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REMOVAL OF SINGULARITIES AND GROMOV
COMPACTNESS FOR SYMPLECTIC VORTICES

Andreas Ott

We prove that the moduli space of gauge equivalence classes of
symplectic vortices with uniformly bounded energy in a compact
Hamiltonian manifold admits a Gromov compactification by polystable
vortices. This extends results of Mundet i Riera for circle actions to
the case of arbitrary compact Lie groups. Our argument relies on an
a priori estimate for vortices that allows us to apply techniques used
by McDuff and Salamon in their proof of Gromov compactness for
pseudoholomorphic curves. As an intermediate result we prove a
removable singularity theorem for symplectic vortices.
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1. Introduction and main results

For any compact Lie group G and any Hamiltonian G-manifold (M, ω, μ)
with moment map μ : M → g∗ ∼= g, Cieliebak, Gaio, Mundet i Riera, and
Salamon [CGS,CGMS,GaSa] and Mundet i Riera and Tian [Mu1,Mu2,
MT] studied the symplectic vortex equations

(1.1) ∂J,A(u) = 0, FA + μ(u) dvolΣ = 0

for pairs (A, u), where A is a connection on a fixed principal G-bundle P over
a compact Riemann surface Σ equipped with a fixed complex structure and
a fixed area form dvolΣ, FA denotes the curvature of A, u is a G-equivariant
map P → M , and J is a G-invariant ω-compatible almost complex structure
on M . Solutions of these equations are called vortices and may be regarded
as gauge-theoretic deformations of J-holomorphic curves in M . For a proper
moment map μ and M equivariantly convex at infinity, [CGMS] proved
that the moduli space of gauge equivalence classes of vortices with uni-
formly bounded energy is compact under the additional assumption that M
is symplectically aspherical. The latter condition means that the symplec-
tic form ω vanishes on all spherical homology classes in M and ensures
that no bubbling off of spheres occurs. If this condition is dropped, the
moduli space will in general no longer be compact, and the question arises
as to whether it admits a compactification in a way similar to the Gro-
mov compactification of the moduli space of pseudoholomorphic curves as
in [Gr,Ko,HS,MS,PW,Ye,Hu]. In the special case of G = S1, a positive
answer was first given by Mundet i Riera [Mu2] who constructed a Gromov
compactification for fixed complex structure on Σ, using the compactness
results for pseudoholomorphic curves of Ivashkovich and Shevchishin [IS].
Later Mundet i Riera and Tian [MT] established a compactification in the
case of G = S1 also for varying complex structure on Σ.

The goal of this paper is to construct a Gromov compactification of the
moduli space of vortices for all compact Lie groups G and for fixed com-
plex structure on the Riemann surface Σ, see Theorem 1.8 below, combin-
ing methods from symplectic geometry and gauge theory. A feature of our
approach is that we do not appeal to [IS]; rather, we apply the techniques
that were used by McDuff and Salamon [MS] to construct a Gromov com-
pactification for the moduli space of pseudoholomorphic curves. Our result
crucially relies on a removable singularity theorem for vortices on the punc-
tured disk, see Theorem 1.1 below.
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The Gromov compactification we shall construct plays a central role
in the definition of gauged Gromov–Witten invariants for Hamiltonian G-
manifolds. More specifically, it is used in the algebro-geometric approach
to gauged Gromov–Witten theory due to González and Woodward [GW]
in order to define such invariants for smooth projective G-varieties. More-
over, building on the results of the present paper, the author constructed
a Gromov compactification for the moduli space of solutions of the non-
local symplectic vortex equations in order to define gauged Gromov–Witten
invariants for monotone Hamiltonian G-manifolds, see [Ott]. The present
article grew out of a joint project with E. González, C. Woodward, and
F. Ziltener that carries these ideas further to the study of vortices with
fixed holonomy on punctured Riemann surfaces, with the goal of defining the
corresponding invariants. As another application, our result enters into the
compactification of the moduli space of vortices on the affine line, which con-
stitutes an intermediate step in the definition of the quantum Kirwan map
in gauged Gromov–Witten theory due to Ziltener [Zi1,Zi3] and Nguyen et
al. [NWZ]. Our approach conjecturally admits an extension so as to cover
symplectic vortices with Lagrangian boundary conditions, in which case disk
bubbling may also occur; this would allow for a generalization of the gauged
Lagrangian Floer theory of Frauenfelder [Fr], see Woodward [Wo].

We now state the two main theorems of this paper. Let G be a compact
connected Lie group, with Lie algebra denoted by g, and let (M, ω, μ) be a
closed Hamiltonian G-manifold. Explicitly, this means that M is a compact
smooth G-manifold without boundary equipped with a G-invariant symplec-
tic form ω and a smooth G-equivariant moment map μ : M → g∗ ∼= g such
that the identity

ι(Xξ)ω = d〈μ, ξ〉g
holds for every ξ ∈ g, where Xξ denotes the fundamental vector field of the
infinitesimal action of ξ on M that is induced by the G-action. Here, we
identify the Lie algebra g with its dual g∗ by means of some fixed invariant
inner product 〈·, ·〉g on g. We further fix a smooth G-invariant ω-compatible
almost complex structure J on M , which defines a G-invariant Riemannian
metric 〈·, ·〉J := ω(·, J ·) on M . We refer to [CGMS,CGS] for the details.

Our first result is a removable singularity theorem for vortices on the
punctured disk. We begin by recalling from [CGMS] the definition of the
symplectic vortex equations in local coordinates. Let D ⊂ C be an open
subset and write the complex coordinate as s + it. Fix a smooth function
λ : D → (0,∞). The symplectic vortex equations on D are the system of
nonlinear partial differential equations

∂su + XΦ(u) + J
(
∂tu + XΨ(u)

)
= 0,

∂sΨ− ∂tΦ + [Φ, Ψ] + λ2 · μ(u) = 0,
(1.2)
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where Φ, Ψ: D → g and u : D → M are smooth maps. A triple (Φ, Ψ, u)
that solves equations (1.2) will be called a vortex on D. Its Yang–Mills–
Higgs energy is defined by

(1.3) E(Φ, Ψ, u; D) :=
∫

D
e(Φ, Ψ, u),

where

(1.4) e(Φ, Ψ, u) := |∂su + XΦ(u)|2J + λ2 · |μ(u)|2g
denotes the Yang–Mills–Higgs energy density. Here the norms are under-
stood with respect to the metric 〈·, ·〉J on M and the inner product 〈·, ·〉g
on g, respectively. Note that this energy may be infinite.

We are now ready to state our first theorem. Let B ⊂ C denote the closed
unit disk. Fix a smooth function λ : B → (0,∞) and consider the vortex
equations (1.2) on the punctured disk B \ {0}.
Theorem 1.1 (Removal of singularities). Let (Φ, Ψ, u) be a smooth
vortex on the punctured disk B \ {0}, and assume that the following holds.

(i) Φ and Ψ extend continuously to all of B.
(ii) (Φ, Ψ, u) has finite Yang–Mills–Higgs energy E(Φ, Ψ, u; B) < ∞.

Then u is of Sobolev class W 1,p on B for every real number p > 2.

The reader is referred to [We1, Appendix B] for the definition of Sobolev
spaces of maps into M . We will prove Theorem 1.1 in Section 3; it will later
play a crucial role in the proof of Gromov compactness for vortices.

We now introduce some notation in order to state the main result,
Theorem 1.8 below, which establishes Gromov compactness for symplectic
vortices.

To begin with, we recall from [CGMS] the definition of the symplectic
vortex equations on Riemann surfaces. Let Σ be a compact Riemann surface
without boundary, that is endowed with a fixed complex structure jΣ and
a fixed area form dvolΣ, and denote the corresponding Kähler metric by
〈·, ·〉Σ := dvolΣ( ·, jΣ ·). Let π : P → Σ be a smooth principal G-bundle
over Σ. We shall write A(P ) for the space of smooth connections on P
and C∞(P, M)G for the space of smooth G-equivariant maps P → M (see
[We1, Appendix A] for basic definitions in gauge theory). For any pair
(A, u) ∈ A(P )×C∞(P, M)G we denote by

(1.5) dAu := du + XA(u)

the twisted derivative of u, and define the corresponding nonlinear Cauchy–
Riemann operator by

∂J,A(u) :=
1
2
(
dAu + J(u) ◦ dAu ◦ jΣ

)
.
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The symplectic vortex equations on the Riemann surface Σ are the system
of nonlinear partial differential equations (1.1), i. e.,

∂J,A(u) = 0, FA + μ(u) dvolΣ = 0,

for pairs (A, u) ∈ A(P )×C∞(P, M)G, where

FA := dA +
1
2
[A ∧A]

denotes the curvature of A. Its solutions are called vortices. We define the
Yang–Mills–Higgs energy of a vortex (A, u) on an open subset U ⊂ Σ by

(1.6) E(A, u; U) :=
∫

U

(
1
2
|dAu|2J + |μ(u)|2g

)
dvolΣ,

and write E(A, u) for the Yang–Mills–Higgs energy of (A, u) on Σ. Here the
norm | · |J is understood with respect to the metric 〈·, ·〉J on M and the
metric 〈·, ·〉Σ on Σ (see [MS, Section 2.2] for details), while the norm | · |g
is understood with respect to the inner product 〈·, ·〉g on g.

Remark 1.2. Equations (1.2) are a local version of equations (1.1) in the
following sense. Let D ⊂ C be an open subset of C, and let ϕ : D → Σ
be a holomorphic chart with a lift ϕ̃ : D → P that locally trivializes the
bundle P . A vortex (A, u) determines a smooth triple (Φ, Ψ, uloc) on D by
the relations

ϕ̃ ∗A = Φ ds + Ψ dt and uloc = u ◦ ϕ̃,

and the area form dvolΣ gives rise to a smooth function λ : D → (0,∞) by

ϕ∗ dvolΣ = λ2 ds ∧ dt.

A short calculation now shows that the triple (Φ, Ψ, uloc) satisfies the vortex
equations

∂su
loc + XΦ

(
uloc
)

+ J
(
∂tu

loc + XΨ

(
uloc
))

= 0,

∂sΨ− ∂tΦ + [Φ, Ψ] + λ2 · μ(uloc
)

= 0

on D (see [CGMS, Proposition 2.2] for details). Moreover, the Yang–
Mills–Higgs energy density (1.4) of the vortex (Φ, Ψ, uloc) can be expressed
in terms of (A, u) by the identity

(1.7)
∣∣∣∂su

loc + XΦ

(
uloc
)∣∣∣2

J
+ λ2 ·

∣∣∣μ(uloc
)∣∣∣2

g

=
(

1
2
|dAu ◦ ϕ̃|2J + |μ(u ◦ ϕ̃)|2g

)
· λ2;

the corresponding Yang–Mills–Higgs energies are then related by

(1.8) E
(
Φ, Ψ, uloc; D

)
= E

(
A, u; ϕ(D)

)
.

This justifies the ad hoc definitions at the beginning of this section.
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Next we introduce polystable vortices and give a definition of Gromov
convergence for sequences of vortices. Our definitions are inspired by similar
definitions due to Mundet i Riera [Mu2], González and Woodward [GW],
Ziltener [Zi3], and McDuff and Salamon [MS].

We begin by recalling some basic facts about trees and nodal curves from
[MS, Appendix D.2 and Section 5.1], slightly modifying the notation
and terminology. A tree is a connected graph without cycles. We denote it by
(V, E), where V is a finite set of vertices and E ⊂ V ×V is the edge relation.
A rooted tree is a tree (V, E), which has a distinguished root vertex 0 ∈ V .
We will indicate this in the notation by writing the set of vertices V as a
disjoint union V = {0}�VS . The elements of VS are called spherical vertices.
Note that VS may be empty. Let n be a nonnegative integer. An n-labeled
tree is a triple T = (V, E, Λ) consisting of a rooted tree (V = {0} � VS , E)
and a labeling

Λ: {1, . . . , n} → V, i �→ αi.

Given an n-labeled tree T = (V = {0} � VS , E, Λ), by a normalized nodal
curve of combinatorial type T we mean a tuple

(Σ, z) :=
({Σα}α∈V , {zαβ}αEβ, {αi, zi}1≤i≤n

)
,

often just written as
z =

({zαβ}αEβ, {αi, zi}1≤i≤n

)
,

consisting of a compact Riemann surface Σ0, called the principal component
associated to the root vertex 0, a spherical component Σα := CP 1 for every
spherical vertex α ∈ VS , nodal points zαβ ∈ Σα labeled by the directed edges
αEβ of T , and n distinct marked points zi ∈ Σαi , i = 1, . . . , n, such that for
every α ∈ V the points zαβ for αEβ and zi for αi = α are pairwise distinct.
We denote the set of nodal points on the component Σα, α ∈ V , by

Zα :=
{
zαβ

∣∣αEβ
}
,

and we define the set of special points on Σα by

Yα := Zα ∪
{
zi

∣∣αi = α
}
.

For any two vertices α, β ∈ V not connected by an edge, we denote by zαβ

the unique nodal point on Σα corresponding to the first edge on the chain of
edges running from α to β. Moreover, we define the point z0i on the principal
component Σ0 to be

z0i :=

{
zi if αi = 0;
z0αi if αi ∈ VS .

In other words, if zi lies on a spherical component then z0i is the unique nodal
point on the principal component at which the bubble tree containing zi

is attached; otherwise, i. e., if zi lies on the principal component, then z0i

coincides with zi.
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Let P (M) := P ×G M be the symplectic fiber bundle over Σ that is
associated to the G-bundle P → Σ and the G-manifold M . The points on
P (M) will be denoted by [p, x], for p ∈ P and x ∈M .

Remark 1.3. Note that we may equivalently think of a G-equivariant map
u : P →M as a section u : Σ → P (M). In fact, this section is defined by

Σ � z �→ [p, u(p)
] ∈ P (M), π(p) = z,

where π : P → Σ denotes the bundle projection. We will usually not distin-
guish between these two viewpoints in the notation and switch freely from
one to the other, depending on the situation.

Definition 1.4 (Polystable vortices). Let n be a nonnegative integer,
and let T = (V = {0} � VS , E, Λ) be an n-labeled tree. A polystable vortex
of combinatorial type T is a tuple

(A,u, z) :=
(
(A, u0), {uα}α∈VS

, {zαβ}αEβ, {αi, zi}1≤i≤n

)
consisting of
• a normalized nodal curve

({Σα}α∈V , {zαβ}αEβ , {αi, zi}1≤i≤n

)
of com-

binatorial type T with principal component Σ0 := Σ;
• a vortex (A, u0) on the principal component Σ0;
• a J-holomorphic sphere uα : Σα → P (M)z0α

∼= M in the fiber of P (M)
over the nodal point z0α ∈ Σ0, for every α ∈ VS

such that the following conditions are satisfied.
(Connectedness) uα(zαβ) = uβ(zβα) for all α, β ∈ V such that αEβ.
(Polystability) |Yα| ≥ 3 for all α ∈ VS such that uα is constant.

Remark 1.5. To understand the meaning of the (Connectedness) condition
in the case α = 0, we think of the G-equivariant map u0 : P → M as a section
u0 : Σ → P (M) as explained in Remark 1.3; this condition then says that
u0(z0β) = uβ(zβ0) in the fiber of P (M) over the nodal point z0β ∈ Σ0.

Given a polystable vortex (A,u, z) of combinatorial type T = (V = {0}�
VS , E, Λ), we define its energy to be

E(A,u) := E(A, u0) +
∑

α∈VS

E(uα),

where E(A, u0) is the Yang–Mills–Higgs energy of the vortex (A, u0) and
E(uα) denotes the energy of the J-holomorphic curve uα : Σα → P (M)z0α

(see [MS, Section 2.2]). As a special case of Definition 1.4, by an n-marked
vortex we mean a tuple

(A, u, z) = (A, u, z1, . . . , zn)

consisting of a vortex (A, u) and a sequence z1, . . . , zn of n distinct marked
points on Σ.
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The group G(P ) := C∞(P, G)G of smooth gauge transformations of P
acts on the space A(P )×C∞(P, M)G from the right by

(1.9) g∗(A, u) :=
(
g−1Ag + g−1 dg, g−1u

)
Note that the vortex equations (1.1) and the Yang–Mills–Higgs energy (1.6)
are invariant under this action.

For z0 ∈ Σ and r > 0, we denote by Br(z0) := {z ∈ Σ
∣∣ |z − z0| ≤ r}

the closed disk in Σ of radius r centered at the point z0, understood with
respect to the metric 〈·, ·〉Σ. Let B ⊂ C be the closed unit disk, and fix an
identification CP 1 ∼= C ∪ {∞}. The next definition builds on the definition
of Gromov convergence for pseudoholomorphic curves due to McDuff and
Salamon [MS, Definition 5.2.1].

Definition 1.6 (Gromov convergence). Let n be a nonnegative integer,
and let T = (V = {0} � VS , E, Λ) be an n-labeled tree. A sequence of
n-marked vortices

(Aν , uν , zν) = (Aν , uν , z
ν
1 , . . . , zν

n)

is said to Gromov converge to a polystable vortex of combinatorial type T

(A,u, z) =
(
(A, u0), {uα}α∈VS

, {zαβ}αEβ , {αi, zi}1≤i≤n

)
if there exist

• a sequence of smooth gauge transformations gν ∈ G(P );
• a sufficiently small number r > 0 such that the following holds: For

every nodal point z0α ∈ Z0, α ∈ VS , there exists a holomorphic chart
ϕz0α : B → Br(z0α) such that ϕz0α(0) = z0α and Br(z0α)∩Z0 = {z0α};

• a sequence of Möbius transformations φν
α ∈ Aut(Σα) ∼= PSL(2, C) for

every α ∈ VS ;

such that the following holds.

(Map) The sequence(
g∗νAν , g

−1
ν uν ,

{
(g−1

ν uν) ◦ ϕz0α ◦ φν
α

}
α∈VS

)
converges to (

A, u0, {uα}α∈VS

)
in the following sense.
(i) The sequence g∗νAν converges to A in C0 on Σ0.
(ii) The sequence (g∗νAν , g

−1
ν uν) converges to (A, u0) in C∞ on compact

subsets of Σ0 \ Z0.
(iii) For every α ∈ VS the sequence uν

α := (g−1
ν uν) ◦ ϕz0α ◦ φν

α converges
to uα : Σα → P (M)z0α in C1 on compact subsets of Σα \ Zα.

(Energy) The sequence E(Aν , uν) converges to E(A,u).
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(Rescaling) The sequence {φν
α}α∈VS

converges in the following sense.
(i) For every α ∈ VS the sequence φν

α converges to 0 in C∞ on compact
subsets of CP 1 \ {∞} ∼= C.

(ii) If α, β ∈ VS are such that αEβ then the sequence φν
αβ := (φν

α)−1◦φν
β

converges to zαβ in C∞ on compact subsets of Σβ \ {zβα}.
(Marked point) For i = 1, . . . , n the sequence of marked points zν

i con-
verges in the following sense.
(i) If αi = 0 then the sequence zν

i converges to zi in Σ0.
(ii) If αi ∈ VS then the sequence (ϕz0αi

◦ φν
αi

)−1(zν
i ) converges to zi

in Σαi .

Remark 1.7. To better understand how the Möbius transformations φν
α

are used in Definition 1.6, we first recall that all spherical components Σα,
α ∈ VS , are by definition just copies of the projective line CP 1, and that
we have fixed an identification CP 1 ∼= C∪ {∞}. In (Map, iii), for large ν we
may therefore think of the φν

α as holomorphic maps φν
α : B → B, which are

well-defined by (Rescaling, i). Likewise, in (Rescaling, ii) one should think
of the φν

αβ as transformations of the projective line, and consider the nodal
points zαβ and zβα as lying thereon. Furthermore, we remind the reader that
in (Map) we think of the maps g−1

ν uν as sections of the bundle P (M) =
P ×G M over Σ0 as in Remark 1.3.

We are now in a position to state the main result of this paper. The proof
will be given in Sections 4 and 5.

Theorem 1.8 (Gromov compactness). Let n be a nonnegative integer.
Let (Aν , uν , zν) be a sequence of n-marked vortices whose Yang–Mills–Higgs
energy satisfies a uniform bound

sup
ν

E(Aν , uν) < ∞.

Then the sequence (Aν , uν , zν) has a Gromov convergent subsequence.

Remark 1.9. One may extend Definition 1.6 so as to cover sequences of
polystable vortices as well, by adapting the definition of Gromov convergence
for sequences of stable pseudoholomorphic curves from McDuff and Salamon
[MS, Definition 5.5.1]. Then Theorem 1.8 generalizes in the sense that any
sequence of polystable vortices (Aν ,uν , zν) whose energy satisfies a uniform
bound

sup
ν

E(Aν ,uν) <∞
has a Gromov convergent subsequence. With some straightforward mod-
ifications, the proof of this generalization carries over from the proof of
Gromov compactness for sequences of stable pseudoholomorphic curves in
[MS, Theorem 5.5.5]. Moreover, one may define a Gromov topology on
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the moduli space of polystable vortices with uniformly bounded energy as
in [MS, Section 5.6]. The statement of the above-mentioned generalization
of Theorem 1.8 may then be rephrased by saying that the moduli space of
polystable vortices with uniformly bounded energy is compact.

Remark 1.10. Note that Theorems 1.1 and 1.8 continue to hold for non-
compact manifolds M under the additional assumption that the moment
map μ is proper and M is equivariantly convex (see hypotheses (H1) and
(H2) in [CGMS]). To avoid additional technicalities, however, we will
restrict ourselves to compact manifolds M throughout.

This paper is organized as follows. In Section 2, we prove an a priori
estimate for symplectic vortices, which will play a central role in all subse-
quent arguments. It is used in Section 3 to prove Theorem 1.1. The proof
of Theorem 1.8 is divided into two parts. In Section 4, we establish a com-
pactness result for vortices, ignoring any bubbling phenomena. Section 5 is
then concerned with the actual construction of the Gromov compactifica-
tion, beginning with two preparatory subsections. In Section 5.1, we explain
how vortices may naturally be considered as pseudoholomorphic curves, and
in Section 5.2, we tailor the bubbling analysis from [MS] to our situation.
We close with the proof of Gromov compactness in Section 5.3 by combining
the results from the earlier sections.

2. A priori estimate

The goal of this section is to prove an a priori estimate for symplectic
vortices. It relies on an a priori estimate for vortices proved by Gaio and
Salamon [GaSa], see also Frauenfelder [Fr] and Ziltener [Zi2]. In fact, we
will prove two versions of this estimate: a local version for vortices on the
punctured disk, and a global version for vortices on a Riemann surface.

We keep the notation introduced in Section 1. Furthermore, for w0 ∈ C

and r > 0 we denote by Br(w0) ⊂ C the closed disk of radius r with center
at w0.

Theorem 2.1 (A priori estimate, local version). Given a smooth func-
tion λ : B → (0,∞), there exist constants δ, C > 0 such that for all w0 ∈ B
and all r > 0 satisfying Br(w0) ⊂ B the following holds. If (Φ, Ψ, u) is a
vortex on Br(w0), then

E
(
Φ, Ψ, u; Br(w0)

)
< δ =⇒ e(Φ, Ψ, u)(w0) ≤ C

r2
· E(Φ, Ψ, u; Br(w0)

)
.

As a corollary of this theorem we obtain the following a priori estimate
for vortices on the Riemann surface Σ.

Corollary 2.2 (A priori estimate, global version). There exist con-
stants R, �, C > 0 such that for all z0 ∈ Σ and all 0 < r ≤ R the following
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holds. If (A, u) is a vortex on Σ, then

E
(
A, u; Br(z0)

)
< � =⇒ 1

2
|dAu(z0)|2J + |μ(u(z0))|2g

≤ C

r2
· E(A, u; Br(z0)

)
.

We will prove the corollary at the end of this section. The proof of The-
orem 2.1 is based on the following two propositions.

Proposition 2.3 (Gaio and Salamon [GaSa, Section 9]). Given a
smooth function λ : B → (0,∞), there exists a constant c ≥ 0 such that
for all w0 ∈ B and all r > 0 satisfying Br(w0) ⊂ B the following holds: If
(Φ, Ψ, u) is a vortex on Br(w0), then its Yang–Mills–Higgs energy density
e := e(Φ, Ψ, u) defined in (1.4) satisfies the partial differential inequality

Δe ≥ −c · e2.

Proof. The proof is the same as that of Claim 1 in the proof of [Zi2, Lemma
3.3] and will therefore be omitted. It relies on [GaSa, Formula (9.6)]. �

Proposition 2.4 (McDuff and Salamon [MS, Lemma 4.3.2]). Let
r > 0 and c ≥ 0. If f : Br(0) → R is a function of class C2 that satisfies the
inequalities

Δf ≥ −c · f2, f ≥ 0,

∫
Br(0)

f <
π

8c
,

then

f(0) ≤ 8
πr2

·
∫

Br(0)
f.

Proof of Theorem 2.1. Let c be the constant from Proposition 2.3. Define
δ := π/8c and C := 8/π. Let w0 ∈ B and r > 0 such that Br(w0) ⊂ B.
Assume that (Φ, Ψ, u) is a vortex on Br(w0) and denote by e := e(Φ, Ψ, u)
its Yang–Mills–Higgs energy density. Define a function f : Br(0) → R by
f(w) := e(w + w0). Then Proposition 2.3 implies that

Δf ≥ −c · f2, f ≥ 0.

Hence, it follows from Proposition 2.4 that

(2.1)
∫

Br(0)
f <

π

8c
=⇒ f(0) ≤ 8

πr2
·
∫

Br(0)
f.

Since

E
(
Φ, Ψ, u; Br(w0)

)
=
∫

Br(w0)
e =

∫
Br(0)

f,

the theorem follows from (2.1). �
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Proof of Corollary 2.2. Choose a finite collection of holomorphic disks

ϕj : B
�−→ ϕj(B) ⊂ Σ, j = 1, . . . , N

in such a way that the open sets Uj := ϕj(B◦), where B◦ denotes the
interior of B, form a covering of Σ. By the Lebesgue number lemma, we find
a constant R > 0, such that for every z0 ∈ Σ and every 0 < r < R there
exists j0 ∈ {1, . . . , N}, such that Br(z0) ⊂ Uj0 . The area form dvolΣ defines
smooth functions λj : B → (0,∞) by the relation ϕ∗j dvolΣ = λ2

j ds∧dt. We
denote by dΣ the distance function on Σ defined by the metric 〈·, ·〉Σ and by
dB the distance function on B corresponding to the Euclidean metric. By
compactness of B there exist constants cj > 0 such that

(2.2) dΣ

(
ϕj(w1), ϕj(w2)

) ≤ cj · dB(w1, w2)

for all w1, w2 ∈ B. By Theorem 2.1 there exist constants δj > 0 and Cj > 0,
depending on the function λj , such that for all w0 ∈ B and all r > 0
satisfying Br(w0) ⊂ B the following holds. If (Φ, Ψ, u) is a vortex solving
the equations

∂su + XΦ(u) + J
(
∂tu + XΨ(u)

)
= 0,

∂sΨ− ∂tΦ + [Φ, Ψ] + λ2
j · μ(u) = 0

on B, then

(2.3) E
(
Φ, Ψ, u; Br(w0)

)
< δj =⇒ e(Φ, Ψ, u)(w0)

≤ Cj

r2
· E(Φ, Ψ, u; Br(w0)

)
.

With all this understood, we define

(2.4) � := min
1≤j≤N

{
δj

}
and C := max

1≤j≤N

{
Cj · c2

j

‖λj‖2C0(B)

}
.

Let now (A, u) be a vortex on Σ. Let z0 ∈ Σ and 0 < r < R, and assume
that

(2.5) E
(
A, u; Br(z0)

)
< �.

Since r < R we have Br(z0) ⊂ Uj0 for some j0 ∈ {1, . . . , N}. By Remark 1.2,
locally in the chart ϕj0 : B → Σ the vortex (A, u) is given by a triple
(Φ, Ψ, uloc) that solves the vortex equations

∂su
loc + XΦ

(
uloc
)

+ J
(
∂tu

loc + XΨ

(
uloc
))

= 0,

∂sΨ− ∂tΦ + [Φ, Ψ] + λ2
j0 · μ

(
uloc
)

= 0.

Define

(2.6) w0 := ϕ−1
j0

(z0) and ρ0 :=
r

cj0

.
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It follows from inequality (2.2) that Bρ0(w0) ⊂ ϕ−1
j0

(
Br(z0)

) ⊂ B. Hence,

(2.7) E
(
Φ, Ψ, uloc; Bρ0(w0)

) ≤ E
(
Φ, Ψ, uloc; ϕ−1

j0
(Br(z0)

)
= E

(
A, u; Br(z0)

)
by formula (1.8). By assumption (2.5) and the definition of � in (2.4) it
follows that

E
(
Φ, Ψ, uloc; Bρ0(w0)

)
< � ≤ δj0 .

Hence, we may apply estimate (2.3) to the vortex (Φ, Ψ, uloc), obtaining

e
(
Φ, Ψ, uloc

)
(w0) ≤ Cj0

ρ2
0

· E(Φ, Ψ, uloc; Bρ0(w0)
)
.

Using inequality (2.7) and the definition of ρ0 in (2.6), we further get

e
(
Φ, Ψ, uloc

)
(w0) ≤

Cj0 · c2
j0

r2
· E(A, u; Br(z0)

)
.

Using the identity
1
2
|dAu(z0)|2 + |μ(u(z0))|2 = e

(
Φ, Ψ, uloc

)
(w0) · λ−2

j0
(w0),

which holds by formula (1.7), we arrive at

1
2
|dAu(z0)|2 + |μ(u(z0))|2 ≤

Cj0 · c2
j0
· ‖λj0‖−2

C0(B)

r2
· E(A, u; Br(z0)

)
.

The a priori estimate now follows from the definition of C in (2.4). This
proves Corollary 2.2. �

3. Removal of singularities

The goal of this section is to prove Theorem 1.1. We use Gromov’s graph
construction to reduce this problem to removal of singularities for certain
punctured pseudoholomorphic curves. This will enable us to apply tech-
niques from McDuff and Salamon [MS, Section 4.5].

We keep the notation introduced in Section 1. Let us fix a smooth function
λ : B → (0,∞), and let (Φ, Ψ, u) be a smooth vortex on the punctured disk
B \ {0} such that
(R1) Φ and Ψ extend continuously to all of B;
(R2) (Φ, Ψ, u) has finite Yang–Mills–Higgs energy E(Φ, Ψ, u; B) <∞.
It will be convenient to work with the smooth connection 1-form

A := Φ ds + Ψ dt

on B \ {0} that is determined by the functions Φ and Ψ. By Remark 1.2,
the first vortex equation (1.2) may then be written in the form

(3.1) ∂J,A(u) :=
1
2
(
dAu + J(u) ◦ dAu ◦ i

)
= 0,
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and the Yang–Mills–Higgs energy density (1.4) of the vortex (Φ, Ψ, u) may
be expressed in terms of (A, u) by

(3.2) e(Φ, Ψ, u) =
1
2
|dAu|2J + λ2 · |μ(u)|2g .

Here the norm |dAu|J is understood with respect to the metric 〈·, ·〉J on
M and the Euclidean metric on B. Note that hypothesis (R1) above means
that the connection form A extends continuously to all of B.

We shall prove that the map u is of class W 1,p on B for every p > 2. We
will proceed as follows. In Section 3.1, we apply the graph construction in
order to transform the vortex (A, u) into a punctured pseudoholomorphic
section of the trivial fiber bundle B×M over B. In Section 3.2, we obtain a
mean value inequality for this section from the a priori estimate of Section 2.
The actual proof of Theorem 1.1 will then be given in Section 3.3.

3.1. The graph construction. Let M̃ := B×M denote the total space
of the trivial symplectic fiber bundle over B with fiber the manifold M . The
map u : B \ {0} → M then gives rise to a section

ũ : B \ {0} → M̃, ũ(z) :=
(
z, u(z)

)
,

and the almost complex structure J induces an almost complex structure J̃

on M̃ by

(3.3) J̃(v, w) :=
(
i v, Jw + J XA(v)(x)−XA(i v)(x)

)
for all (z, x) ∈ B×M and v ∈ TzB, w ∈ TxM . Here we use the identi-
fications T(z,x)M̃ = TzB ⊕ TxM and TzB ∼= C. In fact, a straightforward
computation shows that J̃2(v, w) = −(v, w). Note that the almost complex
structure J̃ will in general only be continuous, as follows from (3.3) since A
is only assumed to be continuous on B by hypothesis (R1).

Lemma 3.1. The section ũ : B \ {0} → M̃ is (i, J̃)-holomorphic.

Proof. The differential of ũ is given by d ũ(v) = (v, du(v)) for v ∈ TB. By
the first vortex equation (3.1), we have J dAu(v) = dAu(i v). Hence using
formula (1.5), we get

J̃
(
d ũ(v)

)
= J̃
(
v, du(v)

)
=
(
i v, J du(v) + JXA(v)(u)−XA(i v)(u)

)
=
(
i v, J dAu(v)−XA(i v)(u)

)
=
(
i v, dAu(i v)−XA(i v)(u)

)
=
(
i v, du(i v)

)
= d ũ(i v).

This implies that ∂J̃(ũ) = 1
2

(
d ũ + J̃(ũ) ◦ d ũ ◦ i

)
= 0. �

Next, we define a symplectic form ω̃ on the manifold M̃ that tames the
almost complex structure J̃ . By compactness of B and M , we may fix a
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constant cA > 1 such that

(3.4)
∣∣XA(v)(x)

∣∣
J
≤ 1

5
cA · |v|

for all tangent vectors v ∈ TB and all points x ∈ M , where | · |J and | · |
denote the norms associated to the metric 〈·, ·〉J on M and the Euclidean
metric on B, respectively. We then define

ω̃ := c2
A · ω0 ⊕ ω,

where ω0 := ds ∧ dt denotes the standard symplectic form on B.

Lemma 3.2. The symplectic form ω̃ tames the almost complex structure J̃ .

Proof. Let (v, w) ∈ TM̃ be such that (v, w) �= (0, 0). Using formula (3.3)
and the definition of the metric 〈·, ·〉J , we get

ω̃
(
(v, w), J̃(v, w)

)
= c2

A · |v|2 +
∣∣w + XA(v)

∣∣2
J
− 〈XA(v), w + XA(v)

〉
J

− 〈J(w + XA(v)), XA(i v)

〉
J

+
〈
JXA(v), XA(i v)

〉
J
.

Applying the inequalities of Cauchy–Schwarz and Young and using
J-invariance of the norm | · |J we may further estimate this from below by

c2
A · |v|2 +

∣∣w + XA(v)

∣∣2
J
− ∣∣XA(v)

∣∣
J
· ∣∣w + XA(v)

∣∣
J

− ∣∣J(w + XA(v))
∣∣
J
· ∣∣XA(i v)

∣∣
J
− ∣∣JXA(v)

∣∣
J
· ∣∣XA(i v)

∣∣
J

≥ c2
A · |v|2 +

∣∣w + XA(v)

∣∣2
J
− 4
∣∣XA(v)

∣∣2
J
− 1

4
· ∣∣w + XA(v)

∣∣2
J

− 1
4
· ∣∣w + XA(v)

∣∣2
J
− 4
∣∣XA(i v)

∣∣2
J
− ∣∣XA(v)

∣∣2
J
− ∣∣XA(i v)

∣∣2
J

≥ c2
A · |v|2 +

1
2

∣∣w + XA(v)

∣∣2
J
− 5
∣∣XA(v)

∣∣2
J
− 5
∣∣XA(i v)

∣∣2
J

.

By inequality (3.4) this is not smaller than

c2
A · |v|2 +

1
2

∣∣w + XA(v)

∣∣2
J
− 1

5
c2
A · |v|2 −

1
5

c2
A · |i v|2

≥ 1
2

(
c2
A · |v|2 +

∣∣w + XA(v)

∣∣2
J

)
> 0,

which proves the lemma. �
By Lemma 3.2, the symplectic form ω̃ and the almost complex structure J̃

determine a Riemannian metric 〈·, ·〉J̃ on M̃ given by〈
(v1, w1), (v2, w2)

〉
J̃

:=
1
2

(
ω̃
(
(v1, w1), J̃(v2, w2)

)− ω̃
(
J̃(v1, w1), (v2, w2)

))
for all (v1, w1), (v2, w2) ∈ TM̃ . We will denote by | · |J̃ the corresponding
norm on TM̃ . Note that this norm will in general only be continuous, since J̃
has this property.
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Lemma 3.3. The norm | · |J̃ satisfies the inequalities

1
2

(
|v|2 +

∣∣w + XA(v)

∣∣2
J

)
≤ |(v, w)|2

J̃
≤ 3 c2

A ·
(
|v|2 +

∣∣w + XA(v)

∣∣2
J

)
for (v, w) ∈ TM̃ , where cA is the constant from inequality (3.4).

Proof. Recall that cA > 1. The computation in the proof of Lemma 3.2
above then shows that

|(v, w)|2
J̃

= ω̃
(
(v, w), J̃(v, w)

) ≥ 1
2

(
|v|2 +

∣∣w + XA(v)

∣∣2
J

)
,

which proves the first inequality. The second inequality follows in a similar
way. �

3.2. Mean value inequality. We derive a mean value inequality for the
J̃-holomorphic section ũ : B\{0} → M̃ from the a priori estimate for the vor-
tex (Φ, Ψ, u) provided by Theorem 2.1. Note that the mean value inequality
from [MS, Lemma 4.3.1] does not apply to the section ũ since the almost
complex structure J̃ will in general only be continuous.

To begin with, we recall from [MS, Section 2.2] that the energy of the
section ũ on an open subset U ⊂ B is given by

E(ũ; U) :=
1
2

∫
U
|d ũ|2

J̃
,

where the norm |d ũ|J̃ is understood with respect to the metric 〈·, ·〉J̃ on M̃
and the Euclidean metric on B ⊂ C.

Lemma 3.4. The section ũ : B \ {0} → M̃ has finite energy E(ũ; B) < ∞.
Moreover, there exist constants δ, CA, r0 > 0 such that the following holds.
For all w0 ∈ B \ {0} and all 0 < r < r0 such that Br(w0) ⊂ B \ {0}, the
section ũ satisfies the mean value inequality

E
(
ũ; Br(w0)

)
< δ =⇒ |d ũ(w0)|2J̃ ≤

CA

r2
· E(ũ; Br(w0)

)
+ CA.

Proof. For every v ∈ TB, using d ũ(v) = (v, du(v)) and formula (1.5), we
obtain from Lemma 3.3 the inequalities

1
2

(
|v|2 + |dAu(v)|2J

)
≤ |d ũ(v)|2

J̃
≤ 3 c2

A ·
(
|v|2 + |dAu(v)|2J

)
.

This implies that

(3.5)
1
2

(
2 + |dAu|2J

)
≤ |d ũ|2

J̃
≤ 3 c2

A ·
(
2 + |dAu|2J

)
.
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By formula (3.2) we therefore obtain

E(ũ; B) =
1
2

∫
B
|d ũ|2

J̃
≤ 3

2
c2
A ·
∫

B

(
2 + |dAu|2J

)
= 3 c2

A ·
∫

B

(
1
2
|dAu|2J + λ2 · |μ(u)|2

)
+ 3π c2

A − 3 c2
A ·
∫

B

(
λ2 · |μ(u)|2

)
≤ 3 c2

A · E(Φ, Ψ, u; B) + 3π c2
A.

The first term on the right-hand side of this inequality is finite by hypothesis
(R2). Hence E(ũ; B) <∞, which proves the first assertion of the lemma.

By Theorem 2.1, there exist constants δ′, C > 0 such that the following
holds. For all w0 ∈ B \{0} and r > 0 such that Br(w0) ⊂ B \{0} the vortex
(Φ, Ψ, u) satisfies the a priori estimate

(3.6) E
(
Φ, Ψ, u; Br(w0)

)
< δ′ =⇒ e(Φ, Ψ, u)(w0)

≤ C

r2
· E(Φ, Ψ, u; Br(w0)

)
.

Define constants
K := π · ‖λ‖2C0(B) · ‖μ‖2C0(M)

and

δ :=
δ′

4
, CA := 12 c2

A

(
C(K + 1) + 1

)
, r0 := min

{√
δ′

2K
, 1

}
,

where cA is the constant from inequality (3.4). Assume now that

(3.7) r < r0 and E
(
ũ; Br(w0)

)
< δ.

Using the first inequality in (3.5) and formula (3.2) we then obtain

E
(
ũ; Br(w0)

)
=

1
2

∫
Br(w0)

|d ũ|2
J̃
≥ 1

4

∫
Br(w0)

(
2 + |dAu|2J

)
=

1
2

∫
Br(w0)

(
1
2
|dAu|2J + λ2 · |μ(u)|2

)
+

πr2

2

− 1
2

∫
Br(w0)

λ2 · |μ(u)|2

≥ 1
2

E
(
Φ, Ψ, u; Br(w0)

)− 1
2

K r2,

whence

(3.8) E
(
Φ, Ψ, u; Br(w0)

) ≤ 2 E
(
ũ; Br(w0)

)
+ K r2.
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By assumption (3.7) and the definition of r0 above, it follows from this that

E
(
Φ, Ψ, u; Br(w0)

)
<

δ′

2
+ K r2 < δ′.

Thus the a priori estimate (3.6) implies that

e(Φ, Ψ, u)(w0) ≤ C

r2
· E(Φ, Ψ, u; Br(w0)

)
.

Hence, using the second inequality in (3.5) and formula (3.2), we further
obtain

|d ũ(w0)|2J̃ ≤ 3 c2
A ·
(
2 + |dAu(w0)|2J

)
≤ 6 c2

A ·
(1

2
|dAu(w0)|2J + λ2 · ∣∣μ(u(w0)

)∣∣2)+ 6 c2
A

= 6 c2
A · e(Φ, Ψ, u)(w0) + 6 c2

A

≤ 6 c2
A C

r2
· E(Φ, Ψ, u; Br(w0)

)
+ 6 c2

A.

Applying inequality (3.8) again and using cA > 1, we finally have

|d ũ(w0)|2J̃ ≤
12 c2

A C

r2
· E(ũ; Br(w0)

)
+ 6 c2

A ·
(
CK + 1

)
≤ CA

r2
· E(ũ; Br(w0)

)
+ CA.

This proves Lemma 3.4. �

3.3. Proof of Theorem 1.1. Our proof is adapted from the proof of
[MS, Theorem 4.1.2]. As a first step, we shall apply the isoperimetric
inequality from [MS, Theorem 4.4.1] to estimate the energy of the section
ũ : B \ {0} → M̃ on small neighborhoods around the puncture.

We begin by recalling some notation from [MS, Section 4.4]. For any
smooth loop γ : ∂B → M̃ we denote by �(γ) its length with respect to the
metric 〈·, ·〉J̃ . If �(γ) is smaller than the injectivity radius of M̃ , then γ

admits a smooth local extension uγ : B → M̃ such that uγ(eiθ) = γ(θ) for
all θ ∈ [0, 2π] and the image of uγ is contained in a geodesic ball of radius
not greater than half the injectivity radius. The local symplectic action of γ
is then defined as

a(γ) := −
∫

B
u∗γ ω̃.

Note that it does not depend on the choice of the extension uγ . Since ω̃ tames
J̃ by Lemma 3.2, the isoperimetric inequality from [MS, Theorem 4.4.1]
applies to M̃ ; in fact, a careful analysis of the proof of said theorem reveals
that the isoperimetric inequality holds in the present situation even though
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the almost complex structure J̃ will in general only be continuous. Thus,
we have:

Lemma 3.5 (McDuff and Salamon [MS, Theorem 4.4.1]). For every
constant c > 1/4π there exists a constant �0 > 0 such that

�(γ) < �0 =⇒ |a(γ)| ≤ c · �(γ)2

for every smooth loop γ : ∂B → M̃ .

We may now prove a variant of [MS, Lemma 4.5.1]. For that purpose,
we define a function ε : (0, 1]→ R by

(3.9) ε(r) := E
(
ũ; Br(0)

)
=

1
2

∫ r

0
ρ

∫ 2π

0

∣∣∣d ũ
(
ρeiθ
)∣∣∣2

J̃
dθ dρ

that assigns to every 0 < r ≤ 1 the energy of the curve ũ : B \ {0} → M̃ on
the punctured disk Br(0)\{0}. We see from formula (3.9) that the function ε

is of class C1. Let γr : ∂B → M̃ denote the loop defined by γr(θ) := ũ
(
reiθ
)

for θ ∈ [0, 2π].

Lemma 3.6. For every constant c > 1/4π there exists a constant r1 > 0
such that

0 < r < r1 =⇒ ε(r) ≤ c · �(γr)2.

Proof. Our proof is adapted from the proof of [MS, Lemma 4.5.1]. Let
c > 1/4π, let �0 be the constant from Lemma 3.5, and let δ, CA and r0 be
the constants from Lemma 3.4. Fix a constant r1 > 0 such that

(3.10) r1 < min
{

r0,
1
2

}
and ε(2r1) < min

{
δ,

�2
0 − 4π2 CA r2

1

8π2 CA

}
.

Such r1 exists since ε(1) = E(ũ; B) < ∞ by Lemma 3.4 and the function ε
is nonnegative and nondecreasing with limr→0 ε(r) = 0.

Let now 0 < r < r1. Then E(ũ; Br/2(reiθ)) ≤ E(ũ; B2r(0)) = ε(2r) <
δ by the second inequality in (3.10). Hence, the mean value inequality of
Lemma 3.4 applied to the disk Br/2(reiθ) ⊂ B \ {0} yields∣∣∣d ũ

(
reiθ
)∣∣∣2

J̃
≤ 4 CA

r2
· E(ũ; Br/2(re

iθ)
)

+ CA ≤ 4 CA

r2
· ε(2r) + CA.

It follows that the derivative of γr in the direction of θ satisfies an estimate

|γ̇r(θ)|J̃ =
r√
2
·
∣∣∣d ũ
(
reiθ
)∣∣∣

J̃
≤
√

2 CA · ε(2r) + CA · r2.

By the second inequality in (3.10) this implies that

(3.11) �(γr) =
∫ 2π

0
|γ̇r(θ)| dθ ≤

√
8π2 CA · ε(2r) + 4π2 CA · r2 < �0.
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We now proceed exactly as in the proof of [MS, Lemma 4.5.1], arriving
at the identity ε(r) = −a(γr). By (3.11) the isoperimetric inequality of
Lemma 3.5 applies, so we finally obtain ε(r) ≤ c · �(γr)2. �

We are now ready for the actual proof of Theorem 1.1.

Proof of Theorem 1.1. Our proof follows the proof of [MS, Theorem 4.1.2].
Applying the isoperimetric inequality of Lemma 3.6 we conclude as in said
proof that there exist constants c > 1/4π and c1 > 0 such that, for r > 0
sufficiently small, the function (3.9) satisfies an inequality

ε(r) ≤ c1 · r2α,

where α := 1/4πc < 1. In fact, this argument only requires the function ε
to be of class C1. For r > 0 sufficiently small, combining this with the mean
value inequality of Lemma 3.4 applied to the disk Br/2(reiθ) ⊂ B \ {0}, we
hence obtain

(3.12)
∣∣∣d ũ
(
reiθ
)∣∣∣2

J̃
≤ 4 CA

r2
· ε(2r) + CA ≤ c2 · r−2(1−α) + CA,

where c2 > 0 is some constant not depending on r and θ. We now proceed
exactly as in the proof of [MS, Theorem 4.1.2], replacing inequality (4.5.2)
in that proof by the above inequality (3.12). Note that we have to keep track
of the additive constant CA on the right-hand side of inequality (3.12). �

4. Convergence modulo bubbling

The purpose of this section is to prove Theorem 4.1 below, which establishes
a compactness result for vortices, ignoring any bubbling phenomena. This
theorem constitutes the first part of the proof of Theorem 1.8.

Similar compactness results were proved by Mundet i Riera [Mu2] in the
case of G = S1, using a different approach that relies on the compactness
results for pseudoholomorphic curves due to Ivashkovich and Shevchishin
[IS], and by [CGMS] for arbitrary compact Lie groups G under the assump-
tion that M is symplectically aspherical. We shall now prove a generalization
of these results that holds for arbitrary compact Lie groups G and arbitrary
closed Hamiltonian G-manifolds M . Our strategy is to combine the above-
mentioned approach of [CGMS] with the methods that were applied by
McDuff and Salamon in proving a similar compactness result for pseudo-
holomorphic curves; see [MS, Theorem 4.6.1]. The proof crucially relies
on removal of singularities for vortices provided by Theorem 1.1.

We keep the notation introduced in Section 1. Moreover, for p > 2 we
denote by A1,p(P ) the space of connections on the bundle P of Sobolev class
W 1,p, and by W 1,p(P, M)G the space of G-equivariant maps u : P → M of
class W 1,p. Note that the vortex equations (1.1) and the Yang–Mills–Higgs
energy (1.6) are well-defined for pairs (A, u) ∈ A1,p(P )×W 1,p(P, M)G. The
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action (1.9) of the group of smooth gauge transformations of P then nat-
urally extends to an action of the group G2,p(P ) := W 2,p(P, G)G of gauge
transformations of P of class W 2,p on the space A1,p(P )×W 1,p(P, M)G

(see [We1, Appendix A] for details on this). The vortex equations (1.1)
and the Yang–Mills–Higgs energy (1.6) remain invariant under this action.

Theorem 4.1 (Convergence modulo bubbling). Let (Aν , uν) be a
sequence of vortices whose Yang–Mills–Higgs energy satisfies a uniform
bound

sup
ν

E
(
Aν , uν

)
<∞.

Then there exists a smooth vortex (A, u), a sequence of smooth gauge trans-
formations gν ∈ G(P ), a real number p > 2, and a finite set Z = {z1, . . . , zN}
of distinct points on Σ such that, after passing to a subsequence, the
following holds.

(i) The sequence g∗νAν converges to A weakly in W 1,p and strongly in C0

on Σ;
(ii) the sequence (g∗νAν , g

−1
ν uν) converges to (A, u) in C∞ on compact sub-

sets of Σ \ Z;
(iii) for every j ∈ {1, . . . , N} and every ε > 0 such that Bε(zj) ∩Z = {zj},

the limit

mε(zj) := lim
ν→∞E

(
g∗νAν , g

−1
ν uν ; Bε(zj)

)
exists and is a continuous function of ε, and

m(zj) := lim
ε→0

mε(zj) ≥ �,

where � is the constant of Corollary 2.2;
(iv) for every compact subset K ⊂ Σ such that Z is contained in the interior

of K,

E
(
A, u; K

)
+

N∑
j=1

m(zj) = lim
ν→∞E

(
g∗νAν , g

−1
ν uν ; K

)
.

The proof of Theorem 4.1 will occupy the remainder of this section. It is
much inspired by the proofs of [MS, Theorem 4.6.1] and [CGMS, The-
orem 3.2]. We shall proceed in several steps. First, in Section 4.1 we prove
that bubbling may occur at only finitely many points. We then apply weak
Uhlenbeck compactness and a local slice theorem for the action of the group
of gauge transformations in order to construct a limit connection, in Sec-
tion 4.2. Section 4.3 is concerned with the study of the limit vortex equations
on the complement of the bubbling points. Next, in Section 4.4 we apply
removal of singularities in order to obtain the limit vortex. Finally, in Section
4.5 we combine the previous results in order to prove Theorem 4.1.
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Throughout this section, let (Aν , uν) be a sequence of vortices whose
Yang–Mills–Higgs energy satisfies a uniform bound

sup
ν

E
(
Aν , uν

)
<∞.

4.1. Singular points. Following the terminology in [MS, Section 4.6] a
point z ∈ Σ is called singular for the sequence (Aν , uν) if there exists a
sequence zν of points in Σ converging to z such that |dAνuν(zν)|J → ∞.
The main result of this subsection is that the sequence (Aν , uν) can have only
finitely many singular points. Basically, this is an immediate consequence
of quantization of energy for pseudoholomorphic spheres [CGMS, Theo-
rem 3.4]. However, we prefer to give a much shorter alternative proof of
this fact using an indirect argument due to Wehrheim [We2] that is based
on the a priori estimate of Corollary 2.2 and avoids an explicit construction
of bubbles.

Lemma 4.2. Let z be a singular point of the sequence (Aν , uν). Then

lim inf
ν→∞ E

(
Aν , uν ; Bε(z)

) ≥ �

for every 0 < ε < R, where � and R are the constants from Corollary 2.2.

Proof. Our proof is adapted from the proof of [We2, Theorem 2.1]. Let �,
R and C be the constants from Corollary 2.2. Let z be a singular point of
the sequence (Aν , uν), and assume for contradiction that

lim inf
ν→∞ E

(
Aν , uν ; Bε(z)

)
< �

for some 0 < ε < R. Since z is singular there exists a sequence zν converging
to z such that |dAνuν(zν)|J →∞. Hence there exists ν0 such that

(4.1) zν0 ∈ Bε/2(z), E
(
Aν , uν ; Bε/2(z

ν0)
)

< �, |dAνuν(zν0)|J >
8 C�

ε2
.

We may therefore apply the a priori estimate from Corollary 2.2 to the
vortex (Aν , uν) on the disk Bε/2(zν0), obtaining

1
2
|dAνuν(zν0)|2J ≤

4 C

ε2
· E(Aν , uν ; Bε/2(z

ν0)
)
.

Using the second inequality in (4.1), we further infer

|dAνuν(zν0)|2J <
8 C�

ε2
,

which contradicts the third inequality in (4.1). �

Since supν E(Aν , uν) < ∞ by assumption, it follows from Lemma 4.2 that
the sequence (Aν , uν) has finitely many singular points. More specifically,
we have the following result.
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Lemma 4.3. After passing to a subsequence, the sequence (Aν , uν) has a
finite set Z = {z1, . . . , zN} of singular points in Σ and satisfies

sup
ν
‖dAνuν‖L∞(K) <∞

for every compact subset K ⊂ Σ \ Z.

Proof. The proof of this lemma is word by word the same as that of the
Claim in the proof of [MS, Theorem 4.6.1]. �

By Lemma 4.3, we may henceforth assume that the sequence (Aν , uν) has
finitely many singular points Z := {z1, . . . , zN} and satisfies

(4.2) sup
ν
‖dAνuν‖L∞(K) <∞

for every compact subset K ⊂ Σ \ Z.

4.2. Uhlenbeck compactness and Coulomb gauge. We investigate the
convergence properties of the sequence (Aν , uν) more closely from the gauge-
theoretic point of view.

Lemma 4.4. Fix p > 2. There exists a pair (A, u) consisting of a connection
A ∈ A1,p(P ) on P and a section u ∈ W 1,p

loc (Σ\Z, P (M)) of the bundle P (M)
defined on Σ \Z, a smooth reference connection A0 ∈ A(P ), and a sequence
of gauge transformations gν ∈ G2,p(P ) such that the following holds.

(i) The connection A is in Coulomb gauge relative to A0 on Σ, that is,

d∗A0
(A−A0) = 0.

(ii) After passing to a subsequence, the sequence (g∗νAν , g
−1
ν uν) converges

to (A, u) in the following sense.
(a) The sequence g∗νAν converges to A weakly in W 1,p and strongly in

C0 on Σ;
(b) the sequence g−1

ν uν converges to u weakly in W 1,p and strongly in
C0 on compact subsets of Σ \ Z;

(c) every g∗νAν is in Coulomb gauge relative to A on Σ, that is,

d∗A
(
g∗νAν −A

)
= 0.

Proof. Our proof is a variant of the arguments in the proofs of [CGMS,
Theorems 3.1 and 3.2]. Since (Aν , uν) solves the second vortex equation

FAν = −μ(uν) dvolΣ,

compactness of M yields a uniform Lp-bound for the sequence FAν . Hence
by weak Uhlenbeck compactness (see [Uh] and [We1, Theorem A]) there
exists a sequence of gauge transformations hν ∈ G2,p(P ) such that the
sequence h∗νAν is uniformly bounded in W 1,p. It follows from the Banach–
Alaoglu theorem that there exists a connection Ã ∈ A1,p(P ) such that, after
passing to a subsequence, h∗νAν converges to Ã weakly in W 1,p.
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Now we apply the local slice theorem [We1, Theorem F]. We take Ã
as reference connection and choose a smooth connection A0 ∈ A(P ) such
that ‖Ã − A0‖W 1,p(Σ) (and hence also ‖Ã − A0‖Lp(Σ)) is sufficiently small.
Then the local slice theorem (taking q = p) asserts the existence of a gauge
transformation h ∈ G2,p(P ) such that

d∗
Ã

(
h∗A0 − Ã

)
= 0.

By [We1, Lemma 8.4 (iv)]) this implies that

d∗A0

(
h∗Ã−A0

)
= 0.

Define
A := h∗Ã ∈ A1,p(P ).

Then A is in Coulomb gauge relative to A0 on Σ. This proves (i).
Since h∗νAν converges to Ã weakly in W 1,p as we have seen above, the

sequence h∗h∗νAν converges to A = h∗Ã weakly in W 1,p. In particular, it
follows by the Sobolev embedding theorem and Rellich’s theorem that, after
passing to a subsequence, h∗h∗νAν converges to A strongly in C0. Now we
apply the local slice theorem a second time, taking A as reference connection.
By what we just proved, we have

lim
ν→∞ ‖h

∗h∗νAν −A‖Lp(Σ) = 0, sup
ν
‖h∗h∗νAν −A‖W 1,p(Σ) <∞.

Hence by the local slice theorem, there exist ĥν ∈ G2,p(P ) such that

d∗A
(
ĥ∗νh

∗h∗νAν −A
)

= 0,(4.3)

lim
ν→∞

∥∥∥ĥ∗νh∗h∗νAν −A
∥∥∥

Lp(Σ)
= 0(4.4)

and

(4.5) sup
ν

∥∥∥ĥ∗νh∗h∗νAν −A
∥∥∥

W 1,p(Σ)
<∞.

We now define gν := hνhĥν . Then (4.3) proves (c) in (ii). Furthermore, by
(4.5) the sequence g∗νAν is uniformly bounded in W 1,p. Thus, by the Banach–
Alaoglu theorem, the Sobolev embedding theorem and Rellich’s theorem it
follows that, after passing to a subsequence, g∗νAν converges to some con-
nection A′ weakly in W 1,p and strongly in C0. By (4.4) we conclude that
A′ = A. This proves (a) in (ii). It remains to consider the sequence of sections
g−1
ν uν . By (4.2) we have

sup
ν

∥∥dg∗νAν

(
g−1
ν uν

)∥∥
Lp(K)

= sup
ν
‖dAνuν‖Lp(K) ≤ sup

ν
‖dAνuν‖L∞(K) < ∞

for every compact subset K ⊂ Σ\Z. Hence, by compactness of M it follows
from formula (1.5) that g−1

ν uν is uniformly bounded in W 1,p on compact
subsets of Σ \ Z. Hence there exists a section u ∈ W 1,p

loc (Σ \ Z, P (M)) such
that, after passing to a subsequence, g−1

ν uν converges to u weakly in W 1,p
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and strongly in C0 on compact subsets of Σ \Z. This proves (b) in (ii) and
completes the proof of Lemma 4.4. �

For the rest of this section, let us fix p > 2. To simplify notation, we
abbreviate

Âν := g∗νAν and ûν := g−1
ν uν ,

where gν ∈ G2,p(P ) are the gauge transformations from Lemma 4.4. We
restate the assertion of Lemma 4.4 using this notation: there exists a pair
(A, u) consisting of a connection A ∈ A1,p(P ) on P and a section u ∈
W 1,p

loc (Σ \ Z, P (M)) of the bundle P (M) that is defined on Σ \ Z, and a
smooth reference connection A0 ∈ A(P ) such that the following holds.
(C1) The connection A is in Coulomb gauge relative to A0 on Σ, that is,

d∗A0
(A−A0) = 0.

(C2) The sequence (Âν , ûν) converges to (A, u) in the following sense.
(a) The sequence Âν converges to A weakly in W 1,p and strongly in C0

on Σ;
(b) the sequence ûν converges to u weakly in W 1,p and strongly in C0

on compact subsets of Σ \ Z;
(c) every Âν is in Coulomb gauge relative to A on Σ, that is,

d∗A
(
Âν −A

)
= 0.

(C3) The Yang–Mills–Higgs energy of the sequence (Âν , ûν) satisfies a uni-
form bound

sup
ν

E(Âν , ûν) < ∞.

4.3. The limit equations. We consider the vortex equations

∂J,Âν
(ûν) = 0, FÂν

+ μ(ûν) dvolΣ = 0

in the limit ν → ∞ in order to obtain equations for the limit pair (A, u).
Since uν only converges on compact subsets of Σ \ Z, the limit equations
will only be defined on Σ \ Z.

Lemma 4.5. The pair (A, u) is a solution of class W 1,p
loc of the vortex equa-

tions (1.1) on the complement Σ \ Z of the singular points.

Proof. By condition (C2, a–b) the sequences ∂J,Âν
(ûν) and FÂν

+μ(ûν) dvolΣ
converge to ∂J,A(u) and FA +μ(u) dvolΣ, respectively, weakly in Lp on com-
pact subsets of Σ \ Z. Since (Âν , ûν) satisfies the vortex equations

∂J,Âν
(ûν) = 0, FÂν

+ μ(ûν) dvolΣ = 0

for every ν, it follows that (A, u) is a solution of class W 1,p
loc of the vortex

equations (1.1) on Σ \ Z. �
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4.4. Removal of singularities. We apply Theorem 1.1 in order to obtain
limit equations for the pair (A, u) that hold on all of Σ. We begin by verifying
that (A, u) satisfies the assumptions of Theorem 1.1.

Lemma 4.6. The limit pair (A, u) has the following properties.

(i) (A, u) is smooth on Σ \Z and, after passing to a subsequence, (Âν , ûν)
converges to (A, u) in C∞ on compact subsets of Σ \ Z.

(ii) (A, u) has finite Yang–Mills–Higgs energy E(A, u) <∞.

Proof. Proof of (i): The proof is by elliptic bootstrapping and is similar to
the proofs of [CGMS, Theorem 3.1 and Theorem 3.2], so we will be
very brief on this. We prove that (A, u) is of class W k,p for all k ≥ 1, on any
compact subset K ⊂ Σ \ Z. Since p > 2, smoothness of (A, u) on Σ \ Z will
then follow by the Sobolev embedding theorem.

For k = 1 this is true since (A, u) is of class W 1,p on K. Suppose now
that (A, u) is of class W k,p on K for some k ≥ 1. By Lemma 4.5 the pair
(A, u) solves the vortex equations (1.1) on the subset K.

Let A0 be the smooth reference connection from Lemma 4.4, and write
α := A−A0. Combining the second vortex equation (1.1) with the Coulomb
gauge condition (C1) we obtain an elliptic system

dA0α = −FA0 −
1
2

[α ∧ α]− μ(u) dvolΣ, d∗A0
α = 0.

Since (A, u) is of class W k,p on K, it follows that the right-hand sides of
these equations are of class W k,p as well. Hence, by elliptic regularity, we
conclude that α, whence A, is of class W k+1,p on K.

Consider a holomorphic coordinate chart C ⊃ D → Σ. By Remark 1.2,
locally on D the first vortex equation (1.1) may be written in the form

∂su + J(u) ∂tu = −XΦ(u)− J(u)XΨ(u),

where A = Φ ds + Ψ dt. Since (A, u) is of class W k,p on K, the right-hand
side of this equation is of class W k,p as well. Hence elliptic regularity implies
that u is of class W k+1,p on K (see [MS, Appendix B.4]).

This proves the first part of (i). The proof of the second part is similar
and will be omitted. Note that it relies on the Coulomb gauge condition
(C2, c) together with the fact that A is smooth on Σ \ Z.

Proof of (ii): Let Kμ ⊂ Σ \Z be an exhausting sequence of compact subsets
such that

Kμ ⊂ Kμ+1 and
⋃
μ

Kμ = Σ \ Z.

By (i) above it follows that the sequence of functions

e(Âν , ûν) =
1
2

∣∣∣d Âν
ûν

∣∣∣2
J

+ |μ(ûν)|2
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converges to

e(A, u) =
1
2
|dAu|2J + |μ(u)|2

in C∞ on every compact set Kμ, whence∫
Kμ

e(A, u) dvolΣ = lim
ν→∞

∫
Kμ

e(Âν , ûν) dvolΣ

for every μ. Moreover, we have

lim
μ→∞

∫
Kμ

e(Âν , ûν) dvolΣ =
∫

Σ\Z
e(Âν , ûν) dvolΣ = E(Âν , ûν)

for every ν. By Fatou’s lemma we therefore obtain

E(A, u) =
∫

Σ\Z
e(A, u) dvolΣ ≤ lim inf

μ→∞

∫
Kμ

e(A, u) dvolΣ

= lim inf
μ→∞

(
lim

ν→∞

∫
Kμ

e(Âν , ûν) dvolΣ

)

≤ sup
ν

(
lim

μ→∞

∫
Kμ

e(Âν , ûν) dvolΣ

)
= sup

ν
E(Âν , ûν).

In the last inequality, we used that the sequence
∫
Kμ

e(Âν , ûν) dvolΣ is non-

decreasing for fixed ν. Since supν E(Âν , ûν) < ∞ by condition (C3), asser-
tion (ii) follows. This finishes the proof of Lemma 4.6. �

We are now in a position to apply Theorem 1.1 to the limit pair (A, u).

Lemma 4.7. The limit pair (A, u) is a solution of class W 1,p of the vortex
equations (1.1) on all of Σ.

Proof. We apply Theorem 1.1 to each of the finitely many singular points
in Z. Let zj ∈ Z and choose a holomorphic chart C ⊃ B → Σ such that
the origin is mapped to zj . By Remark 1.2, locally in this chart the vortex
(A, u) gets identified with a triple (Φ, Ψ, u) satisfying the vortex equations

∂su + XΦ(u) + J
(
∂tu + XΨ(u)

)
= 0,

∂sΨ− ∂tΦ + [Φ, Ψ] + λ2 · μ(u) = 0

on the punctured disk B \ {0}, where Φ, Ψ: B → g are defined by A =
Φ ds + Ψ dt and λ : B → (0,∞) is defined by dvolΣ = λ2 ds ∧ dt. Since A
is of class W 1,p on Σ and p > 2, it follows by the Sobolev embedding the-
orem that Φ and Ψ are continuous on all of B. Moreover, A is smooth on
Σ \ Z by Lemma 4.6 (i), whence Φ and Ψ are smooth on B \ {0}. Lastly,
E(Φ, Ψ, u; B) <∞ by Remark 1.2 and Lemma 4.6 (ii). Hence, Theorem 1.1
implies that the map u is of class W 1,p on all of B. The lemma now follows
from Lemma 4.5. �
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We close with two results concerning the regularity of the limit pair (A, u)
and of the pairs (Âν , ûν).

Lemma 4.8. (i) The limit pair (A, u) is smooth on Σ.
(ii) For every ν, the pair (Âν , ûν) is smooth on Σ.

Proof. Proof of (i): By Lemma 4.7, the pair (A, u) is a W 1,p-solution of the
vortex equations (1.1) on all of Σ. Moreover, by (C1) the connection A is in
Coulomb gauge relative to the smooth connection A0. Hence, assertion (i)
follows by elliptic bootstrapping as in the proof of Lemma 4.6 (i) above (see
also the proof of [CGMS, Theorem 3.1]).

Proof of (ii): By gauge invariance of the vortex equations, for every ν the pair
(Âν , ûν) is a W 1,p-solution of the vortex equations (1.1) on Σ. Moreover, by
(C2, c) the connection Âν is in Coulomb gauge relative to the connection A.
Since A is smooth on Σ by part (i) above, assertion (ii) now follows by
elliptic bootstrapping as in (i). �

4.5. Proof of Theorem 4.1. Let Z = {z1, . . . , zN} be as in Lemma 4.3.
Fix p > 2, and let the pair (A, u) and the sequence of gauge transforma-
tions gν ∈ G2,p(P ) be as in Lemma 4.4. We will see below that the gauge
transformations gν are actually smooth.

By Lemmas 4.7 and 4.8 (i), the pair (A, u) is a smooth vortex.
Recall that we abbreviated

Âν := g∗νAν and ûν := g−1
ν uν .

Assertion (i) of Theorem 4.1 then holds by (C2, a), while assertion (ii) follows
from Lemma 4.6 (i). Moreover, by Lemma 4.8 (ii), for every ν the connection

g∗νAν = g−1
ν Aνgν + g−1

ν dgν

is smooth. Since Aν is smooth by assumption, a standard bootstrapping
argument shows that the gauge transformations gν are actually smooth for
every ν.

It remains to prove assertions (iii) and (iv). Following the proof of [MS,
Theorem 4.6.1], we fix numbers εj > 0 for j = 1, . . . , N such that the
disks Bεj (zj) are pairwise disjoint. Then, after passing to a subsequence,
the limits

mεj (zj) := lim
ν→∞E

(
Aν , uν ; Bεj (zj)

)
exist, and the function ε �→ mε(zj) is continuous for 0 < ε ≤ εj . By
Lemma 4.2,

lim inf
ν→∞ E

(
Aν , uν ; Bεj (zj)

) ≥ �,

whence
m(zj) := lim

ε→0
mε(zj) ≥ �.
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This proves (iii). To prove (iv), fix a number ε ≤ minj εj and note that

E

⎛⎝A, u; K \
N⋃

j=1

Bε(zj)

⎞⎠ = lim
ν→∞E

(
Aν , uν ; K

)− N∑
j=1

lim
ν→∞E

(
Aν , uν ; Bε(zj)

)
= lim

ν→∞E
(
Aν , uν ; K

)− N∑
j=1

mε(zj).

Taking the limit ε → 0, we get

E(A, u; K) = lim
ν→∞E

(
Aν , uν ; K

)− N∑
j=1

m(zj).

This proves (iv) and completes the proof of Theorem 4.1.

5. Gromov compactness

The aim of this section is to prove Theorem 1.8. Following the approach
of Mundet i Riera [Mu2], our strategy will be to reduce the compactifi-
cation problem for vortices to Gromov compactness for pseudoholomorphic
curves. To this end, we shall apply Gromov’s graph construction in order to
transform vortices into pseudoholomorphic sections of the associated sym-
plectic fiber bundle P (M) = P ×G M over Σ. We then deduce a mean value
inequality for these sections from the a priori estimate for vortices proved
in Section 2. All this will be explained in Section 5.1. In Section 5.2, we gen-
eralize the bubbling analysis from McDuff and Salamon [MS, Section 4.7]
in such a way that it also applies to pseudoholomorphic sections of P (M)
induced by vortices. The actual proof of Theorem 1.8 is then given in Sec-
tion 5.3, where we assemble the results previously obtained in Sections 4
and 5. We keep the notation introduced in Section 1.

5.1. Vortices versus pseudoholomorphic curves. We will explain how
vortices quite naturally occur as pseudoholomorphic sections of the bundle
P (M) → Σ, and prove a mean value inequality for such sections. This may
be regarded as a global version of the graph construction from Section 3.
The main results are collected in Lemma 5.1 and Proposition 5.2 below.

Let us begin by explaining how the total space P (M) = P ×G M naturally
inherits the structure of an almost complex symplectic manifold. Fix an
arbitrary smooth connection A on the G-bundle P → Σ. It is a well-known
fact (see [Mu2,CGS,GaSa,GuSt]) that A, together with the symplectic
form ω on M , the almost complex structure J on M , and the complex
structure jΣ on Σ, gives rise to a symplectic form and an almost complex
structure on P (M). For later reference, we briefly review these constructions.
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First, we define a symplectic form ωA on P (M). Let us denote by
p1 : P ×M → P and p2 : P ×M → M the canonical projections, and con-
sider the 2-form

σ̃A := ω − d〈A, μ〉 = p∗2 ω − d
〈
p∗1A, μ ◦ p2

〉
g

on P ×M . It descends to a closed 2-form σA on P (M), called the coupling
form (see [GuSt]). Note that σA may be degenerate in the horizontal direc-
tion. We make it into a symplectic form by adding on a sufficiently large
multiple of the pull-back of the area form dvolΣ along the bundle projection
p : P (M) → Σ. This leads us to define the symplectic form ωA by

(5.1) ωA := (1 + cA,μ) · p∗dvolΣ + σA,

where cA,μ > 0 is a sufficiently large constant. It will later be convenient to
choose cA,μ in such a way that

(5.2) |〈FA(v1, v2), μ〉g| ≤ cA,μ · |dπ(v1)| · |dπ(v2)|
for all v1, v2 ∈ TP , where π : P → Σ denotes the bundle projection. Note
that such a constant cA,μ exists since FA is horizontal and M is compact.

Second, we define an almost complex structure JA on P (M). For that
purpose, we consider the splitting of the tangent bundle TP (M) induced by
the connection A. More precisely, recall that we denote the points of P (M)
by [p, x], where p ∈ P and x ∈M . The tangent space T[p,x]P (M) is given by

T[p,x]P (M) =
(
TpP ×TxM

)/{
(p.ξ,−Xξ(x)) | ξ ∈ g

}
,

where p.ξ and Xξ(x) denote the infinitesimal action of ξ ∈ g on P at p
and on M at x, respectively. Its elements will be denoted by [v, w], where
v ∈ TpP and w ∈ TxM . The connection A then gives rise to a splitting
TP ∼= TP hor ⊕ TP vert into horizontal and vertical subbundles, denoted by
v = vhor + p.Ap(v) for v ∈ TpP . It further induces a splitting TP (M) ∼=
TP (M)hor ⊕ TP (M)vert, and any tangent vector [v, w] ∈ T[p,x]P (M) may
then be written as

(5.3) [v, w] =
[
vhor, w + XAp(v)(x)

]
.

The almost complex structure JA is now defined in terms of the complex
structure jΣ on Σ and the almost complex structure J on M by the formula

(5.4) JA[v, w] :=
[
(π∗jΣ)p vhor, J

(
w + XAp(v)(x)

)]
,

where we denote by π∗jΣ the G-equivariant lift of jΣ to TP hor. A straight-
forward computation shows that JA satisfies J2

A[v, w] = −[v, w].
We are now in a position to state the main results of this subsection.

The key observation is the next lemma, see [Mu2,CGS]. It explains how
vortices give rise to pseudoholomorphic sections of P (M).
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Lemma 5.1. Fix a smooth connection A on P , with corresponding almost
complex structure JA on P (M) defined by formula (5.4). Let u : P → M be a
smooth G-equivariant map, and denote by ũ : Σ → P (M) the corresponding
section as in Remark 1.3. Then u satisfies the first vortex equation

∂J,A(u) =
1
2
(
dAu + J(u) ◦ dAu ◦ jΣ

)
= 0

if and only if ũ is (jΣ, JA)-holomorphic, that is,

∂JA
(ũ) =

1
2
(
d ũ + JA(ũ) ◦ d ũ ◦ jΣ

)
= 0.

Proof. Recall from Remark 1.3 the definition of the section ũ : Σ → P (M).
Let z ∈ Σ and v ∈ TzΣ. By formula (1.5) we have

(5.5) d ũ(v) =
[
ṽ, du(ṽ)

]
=
[
ṽ, dAu(ṽ)

]
,

where ṽ ∈ TpP denotes the A-horizontal lift of v, for some p ∈ P such that
π(p) = z. Then, we have

∂JA
(ũ)(v) =

1
2

(
d ũ(v) +

(
JA(ũ) ◦ d ũ ◦ jΣ

)
(v)
)

=
1
2

([
ṽ, dAu(ṽ)

]
+ JA(ũ)

[
(π∗jΣ)ṽ, dAu

(
(π∗jΣ)ṽ

)])
=

1
2

([
ṽ, dAu(ṽ)

]
+
[
(π∗jΣ)2ṽ,

(
J(u) ◦ dAu ◦ π∗jΣ

)
(ṽ)
])

=
1
2

([
ṽ, dAu(ṽ)

]
+
[−ṽ,

(
J(u) ◦ dAu ◦ π∗jΣ

)
(ṽ)
])

=
[
0,

1
2

(
dAu(ṽ) +

(
J(u) ◦ dAu ◦ π∗jΣ

)
(ṽ)
)]

=
[
0, ∂J,A(u)(ṽ)

]
,

and the lemma follows. �

The next proposition provides a mean value inequality for the pseudoholo-
morphic sections that are associated to vortices as in the previous lemma.

Proposition 5.2. Fix a smooth reference connection A0 on P , with corre-
sponding symplectic form ωA0 and almost complex structure JA0 on P (M)
defined by formulas (5.1) and (5.4), respectively. Then there exist constants
c, c′ > 0, r0 > 0, and δ, C > 0 such that for all connections A satisfying

‖A−A0‖C0(Σ) ≤ c

the following holds.

(i) The almost complex structure JA on P (M) defined by formula (5.4) is
tamed by the symplectic form ωA0.
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Let moreover u : P → M be a smooth G-equivariant map. Suppose that
(A, u) is a vortex, and denote by ũ : Σ → P (M) the JA-holomorphic section
of P (M) induced by u as in Lemma 5.1. Denote by

〈· , ·〉JA
:=

1
2
(
ωA0(· , JA ·)− ωA0(JA ·, ·)

)
the Riemannian metric on P (M) determined by ωA0 and JA, which is well-
defined by (i) above. Recall from [MS, Section 2.2] that the energy of ũ is
given by

EJA
(ũ) :=

1
2

∫
Σ
|d ũ|2JA

dvolΣ,

where the norm |d ũ|JA
is understood with respect to the metric 〈· , ·〉JA

on
P (M) and the metric 〈· , ·〉Σ on Σ.
(ii) The energy of the section ũ and the Yang–Mills–Higgs energy of the

vortex (A, u) are related by

EJA
(ũ) ≤ c′ · (E(A, u) + Vol(Σ)

)
,

where Vol(Σ) denotes the area of Σ with respect to dvolΣ.
(iii) For all z0 ∈ Σ and all 0 < r < r0, the section ũ satisfies a mean value

inequality

EJA

(
ũ; Br(z0)

)
< δ =⇒ |d ũ(z0)|2JA

≤ C

r2
· EJA

(
ũ; Br(z0)

)
+ C.

The proof of Proposition 5.2 will occupy the remainder of this subsection.
Let us fix a smooth reference connection A0 on P . It gives rise to a sym-

plectic form ωA0 on P (M) by formula (5.1). Let A be a smooth connection
on P .

Proof of (i): Let [v, w] ∈ TP (M) such that [v, w] �= [0, 0]. By formula (5.3)
we may without loss of generality assume that v is A-horizontal. Then for-
mula (5.4) becomes

JA[v, w] =
[
(π∗jΣ)v, Jw

]
.

Combining this with formula (5.1) we obtain

(5.6) ωA0

(
[v, w], JA[v, w]

)
= ω
(
w + XA0(v), Jw + XA0((π∗jΣ)v)

)
− 〈FA0

(
v, (π∗jΣ)v

)
, μ
〉

+ (1 + cA0,μ) · dvolΣ
(
dπ(v), jΣ dπ(v)

)
.

In order to estimate the first term on the right-hand side, we write it as

ω
(
w + XA0(v), Jw + XA0((π∗jΣ)v)

)
= ω
(
w, Jw

)
+ ω
(
X(A−A0)(dπ(v)), Jw

)
+ ω
(
w, X(A−A0)(jΣ dπ(v))

)
+ ω
(
X(A−A0)(dπ(v)), X(A−A0)(jΣ dπ(v))

)
.

Here, we used that A−A0 is horizontal and hence descends to Σ, and that
A(v) = 0 since v is A-horizontal by assumption. Applying the inequalities of
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Cauchy–Schwarz and Young it follows that there exists a constant c1 > 0,
not depending on A, such that∣∣ω(w + XA0(v), Jw + XA0((π∗jΣ)v)

)∣∣
≥ 1

2
|w|2J − c1 · ‖A−A0‖2C0(Σ) · |dπ(v)|2.

Furthermore, by inequality (5.2) the last two terms on the right-hand side
of (5.6) may be estimated by

− 〈FA0

(
v, (π∗jΣ)v

)
, μ
〉

+ (1 + cA0,μ) · dvolΣ
(
dπ(v), jΣ dπ(v)

)
≥ |dπ(v)|2 .

Hence, we conclude that

ωA0

(
[v, w], JA[v, w]

) ≥ 1
2
|w|2J +

(
1− c1 · ‖A−A0‖2C0(Σ)

)
· |dπ(v)|2 > 0

whenever ‖A−A0‖C0(Σ) is sufficiently small. This proves (i).
Let now u : P → M be a smooth G-equivariant map such that (A, u) is

a vortex. Denote by ũ : Σ → P (M) the JA-holomorphic section of P (M)
induced by u as in Lemma 5.1. Write

〈· , ·〉JA
:=

1
2
(
ωA0(· , JA ·)− ωA0(JA ·, ·)

)
for the Riemannian metric on P (M) determined by ωA0 and JA, which is
well-defined by (i) above. Recall further that the energy of ũ is given by

EJA
(ũ) :=

1
2

∫
Σ
|d ũ|2JA

dvolΣ .

Before we turn to the proof of assertions (ii) and (iii) of Proposition 5.2, we
prove the following technical lemma.

Lemma 5.3. There exists a constant CA0 > 0, not depending on (A, u),
such that the following holds. Whenever ‖A−A0‖C0(Σ) is sufficiently small,
we have

1
2

(
2 + |dAu|2J

)
≤ |d ũ|2JA

≤ CA0 ·
(
2 + |dAu|2J

)
.

Proof. Let [v, w] ∈ TP (M), and note that

|[v, w]|2JA
= ωA0

(
[v, w], JA[v, w]

)
.

The computation in the proof of part (i) of Proposition 5.2 above hence
shows that

|[v, w]|2JA
≥ 1

2
|w|2J +

(
1− c1 · ‖A−A0‖2C0(Σ)

)
· |dπ(v)|2

for some constant c1 > 0, not depending on A. A similar computation yields

|[v, w]|2JA
≤ 2 |w|2J + c2 ·

(
1 + ‖A−A0‖2C0(Σ)

)
· |dπ(v)|2
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for some constant c2 > 0, not depending on A. Hence, there exists a constant
CA0 > 0, not depending on A, such that

1
2

(
|dπ(v)|2 + |w|2J

)
≤ |[v, w]|2JA

≤ CA0 ·
(
|dπ(v)|2 + |w|2J

)
whenever ‖A−A0‖C0(Σ) is sufficiently small. By formula (5.5), the claimed
inequality follows. �

Proof of (ii): Using Lemma 5.3 and formula (1.6), we obtain

EJA
(ũ) =

1
2

∫
Σ
|d ũ|2JA

dvolΣ ≤ CA0

2
·
∫

Σ

(
2 + |dAu|2J

)
dvolΣ

= CA0 ·
∫

Σ

(
1
2
|dAu|2J + |μ(u)|2

)
dvolΣ + CA0 ·Vol(Σ)

− CA0 ·
∫

Σ
|μ(u)|2 dvolΣ

≤ CA0 ·
(
E(A, u) + Vol(Σ)

)
whenever ‖A−A0‖C0(Σ) is sufficiently small. This proves (ii).

Proof of (iii): Let z0 ∈ Σ. By Corollary 2.2 there exist constants � > 0,
C ′ > 0 and R > 0, not depending on (A, u), such that for all 0 < r < R

(5.7) E
(
A, u; Br(z0)

)
< � =⇒ 1

2
|dAu(z0)|2J + |μ(u(z0))|2

≤ C ′

r2
· E(A, u; Br(z0)

)
.

Define constants
K := ‖μ‖2C0(M)

and

δ :=
�

4
, C := 4CA0 ·

(
1 + C ′

) · (1 + K · sup
0<r<R

Vol(Br(z0))
r2

)
,

where CA0 is the constant from Lemma 5.3 and Vol(Br(z0)) denotes the
area of Br(z0) with respect to dvolΣ. Choose a positive constant r0 < R
such that

(5.8) Vol
(
Br(z0)

) ≤ �

2K

for all 0 < r < r0. Assume now that

(5.9) r < r0 and EJA

(
ũ; Br(z0)

)
< δ.
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Using Lemma 5.3 and formula (1.6) we then obtain

EJA

(
ũ; Br(z0)

)
=

1
2

∫
Br(z0)

|d ũ|2JA
dvolΣ ≥ 1

4

∫
Br(z0)

(
2 + |dAu|2J

)
dvolΣ

=
1
2

∫
Br(z0)

(
1
2
|dAu|2J + |μ(u)|2

)
dvolΣ − 1

2

∫
Br(z0)

|μ(u)|2 dvolΣ

+
1
2

Vol
(
Br(z0)

)
≥ 1

2
E
(
A, u; Br(z0)

)− 1
2

K ·Vol
(
Br(z0)

)
,

whence

(5.10) E
(
A, u; Br(z0)

) ≤ 2 EJA

(
ũ; Br(z0)

)
+ K ·Vol

(
Br(z0)

)
.

Using inequalities (5.8) and (5.9), it follows from this that

E
(
A, u; Br(z0)

)
<

�

2
+

�

2
= �.

Hence, the a priori estimate (5.7) implies that

(5.11)
1
2
|dAu(z0)|2J + |μ(u(z0))|2 ≤ C ′

r2
· E(A, u; Br(z0)

)
.

Using Lemma 5.3 and formula (1.6), it follows that

|d ũ(z0)|2JA
≤ 2 CA0 ·

(
1
2
|dAu(z0)|2J + |μ(u(z0))|2

)
+ 2CA0

≤ 2 C ′CA0

r2
· E(A, u; Br(z0)

)
+ 2CA0 .

Applying inequality (5.10) again, we finally obtain

|d ũ(z0)|2JA
≤ 4 C ′CA0

r2
· EJA

(
ũ; Br(z0)

)
+ 2CA0 ·

(
C ′ ·K · Vol(Br(z0))

r2
+ 1
)

≤ C

r2
· EJA

(
ũ; Br(z0)

)
+ C.

This proves (iii), and completes the proof of Proposition 5.2.

5.2. Bubbles connect revisited. We prove Proposition 5.4 below, which
provides preliminary results that will be needed to carry out the bubbling
analysis in the proof of Theorem 1.8 in Section 5.3. It is adapted from McDuff
and Salamon [MS, Proposition 4.7.1 and Proposition 4.7.2]. We keep
the notation introduced in Section 5.1. Before stating the proposition, let us
explain the set-up and fix some more notation.
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We shall consider a sequence Aν of smooth connections on P that con-
verges to a smooth connection A on P weakly in W 1,p on Σ, for some fixed
p > 2. As we have seen in Section 5.1, A gives rise to a symplectic form ωA

on the total space P (M) = P ×G M , defined by formula (5.1); moreover, A
and Aν give rise to almost complex structures JA and JAν on P (M), defined
by formula (5.4). Now by the Sobolev embedding theorem and by Rellich’s
theorem it follows that, after passing to a subsequence, Aν converges to
A strongly in C0 on Σ. Hence, we infer from Proposition 5.2 (i), taking A
as reference connection, that both JA and JAν , for ν sufficiently large, are
tamed by ωA.

More generally, for any ωA-tame almost complex structure J̃ on P (M)
we denote by

〈·, ·〉J̃ :=
1
2
(
ωA(·, J̃ ·)− ωA(J̃ ·, ·))

the Riemannian metric on M determined by ωA and J̃ . For z0 ∈ C and
r > 0, we denote by Br(z0) ⊂ C the closed disk of radius r centered at z0.
Recall from [MS, Section 2.2] that the energy of a J̃-holomorphic curve
ũ : Br(z0) → P (M) is then given by

EJ̃

(
ũ, Br(z0)

)
:=

1
2

∫
Br(z0)

|d ũ|2
J̃

,

where the norm |d ũ|J̃ is understood with respect to the metric 〈·, ·〉J̃ on
P (M) and the Euclidean metric on C. Let B ⊂ C denote the closed unit
disk.

The main result of this subsection is the following proposition.

Proposition 5.4. Fix a holomorphic coordinate chart ϕ : B → Σ, a point
z0 ∈ C, and a real number r0 > 0. Let A be a smooth connection on P , and
let Aν be a sequence of smooth connections on P that converges to A weakly
in W 1,p on Σ, for some fixed p > 2. Suppose moreover that

• uν : Σ → P (M) is a sequence of JAν -holomorphic sections;
• φν : Br0(z0) ↪→ B is a sequence of injective holomorphic maps;
• ũ : Br0(z0) → P (M) is a JA-holomorphic curve

such that the following holds.

(a) The sequence φν is uniformly bounded in W 2,∞ on Br0(z0).
(b) The sequence ũν := uν ◦ϕ◦φν converges to ũ in C1 on compact subsets

of Br0(z0) \ {z0}.
(c) The limit

m0 := lim
ε→0

lim
ν→∞EJAν

(
ũν ; Bε(z0)

)
exists and is positive.
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(d) There exist constants r0 > 0 and δ, C > 0 such that for every ν the
section uν satisfies a mean value inequality of the following form: For
all z0 ∈ Σ0 and all 0 < r < r0,

EJAν

(
uν ; Br(z0)

)
< δ =⇒ |duν(z0)|2JAν

≤ C

r2
· EJAν

(
uν ; Br(z0)

)
+ C.

Then there exists a sequence of Möbius transformations ψν ∈ Aut(CP 1) ∼=
PSL(2, C), a J-holomorphic sphere v : CP 1 → P (M)ϕ(0)

∼= M in the fiber of
P (M) over the point ϕ(0), and finitely many distinct points z1, . . . , z�, z∞
on CP 1 such that, after passing to a subsequence, the following holds.

(i) The sequence ψν converges to z0 in C∞ on compact subsets of CP 1 \
{z∞} ∼= C.

(ii) The sequence vν := ũν ◦ψν converges to v in C1 on compact subsets of
CP 1 \ {z1, . . . , z�, z∞} ⊂ C, and the limits

mj := lim
ε→0

lim
ν→∞EJAν

(
vν ; Bε(zj)

)
exist and are positive for j = 1, . . . , �.

(iii) No energy gets lost in the limit, that is,

EJ(v) +
�∑

j=1

mj = m0.

(iv) If v is constant then � ≥ 2.
Moreover, bubbles connect in the sense that

ũ(z0) = v(z∞),

and, for every ε > 0, there exist constants δ0 > 0 and ν0 such that

d(z, z0) + d
(
(ψν)−1(z), z∞

)
< δ0 =⇒ dJA

(
ũν(z), ũ(z0)

)
< ε

for every ν ≥ ν0 and every z ∈ CP 1.

The remainder of this subsection is devoted to the proof of Proposition 5.4.
It is largely the same as the proof of [MS, Proposition 4.7.1 and Propo-
sition 4.7.2] except for certain modifications resulting from the fact that the
assumption in Proposition 5.4 on convergence of the almost complex struc-
tures is weaker than the respective assumption in [MS, Proposition 4.7.1
and Proposition 4.7.2].

More concretely, we are assuming that the sequence of connections Aν

converges to A weakly in W 1,p for some p > 2. Hence, after passing to a
subsequence, Aν converges to A strongly in C0. Therefore, we see from for-
mula (5.4) that the almost complex structures JAν will in general converge
to JA only in C0, in contrast to [MS, Proposition 4.7.1 and Propo-
sition 4.7.2], where the sequence Jν is assumed to converge to J in C∞.
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We thus conclude that those arguments in the proofs of [MS, Proposi-
tion 4.7.1 and Proposition 4.7.2] that rely on uniform estimates involv-
ing the derivatives of the almost complex structures Jν will not carry over
to our situation without modification. There are basically two types of such
arguments: elliptic bootstrapping for rescaled Jν-holomorphic curves on the
one hand, and any argument involving a uniform mean value inequality
for sequences of Jν-holomorphic curves based on [MS, Lemma 4.3.1]
on the other hand. In fact, a careful examination of the proof of [MS,
Lemma 4.3.1] reveals that the constant δ in the statement of this lemma
depends on the first and second derivatives of the almost complex structure
(see also the comments after [MS, Lemma 4.7.3]).

We now discuss in detail how to modify those critical arguments in order
to make them work under our assumptions as well.

First, we note that elliptic bootstrapping for rescaled Jν-holomorphic
curves enters precisely into Steps 2 and 3 of the proof of [MS, Propo-
sition 4.7.1]. More precisely, it enters via [MS, Lemma 4.6.5 and Theo-
rem 4.6.1], the proofs of which are in turn based on the basic compactness
theorem [MS, Theorem 4.1.1]. When adapted to our situation this argu-
ment essentially boils down to elliptic bootstrapping for the sequence of
rescaled JAν -holomorphic curves

vν := ũν ◦ ψν , ψν(z) = δνz, δν → 0

in Step 2 and
wν(z) := ũν(ενz), εν → 0

in Step 3 of the proof of [MS, Proposition 4.7.1]—here we assume that
z0 = 0 by Step 1 of that proof. The key idea now is to exploit the fact that
the curves ũν = uν ◦ ϕ ◦ φν factor through the JAν -holomorphic sections
uν : Σ → P (M). This will eventually provide us with certain perturbed
J-holomorphic curve equations for the curves vν and wν to which standard
elliptic bootstrapping arguments apply. Basically, we will follow the bubbling
argument for vortices from the proof of [CGMS, Theorem 3.4].

To start with, we note that by Lemma 5.1 the JAν -holomorphic sections uν

of the bundle P (M) satisfy the first vortex equation

∂J,Aν (uν) =
1
2
(
dAνuν + J(uν) ◦ dAνuν ◦ jΣ

)
= 0

when considered as G-equivariant maps uν : P → M as in Remark 1.3. By
Remark 1.2, locally in the chart ϕ : B → Σ this equation takes the form

∂su
loc
ν + J

(
uloc

ν

)
∂tu

loc
ν = −XΦν

(
uloc

ν

)− J
(
uloc

ν

)
XΨν

(
uloc

ν

)
.

Here ϕ̃ ∗Aν = Φν ds+Ψν dt and uloc
ν := uν ◦ ϕ̃, where ϕ̃ : B → P is some lift

of ϕ. A straightforward calculation as in [Zi1, Appendix B.2] then shows
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that the rescaled curves vν = ũν ◦ ψν satisfy the equation

(5.12) ∂svν + J(vν) ∂tvν

= −δν φ′ν ·
(
XΦν◦φν◦ψν (vν) + J(vν)XΨν◦φν◦ψν (vν)

)
.

Here φ′ν denotes the complex conjugate of the derivative ∂zφν of the holo-
morphic map φν , and the product on the right-hand side is defined by

(s + it) · w := s · w + t · J(x)w

for all numbers s + it ∈ C and all tangent vectors w ∈ TxM for x ∈ M .
The elliptic bootstrapping for the sequence vν is then based on equation

(5.12), as follows. Assumption (a) of Proposition 5.4 provides a uniform
W 2,∞-bound for the sequence φν , and δν → 0, so the first factor on the
right-hand side of equation (5.12) is uniformly bounded in W 1,∞. Likewise,
the assumption of Proposition 5.4 provides a uniform W 1,p-bound, p > 2, for
the sequence of connections Aν , whence the functions Φν and Ψν are both
uniformly bounded in W 1,p on B. Again by assumption (a) of Proposition 5.4
it follows that the functions Φν ◦ φν ◦ ψν and Ψν ◦ φν ◦ ψν are uniformly
bounded in W 1,p on compact subsets of C. By construction, the sequence
vν is uniformly bounded in W 1,∞ on a certain compact subset K ⊂ C

depending on whether we are considering the proof of [MS, Lemma 4.6.5]
or [MS, Theorem 4.6.1]. Hence, the second factor on the right-hand side
of equation (5.12) satisfies a uniform W 1,p-bound on K. We conclude that
the right-hand side of equation (5.12) is uniformly bounded in W 1,p on K.
Hence, elliptic regularity implies that the sequence vν is uniformly bounded
in W 2,p on K (see [MS, Appendix B.4]). By the Banach–Alaoglu theorem,
the Sobolev embedding theorem, and Rellich’s theorem it follows that, after
passing to a subsequence, the sequence vν converges weakly in W 2,p and
strongly in C1 on K to a J-holomorphic curve v : K → M satisfying the
equation

∂sv + J(v) ∂tv = 0,

which is obtained from (5.12) in the limit ν →∞.
The argument for the curves wν is identical.
Observe that, in general, we cannot expect better convergence than C1

for vν and wν since the sequence Aν is only assumed to be bounded in W 1,p

and hence the bootstrapping terminates after just one step. However, this
is sufficient for all subsequent arguments in the proof of [MS, Proposi-
tion 4.7.1].

Note also that the above argument shows that the sequence of curves
vν = ũν ◦ψν converges to a J-holomorphic sphere v : CP 1 → P (M)ϕ(0)

∼= M
in the fiber of P (M) over the bubbling point ϕ(0).

Second, we investigate all arguments in the proof of [MS, Proposi-
tion 4.7.1 and Proposition 4.7.2] that rely on a uniform mean value
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inequality for sequences of Jν-holomorphic curves based on [MS, Lemma
4.3.1]. Our strategy will be to deduce all those mean value inequalities not
from the mean value inequality provided by [MS, Lemma 4.3.1] but from
the mean value inequality for the sections uν provided by assumption (d)
of Proposition 5.4. Note that this mean value inequality is slightly weaker
than the mean value inequality of [MS, Lemma 4.3.1] since it contains an
additive constant C.

Now the only step in the proof of [MS, Propositions 4.7.1 and 4.7.2]
where [MS, Lemma 4.3.1] is used is in the proof of [MS, Lemma 4.7.3].
In order to complete the proof of Proposition 5.4 we will therefore first
prove a variant of [MS, Lemma 4.7.3], see Lemma 5.5 below, that relies
on the mean value inequality from assumption (d) instead of the mean value
inequality from [MS, Lemma 4.3.1]. We will state this lemma more gen-
erally for any closed symplectic manifold, which we will denote by (M, ω)
by abuse of notation. Moreover, for r < R we denote by A(r, R) := {z ∈
C | r ≤ |z| ≤ R} the closed annulus in C of inner radius r and outer radius
R centered at the origin.

Lemma 5.5. Let (M, ω) be a closed symplectic manifold and assume that J
is an ω-tame almost complex structure on M . Fix constants δ, C > 0. Then,
for every 0 < μ < 1, there exist constants R0 > 0, δ0 := δ0(δ, C, μ) > 0 and
c := c(C, μ) > 0 such that the following holds.

Suppose that 0 < r < R < R0 with R/r ≥ 4e2, and that u : A(r, R) → M
is a J-holomorphic curve that satisfies a mean value inequality of the fol-
lowing form: For all z ∈ A(r, R) and all ρ > 0 such that Bρ(z) ⊂ A(r, R),

(5.13) EJ

(
u; Bρ(z)

)
< δ =⇒ 1

2
|du(z)|2J ≤

C

ρ2
· EJ

(
u; Bρ(z)

)
+ C.

Here the norm |du|J is understood with respect to the Riemannian metric
〈·, ·〉J on M determined by ω and J , and the Euclidean metric on C. Then,
if the energy of u is sufficiently small in the sense that

EJ(u) := EJ

(
u; A(r, R)

)
< δ0,

we have estimates

(5.14) EJ

(
u; A(eT r, e−T R)

) ≤ c · e−2μT · EJ(u)

and

(5.15) sup
z1,z2∈A(eT r,e−T R)

dJ

(
u(z1), u(z2)

) ≤ c ·
(
e−μT ·

√
EJ(u) + R

)
for all T such that log 2 ≤ T ≤ log

√
R/r. Here dJ denotes the distance

function on M induced by the metric 〈·, ·〉J .

Proof. The proof is adapted from the proof of [MS, Lemma 4.7.3]. Fix
constants δ, C > 0 and 0 < μ < 1, and define c′ := c′(μ) := 1/4πμ.
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We first recall some notation from [MS, Section 4.4]. For any smooth
loop γ : ∂B → M , where B denotes the closed unit disk in C, we denote by
�(γ) its length with respect to the metric 〈·, ·〉J . If �(γ) is smaller than the
injectivity radius of M , then γ admits a smooth local extension uγ : B → M

such that uγ

(
eiθ
)

= γ(θ) for every θ ∈ [0, 2π] and the image of uγ is contained
in a geodesic ball of radius not greater than half the injectivity radius. In
this case the local symplectic action of γ is given by

(5.16) a(γ) := −
∫

B
u∗γ ω.

Note that it does not depend on the choice of the extension uγ . Recall that
c′ > 1/4π by assumption. Hence, by the isoperimetric inequality from [MS,
Theorem 4.4.1] there exists a constant δ0 := δ0(δ, C, μ) > 0 such that

(5.17) δ0 ≤ δ

and

(5.18) �(γ) < 4π
√

2 Cδ0 =⇒ |a(γ)| ≤ c′ · �(γ)2

for every smooth loop γ : ∂B → M . We are now ready for the actual proof
of the lemma.

Assume that EJ(u) := EJ

(
u; A(r, R)

)
< δ0.

Proof of (5.14): For r ≤ ρ ≤ R let γρ : ∂B → M be the loop defined by
γρ(θ) := u(ρ eiθ) for θ ∈ [0, 2π]. Furthermore, for log 2 ≤ t ≤ log

√
R/r we

define a smooth function t �→ ε(t) by

(5.19) ε(t) := EJ

(
u; A

(
etr, e−tR

))
=

1
2

∫
A(etr,e−tR)

|du|2J .

It will be useful to keep in mind that the condition log 2 ≤ t ≤ log
√

R/r is
equivalent to 2r ≤ etr ≤ e−tR ≤ R/2. Fix a number T such that

log 2 ≤ T ≤ log
√

R/r

and let ρ such that 2r ≤ eT r ≤ ρ ≤ e−T R ≤ R/2. Then, for any θ ∈ [0, 2π],
the disk Bρ/2(ρeiθ) is contained in the annulus A(r, R). Since EJ(u) < δ0 ≤ δ
by the assumption of the lemma and by (5.17), the mean value inequality
(5.13) yields

(5.20)
1
2

∣∣∣du
(
ρeiθ
)∣∣∣2

J
≤ 4 C

ρ2
· EJ(u; Bρ/2

(
ρeiθ
))

+ C ≤ 4 C

ρ2
· EJ(u) + C.

Hence,

|γ̇ρ(θ)|J =
ρ√
2
·
∣∣∣du
(
ρeiθ
)∣∣∣

J
≤ 2
√

C(EJ(u) + ρ2) < 2
√

C(δ0 + ρ2).
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Now define R0 :=
√

δ0 and assume for the remainder of this proof that
R < R0. Then ρ2 < δ0, and the previous estimate implies that

�(γρ) =
∫ 2π

0
|γ̇ρ(θ)|J dθ < 4π

√
2 Cδ0.

It then follows from the isoperimetric inequality (5.18) that

(5.21) |a(γρ)| ≤ c′ · �(γρ)2.

As in [MS, Rmk. 4.4.2] we denote by uρ : B → M the local extension of the
loop γρ defined by the formula uρ(ρ′eiθ) := expγρ(0)(ρ′ ξ(θ)) for 0 < ρ′ < ρ

and θ ∈ [0, 2π], where the map ξ : [0, 2π] → Tγρ(0)M is determined by the
condition expγρ(0)(ξ(θ)) = γρ(θ). For log 2 ≤ t ≤ log

√
R/r consider the

sphere vt : S2 → M that is obtained from the restriction of the map u to the
annulus A(etr, e−tR) by filling in the boundary circles γetr and γe−tR with
the local extensions uetr and ue−tR. The sphere vt : S2 → M is contractible
because it is the boundary of the 3-ball consisting of the union of the disks
uρ′ : B → M for etr ≤ ρ′ ≤ e−tR, whence

0 =
∫

S2

v∗t ω =
∫

A(etr,e−tR)
u∗ω −

∫
B

u∗etr ω +
∫

B
u∗e−tR ω.

Using the energy identity [MS, Lemma 2.2.1], we may write this equality
in terms of the function (5.19) and the local symplectic action (5.16) as

ε(t) = −a(γetr) + a(γe−tR).

Thus, applying inequality (5.21) and Hölder’s inequality we obtain

ε(t) ≤ c′ · �(γetr)
2 + c′ · �(γe−tR)2

= c′ ·
(∫ 2π

0
|γ̇etr(θ)|J dθ

)2

+ c′ ·
(∫ 2π

0
|γ̇e−tR(θ)|J dθ

)2

=
c′
(
etr
)2

2
·
(∫ 2π

0

∣∣∣du
(
etreiθ

)∣∣∣
J
dθ

)2

+
c′
(
e−tR

)2
2

·
(∫ 2π

0

∣∣∣du
(
e−tReiθ

)∣∣∣
J
dθ

)2

≤ 2πc′ ·
(

1
2
(
etr
)2 · ∫ 2π

0

∣∣∣du
(
etreiθ

)∣∣∣2
J
dθ

+
1
2
(
e−tR

)2 · ∫ 2π

0

∣∣∣du
(
e−tReiθ

)∣∣∣2
J
dθ

)
.
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To estimate this further, recall that

ε(t) =
1
2

∫
A(etr,e−tR)

|du|2J =
1
2

∫ e−tR

etr
ρ

∫ 2π

0

∣∣∣du
(
ρeiθ
)∣∣∣2

J
dθ dρ,

whence

ε̇(t) = −1
2
(etr)2

∫ 2π

0

∣∣∣du
(
etreiθ

)∣∣∣2
J
dθ − 1

2
(e−tR)2

∫ 2π

0

∣∣∣du
(
e−tReiθ

)∣∣∣2
J
dθ.

We conclude that
ε(t) ≤ −2πc′ · ε̇(t),

which implies
ε̇(t) ≤ −2μ · ε(t) < 0.

Integrating this differential inequality from log 2 to T yields

(5.22) ε(T ) ≤ e−2μ(T−log 2) · ε(log 2) ≤ e−2μT · e2μ · EJ(u).

Since μ > 0, inequality (5.14) follows.

Proof of (5.15): Let us denote ρ0 :=
√

rR. The assumption R/r ≥ 4e2 then
implies that 2r ≤ ρ0 ≤ R/2. We begin with the following observation.

Claim. The map u satisfies the following estimates, where ρ0 :=
√

rR.
(i) If 2r ≤ ρ ≤ ρ0, then

1
2

∣∣∣du
(
ρeiθ
)∣∣∣2

J
≤ 36 C e2μ

ρ2
·
(

r

ρ

)2μ

· EJ(u) + C.

(ii) If ρ0 ≤ ρ ≤ R/2, then

1
2

∣∣∣du
(
ρeiθ
)∣∣∣2

J
≤ 36 C e2μ

ρ2
·
( ρ

R

)2μ · EJ(u) + C.

Proof of Claim. First of all, note that the assumption R/r ≥ 4e2 yields the
finer estimate 2r ≤ 2e r ≤ ρ0 ≤ R/2e ≤ R/2.

In order to prove (i) assume that 2r ≤ ρ ≤ ρ0. We may then distinguish
two cases.
Case 1: 2r ≤ ρ ≤ 2e r. Then Bρ/2(ρeiθ) ⊂ A(r, R). Since EJ(u) < δ0 ≤ δ
by the assumption of the lemma and by (5.17), the mean value inequality
(5.13) yields

1
2

∣∣∣du
(
ρeiθ
)∣∣∣2

J
≤ 4 C

ρ2
·
(ρ

r

)2μ ·
(

r

ρ

)2μ

· EJ(u) + C

≤ 16 C e2μ

ρ2
·
(

r

ρ

)2μ

· EJ(u) + C.

In the second inequality, we used that ρ/r ≤ 2e and hence (ρ/r)2μ ≤ 4e2μ.
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Case 2: 2e r ≤ ρ ≤ ρ0. Then Bρ/2(ρeiθ) ⊂ A(ρ/e, eρ) ⊂ A(r, R). Again
inequality (5.13) yields

1
2

∣∣∣du
(
ρeiθ
)∣∣∣2

J
≤ 4 C

ρ2
· EJ

(
u; A(ρ/e, eρ)

)
+ C.

Applying inequality (5.22) to the annulus A(elog(ρ/r)−1 · r, e− log(ρ/r)+1 ·R) ⊃
A(ρ/e, eρ) we get

EJ

(
u; A(ρ/e, eρ)

) ≤ EJ

(
u; A

(
elog(ρ/r)−1 · r, e− log(ρ/r)+1 ·R))

≤ e2μ · e−2μ(log(ρ/r)−1) · EJ(u) ≤ 9 e2μ ·
(

r

ρ

)2μ

· EJ(u).

Hence,
1
2

∣∣∣du
(
ρeiθ
)∣∣∣2

J
≤ 36 C e2μ

ρ2
·
(

r

ρ

)2μ

· EJ(u) + C.

This proves (i). The proof of (ii) is similar and will therefore be omitted. �

Continuing with the proof of inequality (5.15), fix T such that log 2 ≤ T ≤
log
√

R/r. Note that this implies 2r ≤ eT r ≤ ρ0 ≤ e−T R ≤ R/2. Suppose
that z1, z2 ∈ A(eT r, e−T R). Then we have

(5.23) dJ

(
u(z1), u(z2)

) ≤ dJ

(
u(z1), u(ρ0)

)
+ dJ

(
u(ρ0)), u(z2)

)
.

In order to estimate the terms on the right-hand side of this inequality we
write zj = ρje

iθj , j = 1, 2, with eT r ≤ ρj ≤ e−T R and θj ∈ [0, 2π]. We
distinguish two cases.
Case 1: eT r ≤ ρj ≤ ρ0. To start with we estimate

dJ

(
u(zj), u(ρ0)

) ≤ ∫ ρ0

ρj

|∂ρu(ρ)|J dρ +
∫ θj

0

∣∣∣∂θu
(
ρje

iθ
)∣∣∣

J
dθ.

Note that

|∂ρu(ρ)|J =
1√
2
|du(ρ)|J and

∣∣∣∂θu
(
ρje

iθ
)∣∣∣

J
=

ρj√
2
·
∣∣∣du
(
ρje

iθ
)∣∣∣

J
.

Furthermore, since μ < 1 we have e2μ ≤ 9, so it follows from assertion (i) of
the Claim above that

1√
2

∣∣∣du
(
ρeiθ
)∣∣∣

J
≤ 18

√
C · rμ

ρμ+1
·
√

EJ(u) +
√

C

for 2r ≤ ρ ≤ ρ0. Hence, we obtain

dJ

(
u(zj), u(ρ0)

) ≤ 18
√

C ·
(∫ ρ0

ρj

rμ

ρμ+1
dρ +

∫ θj

0

(
r

ρj

)μ

dθ

)
·
√

EJ(u)

+
(
ρ0 − ρj + ρjθj

) · √C.
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Using 2r ≤ eT r ≤ ρj ≤ ρ0 ≤ R/2, we may estimate the terms on the
right-hand side by∫ ρ0

ρj

rμ

ρμ+1
dρ ≤

∫ ρ0

eT r

rμ

ρμ+1
dρ = − 1

μ
·
(

r

ρ0

)μ

+
rμ

μ · (eT r)μ
≤ 1

μ
· e−μT

and ∫ θj

0

(
r

ρj

)μ

dθ ≤
∫ 2π

0

( r

eT r

)μ
dθ = 2π · e−μT

and

ρ0 − ρj + ρjθj ≤ (1 + 2π)R,

which finally yields

(5.24) dJ

(
u(zj), u(ρ0)

) ≤ 18
√

C

(
1
μ

+ 2π

)
· e−μT ·

√
EJ(u)

+
√

C (1 + 2π)R.

Case 2: ρ0 ≤ ρj ≤ e−T R. A similar argument, which uses assertion (ii) of
the Claim above, leads to the same estimate as in (5.24).

Plugging inequality (5.24) into estimate (5.23), inequality (5.15) follows.
This completes the proof of Lemma 5.5. �

Note that Lemma 5.5 differs from [MS, Lemma 4.7.3]. In particular,
the constant δ0 appearing in Lemma 5.5 does not depend on the almost
complex structure J . This will be crucial in the subsequent applications.

In order to complete the proof of Proposition 5.4 we shall now mod-
ify those parts of the proofs of [MS, Proposition 4.7.1 and Proposi-
tion 4.7.2] that rely on [MS, Lemma 4.7.3]. We revert to the notation
we were using in the proof of Proposition 5.4 before stating Lemma 5.5.
Throughout we will use without explicit mention that JAν converges to
JA in C0 on P (M), as follows from formula (5.4) since Aν converges
to A in C0.

Let us examine the proof of [MS, Proposition 4.7.2] first. This proof
is based on [MS, Lemma 4.7.4], and [MS, Lemma 4.7.3] enters via the
proof of [MS, Lemma 4.7.4]. We will therefore explain the modifications
to the proof of [MS, Lemma 4.7.4] that are required when [MS, Lemma
4.7.3] is replaced by Lemma 5.5.

We need to apply Lemma 5.5 to the JAν -holomorphic curves

(5.25) wν := ũν ◦
(
ρν
0

)−1 : A(δν/ρ, ρ)→ P (M),

where ũν = uν ◦ϕ◦φν and ρν
0 denotes the sequence of conformal maps intro-

duced in Step 2 in the proof of [MS, Proposition 4.7.2]. Before explaining
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the required modifications to the proof of [MS, Lemma 4.7.4] we check
that the assumptions of Lemma 5.5 are satisfied.

In fact, we are considering the limit ρ → 0, so we may without loss of
generality assume that ρ < R0 for some constant R0 > 0. Moreover, for fixed
ρ the ratio ρ/(δν/ρ) gets arbitrarily large since δν → 0. It remains to show
that the curves wν satisfy a uniform mean value inequality of the following
form:

There exist constants δ′, C ′ > 0 such that for all ν the following holds.
For all z ∈ A(δν/ρ, ρ) and all ρ′ > 0 such that Bρ′(z) ⊂ A(δν/ρ, ρ),

(5.26) EJAν

(
wν ; Bρ′(z)

)
< δ′

=⇒ 1
2
|dwν(z)|2JAν

≤ C ′

ρ′2
· EJAν

(
wν ; Bρ′(z)

)
+ C ′.

This uniform mean value inequality, however, follows from the mean value
inequality contained in assumption (d) of Proposition 5.4 by conformal
invariance of the energy, by assumption (a) of Proposition 5.4, and since the
sequence of conformal maps ρν

0 appearing in the definition of wν converges
uniformly to the identity by Step 2 in the proof of [MS, Proposition 4.7.2].
Thus Lemma 5.5 applies to the curves (5.25).

The modifications to the proof of [MS, Lemma 4.7.4] are as follows.
Write

Eν(ρ) := EJAν

(
wν ; A(δν/ρ, ρ)

)
and E(ρ) := lim

ν→∞Eν(ρ).

Note that if 2ρ ≤ r then A(δν/2ρ, 2ρ) ⊂ A(δν/r, r). We may now apply
Lemma 5.5 to the curves (5.25) for some fixed number 0 < μ < 1, obtaining
constants δ′0 := δ′0(δ′, C ′, μ) > 0 and c′ := c′(C ′, μ) > 0. Here δ′ and C ′
are the constants from the uniform mean value inequality (5.26). Then by
inequality (5.15) with T = log 2 we further obtain

Eν(2ρ) < δ′0 =⇒ sup
z1,z2∈A(δν/ρ,ρ)

dJAν

(
wν(z1), wν(z2)

)
≤ c′ ·

(√
Eν(2ρ) + 2ρ

)
.

Taking the limit ν →∞ we therefore get

E(2ρ) < δ′0 =⇒ dJA

(
ũ(ρ), v(1/ρ)

)
= lim

ν→∞ dJAν

(
wν(ρ), wν(δν/ρ)

)
≤ c′ ·

(√
E(2ρ) + 2ρ

)
.

Letting ρ → 0 we obtain ũ(0) = v(∞). The remaining parts of the proof
of [MS, Lemma 4.7.4] carry over to our situation without modification.
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Lastly, we discuss the proof of [MS, Proposition 4.7.1]. In Step 3 of
this proof we need to apply Lemma 5.5 to the JAν -holomorphic curves

(5.27) ũν : A(δν , εν) → P (M),

where δν and εν both converge to zero such that δν/εν → 0. Again, before
explaining the required modifications to this proof we verify that the assump-
tions of Lemma 5.5 are satisfied.

Since εν → 0 we may without loss of generality assume that εν < R0

for some constant R0 > 0. Moreover, since δν/εν → 0 the ratio εν/δν gets
arbitrarily large. It remains to show that the curves ũν satisfy a uniform
mean value inequality of the following form:

There exist constants δ′, C ′ > 0 such that for all ν the following holds.
For all z ∈ A(δν , εν) and all ρ′ > 0 such that Bρ′(z) ⊂ A(δν , εν),

(5.28) EJAν

(
ũν ; Bρ′(z)

)
< δ′

=⇒ 1
2
|d ũν(z)|2JAν

≤ C ′

ρ′2
· EJAν

(
ũν ; Bρ′(z)

)
+ C ′.

As above, this uniform mean value inequality follows from the mean value
inequality contained in assumption (d) of Proposition 5.4 by conformal
invariance of the energy and by assumption (a) of Proposition 5.4. Thus
Lemma 5.5 applies to the curves (5.27).

The modifications to Step 3 in the proof of [MS, Proposition 4.7.1]
are as follows. We apply Lemma 5.5 to the curves (5.27) for μ := 1/2,
obtaining constants δ′0 := δ′0(δ′, C ′, μ) > 0 and c′ := c′(C ′, μ) > 0. Here δ′
and C ′ are the constants from the uniform mean value inequality (5.28). By
inequality (5.14) we finally get

EJAν

(
ũν ; A

(
eT δν , e−T εν

)) ≤ c′ · e−T · EJAν

(
ũν ; A(δν , εν)

)
.

The remaining parts of the proof of [MS, Proposition 4.7.1] then carry
over to our situation without modification.

This finishes the proof of Proposition 5.4.

5.3. Proof of Gromov compactness. We are now ready to prove Theo-
rem 1.8. Our strategy is to adapt the proof of [MS, Theorem 5.3.1] on Gro-
mov compactness for pseudoholomorphic curves, replacing the statements
of [MS, Theorem 4.6.1, Proposition 4.7.1 and Proposition 4.7.2] with
the corresponding statements of Theorem 4.1 and Proposition 5.4.

Fix a nonnegative integer n, a G-invariant ω-compatible almost complex
structure J on M , and a complex structure jΣ and an area form dvolΣ
on Σ. Consider a sequence (Aν , uν , zν) of n-marked vortices whose Yang–
Mills–Higgs energy satisfies a uniform bound

sup
ν

E(Aν , uν) < ∞.
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Our goal is to construct a rooted n-labeled tree T = (V = {0} � VS , E, Λ)
and a polystable vortex(

A,u, z
)

=
(
(A, u0), {uα}α∈VS

, {zαβ}αEβ, {αi, zi}1≤i≤n

)
of combinatorial type T such that the sequence (Aν , uν , zν) Gromov con-
verges to (A,u, z) in the sense of Definition 1.6.

We shall proceed in eight steps.

Step 1 We fix a root vertex 0 and assign to it the principal component
Σ0 := Σ. In this way, Σ0 inherits a fixed complex structure jΣ0

:= jΣ

and a fixed area form dvolΣ0
:= dvolΣ, with corresponding Kähler metric

〈·, ·〉Σ0
:= dvolΣ0( ·, jΣ0 ·).

Step 2 We apply Theorem 4.1 to the sequence of vortices (Aν , uν). The
conclusion is that there exists a smooth vortex (A, u0), a sequence of smooth
gauge transformations gν ∈ G(P ), a real number p > 2, and a finite set
Z0 = {ζ1, . . . , ζN} of distinct points on Σ0 such that, after passing to a
subsequence,

(i) the sequence g∗νAν converges to A weakly in W 1,p and strongly in C0

on Σ0;
(ii) the sequence g−1

ν uν converges to u0 in C∞ on compact subsets of
Σ0 \ Z0;

(iii) for every j ∈ {1, . . . , N} and every ε > 0 such that Bε(ζj) ∩Z0 = {ζj}
the limit

mε(ζj) := lim
ν→∞E

(
g∗νAν , g

−1
ν uν ; Bε(ζj)

)
exists and is a continuous function of ε, and

m(ζj) := lim
ε→0

mε(ζj) ≥ �,

where � is the constant of Corollary 2.2;
(iv) for every compact subset K ⊂ Σ0 such that Z0 is contained in the

interior of K,

E
(
A, u0; K

)
+

N∑
j=1

m(ζj) = lim
ν→∞E

(
g∗νAν , g

−1
ν uν ; K

)
.

Step 3 As described in Section 5.1, the connection A gives rise to a sym-
plectic form ωA and an almost complex structure JA on the total space
of the bundle P (M) = P ×G M over Σ0, defined by formulas (5.1) and
(5.4), respectively. By Proposition 5.2 (i), taking A as reference connection,
the almost complex structure JA is tamed by ωA. In particular, we have a
Riemannian metric

〈· , ·〉JA
:=

1
2
(
ωA(· , JA ·)− ωA(JA ·, ·)

)
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on P (M) determined by ωA and JA. For later use, we recall from [MS,
Section 2.2] that the energy of any JA-holomorphic section u : Σ0 → P (M)
is then given by

EJA
(u) :=

1
2

∫
Σ0

|du|2JA
dvolΣ0 ,

where the norm |du|JA
is understood with respect to the metric 〈· , ·〉JA

on
P (M) and the metric 〈· , ·〉Σ0 on Σ0.

As in Remark 1.3, we regard the map u0 : P →M from Step 2 as a section
u0 : Σ0 → P (M). Since (A, u0) is a vortex, it follows from Lemma 5.1 that
this section u0 is JA-holomorphic.

Step 4 By assertion (i) in Step 2, after passing to a subsequence, Propo-
sition 5.2 applies to the sequence of vortices (g∗νAν , g

−1
ν uν).

More precisely, the connections g∗νAν give rise to almost complex struc-
tures Jν := Jg∗νAν on P (M), defined by formula (5.4), which by Proposi-
tion 5.2 (i) are all tamed by ωA. Moreover, we see from formula (5.4) that
Jν converges to JA in C0. As before, we have Riemannian metrics

〈· , ·〉JAν
:=

1
2
(
ωA(· , Jν ·)− ωA(Jν ·, ·)

)
on P (M) determined by ωA and Jν , which converge to the metric 〈· , ·〉JA

in C0. The energy of any Jν-holomorphic section u : Σ0 → P (M) is then
given by

EJν (u) :=
1
2

∫
Σ0

|du|2Jν
dvolΣ0 ,

where the norm |du|Jν
is understood with respect to the metric 〈· , ·〉Jν

on P (M) and the metric 〈· , ·〉Σ0 on Σ0.
As in Remark 1.3, we regard the maps g−1

ν uν : P → M as sections
of P (M). By Lemma 5.1 it follows that
(v) the sections g−1

ν uν : Σ0 → P (M) are Jν-holomorphic.
Furthermore, Proposition 5.2 (ii–iii) implies that
(vi) the energy of the sections g−1

ν uν satisfies a uniform bound

sup
ν

EJν

(
g−1
ν uν

)
<∞;

(vii) there exist constants r0 > 0 and δ, C > 0 such that for every ν the
section g−1

ν uν satisfies a mean value inequality of the following form:
For all z0 ∈ Σ0 and all 0 < r < r0,

EJν

(
g−1
ν uν ; Br(z0)

)
< δ =⇒ ∣∣d(g−1

ν uν

)
(z0)
∣∣2
Jν

≤ C

r2
· EJν

(
g−1
ν uν ; Br(z0)

)
+ C.
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Note that in order to obtain (vi) we use that supν E(Aν , uν) <∞ by assump-
tion, in combination with gauge invariance of the Yang–Mills–Higgs energy.

Step 5 We rephrase assertions (iii) and (iv) in Step 2 in terms of the energy
of the sections g−1

ν uν . More precisely, we claim that
(iii’) for every j ∈ {1, . . . , N} and every ε > 0 such that Bε(ζj) ∩Z0 = {ζj}

the limit
m′

ε(ζj) := lim
ν→∞EJν

(
g−1
ν uν ; Bε(ζj)

)
exists and is a continuous function of ε, and

m′(ζj) := lim
ε→0

m′
ε(ζj) ≥ �;

(iv’) for every compact subset K ⊂ Σ0 such that Z0 is contained in the
interior of K,

E
(
A, u0; K

)
+

N∑
j=1

m′(ζj) = lim
ν→∞E

(
g∗νAν , g

−1
ν uν ; K

)
.

To see this, we first recall from (vi) in Step 4 that

sup
ν

EJν

(
g−1
ν uν ; Bε(ζj)

)
<∞.

As in the proof of [MS, Theorem 4.6.1] we conclude that, after passing to
a subsequence, the limit m′

ε(zj) exists; moreover, it is a continuous function
of ε for every j by (ii) in Step 2. Assertions (iii’) and (iv’) then follow from
(iii) and (iv) in Step 2 once we show that

(5.29) m′(ζj) = m(ζj)

for every j. To prove this, we abbreviate Âν := g∗νAν and ûν := g−1
ν uν .

Recall from Step 4 that the energy of the section ûν : Σ0 → P (M) on Bε(ζj)
is given by

EJν

(
ûν ; Bε(ζj)

)
=

1
2

∫
Bε(ζj)

|d ûν |2Jν
dvolΣ0 ,

and recall from formula (1.6) that the Yang–Mills–Higgs energy of the vortex
(Âν , ûν) on Bε(ζj) is given by

E
(
Âν , ûν ; Bε(ζj)

)
=

1
2

∫
Bε(ζj)

∣∣∣d Âν
ûν

∣∣∣2
J
dvolΣ0 +

∫
Bε(ζj)

|μ(ûν)|2 dvolΣ0 .

We may hence estimate

(5.30)
∣∣m′

ε(ζj)−mε(ζj)
∣∣ ≤ 1

2

∫
Bε(ζj)

lim
ν→∞

(∣∣∣∣|d ûν |2Jν
−
∣∣∣d Âν

ûν

∣∣∣2
J

∣∣∣∣) dvolΣ0

+ ‖μ‖2C0(M) ·Vol(Bε(ζj)).
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A computation as in the proof of part (i) of Lemma 3.2 then yields

|d ûν(v)|2Jν
−
∣∣∣d Âν

ûν(v)
∣∣∣2
J

= ω
(
X(Âν−A)(v), J d Âν

ûν(v)
)

+ ω
(
d Âν

ûν(v), X(Âν−A)(jΣ0
v)

)
+ ω
(
X(Âν−A)(v), X(Âν−A)(jΣ0

v)

)
− 〈FA(v, jΣ0v), μ

〉
+ (1 + cA,μ) · |v|2

for all v ∈ TΣ0. Recall that

|〈FA(v, jΣ0v), μ〉g| ≤ cA,μ · |v|2

by definition of cA,μ in (5.2), and that Âν converges to A in C0 on Σ0 by (i)
in Step 2. It thus follows that

lim
ν→∞

(∣∣∣∣|d ûν |2Jν
−
∣∣∣d Âν

ûν

∣∣∣2
J

∣∣∣∣) dvolΣ0 ≤ c (1 + 2 cA,μ)

for some constant c > 0. Plugging this into inequality (5.30) above we get∣∣m′
ε(ζj)−mε(ζj)

∣∣ ≤ ( c

2
(1 + 2 cA,μ) + ‖μ‖2C0(M)

)
·Vol(Bε(ζj)).

Letting ε → 0, (5.29) follows. This completes the proof of (iii’) and (iv’).

Step 6 We prove that the sequence of n-marked Jν-holomorphic sections
(g−1

ν uν , zν) Gromov converges to a stable map

(u, z) =
(
u0, {uα}α∈VS

, {zαβ}αEβ , {αi, zi}1≤i≤n

)
in P (M) of combinatorial type T = (V = {0}�VS , E, Λ) in the sense of [MS,
Definition 5.2.1], where T is an n-labeled tree, with the modifications that

• Σ0 is of arbitrary genus but does not admit any automorphisms other
than the identity;

• the (Energy) axiom will be formulated in a different way in Step 8
below.

The proof is basically the same as that of [MS, Theorem 5.3.1], which is
in turn based on [MS, Theorem 4.6.1, Proposition 4.7.1 and Proposi-
tion 4.7.2]. Except for certain alterations to be discussed below, the argu-
ments from the proof of [MS, Theorem 5.3.1] will hence carry over to our
situation if we replace the assertions of [MS, Theorem 4.6.1] with the cor-
responding assertions (ii), (iii’) and (iv’) in Step 2 and Step 5 above, and
the assertions of [MS, Proposition 4.7.1 and Proposition 4.7.2] with
the respective assertions of Proposition 5.4.

More precisely, we do not admit non-trivial automorphisms of the prin-
cipal component Σ0; hence Σ0 will be a distinguished component of the
stable map u. We therefore need to apply an induction argument as in the
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proof of [MS, Theorem5.3.1] in order to construct a separate bubble tree
at each point ζj ∈ Z0, where Z0 is the set of singular points obtained in
Step 2. Technically, this is achieved by modifying the base step in the induc-
tion in the proof of [MS, Theorem 5.3.1] in the following way. We define
the set Z1 in that proof to be the set Z0. Then there exists r > 0 sufficiently
small such that for every j there exists a holomorphic chart

ϕj : B → Br(ζj),

where B ⊂ C denotes the closed unit disk, such that

ϕj(0) = ζj and Br(ζj) ∩ Z1 = {ζj}.
Moreover, we define the sequence of Möbius transformations φν

1 in the proof
of [MS, Theorem 5.3.1] to be trivial, that is, φν

1 := idC for all ν. Then it
follows from (ii) in Step 2 that the sequence

(5.31)
(
g−1
ν uν

) ◦ ϕj =
(
g−1
ν uν

) ◦ ϕj ◦ φν
1 : B → P (M)

converges to
u0 ◦ ϕj : B → P (M)

in C∞ on compact subsets of the punctured disk B \ {0} for every j. We
may then apply Proposition 5.4 to the sequence (5.31).

We need to check that assumptions (a–d) of Proposition 5.4 are satisfied.
In fact, (a) is satisfied by construction of φν

1 , (b) is satisfied by (ii) in Step 2,
(c) is satisfied by (iii’) in Step 5, and (d) is satisfied by (vii) in Step 4.

The induction then carries on as in the proof of [MS, Theorem 5.3.1].
Note the following: By construction, the rescalings φν

j from that proof all
satisfy assumption (a) of Proposition 5.4. Moreover, part (ii) of Proposi-
tion 5.4 only asserts C1-convergence for the rescaled maps vν . Hence, we
only get C1-convergence for the rescaled maps uν

α appearing in the (Map)
axiom in [MS, Definition 5.2.1].

Step 7 We claim that the tuple(
A,u, z

)
=
(
(A, u0), {uα}α∈VS

, {zαβ}αEβ, {αi, zi}1≤i≤n

)
consisting of the vortex (A, u0) obtained in Step 2 and the stable map (u, z)
obtained in Step 6, is a polystable vortex in the sense of Definition 1.4.
In fact, this follows from [MS, Definition 5.1.1] since by Proposition 5.4
the bubbles uα : CP 1 → P (M), α ∈ VS , all map into the fiber P (M)z0α of
the bundle P (M) over the nodal point z0α ∈ Σ0. At this point, recall from
Section 1 that z0α denotes the nodal point on the principal component Σ0 at
which the bubble tree containing the spherical component Σα is attached.

Step 8 Combining (i) and (ii) in Step 2 with Step 6 above, we see that
the sequence of marked vortices (Aν , uν , zν) Gromov converges against the
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polystable vortex (A,u, z) in the sense of Definition 1.6, except for the
(Energy) axiom.

It remains to check that the (Energy) axiom in Definition 1.6 is satisfied.
In fact, since (g−1

ν uν , zν) Gromov converges against the stable map (u, z) by
Step 6, it follows from the (Energy) axiom in [MS, Definition 5.2.1] that∑

γ ∈T0α

EJA
(uγ) = lim

ε→0
lim

ν→∞EJν

(
g−1
ν uν ; Bε(z0α)

)
for every α ∈ VS such that 0Eα. Here T0α denotes the subtree of T containing
α after removing the edge connecting 0 and α as in [MS, Section 5.1]. Note
that we used uν

0 = (g−1
ν uν)◦φν

0 = g−1
ν uν by Step 6. On the other hand, taking

K = Σ0 it follows from (iv’) in Step 5 that

E(A, u0) +
∑

α∈VS ,0Eα

lim
ε→0

lim
ν→∞EJν

(
g−1
ν uν ; Bε(z0α)

)
= lim

ν→∞E
(
g∗νAν , g

−1
ν uν

)
.

Hence by gauge invariance of the Yang–Mills–Higgs energy, we get

lim
ν→∞E(Aν , uν) = E(A, u0) +

∑
α∈VS

EJA
(uα).

Now we see from the definition of the almost complex structure JA in for-
mula (5.4) that JA and J agree on the fibers of P (M). Since uα maps
into the fiber P (M)z0α over the point z0α ∈ Σ0 by Step 7, it follows that
EJA

(uα) = EJ(uα). We conclude that

lim
ν→∞E(Aν , uν) = E(A, u0) +

∑
α∈VS

EJ(uα) = E(A,u).

Hence, the (Energy) axiom is satisfied.
The proof of Theorem 1.8 is now complete.
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[IS] S. Ivashkovich and V. Shevchishin, Gromov compactness theorem for J-complex
curves with boundary, Int. Math. Res. Not. 22 (2000), 1167–1206.

[Ko] M. Kontsevich, Enumeration of rational curves via torus actions, The mod-
uli space of curves (Texel Island, 1994), Progress in Mathematics, vol. 129,
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further like to thank Eduardo González, Tobias Hartnick, and Jan Swoboda for their
valuable comments, and the referee for corrections and suggestions. Finally, he would like
to acknowledge the excellent working conditions at the Rutgers University Mathematics
Department and the Isaac Newton Institute as well as their hospitality. The author was
supported by ETH Research Grant TH-01 06-1 and by EPSRC Grant EP/F005431/1.





<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


