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ASYMPTOTIC EXPANSIONS OF EXPONENTIAL INTEGRALS
AND NEWTON DIAGRAMS ∗

STÉPHANE ROSSIGNOL†

Abstract. We study the asymptotic expansion, as λ → 0+, of integrals of the form JH,χ(λ) =∫
exp(H(x)/λ).χ(x)dx , where H and χ are smooth from IRp to IR, H has a unique (degenerate)

maximum at 0, χ has compact support a neighborhood of 0.
If p = 2 or if the Newton Diagram of H contains only one facet, we give an algorithm to compute

explicitely the complete asymptotic expansion of JH,χ(λ). In the general case, we show how to write
JH,χ(λ) as a linear combination of simpler integrals, involving only the fundamental part of H. We
give an equivalent of the first term of the expansion of JH,χ(λ), and specify the exact form of this
first term under a simple additional condition.

1. Introduction. Computations involving integrals of the type

JH,χ(λ) =
∫

exp(H(x)/λ).χ(x)dx

as a small parameter λ tends to 0+, appear very often in analysis and in probability.
For χ and H smooth, let us recall that Laplace’s method shows that for the asymptotic
expansion of J(λ), the major contribution comes from neighborhood of points where
H attains its absolute maximum. We will assume in this article, that there is a unique
such point, which will be 0 to simplify, with H(0) = 0. We have then henceforth,
H(x) ≤ H(0) = 0 for all x ∈ IRp, H of absolute isolated maximum at 0. χ and H will
be in C∞(IRp, IR), and χ with compact support a neighborhood of 0. H ′(0) = 0 and
H”(0) ≤ 0.
H”(0) negative definite is the so-called nondegenerate case. Under this hypothesis,
Morse’s lemma is valid, the asymptotic expansion is known and easily computable
(see Combet [3] p.6, or Wong [14] p.495).
If the rank of H”(0) is between 1 and p− 1, one can dissociate a degenerate part and
a nondegenerate part (see Tougeron’s lemma, in Combet [3] p.30-34). That’s why we
will only study the degenerate case with H”(0) = 0.
In Arnold-Varchenko [2] and Varchenko [12], is shown the existence of a complete
asymptotic expansion in powers of λ and lnλ. It is based on toric resolutions of
singularities, but for analytic H only, and especially the proof is not constructive.
The computation of the coefficients then is very difficult. To compute them explicitly,
it seems necessary to avoid desingularisation. It is what Vasil’ev does, he gives the first
term, for analytic functions. Dostal and Gaveau [5] give the first term for a polynomial
function H with negative coefficients, when χ = 1, under the hypothesis that at most
two faces of the Newton polyhedron intersect the axes bissectrice. Kaminski and Paris
[8], using Melling-Barnes integrals, give the expansion for a class of functions if p = 2
or p = 3. Denef and Sargos [4] obtain information related to the Newton Polyhedron
on the poles of

∫
fs
+(x)φ(x)dx where fs

+ = max(fs, 0), using change of variables and
dissections in IRp.

We provide an algorithm to compute the complete sequence of the coefficients
of the expansion when p = 2 or when the Newton diagram of H has only one facet
(Theorem 3). Otherwise, Theorem 1 shows that the asymptotic expansion of JH,χ(λ)
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can be obtained from that of simpler integrals involving only the fundamental part of
H. Theorem 2 gives an equivalent of the first term. The coefficient of this first term
is computed under a simple additional condition.

We will assume that χ and H are smooth functions from IRp to IR, with χ of
compact support a neighborhood K of 0, and H of unique isolated absolute maximum
at 0. The other hypotheses will be relevant to the Newton diagram of H at 0.

Let us recall that if H(x) ∼ ∑
µ∈INp aµxµ as x → 0 is the Taylor series of H at

0, its Newton polyhedron Π(H) is the convex hull of {µ ∈ INp \ {0} ; aµ �= 0} + IRp
+ ,

its Newton diagram ∆(H) is the union of the compact faces of Π(H).
We show (see Theorem 3) that if H is convenient, of nondegenerate principal part

(in a meaning precise later), then H has the asymptotic expansion, as λ → 0+

JH,χ(λ) ∼
∑

k

N(k)∑
l=0

ck,lλ
k.(ln λ)l

where we explain how to compute explicitly the coefficients ck,l if p = 2 or if ∆(H)
contains only one facet. The coefficients ck,l will be functions of χ and H, and
especially of the Newton polyhedron of the phase H (l is here an integer, and the
real k form an unbounded increasing sequence). They can be computed by applying
successively Propositions 1 to 7. These propositions provide an algorithm to evaluate
the coefficients.

This algorithm is a multistep process of simplification of the integral JH,χ(λ)
when H and χ satisfy the Hypothesis H1. It contains 2 main parts:

- First, Propositions 1 to 5 reduce the problem to the study of L(θ, γ, P ) =∫
IRp

+
xθ−1(ln x)γ . exp(P (x)

λ )dx where P is a polynomial of Newton Diagram ∆(H)
(more precisely under Hypothesis HP). These 5 propositions are used to prove Theo-
rem 1.

- Second, Propositions 6 and 7 give the computation of the asymptotic expansion
of L(θ, γ, P ), when (θ, γ, P ) satisfies Hypothesis HP, if p = 2 or if the Newton diagram
has only one facet.

In Proposition 1 (truncation), the integral is replaced by one taken over a small
ball B(δ) centered at the origin. In Proposition 2 (approximation of the amplitude)
is shown that the amplitude χ can be replaced by the first terms of its Taylor series
at 0. Proposition 3 (reduction of the phase) replaces the phase function H by its
principal part Ĥ, i.e. the terms of its Taylor series coming from its Newton diagram.
Proposition 4 (extension of the domain) simply removes the bound B(δ).

Proposition 5 allows to simplify Ĥ by removing the part of Ĥ coming from a facet
of ∆ (except for the vertices). Applying Proposition 5 several times leads to integrals
with phases arising from vertices and individual facets of ∆.

Proposition 6 allows to remove one vertex of the Newton diagram ∆ of P (when
p = 2). More precisely, L(θ, γ, P ) is written as a linear combination of integrals of
the same type, but with Newton diagram ∆∗ having one vertex (and one facet) less
than ∆. This procedure can be reiterated, to remove progressively the vertices, until
having integrals of the type L(θ, γ, P ) with P of Newton diagram with only one facet.

This easy case is solved by Proposition 7 (for any p ≥ 2).
This paper is organized as follows. In Section 2 we give the most important

definitions, we state the theorems and detail in Propositions 1 to 8 the algorithm of
simplification of the integral and of computation of the coefficients of the asymptotic
expansion. The proofs of Propositions 1 to 5 are given in Section 3. Proposition 6
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is proven in Section 4 and Proposition 7 in Section 5. In Section 6 we develop an
example of calculus to make easier the understanding of the algorithm.

2. Statement of the results. In this section we first introduce the most im-
portant definitions. After stating our theorems, we give an algorithm of simplification
of JH,χ(λ), then explain how it is possible to remove progressively the vertices of
the Newton diagram (for p = 2). Finally, we show how to compute the complete
asymptotic expansion when the Newton diagram has a unique facet (for any p).

2.1. Definitions and notations. Henceforth H is a smooth function on IRp,
with H(0) = 0, and H(x) ≤ 0 for any x ∈ IRp. We recall first a few definitions.

2.1.1. Newton polyhedron and Newton diagram. For x = (x1, ..., xp) ∈
IRp, µ = (µ1, ..., µp) ∈ INp, we set xµ =

∏p
i=1 xµi

i .
Let B ⊆ INp \ {0}.
- The Newton polyhedron of B is Π(B) = Conv(B + IRp

+). It’s a convex polyhedron.
- The Newton diagram ∆(B) of B is the union of the compact faces of Π(B).
- ∆ is said to be a Newton diagram if there exists B ⊆ INp \ {0} such that ∆ = ∆(B).
- Let us put then S∆ = {µ ∈ INp ;µ vertex of ∆} (often denoted simply by S)
- The cone C(B) generated by a part B of IRp

+ is the set of linear combinations of
elements of B, with non negative coefficients. The interior of C(B) is denoted by
intC(B).
- A face F of ∆ is the intersection of ∆ with any supporting hyperplane.
If l(µ) =

∑
diµi = 1 is the equation of such an hyperplane, then for any µ ∈ Π,

l(µ) = 1 ⇔ µ ∈ F and l(µ) > 1 ⇔ µ ∈ Π \ F
- A facet is a face of codimension 1.

2.1.2. Newton diagram of a function, convenient functions. Recall H ∈
C∞(IRp, IR), with H(0) = 0, and consider its Taylor series at the origin H(x) ∼∑

µ∈INp aµxµ .
- The support of H is Σ(H) = {µ ∈ INp ; aµ �= 0}.
- The Newton polyhedron Π(H) and the Newton diagram ∆(H) of H are the Newton
polyhedron and the Newton diagram of the support of H i.e. Π(H) = Π(Σ(H)) and
∆(H) = ∆(Σ(H)).
- H is called convenient (or suitable) if ∆(H) intersects each coordinate axis.
- If H is analytic and have an isolated maximal point at 0, then H is always convenient
(see Vasil’ev [13] Prop 1.2). If H is non analytic, a counterexample is H(x, y) =
−x2(1 + exp(−1/y2)) smooth but not convenient.
- The polynomial Ĥ(x) =

∑
µ∈∆ aµxµ is called the principal part of the expansion of

H at 0, where ∆ = ∆(H).
- For any subset B of ∆, we set HB(x) =

∑
µ∈B aµxµ

2.1.3. Index of a point. Let ∆ = ∆(B) be a Newton diagram. For any facet
F of ∆, let us define AF (µ) =

∑p
i=1 diµi , where

∑p
i=1 diµi = 1 is the equation of the

hyperplane including F . The map µ 	→ AF (µ) is a linear form.
We set A∆(µ) = inf(AF (µ); F facet of ∆). We will often write A(µ) for A∆(µ)

where ∆ = ∆(H).
One can easily show that A∆(µ+µ′) ≥ A∆(µ)+A∆(µ′) and that A∆(tµ) = tA∆(µ)

for t ∈ IR+

Definition. AF (µ) is called the index of µ with respect to the facet F . Similarly
A∆(µ) is called the index of µ with respect to the Newton Diagram ∆. Note that for
µ = (1; ...; 1), A∆(µ) is the index β of the Newton diagram ∆ (see Arnold [1] p.22-23).
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Index of a function. If χ is a smooth function on IRp, and ∆ a Newton diagram,
we define the index of χ with respect to ∆ by

A∆(χ) = inf{A∆(µ); qµ−1 �= 0}
where χ(x) ∼ ∑

µ∈INp qµxµ is the Taylor series of χ at 0.
If χ(0) �= 0, it is clear that A∆(χ) = A∆(1)

Remarks. If µ ∈ C(F ), AF (µ) = d(O,µ)
d(O,N) where {N} = (0, µ) ∩ F ,

and if µ ∈ C(∆), A∆(µ) = d(O,µ)
d(O,P ) where {P} = (0, µ) ∩ ∆

d is here any distance.
A∆(µ) = 1 ⇔ µ ∈ ∆
A∆(µ) ≥ 1 ⇔ µ is ”above” ∆.

2.1.4. Nondegeneracy. (i) The principal part Ĥ of H is said to be IR-
nondegenerate if ∇HF �= 0 on (IR∗)p, for every face F of ∆ (see Arnold [2], Kouch-
nirenko [9]).
(ii) Ĥ is said to be extremally nondegenerate (in Vasil’ev [13] meaning), if there exists
c > 0, such that, for x in a neighborhood of 0 :

Ĥ(x) ≤ −c.
∑

µ∈S∆

xµ

For every smooth function H on IRp, with H(0) = 0 and H(x) ≤ 0 for every x ∈ IRp,
the next lemmas are valid:

Lemma 1. For every face F of ∆, HF (x) ≤ 0, ∀x ∈ IRp.

Lemma 2. Every vertex µ′ of ∆ has even coordinates, and aµ′ < 0.

The next lemma gives 4 equivalent characterizations of the nondegeneracy.

Lemma 3. For Ĥ principal part of H, let :

(iii) For any face F, HF < 0 on (IR∗)p

(iv) For any face F, HF < 0 on (IR∗)p and Ĥ < 0 on (IR∗)p

Then (i),(ii),(iii) and (iv) are equivalent.

According to Lemma 3, the polynomial Ĥ principal part of H will be said to be
non degenerate if one of the equivalent conditions (i),(ii),(iii),(iv) is true.

2.1.5. First term of the expansion of L(θ, γ, P ). For a polynomial P , we
give in Lemma 4 an estimation of the first term of

L(θ, γ, P ) =
∫

IRp
+

xθ−1.(ln x)γ . exp
(

P (x)
λ

)
dx

which will be useful subsequently.

Hypothesis HP. We say that (θ, γ, P ) satisfies the HP hypothesis if the following
assumptions hold:

• P is a polynomial which is its own principal part, i.e. denoting by ∆ the
Newton diagram of P , we can write P as P (x) = P̂ (x) =

∑
µ∈∆ aµxµ. More-

over we assume that P is non degenerate, P (x) ≤ 0, P (0) = 0, but 0 is not
necessarily an isolated maximum of P , and P may not be convenient.
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• θ ∈]0;+∞[p, with θ ∈ intC(∆) and γ ∈ INp.

Lemma 4. Let LB(θ, γ, P ) =
∫

B
xθ−1.(ln x)γ . exp

(
P (x)

λ

)
dx, for any Borel set B

of IRp
+, where (θ, γ, P ) satisfies the HP hypothesis. Then

(i) LB(θ, γ, P ) is absolutely convergent.
(ii) For any ε > 0,

LB(θ, γ, P ) = o(λA∆(θ)−ε) as λ → 0+

In particular

L(θ, γ, P ) = o(λM )

as soon as A∆(θ) > M
(iii) If in addition θ is in the interior of the cone generated by a facet F of ∆, then
as λ → 0+

LB(θ, γ, P ) = Cγ(F ).λA∆(θ).(ln λ)γ1+..+γp

∫
B

xθ−1 exp (PF (x)) dx.(1 + o(1))

with Cγ(F ) =
∏p

i=1(AF (ei))γi and e1 = (1; 0..; 0), .., ep = (0; ..; 0; 1)

Remarks. We are mainly interested by L(θ, γ, P ) = LB(θ, γ, P ) for B = IRp
+.

(i) and (ii) remain true for the integral
L′(θ, γ, P ) =

∫
IRp

+
xθ−1. |(ln x)|γ . exp

(
P (x)

λ

)
dx and on the other octans, i.e. for

L”(θ, γ, P ) =
∫
IRp |x|θ−1

. |(ln |x|)|γ . exp
(

P (x)
λ

)
dx

Index of an integral. We call index of the integral L(θ, γ, P ) the index A∆(θ) of
θ with respect to the Newton Diagram ∆. It gives a useful order of magnitude of
L(θ, γ, P ) as λ → 0+.
Similarly, A∆(θ) is the index of L′(θ, γ, P ) and L”(θ, γ, P )

2.2. The theorems. We will now state our main results. Let us first give the
needed hypothesis on H and χ.

Hypothesis H1. We say that χ and H satisfy the H1 hypothesis if the following
assumptions are valid:

• χ ∈ C∞(IRp, IR), with support K a compact neighborhood of 0
• H ∈ C∞(IRp, IR), of unique isolated maximal point at 0, with H(0) = 0.

Moreover, H is convenient, of non degenerate principal part Ĥ.
We will denote by

∑
µ∈INp qµxµ and

∑
µ∈INp aµxµ the Taylor series at 0 of χ and

H respectively.
Theorem 1 shows that JH,χ(λ) has the same asymptotic expansion that a linear

combination of simpler integrals, involving only monomials coming from the vertices
and one facet of the Newton diagram of H.

Theorem 1. Let χ and H satisfy H1. Then for any M ≥ 0, there exist constants
dk,θ and dk,θ,F (only finitely many different from 0), where k ∈ IN, θ ∈ IN∗p, F belongs
to the set of facets of ∆, such that as λ → 0+

(a) JH,χ(λ) =
∑

k

λ−k
∑

θ

dk,θ

∫
IRp

xθ−1 exp

(
Ĥ(x)

λ

)
dx + o(λM )

(b) JH,χ(λ) =
∑

k

λ−k
∑
θ,F

dk,θ,F

∫
IRp

xθ−1 exp
(

HS∪F (x)
λ

)
dx + o(λM )
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Here ∆ is the Newton diagram of H, HS∪F (x) =
∑

µ∈S∪F aµxµ and Ĥ(x) =∑
µ∈∆ aµxµ

Proof of Theorem 1. (a) comes from Propositions 1 to 4 applied successively.
Then, the repeated application of Proposition 5 leads to (b).

Theorem 2 gives an equivalent of the first term of JH,χ(λ), and specifies the exact
form of this first term under a simple additional condition.

Put E = {θ ∈ INp; qθ−1 �= 0 and A∆(θ) = A∆(χ)}. E is the set of monomials of
the Taylor series of χ contributing to the leading term of the asymptotic expansion
of JH,χ(λ). It is the part of the Taylor series of χ of minimal indices with respect to
∆. E is always finite.

Subsequently, we denote (0; ...; 0) ∈ INp by 0 and (1; ...; 1) by 1.

Theorem 2. If χ and H satisfy H1, the first term of the expansion of JH,χ(λ)
as λ → 0+ can be computed with

(a) JH,χ(λ) =
∑
θ∈E

qθ−1

∫
IRp

xθ−1 exp

(
Ĥ(x)

λ

)
dx + o

(
λA∆(χ)

)
Moreover, if for any θ ∈ E, the line (0; θ) intersects only one facet of ∆, then

(b) JH,χ(λ) = λA∆(χ)
∑
θ∈E

qθ−1

∫
IRp

xθ−1 exp (HF (x)) dx + o
(
λA∆(χ)

)

Remark. If χ(0) �= 0, then E = {1}, A∆(χ) = A∆(1) and Theorem 2 becomes

(a) JH,χ(λ) = q0

∫
IRp

exp

(
Ĥ(x)

λ

)
dx + o

(
λA∆(1)

)
If the line (0; 1) intersects only one facet F of ∆, then

(b) JH,χ(λ) = λA∆(1)q0

∫
IRp

exp (HF (x)) dx + o
(
λA∆(1)

)
Proof of Theorem 2. (a) is obtained with Propositions 1 to 4, taking M = A∆(χ)

in Proposition 2 and Proposition 3.
(b) is due to Lemma 4 (iii) applied on (a).

In the bidimensional case (or in the rather simple case of a Newton diagram
limited to a unique facet), the complete asymptotic expansion is given by Theorem 3.

Theorem 3. Let JH,χ(λ) =
∫

exp(H(x)/λ).χ(x)dx where χ and H satisfy H1
hypothesis. If p = 2 or if ∆ contains only one facet, then JH,χ(λ) has the asymptotic
expansion :

JH,χ(λ) ∼
∑

k

N(k)∑
l=0

ck,lλ
k.(ln λ)l as λ → 0+

The ck,l are computed by applying successively to JH,χ(λ) Propositions 1 to 7.
k here belongs to an increasing and unbounded sequence of real numbers, l ∈ IN.
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Proof of Theorem 3. If ∆ contains only one facet, Theorem 3 comes staightfully
from Proposition 7 applied to Theorem 1 (a).

If ∆ contains several facets but p = 2, the repeated application of Proposition
6 to Theorem 1 (b) will allow to remove vertices of ∆, leading to the same type of
integral with a unique facet. The use of Proposition 7 is then sufficient to end the
proof.

Note that the existence of this expansion was known for χ and H analytic (see
Combet [3], or Arnold-Varchenko [2], Varchenko [12]), but without real method to
compute the coefficients.

2.3. Algorithm of simplification of JH,χ(λ). The proof of Theorem 1 is ob-
tained by applying successively Propositions 1 to 5. These 5 propositions form an
algorithm of simplification of our integral JH,χ(λ).

For a better understanding of this algorithm, we recommend to follow the detailed
example in Section 6, while reading the propositions.

Subsequently, H and χ are assumed to satisfy Hypothesis H1.
We put B(δ) = {x ∈ IRp; ‖x‖ < δ} for any δ > 0.

2.3.1. Truncation. Let us first show that, as usual with Laplace’s method, in∫
exp(H(x)/λ).χ(x)dx the major contribution comes from a neighborhood of 0, the

point where H attains its greatest value:

Proposition 1. For any δ > 0 such that the ball B(δ) is included in the support
K of χ, there exists d > 0 such that, as λ → 0+∫

χ(x). exp(H(x)/λ)dx =
∫

B(δ)

χ(x). exp(H(x)/λ)dx + O
(
e−d/λ

)

2.3.2. Approximation of the amplitude. It is shown that the asymptotic
expansion of JH,χ(λ) to order M , is not modified if the beginning of the Taylor series
of χ at 0 is put instead of χ(x) :

Proposition 2. Let
∑

θ∈INp qθx
θ =

∑
θ∈IN∗p qθ−1x

θ−1 be the Taylor series of χ
at 0.
Then for each M ∈ IR+, for δ > 0 small enough, as λ → 0+∫

B(δ)

χ(x). exp(H(x)/λ)dx =
∑

A∆(θ)≤M

qθ−1

∫
B(δ)

xθ−1. exp(H(x)/λ)dx + o(λM )

where A∆(θ) is the index of θ with respect to the Newton Diagram ∆ of H.

2.3.3. Reduction of the phase. If H �= Ĥ, we will now prove in Proposition
3, that the phase H can be replaced by its principal part Ĥ.
More precisely, in

∫
B(δ)

xθ−1. exp(H(x)/λ)dx =
∫

B(δ)
xθ−1. exp

(
Ĥ(x)+H(x)−Ĥ(x)

λ

)
dx,

we must keep exp
(

Ĥ(x)
λ

)
(because Ĥ includes the leading terms of the Taylor series

of H), but we can expand exp
(

H(x)−Ĥ(x)
λ

)
=

∑∞
k=0

1
k!

(
H(x)−Ĥ(x)

λ

)k

, and forget the
terms corresponding to large k.
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Proposition 3. If θ ∈ IN∗p, M ∈ IR+, there exist polynomials Rk and M ′ ∈ IN,
such that for δ > 0 small enough, as λ → 0+

∫
B(δ)

xθ−1. exp(H(x)/λ)dx =

⎡⎣M ′∑
k=0

1
λk

∫
B(δ)

xθ−1Rk(x). exp

(
Ĥ(x)

λ

)
dx

⎤⎦ + o(λM )

M ′ is the integer part of 1
η0

(M − A∆(θ)).
Here η0 = inf (A∆(µ) − 1;µ ∈ Σ(H) \ ∆(H)) > 0
Rk(x) = 1

k! [
∑

1<A∆(µ)≤M+1 aµxµ]k. In particular, R0 = 1.

η0 is the greatest number such that there is no point of the support of H strictly
between ∆ and (1 + η0)∆.

Developing Rk can lead to terms which are o(λM ). These terms can then be
neglected. To find these terms, one must evaluate the indices of their corresponding
integrals (see Lemma 4 (ii)).

Moreover, k = 0 gives
∫

B(δ)
xθ−1. exp

(
Ĥ(x)

λ

)
dx = o

(
λA∆(θ)−ε

)
, for all ε > 0.

If k ≥ 1, for all ε > 0

1
λk

∫
B(δ)

xθ−1Rk(x). exp

(
Ĥ(x)

λ

)
dx = o

(
λA∆(θ)+kη0−ε

)
(1)

2.3.4. Extension of the domain. Proposition 4 allows to remove the bound
B(δ) = {x ∈ IRp; ‖x‖ < δ}

Proposition 4. Let θ ∈ IN∗p, Ĥ the non degenerate principal part of H. There
exists d′ > 0 such that as λ → 0+:∫

B(δ)

xθ−1. exp

(
Ĥ(x)

λ

)
dx =

∫
IRp

xθ−1. exp

(
Ĥ(x)

λ

)
dx + O(e−d′/λ)

It is clear now that if we apply successively Propositions 1 to 4, we obtain Theorem
1 (a).

2.3.5. Simplification of facets. We want now to transform∫
IRp xθ−1. exp

(
Ĥ(x)

λ

)
dx to prove Theorem 1 (b). This transformation will be

useful in particular to state Proposition 6.
If ∆ has only one facet,

∫
IRp xθ−1. exp

(
Ĥ(x)

λ

)
dx is straightly computed with

Proposition 7. If ∆ has several facets, the support Σ(Ĥ) of Ĥ includes the set S = S∆

of vertices of ∆, and possibly other points.
- If Σ(Ĥ) \ S is empty or included in one facet F , the equation (b) of Theorem 1

is obtained, since here Ĥ = HS∪F .
- If not, Σ(Ĥ)\S is included in m different facets of ∆ (and not less) with m ≥ 2.

To obtain Theorem 1 (b), we must diminish this number from m to 1. This is the
use of Proposition 5, which enables us to decrease this number of facets from m to
m − 1 (with ∆ being not modified). It will allow to write our integrals as a linear
combination of the same type of integrals

∫
IRp xθ′−1. exp

(
HB(x)

λ

)
dx with Σ(HB) \ S

included in m − 1 facets.
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It means that Proposition 5 allows to ”empty” one of the facet of the New-
ton diagram of H. Its repeated application will lead to integrals of the type∫
IRp xθ′−1. exp

(
HS∪Fi

(x)

λ

)
dx where Fi is one facet of ∆, θ′ ∈ IN∗p.

The example studied in Section 6 can help to understand this proposition.

Proposition 5. Let B be a subset of Σ(Ĥ) \ S∆ and θ ∈ IN∗p.
We assume that B is not included in one facet, i.e. B is included in m different

facets F1,..., Fm of ∆ (and not less than m), with m ≥ 2.
Then for any M ∈ IR+, there exists M” ∈ IN such that∫

IRp

xθ−1. exp
(

HS∪B(x)
λ

)
dx

= o(λM ) +
M”∑

k1=0

1
λk1

1
k1!

∫
IRp

xθ−1

⎛⎝ ∑
µ∈∆1

aµxµ

⎞⎠k1

exp
(

HS∪B1(x)
λ

)
dx

+
M”∑

k2=0

1
λk2

1
k2!

∫
IRp

xθ−1

⎛⎝ ∑
µ∈∆2

aµxµ

⎞⎠k2

exp
(

HS∪B2(x)
λ

)
dx

−
M”∑

k1=0

M”∑
k2=0

1
λk1+k2

1
k1!k2!

∫
IRp

xθ−1

⎛⎝ ∑
µ∈∆1

aµxµ

⎞⎠k1
⎛⎝ ∑

µ∈∆2

aµxµ

⎞⎠k2

exp
(

HS∪B0(x)
λ

)
dx

where ∆i = B ∩ (Fi \ ∪j �=iFj), i = 1; 2
and B1 = B \ ∆1, B2 = B \ ∆2, B0 = B \ (∆1 ∪ ∆2)

M” is the integer part of 1
η (M − A∆(θ)) , where η = inf(η1, η2), η1 > 0, η2 > 0

are defined for i = 1; 2 as:
ηi = inf

(
AFj

(µ) − 1;µ ∈ ∆i and Fj �= Fi

)
.

Except a term o(λM ),
∫
IRp xθ−1. exp

(
Ĥ(x)

λ

)
dx has been written as a linear com-

bination of the same type of integrals, but with in exponent a polynomial HS∪Bi
,

where Bi is included in at most m − 1 facets. Reiterating this procedure leads to
integrals

∫
IRp xθ−1. exp

(
HS∪F (x)

λ

)
dx where F is a facet of ∆.

It means that the repeated application of Proposition 5 on∫
IRp xθ−1. exp

(
Ĥ(x)

λ

)
dx gives Theorem 1 (b).

2.4. Removal of vertices (p = 2). According to Theorem 1, we have just now
to evaluate the expansion of

∫
IRp xθ−1. exp

(
HS∪F (x)

λ

)
dx , F any facet of ∆, S the set

of vertices of ∆. If S ⊂ F , Proposition 7 leads to the calculation of the expansion.
For p = 2, if some vertices don’t belong to F (i.e. ∆ �= F ) we show now that we

can remove them. It is the matter of Proposition 6, which allows to remove one of the
bordering vertices of ∆ (i.e. belonging to the boundary of C(∆)). It is sufficient to
study

∫
IR2

+
xθ−1. exp

(
HS∪F (x)

λ

)
dx because the behavior of the integrals on the other

octans are of course similar. We will in fact study a more general integral, i.e.

L(θ, γ, P ) =
∫

IRp
+

xθ−1(ln x)γ . exp
(

P (x)
λ

)
dx

where (θ, γ, P ) satisfies the HP hypothesis, with p = 2.
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Section 6.6 gives an example of use of Proposition 6, which can help to understand
it.

Proposition 6. Assume that (θ, γ, P ) satisfies hypothesis HP, and that there
exists a facet F with P (x) =

∑
µ∈S∪F aµxµ i.e. the support of P is included in S∪F .

Let ν be a bordering vertex of ∆ (i.e. ν /∈intC(∆)), ν /∈ F .
We set P ∗(x) =

∑
µ∈∆\{ν} aµxµ =

∑
µ∈∆∗ aµxµ where ∆∗ is the Newton diagram

of P ∗. Then for each M ≥ 0, there exist constants c′i and c′j,l such that, as λ → 0+

L(θ, γ, P ) = o(λM ) +
∑

i

c′iλ
−iL(θi; γi;P ∗) +

∑
j,l

c′j,lλ
j(ln λ)l

where the sums have only a finite number of terms, i ∈ IN, l ∈ IN. ∆∗ contains one
vertex (and one facet) less than ∆. (θi; γi;P ∗) satisfy the HP hypothesis.

Here are the main steps of the calculus:
1) Write L(θ, γ, P ) as a linear combination of MB , where MB is given in Equation

(12).
2) Put

MB =
∫

IR+

[∫
IR+

φλ(w; t)fλ(w; t)dt

]
dw

with φλ and fλ defined in (19).
3) Use the asymptotic expansion of fλ as t → +∞ in (20) to obtain the decom-

position MB = I1 + I2 + I3 given in (22), and the value of as(λ;w).
4) Set n = c− + (−β2(ν))R̄, where R̄ is the integer part of 1 + M−A∆∗ (b′)

A∆∗ (ν)−1 to have
I3 = o(λM ).

5) Compute I1 =
∫
IR+

[∑n−1
s=0 as(λ,w) < (ln t)k

+t−s−α
+ ;φλ >

]
dw, then come back,

if necessary, to the variable x.
6) Compute the cs(λ,w) and then I2 = − ∫

IR+

[∑n
s=1 cs(λ,w) < δ(s−1) ;φλ >

]
dw

7) Write the final expansion of L(θ, γ, P ).

2.5. Newton Diagram with a unique facet (p ≥ 2). If p = 2, Proposition
6 shows how to remove one vertex ν, with ν � ∈F . Its repeated application will
lead to integrals L(θ, γ, PF ), i.e. where the Newton Diagram has only one facet F .
Proposition 7 deals with this case for any p.

Proposition 7. Assume that (θ, γ, P ) satisfies Hypothesis HP, and that the
Newton Diagram ∆ of P contains only one facet F (i.e. ∆ = F ). Then there exist
constants cl such that :

L(θ, γ, P ) = λAF (θ)

γ1+..+γp∑
l=0

cl(ln λ)l

cl is given by formula (40).

3. Proofs of Propositions 1 to 5.

3.1. Proofs of Lemmas 1 to 3.
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Proof of Lemma 1. Let l(µ) =
∑

diµi = 1 be the equation of a supporting
hyperplane of F . For any µ ∈ Π, l(µ) ≥ 1 and l(µ) = 1 ⇐⇒ µ ∈ F .

For M0 large enough, since H is convenient, as x → 0

H(x) =
∑

l(µ)≤M0

aµxµ + o(
∑

µ∈S∆

xµ)

Now fix x ∈ IRp, and let ε > 0, with ε → 0

H
(
εd1x1, .., ε

dpxp

)
=

∑
l(µ)≤M0

aµ

p∏
j=1

(
εdj xj

)µj + o

⎛⎝ ∑
µ∈S∆

p∏
j=1

(
εdj xj

)µj

⎞⎠
=

∑
l(µ)≤M0

aµεl(µ)xµ + o

⎛⎝ ∑
µ∈S∆

εl(µ)xµ

⎞⎠
with l(µ) ≥ 1 if µ ∈ S∆, so as ε → 0

H
(
εd1x1, .., ε

dpxp

)
=

∑
l(µ)≤M0

aµεl(µ)xµ + o(ε)

=
∑

l(µ)=1

aµεl(µ)xµ +
∑

1<l(µ)≤M0

aµεl(µ)xµ + o(ε)

= εHF (x) + o(ε)

From H ≤ 0 we conclude that HF (x) ≤ 0.

Proof of Lemma 2. For µ′ a vertex of Π, F = {µ′} is a face of ∆, then it satisfies
Lemma 1 :
HF (x) ≤ 0, ∀x ∈ IRp, i.e. aµ′xµ′ ≤ 0, ∀x ∈ IRp.
Thus aµ′ ≤ 0, and we even have aµ′ < 0 since µ′ ∈ Π.

Let us show that µ′
i is even.

aµ′ .(1, ..1,−1, 1, .., 1)µ′ ≤ 0 (here -1 is at the ith place),
i.e. aµ′(−1)µ′

i ≤ 0, which becomes (−1)µ′
i ≥ 0, thus µ′

i is even.

Proof of Lemma 3.
• (i) ⇒ (iii) ?

We know that HF ≤ 0. If HF vanishes at x ∈ IR∗p, then ∇HF vanishes at x.
Then ∇HF �= 0 on IR∗p ⇒ HF never vanishes on IR∗p.

• (iii) ⇒ (i) ?
F is in the hyperplane

∑p
i=1 diµi = 1.

For ε > 0, HF (εd1x1, .., ε
dpxp) =

∑
µ∈F aµ(εd1x1)µ1 ...(εdpxp)µp = ε.HF (x)

∇HF (εd1x1, .., ε
dpxp) = ε∇HF (x) then ∇HF (x) = 0 ⇒

∇HF (εd1x1, .., ε
dpxp) = 0

Thus if ∇HF vanishes on a point of IR∗p, it vanishes on a curve of limit 0 in
IR∗p (with HF (0) = 0). Then HF (x) = 0 on this curve.

• (ii) ⇒ (iii) ? Setting g(x) = Ĥ(x) + c.
∑

µ∈S xµ and gF (x) = HF (x) +
c.
∑

S∩F xµ, we see that g satisfies the same hypothesis than H, so gF ≤ 0,
where HF < gF ≤ 0 in a neighborhood of 0 on IR∗p hence (iii) is true.

• (iii) ⇒ (ii) : just apply in Vasil’ev [13], the Gindikin’s remark in the proof
of Theorem 1.5(2) with f = −Ĥ.

• (iv) ⇒ (iii) is obvious.
• (iii) ⇒ (iv) ? (ii) and (iii) together imply (iv).
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3.2. Proof of Lemma 4. Before proving Lemma 4, we give a change of variables
that will be useful afterwards.

3.2.1. Facet-system change of variables. A facet-system σ = (µ(1), .., µ(p))
is a system of p independent vertices of a same facet F of ∆, the µ(i) ∈ INp.
Let us define the following change of variables, associated to the facet-system
σ = (µ(1), .., µ(p)):

x = (x1, .., xp) 	→ v(σ) = (v(σ)
1 , .., v

(σ)
p ) or simply denoted by v,

where vi = x
1
D µ(i) for x ∈ IR∗p

+ with D = det(µ(1), .., µ(p)) > 0 (otherwise the order
of these points is modified).

An elementary calculation gives the Jacobian J of this change of variables :

J = Dp−1.

∏
xi∏
vi

i.e.
dx∏
xi

= Dp−1.
dv∏

vi

writing dx = dx1..dxp, dv = dv1..dvp

Lemma 5 gives supplementary information on this change of variables, and links
it to the index AF (µ).

Lemma 5. Let σ = (µ(1), .., µ(p)) be a facet-system, the µ(i) in F a given facet
of ∆.

(i) Then for each µ ∈ IRp, there exists β(µ) ∈ IRp such that, for any x ∈ IR∗p
+ :

xµ = vβ(µ) = v
β1(µ)
1 ..vβp(µ)

p with β(µ) = (β1, .., βp(µ))

and βi(µ) = det(µ(1), .., µ(i − 1), µ, µ(i + 1), .., µ(p)), µ =
1
D

.

p∑
i=1

βi(µ).µ(i)

(ii) Moreover, AF (µ) = 1
D .

∑p
i=1 βi(µ), ( AF (µ) is the index of µ with respect to F ).

F is a part of the hyperplane of equation β1(µ) + .. + βp(µ) = D so :
for µ ∈ Π, (µ ∈ F ⇐⇒ AF (µ) = 1 ) and (µ ∈ Π \ F ⇐⇒ AF (µ) > 1).
µ ∈Conv(µ(1), .., µ(p)) ⇐⇒ (AF (µ) = 1 and βi(µ) ≥ 0,∀i)

3.2.2. Proof of Lemma 5. - First we prove (i). We want xµ = vβ(µ) , where

vβ(µ) =
p∏

j=1

(vj)βj(µ) =
p∏

j=1

(
x

1
D µ(j)

)βj(µ)

then we must have

µ =
1
D

p∑
j=1

βj(µ).µ(j)

i.e. we want that
D.µi = β1(µ).µi(1) + .. + βp(µ).µi(p),∀i ∈ [1, p],

which is a linear system of p equations with p variables β1(µ), .., βp(µ), with solutions

βj(µ) =
det (µ(1), .., µ(j − 1),Dµ, µ(j + 1), .., µ(p))

det (µ(1), .., µ(p))
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with D = det (µ(1), .., µ(p)), i.e. :

βj(µ) = det (µ(1), .., µ(j − 1), µ, µ(j + 1), .., µ(p))

- It remains to prove (ii).
µ = 1

D

∑
βj(µ).µ(j) applied to the µ = µ(i) gives that the hyperplane including the

µ(i) has the equation 1
D

∑
βj(µ) = 1. We have defined AF (µ) as the linear form such

that AF (µ) = 1 is the equation of the hyperplane including F .
Thus AF (µ) = 1

D

∑
βj(µ).

3.2.3. Proof of Lemma 4. 1) Let us first prove this lemma for θ ∈ int(C(σ)),
σ a facet-system of a facet F of ∆. We apply the transformation x 	→ v(σ) for the
facet-system σ = (µ(1), .., µ(p)) of F .
Putting D = det (µ(1), .., µ(p)) and applying Lemma 5, we obtain :

LB(θ, γ, P ) =
∫

B

exp

⎛⎝ 1
λ

∑
µ∈∆

aµvβ(µ)

⎞⎠ .vβ(θ)−1

p∏
j=1

(
ln
(
vβ(ej)

))γj

Dp−1dv

We set now ui = λ− 1
D vi . We obtain

vβ(µ) =
p∏

i=1

v
βi(µ)
i =

p∏
i=1

(
λ

1
D ui

)βi(µ)

= λAF (µ)uβ(µ)

thus

LB(θ, γ, P ) = λAF (θ)

∫
B

exp

⎛⎝∑
µ∈∆

aµλAF (µ)−1uβ(µ)

⎞⎠ .uβ(θ)−1
(
ln
(
λAF (e1)uβ(e1)

))γ1

...
(
ln
(
λAF (ep)uβ(ep)

))γp

Dp−1du (2)

=
γ1∑

k1=0

...

γp∑
kp=0

(
γ1

k1

)
...

(
γp

kp

)(
ln λAF (e1)

)k1

...
(
ln λAF (ep)

)kp

.λAF (θ)

∫
B

exp

⎛⎝∑
µ∈∆

aµλAF (µ)−1uβ(µ)

⎞⎠ .uβ(θ)−1
(
ln uβ(e1)

)γ1−k1

...
(
ln uβ(ep)

)γp−kp

Dp−1du

where in this last integral, AF (µ)−1 = 0 for µ ∈ F , and AF (µ)−1 > 0 for µ ∈ ∆\F .
βi(θ) > 0 for every i since θ ∈ int(C(σ)).
Thus, by dominated convergence, each integral in the right hand side of (2) tends to:

∫
B

exp

⎛⎝∑
µ∈F

aµuβ(µ)

⎞⎠ .uβ(θ)−1
(
ln uβ(e1)

)γ1−k1

...
(
ln uβ(ep)

)γp−kp

Dp−1du

Let us briefly explain why there is dominated convergence here.
Since P is nondegenerate, there is c > 0 such that

P (x) ≤ −c
∑
µ∈S

xµ ≤ −c
∑

µ∈S∩F

xµ
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Then with our change of variables

∑
µ∈∆

aµvβ(µ) ≤ −c
∑

µ∈S∩F

vβ(µ) ≤ −c

p∑
i=1

vβ(µ(i)) = −c

p∑
i=1

vD
i

∑
µ∈∆

aµλAF (µ)−1uβ(µ) ≤ − c

λ

p∑
i=1

(
λ

1
D ui

)D

= −c

p∑
i=1

uD
i

and

uβ(θ)−1 exp

⎛⎝∑
µ∈∆

aµλAF (µ)−1uβ(µ)

⎞⎠∣∣∣∣(ln uβ(e1)
)γ1−k1

...
(
ln uβ(ep)

)γp−kp

∣∣∣∣
≤ uβ(θ)−1 exp

(
−c

p∑
i=1

uD
i

)∣∣∣∣(ln uβ(e1)
)γ1−k1

...
(
lnuβ(ep)

)γp−kp

∣∣∣∣
which is clearly integrable on IRp

+ since uβ(θ)−1 =
∏p

i=1 u
βi(θ)
i , where βi(θ) > 0. Hence

the dominated convergence. An equivalent of L is then obtained by taking in (2) the
greatest possible values for the exponents of lnλ, i.e. :

LB ∼ λAF (θ)(ln λ)γ1+..+γp .

p∏
i=1

(AF (ei))
γi

∫
B

exp

⎛⎝∑
µ∈F

aµuβ(µ)

⎞⎠ .uβ(θ)−1Dp−1du

= λA∆(θ)(ln λ)γ1+..+γp .

p∏
i=1

(AF (ei))
γi

∫
B

exp(PF (x)).xθ−1dx (3)

2) We now prove (i) and (ii) for any θ such that (θ, γ, P ) satisfy HP.
If θ is not in the interior of the cone generated by p vertices of a same facet F of

∆, then θ is in the intersection of several such cones. We can find θ′ and θ” satisfying
this property, with θ ∈]θ′, θ”[, arbitrarily close to θ. Thus

|LB(θ, γ, P )| ≤
∫

B

xθ−1 |ln x|γ exp
(

P (x)
λ

)
dx

≤
∫

B

xθ′−1 |ln x|γ exp
(

P (x)
λ

)
dx +

∫
B

xθ”−1 |ln x|γ exp
(

P (x)
λ

)
dx

where these 2 integrals are convergent according to Lemma 4 (i) applied on θ and θ′.
Hence LB is convergent.

Moreover, for any ε > 0,

|LB(θ, γ, P )| ≤
∫

B

xθ′−1 |ln x|γ exp
(

P (x)
λ

)
dx +

∫
B

xθ”−1 |ln x|γ exp
(

P (x)
λ

)
dx

≤ const.
(
λA∆(θ′)− ε

2 + λA∆(θ”)− ε
2

)
according to Lemma 4 (ii) applied on θ and θ′.

As θ′ and θ” can be chosen arbitrarily close to θ (but not equal to θ), then we
can chose them such that A∆(θ′) > A∆(θ) − ε

2 and A∆(θ”) > A∆(θ) − ε
2 . Hence

LB(θ, γ, P ) = o(λA∆(θ)−ε)
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3) Let us finally prove (iii) for θ ∈ intC(F ), but such that there exists no facet-
system σ with θ ∈ intC(σ). In that case, there exist θ′, θ” such that θ′ ∈ intC(σ′)
and θ” ∈ intC(σ”), θ ∈]θ′, θ”[, σ′ and σ” are 2 different facet-systems of F with
A∆(θ′) = A∆(θ”) = A∆(θ).

Let θ′n = θ + (θ′−θ)
n and θ”

n = θ + (θ”−θ)
n .

We see easily that for any n ∈ IN∗, θ′n ∈ intC(σ′) and θ”
n ∈ intC(σ”), θ ∈]θ′n, θ”

n[,
A∆(θ′n) = A∆(θ”

n) = A∆(θ) and limn θ′n = limn θ”
n = θ

Let B1 = {x ∈ B;xθ′
(ln x)γ < xθ(ln x)γ < xθ”

(ln x)γ} and B2 = {x ∈
B;xθ”

(ln x)γ < xθ(ln x)γ < xθ′
(ln x)γ}.

As θ ∈]θ′, θ”[, θ �= θ′ and θ �= θ”.
We have LB = LB1 + LB2 (i.e. we can’t have for instance xθ′

(ln x)γ < xθ”
(ln x)γ <

xθ(ln x)γ )
xθ′

n < xθ ⇔ xθ+ 1
n (θ′−θ) < xθ

i.e. xθ′
n < xθ ⇔ xθ′

< xθ

thus for any n

B1 = {x ∈ B;xθ′
n(ln x)γ < xθ(ln x)γ < xθ”

n(ln x)γ}
B2 = {x ∈ B;xθ”

n(ln x)γ < xθ(ln x)γ < xθ′
n(ln x)γ}

which implies that
LB1(θ

′
n, γ, P ) ≤ LB1(θ, γ, P ) ≤ LB1(θ

”
n, γ, P )

and LB2(θ
”
n, γ, P ) ≤ LB2(θ, γ, P ) ≤ LB2(θ

′
n, γ, P )

For any n ∈ IN∗ stated, λ > 0,

LB1(θ
′
n, γ, P )

Cγ(F ).λA∆(θ)(ln λ)
∑

γi
≤ LB1(θ, γ, P )

Cγ(F ).λA∆(θ)(ln λ)
∑

γi
≤ LB1(θ

”
n, γ, P )

Cγ(F ).λA∆(θ)(ln λ)
∑

γi

where the left hand side tends to
∫

B1
|x|θ′

n−1
ePF (x)dx as λ → 0+

and the right hand side tends to
∫

B1
|x|θ”

n−1
ePF (x)dx as λ → 0+

according to Lemma 4 (iii) applied to θ′n and θ”
n.

So, for any n ∈ IN∗,∫
B1

|x|θ′
n−1

ePF (x)dx ≤ lim
λ→0+

inf
LB1(θ, γ, P )

Cγ(F ).λA∆(θ)(ln λ)
∑

γi

lim
λ→0+

sup
LB1(θ, γ, P )

Cγ(F ).λA∆(θ)(ln λ)
∑

γi
≤

∫
B1

|x|θ”
n−1

ePF (x)dx

This is true for any n ∈ IN∗, thus since θ′n → θ and θ”
n → θ (as n → +∞):∫

B1

|x|θ−1
ePF (x)dx ≤ lim

λ→0+
inf

LB1(θ, γ, P )
Cγ(F ).λA∆(θ)(ln λ)

∑
γi

lim
λ→0+

sup
LB1(θ, γ, P )

Cγ(F ).λA∆(θ)(ln λ)
∑

γi
≤

∫
B1

|x|θ−1
ePF (x)dx

This implies that

lim
λ→0+

LB1(θ, γ, P )
Cγ(F ).λA∆(θ)(ln λ)

∑
γi

=
∫

B1

|x|θ−1
ePF (x)dx

The same result holds on B2 (interverting θ′n and θ”
n) so

lim
λ→0+

LB(θ, γ, P )
Cγ(F ).λA∆(θ)(ln λ)

∑
γi

=
∫

B

|x|θ−1
ePF (x)dx
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This ends the proof of Lemma 4.

3.3. Proof of Proposition 1. K \ B(δ) is a compact set not including 0, thus
H reaches there its maximum and this one is strictly lower than H(0) = max H = 0.
In other words, there exists d > 0 such that, for x ∈ K \ B(δ), H(x) < −d < 0.
χ is continuous on the compact set K \ B(δ) hence |χ(x)| ≤ M0, for a M0 ∈ IR.∣∣∣∣∣

∫
K\B(δ)

χ(x). exp(H(x)/λ)dx

∣∣∣∣∣ ≤ exp
(−d

λ

)∫
K\B(δ)

M0dx

3.4. Proof of Proposition 2. S is the set of vertices of ∆(H), A(θ) = A∆(θ)
the index of θ with respect to ∆(H). We want to show that, as λ → 0+

∫
B(δ)

⎡⎣χ(x) −
∑

A(θ)≤M

xθ−1qθ−1

⎤⎦ . exp
(

H(x)
λ

)
dx = o(λM )

According to the Taylor series of χ at 0

χ(x) −
∑

A(θ−1)≤M

qθ−1x
θ−1 = χ(x) −

∑
A(θ)≤M

qθx
θ = o

⎛⎝∑
µ∈S

xµ.M

⎞⎠
thus it is sufficient to prove that, for δ small enough∫

B(δ)

xµ.M . exp
(

H(x)
λ

)
dx = o(λM ) for µ ∈ S

and that ∫
B(δ)

xθ−1. exp
(

H(x)
λ

)
dx = o(λM ) for A(θ − 1) ≤ M < A(θ)

Let us apply Proposition 3.
The first term (i.e. the one of least degree in λ) of

∫
B(δ)

xµ.M . exp
(

H(x)
λ

)
dx (respec-

tively of
∫

B(δ)
xθ−1. exp

(
H(x)

λ

)
dx) in the formulation provided by Proposition 3 is∫

B(δ)
xµ.M . exp

(
Ĥ(x)

λ

)
dx (respectively

∫
B(δ)

xθ−1. exp
(

Ĥ(x)
λ

)
dx)

Now, by Lemma 4, it is known that this last integral is o(λM ) because for µ ∈ S,
A(µM + 1) > A(µM) = M.A(µ) = M (respectively A(θ) > M).

3.5. Proof of Proposition 3. Let M ′ ∈ IN. For all y ∈ IR, let SM ′(y) =
ey −∑M ′

k=0
yk

k ! .
We have |SM ′(y)| ≤ |y|M ′+1e|y|∫

B(δ)

xθ−1. exp
(

H(x)
λ

)
dx =

∫
B(δ)

xθ−1. exp

(
Ĥ(x)

λ

)
. exp

(
H(x) − Ĥ(x)

λ

)
dx

=
M ′∑
k=0

1
k!

∫
B(δ)

xθ−1. exp

(
Ĥ(x)

λ

)
.

(
H(x) − Ĥ(x)

λ

)k

dx (4)

+
∫

B(δ)

xθ−1. exp

(
Ĥ(x)

λ

)
.SM ′

(
H(x) − Ĥ(x)

λ

)
dx
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where :∣∣∣∣∣SM ′

(
H(x) − Ĥ(x)

λ

)∣∣∣∣∣ ≤
∣∣∣∣∣
(

H(x) − Ĥ(x)
λ

)∣∣∣∣∣
M ′+1

exp

∣∣∣∣∣
(

H(x) − Ĥ(x)
λ

)∣∣∣∣∣
1) Let us first show that the second term in the right-hand side of (4) is o(λM ).

For r ≥ 1, x ∈ IRp, let εr(x) = H(x) −∑
1≤A(µ)≤r aµxµ.

H(x) =
∑

A(µ)=1

aµxµ + ε1(x) = Ĥ(x) + ε1(x)

We have assumed that H �= Ĥ, so Σ(H) \ ∆(H) �= ∅.
Set η0 = inf (A∆(µ) − 1; µ ∈ Σ(H) \ ∆(H)). η0 is clearly positive.

There exists no µ in Σ(H) = {µ ∈ INp; aµ �= 0} strictly between ∆ and (1+ η0).∆
, i.e. satisfying 1 < A(µ) < 1 + η0.
Then for x ∈ B(δ), |ε1(x)| ≤ const.

∑
A(µ)=1 |x|(1+η0)µ ≤ const.

∑
µ∈S∆

|x|(1+η0)µ

|(H − Ĥ)(x)| = |ε1(x)| ≤ const.
∑

µ∈S∆

|x|(1+η0)µ

≤ const.(
∑

µ∈S∆

xµ)1+η0 ≤ const.|Ĥ(x)|1+η0

by Lemma 3 since Ĥ is assumed to be non degenerate (and every vertex has even
coordinates). From this it follows that :∣∣∣∣∣SM ′

(
H(x) − Ĥ(x)

λ

)∣∣∣∣∣ ≤
∣∣∣∣∣
(

H(x) − Ĥ(x)
λ

)∣∣∣∣∣
M ′+1

exp

∣∣∣∣∣
(

H(x) − Ĥ(x)
λ

)∣∣∣∣∣
≤ const.λ−M ′−1.(

∑
µ∈S∆

|xµ|)(1+η0)(M
′+1). exp

(
1
λ

const.|Ĥ(x)|1+η0

)

then for δ > 0 small enough :∣∣∣∣∣
∫

B(δ)

xθ−1. exp

(
Ĥ(x)

λ

)
.SM ′

(
H(x) − Ĥ(x)

λ

)
dx

∣∣∣∣∣ (5)

≤ const.
1

λM ′+1

∑
µ∈S∆

∣∣∣∣∣
∫

B(δ)

∣∣xθ−1
∣∣ .|xµ(1+η0)(M

′+1)|. exp
(

1
2λ

.Ĥ(x)
)

dx

∣∣∣∣∣
The powers of x are here: θ − 1 + (1 + η0)(M ′ + 1)µ, for µ ∈ S ⊂ ∆. Each integral
has the index:

A∆ (θ + (1 + η0)(M ′ + 1)µ) ≥ A∆(θ) + (1 + η0)(M ′ + 1)A∆(µ)
= A∆(θ) + (1 + η0)(M ′ + 1)
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According to Lemma 4, the integral on the left hand side of (5) is o(λM ) if

A∆(θ) + (1 + η0)(M ′ + 1) − (M ′ + 1) > M

i.e. if

M ′ + 1 >
M − A∆(θ)

η0

which is true if M ′ is the integer part of M−A∆(θ)
η0

.
2) Set

Rk(x) =
1
k!

[
∑

1<A(µ)≤M+1

aµxµ]k (6)

We want now to prove that these polynomials satisfy

1
k!

∫
B(δ)

xθ−1. exp

(
Ĥ(x)

λ

)
.

(
H(x) − Ĥ(x)

λ

)k

dx

= o(λM ) +
1
λk

∫
B(δ)

xθ−1Rk(x) exp

(
Ĥ(x)

λ

)
dx

We know that

H(x) − Ĥ(x)
λ

=
1
λ

⎛⎝ ∑
1<A(µ)≤M+1

aµxµ + εM+1(x)

⎞⎠
(

H(x) − Ĥ(x)
λ

)k

=
1
λk

⎛⎝ ∑
1<A(µ)≤M+1

aµxµ

⎞⎠k

+
1
λk

k∑
i=1

(
k
i

)⎛⎝ ∑
1<A(µ)≤M+1

aµxµ

⎞⎠k−i

(εM+1(x))i

Let us show that the contribution of the second term is o(λM ).
It is enough to prove that

1
λk

∫
B(δ)

xθ−1xν(1)+..+ν(k−i) (εM+1(x))i exp

(
Ĥ(x)

λ

)
dx (7)

is o(λM ) as (λ → 0+), where here A(ν(j)) > 1 for 1 ≤ j ≤ k − i.
We know that |εM+1(x)|i ≤ const.

∑
µ′∈S∆

|x(M+1)µ′ |i thus the index of the integral
in (7) is not lower than

A (θ + (M + 1)µ′.i + ν(1) + .. + ν(k − i)) ≥ A(θ) + (M + 1)i + k − i

= A(θ) + Mi + k ≥ A(θ) + M + k > M + k
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which gives that (7) is o(λM+k).λ−k = o(λM ) as λ → 0+

3) We prove now (1).
For k ≥ 1,

1
λk

∫
B(δ)

xθ−1Rk(x) exp

(
Ĥ(x)

λ

)
dx

=
1
λk

∑
ν(1),..,ν(k)

const

∫
B(δ)

xθ−1xν(1)+..+ν(k) exp

(
Ĥ(x)

λ

)
dx

where the ν(j) ∈ Σ(H) are such that ν(j) > 1, i.e. ν(j) ≥ 1 + η0.

The index of this last integral is
A∆(θ +

∑
ν(i)) ≥ A∆(θ) +

∑k
1 A∆(ν(i)) ≥ A∆(θ) + k(1 + η0)

According to Lemma 4 (ii), we have then, for any ε > 0,
1

λk

∫
B(δ)

xθ−1Rk(x) exp
(

Ĥ(x)
λ

)
dx = o

(
λA∆(θ)+k(1+η0)−ε

)
.λ−k

= o
(
λA∆(θ)+kη0−ε

)
�

3.6. Proof of Proposition 4. Let θ ∈ IN∗p. There exists c > 0, such that

∫
‖x‖≥δ

∣∣xθ−1
∣∣ . exp

(
Ĥ(x)

λ

)
dx ≤

∫
‖x‖≥δ

∣∣xθ−1
∣∣ . exp

⎛⎝−c

λ
.
∑

µ∈S∆

xµ

⎞⎠ dx

= 2p

∫
‖x‖≥δ,x∈IRp

+

xθ−1. exp

⎛⎝−c

λ
.
∑

µ∈S∆

xµ

⎞⎠ dx

from Lemma 3, because Ĥ is supposed to be non degenerate.

Let us show thus that K(θ) =
∫
‖x‖≥δ,x∈IRp

+
xθ−1. exp

(
−c
λ .

∑
µ∈S∆

xµ
)

dx is

O(e−d/λ).
Since H is convenient, there exist p vertices µ(1), .., µ(p) of ∆ on the coordinate axes:
µ(1) = (D1, 0, .., 0), .., µ(p) = (0, .., 0,Dp), where the Di ∈ IN∗.

0 ≤ K(θ) ≤
∫
‖x‖≥δ,x∈IRp

+

xθ−1. exp

(
−c

λ
.

p∑
i=1

xDi
i

)
dx

≤
p∑

j=1

∫
x

Dj
j ≥δ2,x∈IRp

+

xθ−1. exp

(
−c

λ
.

p∑
i=1

xDi
i

)
dx

for δ2 > 0 small enough, because for δ2 small enough, |xDj

j | < δ2 for each j implies
‖x‖ < δ.



432 S. ROSSIGNOL

Setting ui = λ
− 1

Di xi , xDi
i = λ.uDi

i

K(θ) ≤
p∑

j=1

∫
λu

Dj
j ≥δ2,u∈IRp

+

λ
∑

i
θi
Di exp

(
−c.

p∑
i=1

uDi
i

)
.uθ−1du

= λ
∑

i
θi
Di

p∑
j=1

∫
λu

Dj
j ≥δ2

exp
(
−c.u

Dj

j

)
u

θj−1
j duj .

∏
i�=j

∫ +∞

0

exp
(
−c.uDi

i

)
.uθi−1

i dui

≤ λ
∑

i
θi
Di

p∑
j=1

∫
λu

Dj
j ≥δ2

exp
(−c

2
.u

Dj

j

)
exp

(−c

2λ
.δ2

)
.u

θj−1
j duj

.
∏
i�=j

∫ +∞

0

exp
(
−c.uDi

i

)
.uθi−1

i dui

K(θ) ≤ λ
∑

i
θi
Di exp

(−c

2λ
.δ2

) p∑
j=1

∫ +∞

0

exp
(−c

2
.u

Dj

j

)
.u

θj−1
j duj

.
∏
i�=j

∫ +∞

0

exp
(
−c.uDi

i

)
.uθi−1

i dui

Each integral is convergent, because θi ≥ 1 for each i, since θ ∈ IN∗p. We thus obtain
K(θ) = O(e−d/λ) as λ → 0+ with d ∈]0; c

2δ2[.

3.7. Proof of Proposition 5. We consider∫
IRp

exp
(

HB∪S(x)
λ

)
.xθ−1dx

where HB∪S(x) =
∑

µ∈B∪S aµxµ, with B ∩ S = ∅, B is included in m facets F1,...,
Fm and not less. We denote by ∆i the set of the elements of B which are only in the
facet Fi, i.e. ∆i = B ∩ (Fi \ ∪j �=iFj), i = 1; 2. Since B is not included in less that m
facets, ∆1 and ∆2 are non empty. Moreover we have ∆1∩∆2 = ∅.

Let us define

B1 = B \ ∆1, B2 = B \ ∆2, B0 = B \ (∆1 ∪ ∆2)

We have ∫
IRp

exp
(

HB∪S(x)
λ

)
.xθ−1dx =

∞∑
k1=0

∞∑
k2=0

L̂k1,k2

where

L̂k1,k2 =
1

k1!k2!

1
λk1+k2

.

∫
IRp

⎛⎝ ∑
µ∈∆1

aµxµ

⎞⎠k1
⎛⎝ ∑

µ∈∆2

aµxµ

⎞⎠k2

exp
(

HS∪B0(x)
λ

)
.xθ−1dx

=
1

k1!k2!

1
λk1+k2

∑
ν(1),..,ν(k1)∈∆1

aν(1)...aν(k1)

.

⎡⎣ ∑
ν′(1),..,ν′(k2)∈∆2

aν′(1)...aν′(k2)

∫
IRp

exp
(

HS∪B0(x)
λ

)
.xθ−1x

∑
ν(l)+

∑
ν′(l)dx

⎤⎦



ASYMPTOTIC EXPANSIONS AND NEWTON DIAGRAMS 433

First, we want to show that if k1 > M” and k2 > M”, with M” large enough, then
L̂k1,k2 = o(λM ).

Recall that the index of the integral (see the definition after Lemma 4) gives the
order of magnitude of this integral.

The index of ∫
IRp

exp
(

HS∪B0(x)
λ

)
.xθ−1x

∑
ν(l)+

∑
ν′(l)dx (8)

is

inf
F

AF

(∑
ν(l) +

∑
ν′(l) + θ

)
= inf

F

[
AF

(∑
ν(l)

)
+ AF

(∑
ν′(l)

)
+ AF (θ)

]
≥ inf

F
TF + A∆(θ)

where

TF =

[
k1∑
l=1

AF (ν(l)) +
k2∑
l=1

AF (ν′(l))

]
For any facet F , AF (ν(l)) ≥ 1 and AF (ν′(l)) ≥ 1 thus TF ≥ k1 + k2

By construction of the ∆i, we have ∆i ∩ Fj = ∅ if j �= i.
Let ηi = inf

(
AFj

(µ) − 1; µ ∈ ∆i and j �= i
)
, i = 1; 2.

For any l ∈ [1; k1], AF (ν(l)) ≥ 1 + η1 if F �= F1

For any l ∈ [1; k2], AF (ν′(l)) ≥ 1 + η2 if F �= F2

Hence TF ≥ k1(1 + η1) + k2 if F �= F1

and TF ≥ k1 + k2(1 + η2) if F �= F2

So for any facet F , TF ≥ k1 + k2 + η inf(k1, k2) > 0, where η = inf(η1, η2). This
implies that the index of (8) is greater or equal to k1 + k2 + η inf(k1, k2) + A∆(θ).

Hence, according to Lemma 4, we have L̂k1,k2 = o(λM ) if η inf(k1, k2) + A∆(θ) >
M , i.e. if inf(k1, k2) > 1

η (M − A∆(θ)). It is then sufficient to take M” the integer
part of 1

η (M − A∆(θ)).
We can write then∫

IRp

exp
(

HS∪B(x)
λ

)
.xθ−1dx

= o(λM ) +
M”∑

k1=0

∞∑
k2=0

L̂k1,k2 +
∞∑

k1=0

M”∑
k2=0

L̂k1,k2 −
M”∑

k1=0

M”∑
k2=0

L̂k1,k2

= o(λM ) +
M”∑

k1=0

1
k1!λk1

∫
IRp

⎛⎝ ∑
µ∈∆1

aµxµ

⎞⎠k1

exp
(

HS∪B1(x)
λ

)
.xθ−1dx

+
M”∑

k2=0

1
k2!λk2

∫
IRp

⎛⎝ ∑
µ∈∆2

aµxµ

⎞⎠k2

exp
(

HS∪B2(x)
λ

)
.xθ−1dx

−
M”∑

k1=0

M”∑
k2=0

1
k1!k2!λk1+k2

∫
IRp

⎛⎝ ∑
µ∈∆1

aµxµ

⎞⎠k1

.

⎛⎝ ∑
µ∈∆2

aµxµ

⎞⎠k2

exp
(

HS∪B0(x)
λ

)
.xθ−1dx. �
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4. Proof of Proposition 6.

4.1. First step of the proof of Proposition 6. We will show in this first step
that we just have to study MB given in (9), and we will state Lemma 7 which will be
useful next.
We study

L(b′, b”, P ) =
∫

IR2
+

exp
(

P (x)
λ

)
.xb′−1(ln x)b”dx

where P (x) =
∑

µ∈F∪S aµxµ, (b′, b”, P ) satisfying the HP hypothesis.
F is a given facet of ∆, S is the set of the vertices of the Newton diagram ∆ of P .
b′ is in the interior of C(∆), b” ∈ IN2.
Since ν is a bordering vertex of ∆, one can find a facet-system σ = (µ(1), µ(2)) of the
2 vertices of a same facet of ∆ such that ν is on one side (strictly) of (O,µ(1)) and
the other points of the support Σ(P ) of P are on the other side. One makes then the
change of variables x → v(σ) (defined in Section 3.2.1):

L(b′, b”, P ) =
∫

IR2
+

exp

⎛⎝ 1
λ

∑
µ∈∆

aµvβ(µ)

⎞⎠ vb−1
2∏

i=1

(
ln(vβ(ei))

)b”i

.D.dv

with b = β(b′), where e1 = (1; 0), and e2 = (0; 1), and

D

2∏
i=1

(
ln(vβ(ei))

)b”i

= D

2∏
i=1

⎛⎝ 2∑
j=1

βj(ei) ln(vj)

⎞⎠b”i

=
∑

|B|=|b”|
bB(ln v)B

where B ∈ IN2, |B| = B1 + B2, |b”| = b”1 + b”2, (ln v)B =
∏2

i=1(ln vi)Bi , the bB are
constants.

L(b′, b”, P ) =
∑

|B|=|b”|
bBMB

setting

MB =
∫

IR2
+

exp

⎛⎝ 1
λ

∑
µ∈∆

aµvβ(µ)

⎞⎠ vb−1(ln v)Bdv (9)

It is then enough to study MB. Our aim is now to remove the vertex ν of ∆, in MB.
We split the integrand in two parts to put it on the form of a product φ.f which

will be integrated (with respect to v2) according to Lemma 7 (given further). ν is
the vertex which will disappear. µ(2) and ν are on both sides of (O,µ(1)) then, with
perhaps a new order of the µ(i):

vβ(ν) = v
β1(ν)
1 v

β2(ν)
2 where β1(ν) > 0, β2(ν) < 0.

We introduce new notations:

t = v2 , w = v1 and k = B2

So

MB =
∫

IR2
+

exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠wb1−1.tb2−1(ln w)B1 (10)

(ln t)k
. exp

(
1
λ

aνwβ1(ν)tβ2(ν)

)
dwdt
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There exist c ∈Z and α ∈]0; 1] (uniquely defined) such that:

b2 − 1 = c − α (11)

MB =
∫

IR2
+

exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠wb1−1.tc
+
(ln w)B1 (12)

(ln t)k
. exp

(
1
λ

aνwβ1(ν)tβ2(ν)

)
1

tα+c− dwdt

where c+ = sup(c, 0) and c− = sup(−c, 0)
Now, to complete the proof of Proposition 6, we wish to remove the second

exponential in MB, but expanding it directly on the form ex =
∑

k≥0
xk

k! is not
possible because of the t at the denominator (since β2(ν) < 0).
We will use two lemmas given in Wong [14] (Lemmas 1 and 2 pages 296 and 297),
that we sum up in Lemma 6.

If f(t) is a locally integrable function on [0 ;+∞[, with f(t) ∼ ∑∞
s=0

as

ts+α

as t → +∞, where α ∈]0 ; 1], we want to compute
∫ +∞
0

f(t).φ(t)dt for φ ∈ S, in
terms of the asymptotic expansion of f . For us here, f will be essentially the second
exponential in (12) and φ will be the first (for w stated). Recall that S is the space
of rapidly decreasing functions i.e.

φ ∈ S ⇔ φ ∈ C∞(IR, IR),∀(p, q) ∈ IN2,∃cp,q > 0,∀x ∈ IR, |xpφ(q)(x)| ≤ cp,q

Let

fn(t) = f(t) − a0

tα
− .. − an−1

tn−1+α
and fn,0 = fn (13)

fn,j+1(t) = −
∫ +∞

t

fn,j(τ)dτ =
(−1)j+1

j !
.

∫ ∞

t

(τ − t)jfn(τ)dτ

In particular,

fn,n(t) =
(−1)n

(n − 1)!
.

∫ ∞

t

(τ − t)n−1fn(τ)dτ

We can now define the following distributions:

< f ;φ >=
∫ +∞

0

f(t)φ(t)dt and < δ(s−1);φ >= (−1)s−1φ(s−1)(0)

< fn;φ >= (−1)n

∫ +∞

0

fn,n(t)φ(n)(t)dt

- For 0 < α < 1, < t−α
+ ;φ >=

∫∞
0

φ(t)
tα dt for φ ∈ S.

Since Ds(t−α). (−1)s

(α)s
= t−s−α with (α)s = α(α + 1)..(α + s − 1) (ordinary deriva-

tive), we can define the distribution t−s−α
+ as t−s−α

+ = Ds(t−α
+ ). (−1)s

(α)s
(distributional

derivative), i.e.

< t−s−α
+ ;φ >=

1
(α)s

∫ ∞

0

φ(s)(t)
tα

dt
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- For α = 1, < ln t+;φ >=
∫∞
0

ln t.φ(t)dt for φ ∈ S.
similarly since Ds+1(ln t). (−1)s

s! = t−s−1 , we define the distribution t−s−1
+ as t−s−1

+ =
Ds+1(ln+ t). (−1)s

s! i.e.

< t−s−1
+ ;φ >=

−1
s!

∫ ∞

0

(ln t).φ(s+1)(t)dt

Lemma 6. Let f be a locally integrable function on [0;+∞[.
If f(t) ∼ ∑∞

s=0
as

ts+α as t → +∞, α ∈]0; 1],
then for any φ ∈ S, and n ∈ IN∗:

< f, φ >=
n−1∑
s=0

as < t−s−α
+ ;φ > −

n∑
s=1

cs < δ(s−1);φ > + < fn;φ >

- If 0 < α < 1, cs = fs,s(0)

- If α = 1, then cs = limt→0

(
fs,s(t) + (−1)s−1

(s−1)! as−1 ln t
)

Proof. See Lemmas 1 and 2 of Wong [14], pages 296-298.

Our aim is now to generalize Lemma 6 to a function f satisfying
f(t) ∼ ∑∞

s=0
as

ts+α (ln t)k as t → +∞, where k ∈ IN
Here

fn(t) = f(t) −
[a0

tα
+ ... +

an−1

tn−1+α

]
(ln t)k (14)

Let Fk,s,α(t) be the function defined for 0 < α < 1 by :

Fk,s,α(t) =
(−1)s

(α)stα
.

[
(ln t)k + k(ln t)k−1

(
s∑

l=1

1
s − l + α

)
(15)

+.. + k !
∑

1≤l1≤..≤lk≤s

1
(s − l1 + α)...(s − lk + α)

⎤⎦
= (−1)s

k∑
r=0

K(k, s, α, r)
(ln t)r

tα

where

K(k, s, α, r) =
∑

1≤l1≤..≤lk−r≤s

1
(s − l1 + α)..(s − lk−r + α)

.
k!

r!(α)s

An easy calculation shows that Ds(Fk,s,α)(t) = (ln t)k

ts+α (ordinary derivative), so as
t−s−α
+ has been defined by t−s−α

+ = Ds(t−α
+ ). (−1)s

(α)s
(distributional derivative), one can

define the distribution (ln t)k
+t−s−α

+ = Ds(Fk,s,α(t)), for α ∈]0 ; 1[, i.e. for any φ ∈ S:

< (ln t)k
+t−s−α

+ ;φ >= (−1)s

∫ ∞

0

φ(s)(t)Fk,s,α(t)dt
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In the same way :

Fk,s,1(t) =
(−1)s

s!
.

[
(ln t)k+1

k + 1
+ (ln t)k

(
s∑

l=1

1
s − l + 1

)
+ .. (16)

+(ln t).k!
∑

1≤l1≤..≤lk≤s

1
(s − l1 + 1)...(s − lk + 1)

⎤⎦
= (−1)s

k+1∑
r=1

K(k, s, 1, r).(ln t)r (17)

From Ds+1(Fk,s,1)(t) = (ln t)k

ts+1 , we denote by (ln t)k
+t−s−1

+ the (s + 1)th distributional
derivative of the distribution on [0;+∞[ corresponding to Fk,s,1. We can now state
the next lemma, which generalizes that of Wong.

Lemma 7. Let f be a locally integrable function on [0;+∞[.
If f(t) ∼ ∑∞

s=0
as

ts+α (ln t)k as t → +∞, α ∈]0; 1], k ∈ IN
then for any φ ∈ S, and n ∈ IN∗:

< f, φ >=
n−1∑
s=0

as < (ln t)k
+t−s−α

+ ;φ > −
n∑

s=1

cs < δ(s−1);φ > + < fn;φ >

- If 0 < α < 1, cs = fs,s(0)
- If α = 1, then cs = limt→0 (fs,s(t) + as−1Fk;s−1;1(t))

Proof of Lemma 7. We adapt the proof of Lemma 1 and 2 of Wong ([14], p296).
1) Case 0 < α < 1.
The question is to extend Lemma 6 to functions f satisfying, for 0 < α < 1, f(t) ∼∑∞

s=0
as(ln t)k

ts+α , as t → +∞.
We define Fk,s,α as in (15). (ln t)k

+t−s−α
+ will be the distribution specified by :

∀φ ∈ S(IR), < (ln t)k
+t−s−α

+ ;φ >=< Ds(Fk,s,α) ;φ >=< Fk,s,α ;φ(s) > .(−1)s

From (14) we have

fn+1(t) = fn(t) − an(ln t)k

tn+α

Integrating n times (with value 0 at +∞) :

fn+1,n(t) = fn,n(t) − anFk,n,α(t)

Multiplying by (−1)nφ(n) and integrating :

< fn;φ > = (−1)n

∫ +∞

0

fn+1,n(t)φ(n)(t)dt + an(−1)n

∫ +∞

0

Fk,n,α(t)φ(n)(t)dt

= (−1)n

∫ +∞

0

fn+1,n(t)φ(n)(t)dt + an < (ln t)k
+t−n−α

+ ;φ >

= (−1)n

([
fn+1,n+1(t)φ(n)(t)

]∞
0

−
∫ +∞

0

fn+1,n+1(t)φ(n+1)(t)dt

)
+an < (ln t)k

+t−n−α
+ ;φ >

= −fn+1,n+1(0) < δ(n);φ > + < fn+1, φ > +an < (ln t)k
+t−n−α

+ ;φ >
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and setting cn+1 = fn+1,n+1(0)

< fn+1, φ > +an < (ln t)k
+t−n−α

+ ;φ >=< fn, φ > +cn+1 < δ(n);φ >

then

< fn+1, φ > +
n∑

s=0

as < (ln t)k
+t−s−α

+ ;φ >

=< fn, φ > +
n−1∑
s=0

as < (ln t)k
+t−s−α

+ ;φ > +cn+1 < δ(n);φ >

= ... =< f ;φ > +
n+1∑
s=1

cs < δ(s−1);φ >

2) Case α = 1.
We extend Lemma 6 to functions f satisfying f(t) ∼ ∑∞

s=0
as(ln t)k

ts+1 , as t → +∞
We define Fk,s,1 as in (16). (ln t)k

+t−s−1
+ will be the distribution on IR specified by:

∀φ ∈ S(IR), < (ln t)k
+t−s−1

+ ;φ >= < Ds+1(Fk,s,1);φ >=< Fk,s,1;φ(s+1) > .(−1)s+1

fn+1(t) =fn(t) − an(ln t)k

tn+1

Integrating n times (with value 0 at +∞) :

fn+1,n(t) = fn,n(t) − anF ′
k,n,1(t) (18)

From (18), fn+1,n+1(t) + anFk,n,1(t) is a primitive of fn,n(t).∫ t

0
fn,n(τ)dτ is another one then there exists a constant cn+1 such that

cn+1 +
∫ t

0

fn,n(τ)dτ = fn+1,n+1(t) + anFk,n,1(t)

and cn+1 = limt→0 (fn+1,n+1(t) + anFk,n,1(t))
From (18) we have for φ ∈ S(IR) :

(−1)n

∫ +∞

0

fn,n(t)φ(n)(t)dt = (−1)n

∫ +∞

0

(
fn+1,n(t) + anF ′

k,n,1(t)
)
φ(n)(t)dt

= (−1)n
[
(fn+1,n+1(t) + anFk,n,1(t)) φ(n)(t)

]∞
0

−(−1)n

∫ +∞

0

(fn+1,n+1(t) + anFk,n,1(t)) φ(n+1)(t)dt (by parts)

= (−1)n+1cn+1φ
(n)(0)+ < fn+1;φ > +(−1)n+1an

∫ ∞

0

Fk,n,1(t)φ(n+1)(t)dt

i.e.:

< fn+1;φ > +an < (ln(t))k
+t−n−1

+ ;φ >=< fn;φ > +cn+1 < δ(n);φ >
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then

< fn+1;φ > +
n∑

s=0

as < (ln(t))k
+t−s−1

+ ;φ >

=< fn;φ > +
n−1∑
s=0

as < (ln(t))k
+t−s−1

+ ;φ > +cn+1 < δ(n);φ >

= ... =< f ;φ > +
n+1∑
s=1

cs < δ(s−1);φ >

this ends the proof of Lemma 7.

4.2. Second step of the proof of Proposition 6. We show now that MB can
be computed, for w stated, with Lemma 7. We will integrate then in w which will
give a decomposition (22) of MB in 3 terms evaluated further. Let us set :

φλ(w; t) = exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ).tβ2(µ)

⎞⎠wb1−1.tc
+
(ln w)B1 (19)

fλ(w; t) =
(ln t)k

tα+c− . exp
(

1
λ

aνwβ1(ν)tβ2(ν)

)
.

Then MB =
∫
IR+

[∫
IR+

φλ(w; t)fλ(w; t)dt
]
dw

For λ and w stated (w �= 0), φλ(w; t) and fλ(w; t) satisfy the hypotheses of
Lemma 7, which will allow us to compute

∫
IR+

φλ(w; t)fλ(w; t)dt

The map t 	→ φλ(w; t) is indeed in S(IR) because β2(µ) ≥ 0 for µ ∈ Σ(P ) \ {ν} =
{µ ∈ ∆ \ {ν}, aµ �= 0}. Recall that β2(ν) < 0.

fλ(w; t) ∼
∞∑

s=0

as(λ,w)
tα+s

.(ln t)k as t → +∞ (20)

where as(λ,w) is a polynomial in w :

as(λ,w) =
1
r̄!

.

(
aνwβ1(ν)

λ

)r̄

for s = c− + r̄.(−β2(ν)) with r̄ ∈ IN

as(λ,w) = 0 else.

From Lemma 7, for any n ≥ 1:∫ ∞

0

φλ(w; t)fλ(w; t)dt =
n−1∑
s=0

as(λ;w) < (ln t)k
+t−s−α

+ ;φλ >

−
n∑

s=1

cs(λ;w) < δ(s−1);φλ > + < (fλ)n;φλ > (21)

where < δ(s−1);φλ >= (−1)s−1 ∂s−1φλ

∂ts−1 (w, 0)
- If 0 < α < 1, the cs(λ;w) are defined by cs(λ;w) = (fλ)s,s(w; 0)
- If α = 1, according to Lemma 7

cs(λ;w) = lim
t→0

((fλ)s,s(w; t) + as−1(λ;w)Fk;s−1;1(t))
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To complete the proof of Proposition 6, we will study successively the asymptotic
expansions of the three terms in

MB = I1 + I2 + I3 (22)

where

I1 =
∫

IR+

[
n−1∑
s=0

as(λ,w) < (ln t)k
+t−s−α

+ ;φλ >

]
dw

I2 = −
∫

IR+

[
n∑

s=1

cs(λ,w) < δ(s−1) ;φλ >

]
dw

I3 =
∫

IR+

< (fλ)n ;φλ > dw

4.3. End of the proof of Proposition 6. We will now study each of these
three integrals, to state there exist constants c′i and c′j,l such that

I1 =
∑

i

c′iλ
−i.L(θi, γi, P∆∗)

I2 =
∑
j,l

c′j,lλ
j .(ln λ)l

I3 = o(λM ) as λ → 0+ for n sufficiently large.

where the sums have a finite number of terms, i ∈ IN, l ∈ IN. We will see in (39) that
to have I3 = o(λM ), it is sufficient to take n = c− +(−β2(ν))R where R is the integer
part of M−A∆∗ (b′)

A∆∗ (ν)−1 + 1

4.3.1. Study of I1. The case α ∈]0; 1[ is first considered. Fix w �= 0.

< (ln t)k
+t−s−α

+ ;φλ >= (−1)s

∫ ∞

0

Fk,s,α(t).
∂sφλ

∂ts
(w; t)dt

where Fk,s,α(t) is defined in (15). According to (15), we have

< (ln t)k
+t−s−α

+ ;φλ >=
k∑

r=0

K(k, s, α, r).Is,r (23)

where, for r ∈ {0; ..; k}

Is,r =
∫ ∞

0

(ln t)r.
∂sφλ

∂ts
(w; t)

dt

tα

Computation of ∂sφλ

∂ts (w; t)
From (19) :

φλ(w; t) = exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠ .wb1−1tc
+
.(ln w)B1
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Derivating s times with respect to t :

∂sφλ

∂ts
(w; t) = wb1−1(ln w)B1

s∑
j=0

(
s
j

)
∂s−j(tc

+
)

∂ts−j
(24)

.
∂j

∂tj

⎛⎝exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠⎞⎠
where

∂s−j(tc
+
)

∂ts−j
=

(c+)!
(c+ − s + j)!

t(c
+−s+j) for c+ ≥ s − j

= 0 for c+ < s − j

It remains to evaluate ∂j

∂tj

(
exp

(
1
λ

∑
µ∈∆\{ν} aµwβ1(µ)tβ2(µ)

))
for 1 ≤ j ≤ s

Let us recall that if µ ∈ Σ(P ) \ {ν} we have β2(µ) ∈ IN. Then:

∂

∂t

⎛⎝exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠⎞⎠
=

⎛⎝ 1
λ

∑
µ∈∆\{ν}

β2(µ).aµwβ1(µ)tβ2(µ)−1

⎞⎠ . exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠
Likewise:

∂2

∂t2

⎛⎝exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠⎞⎠
= exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠⎡⎣ 1
λ

∑
µ∈∆\{ν}

β2(µ).(β2(µ) − 1).aµwβ1(µ)tβ2(µ)−2

+
1
λ2

∑
µ̄(1),µ̄(2)∈∆\{ν}

β2(µ̄(1)).β2(µ̄(2)).aµ̄(1).aµ̄(2).w
β1(µ̄(1))+β1(µ̄(2))

.t(β2(µ̄(1))+β2(µ̄(2))−2)
]

and finally by induction on j:

∂j

∂tj

⎛⎝exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠⎞⎠ (25)

=
j∑

ρ=1

∑
µ̄∈Sρ,β2(µ̄)≥j

const.
1
λρ

.wβ1(µ̄).tβ2(µ̄)−j . exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠
where Sρ = {µ̄; µ̄ =

∑ρ
i=1 µ̄(i) where the µ̄(i) ∈ Σ(P )\{ν}, β2(µ̄(i)) ≥ 1}. Moreover

we set Sρ = {0} if ρ = 0.
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Equations (24) and (25) finally give:

∂sφλ

∂ts
(w; t) = exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠ .wb1−1.(ln w)B1

.

s∑
ρ=0

∑
µ̄∈Sρ

hs(ρ, µ).
1
λρ

.wβ1(µ̄).tβ2(µ̄)+c+−s (26)

where

hs(ρ, µ) = 0 if β2(µ̄) < s − c+ (27)

ρ = 0 is possible if c+ − s ≥ 0.
Is,r defined in (23) becomes:

Is,r =
s∑

ρ=0

∑
µ̄∈Sρ

hs(ρ, µ).
1
λρ

(ln w)B1wβ1(µ̄)+b1−1

.

∫ ∞

0

(ln t)r. exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠ .tβ2(µ̄)+c+−s.
dt

tα
(28)

where each integral in (28) is convergent because according to (27),

β2(µ̄) + c+ − s − α ≥ s − c+ + c+ − s − α ≥ −α > −1

To compute I1 one must integrate with respect to w (we will justify later the integra-
bility with respect to w)

I1 =
n−1∑
s=0

∫
IR+

as(λ,w) < (ln t)k
+t−s−α

+ ;φλ > dw

where ∫
IR+

as(λ,w) < (ln t)k
+t−s−α

+ ;φλ > dw

=
k∑

r=0

K(k, s, α, r)
∫

IR+

Is,r(w).as(λ,w).dw (29)

(because Is,r = Is,r(w) in (23))
By (28) and (29), there exist constants δ(s, r, ρ, µ̄, k, α) such that:

I1 =
n−1∑
s=0

∫
IR+

as(λ,w) < (ln t)k
+t−s−α

+ ;φλ > dw

=
∑

s,r,ρ,µ̄

δ(s, r, ρ, µ̄, k, α).
1
λρ

∫
IR2

+

as(λ,w).wβ1(µ̄)+b1−1(ln w)B1 (30)

(ln t)r.tβ2(µ̄)+c+−s. exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµ.wβ1(µ)tβ2(µ)

⎞⎠ .
dt

tα
dw
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where: 0 ≤ s ≤ n − 1, 0 ≤ r ≤ k, 0 ≤ ρ ≤ s,
µ̄ = µ̄(1) + .. + µ̄(ρ), if ρ ≥ 1, the µ̄(i) ∈ Σ(P ) \ {ν}, and µ̄ = 0 if ρ = 0.
Let us recall that wD = xµ(1), tD = xµ(2), and wβ1(µ)tβ2(µ) = xµ. Coming back to x:

I1 =
∑

s,r,ρ,µ̄

δ(s, r, ρ, µ̄, k, α).
1
λρ

∫
IR2

+

as

(
λ, x

µ(1)
D

)
.xµ̄.

[
ln(x

µ(1)
D )

]B1

.
[
ln(x

µ(2)
D )

]r

x
µ(2)

D (c++1−s−α) (31)

.x
1
D .b1µ(1). exp

(
P ∗(x)

λ

)
.

dx

D
∏

i xi

where P ∗(x) =
∑

µ∈∆\{ν} aµxµ =
∑

µ∈∆∗ aµxµ, ∆∗ is the Newton diagram of P ∗.

Recall that as is the polynomial defined from (20) :

as(λ,w) =
1
r̄ !

.

(
aνwβ1(ν)

λ

)r̄

for r̄ =
s − c−

(−β2(ν))
∈ IN

as(λ,w) = 0 else.

thus

as(λ,w) = as

(
λ, x

µ(1)
D

)
=

1
λr̄

ar̄
ν

r̄!
x

r̄
D .β1(ν)µ(1)

Expanding in (31), there are constants b′Σ such that[
ln(x

µ(1)
D )

]B1

.
[
ln(x

µ(2)
D )

]r

=
∑

|Σ|=B1+r

b′Σ(ln x)Σ (32)

where Σ ∈ IN2, |Σ| = Σ1 + Σ2, (lnx)Σ =
∏

i(ln xi)Σi

It is clear that as = 0 if s < c−.
By (31), (32) and as c+ + 1− s−α = c+ − s + b2 − c = b2 + c− − s (from (11)), there
exist constants δ′(r̄, r, ρ, µ̄, k, α,Σ) such that :

I1 =
∑

r̄,j,..,Σ

δ′(r̄, r, ρ, µ̄, k, α,Σ).λ−r̄−ρ

∫
IR2

+

xµ̄.x
r̄
D .β1(ν)µ(1)

x
1
D .b1µ(1)x

µ(2)
D (b2+c−−s).(ln x)Σ exp

(
P ∗(x)

λ

)
.

dx∏
i xi

where r̄ ∈ IN, r̄ = s−c−
−β2(ν) .

I1 =
∑

finite

δ′(r̄, r, ρ, µ̄, k, α,Σ).λ−r̄−ρ

∫
IR2

+

xµ̄.x
µ(1)

D (b1+β1(ν).r̄)x
µ(2)

D (c−+b2−s)

.(ln x)Σ exp
(

P ∗(x)
λ

)
.

dx∏
i xi

And since 1
D (b1µ(1) + b2µ(2)) = b′ (see Lemma 5 with bi = βi(b′))

I1 =
∑

finite

δ′(r̄, r, ρ, µ̄, k, α,Σ).λ−r̄−ρ

∫
IR2

+

xµ̄.x
µ(1)

D (β1(ν).r̄).xb′x−µ(2)
D (s−c−)

.(ln x)Σ exp
(

P ∗(x)
λ

)
.

dx∏
i xi
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where

µ(1)
D

rβ1(ν) − µ(2)
D

(s − c−)

=
µ(1)
D

rβ1(ν) +
1
D

µ(2)r̄β2(ν) =
r̄

D

2∑
i=1

βi(ν)µ(i) = ν.r̄

then

I1 =
∑

finite

δ′(r̄, r, ρ, µ̄, k, α,Σ).λ−r̄−ρ

∫
IR2

+

xµ̄.xr̄ν .xb′−1.(ln x)Σ exp
(

P ∗(x)
λ

)
.dx

=
∑

finite

δ′(r̄, r, ρ, µ̄, k, α,Σ).λ−r̄−ρL(µ̄ + b′ + r̄ν,Σ, P ∗) (33)

We will show that each term here has the same form than our integral L(b′, b”, P ) but
with a Newton Diagram including one vertex less. We had:

L(b′, b”, P ) =
∫

IR2
+

exp
(

P (x)
λ

)
.xb′−1(ln x)b”dx

where (b′, b”, P ) satisfies Hypothesis HP.
Here L(µ̄ + b′ + r̄ν,Σ, P ∗) will be of the same form than L(b′, b”, P ) with P ∗(x)

instead of P∆(x). We have Σ ∈ IN2. We want that (µ̄ + b′ + r̄ν,Σ, P∆\{ν}) satisfies
Hypothesis HP.
The only thing we must check is that

µ̃ = µ̄ + b′ + r̄.ν is in the interior of C(∆∗) (34)

where ∆∗ is the Newton Diagram of P ∗(x) = P∆\{ν}(x).
We know that b′ ∈ intC(∆). µ̄ =

∑p
i=1 µ̄(i), where the µ̄(i) and ν are in C(∆)

then µ̃ ∈ intC(∆). It remains therefore to prove that µ̃ is on the right side of the line
(0;µ(1)) separating ν from ∆∗, i.e. is it true that β2(µ̃) > 0 ?

β2(µ̃) = det(µ(1), µ̃) = β2(b′) + β2(µ̄) + r̄.β2(ν)
≥ β2(b′) + (s − c+) + r̄.β2(ν) = b2 + s − c+ − (s − c−) (from (27))
= b2 − c = 1 − α > 0 (from (11) and because 0 < α < 1)

and we just obtain what we wanted.

We have then in (33) integrals L(µ̃,Σ, P ∗) of the same form that the initial
integral L(b′, b”, P ) but with a vertex less and a facet less (this proves also that
they are quite convergent). We have thus showed that in the expression (22) i.e.
MB = I1 + I2 + I3, the first term I1 is a linear combination of integrals of the form
of L(b′, b”, P ), but with a vertex less than L(b′, b”, P ).
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Sketch of the case α = 1.

< (ln t)k
+t−s−1

+ ;φλ >= (−1)s+1

∫ ∞

0

Fk,s,1(t).
∂s+1φλ

∂ts+1
(w ; t)dt

Is,r becomes Is,r =
∫∞
0

(ln t)r.∂s+1φλ

∂ts+1 (w; t)dt, r ∈ {1; ..; k + 1}
In (26) and after, one must then evaluate ∂s+1φλ

∂ts+1 (w; t)dt instead of ∂sφλ

∂ts (w; t)dt
We obtain a finite sum of integrals L(µ̃,Σ, P∆\{ν}) with:

β2(µ̃) = β2(µ̄) + β2(b′) + rβ2(ν) ≥ (s + 1) − c+ + b2 − (s − c−)
= s + 1 − c+ + c − s + c− = 1 > 0

The remainder of the proof is similar to that of the case α < 1.

4.3.2. Study of I2.

I2 = −
∫

IR+

[
n∑

s=1

cs(λ,w) < δ(s−1);φλ >

]
dw

I2 is convergent because in (22), MB , I1 and I3 are convergent. This is true for all n ∈
IN∗, then by subtracting the values in (n + 1) and in n, one finds that

∫
IR+

cs(λ,w) <

δ(s−1);φλ > dw is convergent.

< δ(s−1);φλ >= (−1)s−1 ∂s−1φλ

∂ts−1
(w; 0)

where ∂s−1φλ

∂ts−1 is evaluated with (26).

∂s−1φλ

∂ts−1
(w ; t) = exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠
s−1∑
ρ=0

∑
µ̄∈Sρ

hs−1(ρ, µ).(ln w)B1 .λ−ρwβ1(µ̄)wb1−1tc
+−s+1+β2(µ)

For t = 0, all the terms vanish except those for which the power of t is null, i.e. when
β2(µ̄) + c+ − s + 1 = 0. Since β2(µ̄) ≥ ρ, one must have ρ ≤ s − 1 − c+.

In the exponential, β2(µ) > 0 except for µ = µ(1).

∂s−1φλ

∂ts−1
(w; 0) = exp

(
1
λ

aµ(1).w
β1(µ(1))

)
(35)

.

s−1−c+∑
ρ=0

∑
µ̄∈Sρ, β2(µ)=s−c+−1

hs−1(ρ, µ).(ln w)B1 .λ−ρwβ1(µ̄)+b1−1

(it is null if s − 1 − c+ < 0 because 0 ≤ ρ ≤ s − 1 − c+ )∫
IR+

cs(λ,w) < δ(s−1);φλ > dw (36)

=
∫

IR+

(−1)s−1
s−1−c+∑

ρ=0

∑
µ̄∈Sρ, β2(µ)=s−c+−1

hs−1(ρ, µ).(ln w)B .λ−ρwβ1(µ̄)+b1−1

cs(λ,w) exp
(

aµ(1).
wD

λ

)
dw
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Computation of cs(λ;w).
We assume here that 0 < α < 1.

cs(λ;w) = (fλ)s,s(w; 0) =
(−1)s

(s − 1)!

∫ ∞

0

τs−1(fλ)s(w, τ)dτ

where according to (14) and (20).

(fλ)s(w, τ) = fλ(w, τ) −
[
a0(λ;w)

τα
+ ... +

as−1(λ;w)
τs−1+α

]
(ln τ)k (37)

=
(ln τ)k

τα+c−

⎡⎣exp
(aν

λ
wβ1(ν)τβ2(ν)

)
−

∑
i∈IN,i<r

1
i!

(aν

λ
wβ1(ν)τβ2(ν)

)i

⎤⎦
with r̄ = s−c−

−β2(ν) .

cs(λ;w) =
(−1)s

(s − 1)!

∫ ∞

0

(ln τ)kτs−1

τα+c−⎡⎣exp
(aν

λ
wβ1(ν)τβ2(ν)

)
−

∑
0≤i<r̄

1
i!

(aν

λ
wβ1(ν)τβ2(ν)

)i

⎤⎦ dτ

Set u = 1
λwβ1(ν)τβ2(ν), where β2(ν) < 0, w stated.

cs(λ;w) =
(−1)s

(s − 1)!

(
wβ1(ν)

λ

) s−c−−α
−β2(ν)

( −1
β2(ν)

)∫ ∞

0

(
1

β2(ν)
ln
[

λu

wβ1(ν)

])k

u
s−c−−α

β2(ν) −1

⎡⎣exp (aνu) −
∑

0≤i<r̄

1
i!

(aνu)i

⎤⎦ du

There are constants d′i,j such that

cs(λ;w) = (−1)s

(
wβ1(ν)

λ

)r̄+ α
β2(ν)

⎡⎣ ∑
i+j≤k

d′i,j(ln λ)i(ln w)j

⎤⎦
Thus

I2 =
n∑

s=1

∑
ρ

∑
µ̄,β2(µ̄)=s−c+−1

hs−1(ρ, µ)
∫

IR+

(
wβ1(ν)

λ

)r̄+ α
β2(ν)

(ln w)B1λ−ρwβ1(µ̄)+b1−1

⎡⎣ ∑
i+j≤k

d′i,j(ln λ)i(ln w)j

⎤⎦ exp
(

1
λ

aµ(1)w
D

)
dw

It is then sufficient to put w′ = wλ−1/D to obtain the expansion expected.

Remark. The study of I2 in the case α = 1 is dealt exactly in the same way.
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4.3.3. Study of I3. Assume 0 < α < 1.

I3 =
∫

IR+

< (fλ)n;φλ > dw

< (fλ)n;φλ >= (−1)n

∫
IR+

(fλ)n,n(w, t)
∂nφλ

∂tn
(w, t)dt (for any w)

where

(fλ)n,n(w, t) =
(−1)n

(n − 1) !

∫ +∞

t

(fλ)n(w, τ)(τ − t)n−1dτ

< (fλ)n;φλ >=
1

(n − 1) !

∫ ∞

0

[∫ ∞

t

(f
λ
)n(w, τ)(τ − t)n−1dτ

]
.
∂nφλ

∂tn
(w, t)dt

from (37)

fλ(w, τ) =
(ln τ)k

τα+c− . exp
(aν

λ
wβ1(ν)τβ2(ν)

)
=

∑
0≤i<R̄

1
i!

(aν

λ
.wβ1(ν)

)i

τ−α+i(β2(ν))−c− .(ln τ)k + (fλ)n(w, τ)

where we put R̄ = n−c−
−β2(ν) . We consider n ∈ IN such that R̄ ∈ IN.

Moreover, since aν < 0∣∣∣∣∣∣exp
(aν

λ
wβ1(ν)τβ2(ν)

)
−

∑
0≤i<R̄

1
i!

(aν

λ
.wβ1(ν)τβ2(ν)

)i

∣∣∣∣∣∣ ≤
∣∣∣(aν

λ
wβ1(ν)τβ2(ν)

)∣∣∣R̄
hence

|(fλ)n(w; τ)| ≤ | ln τ |k
τ (α+c−)

∣∣∣(aν

λ
wβ1(ν)τβ2(ν)

)∣∣∣R̄ =
| ln τ |k
τ (α+n)

∣∣∣(aν

λ
wβ1(ν)

)∣∣∣R̄

| < (fλ)n;φλ > | ≤ const

∣∣∣∣∣
∫ ∞

0

∫ ∞

t

|ln τ |k
τα+n

wRβ1(ν)

λR̄
.(τ − t)n−1dτ.

∣∣∣∣∂nφλ

∂tn
(w, t)

∣∣∣∣ dt

∣∣∣∣∣
≤ const.

wRβ1(ν)

λR̄

∫ ∞

0

∫ ∞

t

∣∣∣∣(ln τ)k τn−1

τα+n
dτ.

∂nφλ

∂tn
(w, t)

∣∣∣∣ dτdt

= const.
wRβ1(ν)

λR̄

∫ ∞

0

∫ ∞

t

∣∣∣∣ (ln τ)k

τα+1
dτ.

∂nφλ

∂tn
(w, t)

∣∣∣∣ dτdt

where
∫ t

∞
(ln τ)k

τα+1 dτ = Fk,1,α(t) (see (15) with s = 1)
And since Fk,1,α(t) = 1

tα .
∑k

r=0 const. (ln t)r to study | < (fλ)n ;φλ > | means to
study expressions :

wRβ1(ν)

λR̄

∫ ∞

0

1
tα

∣∣∣∣(ln t)r
.
∂nφλ

∂tn
(w, t)

∣∣∣∣ dt for 0 ≤ r ≤ k
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Integrating with respect to w gives :∫
IR2

+

wRβ1(ν)

λR̄

∣∣∣∣(ln t)r.
∂nφλ

∂tn
(w, t)

∣∣∣∣ . dt

tα
dw

From (26) it means that :

|I3| ≤
∑

finite

const.

∫
IR2

+

|(ln w)|B1 |(ln t)|r . exp

⎛⎝ 1
λ

∑
µ∈∆\{ν}

aµwβ1(µ)tβ2(µ)

⎞⎠
.

1
λρ+R̄

.wβ1(µ)+R.β1(ν).wb1−1.tβ2(µ)tc
+−n−αdwdt

where µ̄ ∈ Sρ, β2(µ̄) ≥ n − c+, and coming back to x as in (31) and (33) we obtain

|I3| ≤
∑

finite

const.
1

λρ+R̄

∫
IR2

+

xµ̄ |(ln x)|Σ xRν .xb′−1. exp
(

P∆\{ν}(x)
λ

)
dx (38)

where P∆\{ν}(x) = P ∗(x) of Newton diagram ∆∗. We need an order of magnitude of
each of these integrals. According to the remark following Lemma 4, (i) and (ii) of
Lemma 4 is valid for

L′(θ, γ, P ) =
∫

IR2
+

xθ−1 |ln x|γ exp
(

1
λ

P (x)
)

dx

i.e. L′(θ, γ, P ) = o(λA∆(θ)−ε) as λ → 0+, for any ε > 0, if (θ, γ, P ) satisfies the HP
hypothesis.

To apply this here, we must just check that µ̃ = µ̄+R.ν + b′ belongs to intC(∆∗),
i.e. that β2(µ̃) > 0.

β2(µ̃) = det(µ(1), µ̃) = β2(b′) + β2(µ̄) + R.β2(ν)
≥ β2(b′) + n − c+ + R.β2(ν) = β2(b′) + n − c+ − n + c−

= b2 − c = 1 − α > 0
It remains to evaluate A∆∗(µ̃).

µ̃ = µ̄+b′+R.ν thus A∆∗(µ̃) ≥ A∆∗(µ̄)+A∆∗(b′)+R.A∆∗(ν) ≥ ρ+A∆∗(b′)+R.A∆∗(ν)
because A∆∗(µ̄) ≥ ∑ρ

1 A∆∗(µ̄(i)) ≥ ρ.

Then A∆∗(µ̃) ≥ ρ + A∆∗(b′) + R.A∆∗(ν)
Hence finally I3 satisfies, for λ small enough, for any ε > 0:

|I3| =

∣∣∣∣∣
∫

IR+

< (fλ)n;φλ > dw

∣∣∣∣∣ ≤ ∑
finite

const.λ−ρ−RλA∆∗ (µ̃)−ε

≤ const.λA∆∗ (b′)+R.(A∆∗ (ν)−1)−ε

where A∆∗(ν) > 1. Thus I3 is o(λM ) for n large enough. More precisely, I3 = o(λM )
as soon as A∆∗(b′) + R.(A∆∗(ν) − 1) > M i.e. with R > M−A∆∗ (b′)

A∆∗ (ν)−1 , R ∈ IN
It is then sufficient to take

n = c− + (−β2(ν))R where R is the integer part of
M − A∆∗(b′)
A∆∗(ν) − 1

+ 1 (39)

The case α = 1 must be dealt in the same way.

This ends the proof of Proposition 6.
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5. Proof of Proposition 7.
L(θ, γ, P ) =

∫
IRp

+
exp

(
1
λ

∑
µ∈∆ aµxµ

)
xθ−1(ln x)γdx where ∆ is just the facet F . We

introduce the change of variables x 	→ v(σ) where σ is a facet-system of p independent
vertices of F . From Lemma 5:

L(θ, γ, P ) =
∫

IRp
+

exp

⎛⎝ 1
λ

∑
µ∈F

aµvβ(µ)

⎞⎠ .vβ(θ)−1.Dp−1

p∏
i=1

(
ln vβ(ei)

)γi

dv

and setting ui = λ− 1
D vi as in the proof of Lemma 4, we obtain:

L(θ, γ, P ) = λAF (θ)

∫
IRp

+

exp

⎛⎝∑
µ∈F

aµλAF (µ)−1uβ(µ)

⎞⎠ .uβ(θ)−1 (40)

p∏
i=1

(
ln λAF (ei)vβ(ei)

)γi

.Dp−1du

= λAF (θ)

γ1∑
k1=0

...

γp∑
kp=0

(
γ1

k1

)
..

(
γp

kp

)
.

p∏
i=1

(
ln λAF (ei)

)ki

∫
IRp

+

exp

⎛⎝∑
µ∈F

aµuβ(µ)

⎞⎠ .uβ(θ)−1.

p∏
i=1

(
ln uβ(ei)

)γi−ki

.Dp−1du

since AF (µ) = 1 for µ ∈ F .

6. Study of an example.

6.1. Introduction. Throughout this section, to show the working of our algo-
rithm, we will follow a simple example of an integral of the type JH,χ(λ). For this
example, we take H from IR2 to IR, defined by:

H(x1, x2) = − (
x6

1 + x2
1x

2
2 + x6

2 + x4
1x2 + x1x

4
2 + x3

1x
4
2

)
and χ smooth of compact support K, such that

χ(x1, x2) = x2
1x

4
2 + x7

1x
3
2 in a neighborhood of 0

We want to compute the asymptotic expansion of order M = 5
2 of JH,χ(λ).

The principal part of H is

Ĥ(x) = − (
x6

1 + x2
1x

2
2 + x6

2 + x4
1x2 + x1x

4
2

)
The Newton diagram ∆ of H has two facets F1 and F2 with

AF1(µ) =
1
3
µ1 +

1
6
µ2 and AF2(µ) =

1
6
µ1 +

1
3
µ2

µ ∈ F1 ⇒ AF1(µ) = 1, and µ ∈ F2 ⇒ AF2(µ) = 1. Moreover

A∆(µ) = inf
Fi

[AFi
(µ)]
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Newton polygon of H

(3; 4)

F1

F2

According to Proposition 1∫
χ(x). exp(H(x)/λ)dx =

∫
B(δ)

χ(x). exp(H(x)/λ)dx + O
(
e−d/λ

)
6.2. Approximation of the amplitude. With our example, to apply Proposi-

tion 2, we must evaluate A∆(θ) for θ = (2; 4)+ (1; 1) = (3; 5) and θ = (7; 3)+ (1; 1) =
(8; 4).

A∆(3; 5) = infFi
[AFi

(3; 5)] = inf
[
11
6 , 13

6

]
= 11

6 < 5
2

A∆(8; 4) = infFi
[AFi

(8; 4)] = inf
[
10
3 , 8

3

]
= 8

3 > 5
2

Proposition 2 gives then, for M = 5
2∫

χ(x). exp(H(x)/λ)dx =
∫

B(δ)

x2
1x

4
2. exp(H(x)/λ)dx + o(λ

5
2 )

6.3. Reduction of the phase. Now, we want to apply Proposition 3 to our
example. It will allow to simplify the phase, putting Ĥ instead of H.

η0 > 0 is such that there is no point of the support of H strictly between ∆ and
(1 + η0)∆. More precisely, η0 = inf (A∆(µ) − 1;µ ∈ Σ(H) \ ∆(H)).

(3;4) is the only point of Σ(H) \ ∆. One finds A∆(3; 4) = infFi
[AFi

(3; 4)] =
inf

[
5
3 , 11

6

]
= 5

3 . So, we can take η0 = 2
3 . As M = 5

2 and θ = (2; 4) + (1; 1) = (3; 5),

we have M−A∆(θ)
η0

=
5
2− 11

6
2
3

= 1, so we set M ′ = 1. Proposition 3 gives then R1(x) =

−x3
1x

4
2, and∫

χ(x). exp(H(x)/λ)dx =
∫

B(δ)

x2
1x

4
2.

[
1 − x3

1x
4
2

λ

]
exp(Ĥ(x)/λ)dx + o(λ

5
2 )
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6.4. Extension of the domain. Proposition 4 gives∫
χ(x). exp(H(x)/λ)dx =

∫
IR2

x2
1x

4
2.

[
1 − x3

1x
4
2

λ

]
exp

(
Ĥ(x)

λ

)
dx + o(λ

5
2 )

6.5. Simplification of facets. We must then apply Proposition 5 to∫
IRp x2

1x
4
2 exp

(
Ĥ(x)

λ

)
dx with M = 5/2 and to

∫
IRp x5

1x
8
2 exp

(
Ĥ(x)

λ

)
dx with M = 7/2,

i.e. for θ = (3; 5) and θ = (6; 9).
We have here S = {(6; 0), (2; 2), (0; 6)} and Σ(Ĥ) = S ∪ {(1; 4), (4; 1)}
We apply Proposition 5 with B = {(1; 4), (4; 1)}, ∆1 = B ∩ (F1 \ F2) = {(1; 4)},

∆2 = B ∩ (F2 \ F1) = {(4; 1)}, B1 = ∆2 = {(4; 1)}, B2 = ∆1 = {(1; 4)}, B0 = ∅.
η1 = inf (AF2(µ) − 1; µ ∈ ∆1) = AF2(1; 4) − 1 = 3

2 − 1 = 1
2

η2 = inf (AF1(µ) − 1; µ ∈ ∆2) = AF1(4; 1) − 1 = 3
2 − 1 = 1

2
which implies that η = 1

2 . ∫
IR2

xθ−1. exp
(

HS∪B(x)
λ

)
dx

= o(λ
5
2 ) +

M”∑
k1=0

1
λk1

1
k1!

∫
IR2

xθ−1
(−x1x

4
2

)k1 exp
(

HS∪B1(x)
λ

)
dx

+
M”∑

k2=0

1
λk2

1
k2!

∫
IR2

xθ−1
(−x4

1x2

)k2 exp
(

HS∪B2(x)
λ

)
dx

−
M”∑

k1=0

M”∑
k2=0

1
λk1+k2

1
k1!k2!

∫
IR2

xθ−1
(−x1x

4
2

)k1 (−x4
1x2

)k2 exp
(

HS∪B0(x)
λ

)
dx

where M” is the integer part of 1
η (M − A∆(θ)) = 2(M − A∆(θ))

1) θ = (3; 5) and M = 5
2 leads to A∆(θ) = 11

6 so M” is the integer part of
5 − 2( 11

6 ) = 4
3 i.e. M” = 1

2) θ = (6; 9) and M = 7
2 leads to A∆(θ) = inf(7

2 ; 4) = 7
2 so M” is the integer part

of 7 − 2( 7
2 ) = 0 i.e. M” = 0.

Finally

∫
IR2

x2
1x

4
2.

[
1 − x3

1x
4
2

λ

]
exp

(
Ĥ(x)

λ

)
dx

= o(λ
5
2 ) +

∫
IR2

x2
1x

4
2

(
1 − x1x

4
2

λ

)
. exp

(
HS∪B1(x)

λ

)
dx

+
∫

IR2
x2

1x
4
2

(
1 − x4

1x2

λ

)
. exp

(
HS∪B2(x)

λ

)
dx

−
∫

IR2
x2

1x
4
2.

(
1 − x4

1x2

λ
− x1x

4
2

λ
+

x5
1x

5
2

λ2

)
exp

(
HS(x)

λ

)
dx

− 1
λ

∫
IR2

x5
1x

8
2. exp

(
HS∪B1(x)

λ

)
dx − 1

λ

∫
IR2

x5
1x

8
2. exp

(
HS∪B2(x)

λ

)
dx

+
1
λ

∫
IR2

x5
1x

8
2. exp

(
HS(x)

λ

)
dx
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We have then 11 integrals of the same type to evaluate. Henceforth, we will limit
our example to the study of the simplest one (on IR2

+), i.e.

L1 =
∫

IR2
+

x2
1x

4
2. exp

(
− 1

λ

(
x6

1 + x2
1x

2
2 + x6

2

))
dx

6.6. Suppression of vertices.

6.6.1. First step. We have

L1 = L(b′, b”, P ) =
∫

IR2
+

xb′−1(ln x)b” exp
(

P (x)
λ

)
dx

with b′ = (3; 5), b” = (0; 0), P (x) = − (
x6

1 + x2
1x

2
2 + x6

2

)
i.e. L1 = L ((3; 5), (0; 0), P )

We have A∆(b′) = AF1(b
′) = 11

6 and AF2(b
′) = 13

6 .
We want to remove the vertex ν = (6; 0). Let µ(1) = (2; 2) and µ(2) = (0; 6).

�

�

������������

�
�

�
�

�
�

�
�

�
�

��

�

�

�

�

0

2

4

6

2 4 6

Newton diagram of P

µ(2)

µ(1)

b′

ν

F1

F2

According to Lemma 5, the change of variables associated to the facet system
(µ(1), µ(2)) is given by xµ = v

β1(µ)
1 v

β2(µ)
2 , where β1(µ) = det (µ, µ(2)) = 6µ1 and

β2(µ) = det (µ(1), µ) = 2(µ2 − µ1), i.e. xµ = v6µ1
1 v

2(µ2−µ1)
2 .

In particular, v12
1 = x2

1x
2
2, v12

2 = x6
2 and xb′ = x3

1x
5
2 = v18

1 v4
2

We obtain with D = det (µ(1), µ(2)) = 12

L1 = 12MB

where
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MB =
∫

IR2
+

v17
1 v3

2 exp
(
− 1

λ

[
v12
1 + v12

2 + v36
1 v−12

2

])
dv

b2 = 4 so (11) becomes here α = 1 and c = 4 (i.e. c+ = 4, c− = 0). We set w = v1,
t = v2. Equation (12) is now

MB =
∫

IR2
+

t4w17 exp
(
− 1

λ

[
w12 + t12

])
.
1
t

exp
(
− 1

λ

[
w36t−12

])
dwdt

=
∫

IR2
+

φλ(w; t).fλ(w; t)dwdt

where following (19), φλ and fλ are defined by

φλ(w; t) = t4w17 exp
(
− 1

λ

[
w12 + t12

])
fλ(w; t) =

1
t

exp
(
− 1

λ

[
w36t−12

])
6.6.2. Second step. According to (20), fλ(w; t) has the asymptotic expansion

as t → +∞

fλ(w; t) =
1
t

exp
(
− 1

λ

[
w36t−12

]) ∼ 1
t

∞∑
r̄=0

1
r̄!

(
− 1

λ
.
w36

t12

)r̄

and

fλ(w; t) ∼
∞∑

s=0

as(λ,w)
ts+1

so

as(λ,w) =
1
r̄!

(
− 1

λ
.w36

)r̄

for s = 12r̄, with r̄ ∈ IN

as(λ,w) = 0 else

Moreover we have a decomposition MB = I1 + I2 + I3 as in (22).

6.6.3. Third step. We take n = c−+(−β2(ν)).R̄ = 12R̄, where R̄ is the integer
part of M−A∆∗ (b′)

A∆∗ (ν)−1 + 1.
Here ∆∗ = F1, since if we remove ν, the facet F2 disappears. So

M − A∆∗(b′)
A∆∗(ν) − 1

=
5
2 − 11

6

2 − 1
=

2
3

thus R̄ = 1 and n = 12.
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Study of I1.

I1 =
∫

IR+

[
11∑

s=0

as(λ,w) < (ln t)k
+t−s−α

+ ;φλ >

]
dw

where k = 0 and α = 1.
By definition < t−s−1

+ ;φλ >= −1
s!

∫ +∞
0

ln t.∂s+1ϕλ

∂ts+1 (w; t)dt.
But a0(λ,w) = 1 and as(λ,w) = 0 if 1 ≤ s ≤ 11.

So

I1 =
∫

IR+

< t−1
+ ;φλ > dw

= −
∫

IR2
+

w17 exp
(
− 1

λ
w12

)
. ln t.

∂

∂t

(
t4 exp

(
− 1

λ
t12

))
dtdw

=
∫

IR2
+

w17 exp
(
− 1

λ
w12

)
.t3 exp

(
− 1

λ
t12

)
dtdw

(integrating by parts)
Let us remark that if we come back to x, we can write

I1 =
∫

IR2
+

x2
1x

4
2. exp

(
− 1

λ

(
x6

1 + x2
1x

2
2

))
dx

which means that 12I1 is the first term of the expansion of L1 according to Lemma
4.

However, it is simpler to set w′ = wλ−1/12 and t′ = tλ−1/12 thus

I1 = λ
18+4
12

∫
IR2

+

w′17 exp
(−w′12) .t′3 exp

(−t′12
)
dt′dw′

= λ11/6.
1

122
Γ(

3
2
)Γ(

1
3
)

Study of I2.

I2 = −
∫

IR+

[
12∑

s=1

cs(λ,w) < δ(s−1) ;φλ >

]
dw

with < δ(s−1) ;φλ >= (−1)s−1 ∂s−1φλ

∂ts−1 (w; 0)
so since φλ(w; t) = w17 exp

(− 1
λw12

)
t4 exp

(− 1
λ t12

)
we have

< δ(s−1);φλ >= 0 if s ∈ [1; 12] and s �= 5

< δ(s−1);φλ >= 24.w17. exp
(
−w12

λ

)
for s = 5.

This implies that

I2 = −24
∫

IR+

c5(λ,w)w17. exp
(
−w12

λ

)
dw
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where

c5(λ,w) = lim
t→0

(
(fλ)5;5(w; t) +

a4

24
ln t

)
with a4 = 0 and

(fλ)5;5(t) =
(−1)5

24

∫ ∞

t

(τ − t)4
[

1
τ

exp(− 1
λ

w36

τ12
) − 1

τ

]
dτ

That leads to

c5(λ,w) = − 1
24

∫ ∞

0

τ4

[
1
τ

exp(− 1
λ

w36

τ12
) − 1

τ

]
dτ

and finally

I2 =
∫ ∞

0

w17. exp
(
−w12

λ

)(∫ ∞

0

τ3

[
exp(− 1

λ

w36

τ12
) − 1

]
dτ

)
dw

and u = w36λ−1τ−12 gives

I2 =
1
12

λ−1/3

∫ ∞

0

w29. exp
(
−w12

λ

)
dw.

(∫ ∞

0

u−4/3 [exp(−u) − 1] du

)
and with w′ = wλ−1/12

I2 = −λ13/6

∫ ∞

0

w′29. exp
(−w′12) dw′.

∫ +∞

0

u−4/3 (1 − exp(−u)) du

= −λ13/6.
1

122
Γ(

5
2
).
∫ +∞

0

u−4/3 (1 − exp(−u)) du

The asymptotic expansion of L1. Finally we find that L1 = 12(I1 + I2) + o(λ5/2)
becomes

L1 = λ11/6.
1
12

Γ(
3
2
)Γ(

1
3
)

−λ13/6.
1
12

Γ(
5
2
)
∫ +∞

0

u−4/3 (1 − exp(−u)) du + o(λ5/2).
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