solution. The value of a
changes quadratically along standing wave curves, and by our conventions, a takes a
minimum at the point of intersection of the standing wave with the transition surface.

The dark curves in Figures 3 − 10 represent states that can be reached by a
1-wave, or by 1-waves and the critical standing wave that marks the place where
the 1-waves and standing waves change their relative speed. In each diagram, the
solution is a combination of 1-waves and standing waves, followed by a 2-wave, where
the order of 1-waves and standing waves is determined by taking the slower wave first.
In particular, by (3.2)-(3.4), 1-waves with left state UL to the right of T have positive
speed, (and hence come after the zero speed standing waves moving from left to right
in the xt-plane), unless the 1-wave is a shock wave with a left state to the left of the
zero speed shock curve.

In the cases of Figures 3-10 excluding the cases of Figures 5 and 9, the solution
of the Riemann problem can contain what we call triple composite standing waves.
This is a standing wave that consists of a standing wave to the right of T , followed
by a zero speed shock wave, followed by a different standing wave to the left of T ,
where the sum of the changes in a along the standing waves is ∆a = aR − aL. Since
all waves move with zero speed, a triple composite standing wave can be treated as
a single wave. In each diagram, the region between the two vertical dashed lines,
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(which actually represent 2-wave curves), define the values of UR for which there is
a solution [UL, UR] that contains a triple composite standing waves. We now discuss
the diagrams individually.

Discussion of Figure 3: The dashed line emanating from state U∗ is the zero speed
shock wave. The corresponding standing wave curve is drawn to the right of T as the
dark, downward parabolic curve emanating from the state U∗, continuing to the left
of T as the solid parabolic curve emanating from U∗. To obtain the solution for given
right state UR that lies to the right of state D in the figure3 , start at UL, take the
1-wave curve, (the horizontal line through UL), to an intermediate state left of U∗,
follow this by the standing wave curve to the level a = aR, (drawn as a horizontal
line), and then take a two wave curve at level aR to UR. When UR lies between the
2-wave curves through D and E, take the 1-wave to U∗, (a rarefaction wave), take
the triple composite standing wave to C, and then the two wave from C to UR; that
is, the solution is UL → U∗ → A → B → C → UR. The triple composite standing
wave is the standing wave from U∗ to A followed by the zero speed shock from A to B
followed by the standing wave from B to C. Finally, if UR lies to the right of state E,
take the rarefaction wave from UL to U∗, the critical standing wave from U∗ to level
aR, and then a positive speed 1-wave at level aR to a state right of E that connects by
a 2-wave to the state UR. In this case the solution of the Riemann problem is unique.

Discussion of Figure 4: The solution is a negative speed 1-shock followed by a
standing wave followed by a two wave when the state UR lies to the left of state D.
When UR lies between D and E, the solution consists of a triple composite wave to
a state between D and E, followed by a 2-wave to UL, for example, UL → A → B →
C → UR, diagrammed in the figure. For UR to the right of state E, the solution
consists of a standing wave followed by a positive speed 1-wave followed by a 2-wave.
In this case the solution of the Riemann problem is unique.

Discussion of Figure 5: The solution consists of a 1-wave followed by a standing
wave followed by a 2-wave. In this case the solution of the Riemann problem is unique.

Discussion of Figure 6 : The solution consists of a negative speed shock wave, (to
a state left of D), followed by a standing wave for states UR which lie to the left of
state F . However, states between F and G can also be solved by a triple composite
standing wave followed by a 2-wave, as in the solution UL → A → B → C → UR, or
by a negative speed shock to a state left of E, followed by a standing wave, and then
a 2-wave. When UR lies to the right of state G, the solution consists of a standing
wave followed by a positive speed 1-wave followed by a 2-wave. In this case there is
a triple non-uniqueness of solutions when UR lies between states F and G.

Discussion of Figure 7: For states UR to the left of state D, the solution consists
of a negavive speed 1-wave followed by a standing wave to level a = aR, followed by
a 2-wave. For states UR between D and F, the solution has a triple multiplicity: a
1-wave followed by a standing wave followed by a 2-wave; or a 1-rarefaction wave to
U∗ followed by the critical standing wave to B followed by a positive speed 1-wave to
states between D and F, followed by a 2-wave to UR; or else solutions with a triple
composite standing wave like the solution UL → U∗ → A → C → E → UR. When UR

lies to the right of state F, the solution reduces to the single solution UL → U∗ → B

3We say the state lies to the right of a state if it lies to the right of the 2-wave curve through
that state, drawn as a vertical line in the diagrams.
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followed by a positive speed 1-wave followed by a 2-wave. In this case there is a triple
multiplicity of solutions when UR lies between states D and F.

Discussion of Figure 8: For states UR to the left of state D, the solution consists
of a negative speed 1-wave followed by a standing wave to level a = aR, followed by
a 2-wave. For states UR between D and E, the solution has a triple multiplicity: a
negative speed 1-shock followed by a standing wave followed by a 2-wave; or the critical
standing wave from UL to E followed by a positive speed 1-wave to a state between D
and E, followed by a 2-wave to UR; or else a solution with a triple composite standing
wave like the solution UL → A → B → C → UR. When UR lies to the right of state
E, the solution reduces to the single solution UL → H followed by a positive speed
1-wave followed by a 2-wave. In this case there is a triple multiplicity of solutions
when UR lies between states D and E.

Discussion of Figure 9: This agrees with Figure 5.

Discussion of Figure 10: For states UR to the left of state F , the solution consists
of a negavive speed 1-wave followed by a standing wave to level a = aR, followed by
a 2-wave. For states UR between F and G, the solution consists of a triple composite
standing wave to a state between F and G, followed by a 2-wave. And for right states
UR to the right of G, the solution consists of a critical standing wave to level a = aR,
followed by a positive speed 1-wave, followed by a 2-wave to UR. In this case the
solution of the Riemann problem is unique.
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