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NEW TECHNIQUES FOR OBTAINING SCHUBERT-TYPE
FORMULAS FOR HAMILTONIAN MANIFOLDS

Silvia Sabatini and Susan Tolman

In [GT], Goldin and Tolman extend some ideas from Schubert cal-
culus to the more general setting of Hamiltonian torus actions on
compact symplectic manifolds with isolated fixed points. (See also
[Kn99,Kn08].) The main goal of this paper is to build on this work by
finding more effective formulas. More explicitly, given a generic com-
ponent of the moment map, they define a canonical class αp in the
equivariant cohomology of the manifold M for each fixed point p ∈M .
When they exist, canonical classes form a natural basis of the equivari-
ant cohomology of M . In particular, when M is a flag variety, these
classes are the equivariant Schubert classes. It is a long-standing prob-
lem in combinatorics to find positive integral formulas for the equivari-
ant structure constants associated to this basis. Since computing the
restriction of the canonical classes to the fixed points determines these
structure constants, it is important to find effective formulas for these
restrictions. In this paper, we introduce new techniques for calculating
the restrictions of a canonical class αp to a fixed point q. Our formulas
are nearly always simpler, in the sense that they count the contribu-
tions over fewer paths. Moreover, our formula is manifestly positive and
integral in certain important special cases.
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0. Introduction

In [GT], Goldin and Tolman extend some ideas from Schubert calculus to
the more general setting of Hamiltonian torus actions on compact sym-
plectic manifolds with isolated fixed points. (Knutson found closely related
formulas for the Duistermaat–Heckman measure in the algebraic case in
[Kn99,Kn08].) Given a generic component of the moment map, they define
a canonical class αp in the equivariant cohomology of the manifold M for
each fixed point p ∈ M (see Definition 0.1 below). When they exist, these
canonical classes form a natural basis of the equivariant cohomology of M .
In particular, when M is a flag variety, these classes are the equivariant
Schubert classes (see [Ku] and Proposition 6.5). It is a long-standing prob-
lem in combinatorics to find positive integral formulas for the equivariant
structure constants associated to this basis. Since computing the restriction
of the canonical classes to the fixed points determines these structure con-
stants and hence the (equivariant) cohomology ring of M , it is important to
find effective formulas for these restrictions. Building on ideas of Guillemin
and Zara [GZ], Goldin and Tolman show that the restriction of a canonical
class αp to a fixed point q can be calculated by a rational function that
only depends on the following information: the value of the moment map at
fixed points, and the restriction of other canonical classes to points of index
exactly two higher. Moreover, the restriction formula in [GT] is manifestly
positive whenever the restrictions themselves are all positive, including when
M is a coadjoint orbit.

However, the results in [GT] differ from Schubert calculus in several
important ways. For example, the individual summands in that formula are
almost never integral; essentially, this only holds whenM is CPn. In contrast,
in the combinatorics literature, a manifestly positive integral formula for the
restriction of equivariant Schubert classes on M = G/B is already known
(see Appendix D.3 in [AJS, B]). The main goal of this paper is to bridge
this gap by giving formulas which, like the formula in [GT], are valid in
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the much broader Hamiltonian category, but which are simpler in the sense
that they count the contribution over fewer paths. Indeed, we want these
contributions to be manifestly positive and integral whenever possible, and
to understand geometrically when this occurs. This project was inspired by
an early version of [Za], where C. Zara used combinatorial tools to re-derive
the integral formula in [AJS,B] for the case of a coadjoint orbit of type An
from the formula in [GT], by taking limits as the cohomology class of the
symplectic form varies.

Before giving more precise statements, let us define a few terms. Let T be
a (compact) torus with Lie algebra t and lattice � ⊂ t, and (·, ·) the natural
pairing between t∗ and t. Let T act on a compact symplectic manifold (M,ω)
with moment map ψ : M → t∗. By definition,

ιXξ
ω = −dψξ for all ξ ∈ t,

where Xξ denotes the vector field on M generated by the action and ψξ(x) =
(ψ(x), ξ). In this case, we say that the triple (M,ω, ψ) is a Hamiltonian
T-manifold. Now, assume that M has a discrete-fixed set and fix a generic
ξ ∈ t, that is, assume that (η, ξ) �= 0 for each weight η ∈ �∗ ⊂ t∗ in the
isotropy representation of T on TpM for every fixed point p. Given a fixed
point p ∈ MT , let λ(p) be the number of positive weights of the isotropy
action on TpM . Let Λ−

p ∈ Sym(t∗) be the product of these weights, where
Sym(t∗) denotes the symmetric algebra on t∗. (Here, we say that f ∈ Sym(t∗)
is positive if (f, ξ) > 0.)

Definition 0.1 Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-
fixed set, and let ϕ = ψξ be a generic component of the moment map.
A cohomology class αp ∈ H

2λ(p)
T (M ;A) is a canonical class at a fixed point

p (with respect to ϕ) if
(1) αp(p) = Λ−

p .
(2) αp(q) = 0 for all q ∈MT

� {p} such that λ(q) ≤ λ(p).

Canonical classes do not always exist, but if they exist then they are
unique [GT, Lemma 2.7]. Moreover, if there exist canonical classes αp ∈
H

2λ(p)
T (M ;A) for all p ∈ MT , then by Lemmas 1.1 and 1.2 below, the

classes {αp}p∈MT are a basis for H∗
T (M ;A) as a module over H∗(BT ;A);

see also [GT, Proposition 2.3]. In this case, our goal will be to compute
the restrictions αp(q) for all p and q ∈MT in terms of paths in the canonical
graph.

Definition 0.2 Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-
fixed set, and let ϕ = ψξ be a generic component of the moment map.
Assume that canonical classes αp ∈ H

2λ(p)
T (M ;A) exist for all p ∈ MT .
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There is a labelled directed graph (V,E) associated to (M,ω, ψ, ϕ), called
the canonical graph, defined as follows.

• The vertex set V is the fixed set MT ; we label each vertex p ∈ V by
its moment image ψ(p) ∈ t∗.

• The edge set is

E = {(r, r′) ∈MT ×MT | λ(r′) − λ(r) = 1 and αr(r′) �= 0};
we label each edge (r, r′) ∈ E by αr(r′)

Λ−
r′

.

For example, ifM is a Goresky–Kottwitz–MacPherson (GKM) space, then
a pair of distinct fixed points (p, q) is an edge in the canonical graph exactly
if λ(q) = λ(p) + 1 and they are contained in a two-sphere that is fixed by
a codimension one subgroup of T ; see Section 2. Given any directed graph
with vertex set V and edge set E ⊂ V × V , a path of length k from p to q
is a (k + 1)-tuple γ = (γ1, . . . , γk+1) ∈ V k+1, so that γ1 = p, γk+1 = q, and
(γi, γi+1) ∈ E for all 1 ≤ i ≤ k. For any path γ, we let |γ| denote its length.

We can now give our most general theorem, which is proved in Section 3.
It gives a formula for the restriction of a canonical class αp to a fixed point q.

Theorem 0.3. Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-
fixed set, and let ϕ = ψξ be a generic component of the moment map. Assume
that canonical classes αp ∈ H

2λ(p)
T (M ;A) exist for all p ∈ MT . Given fixed

points p and q, let Σ(p, q) denote the set of paths from p to q in the associated
canonical graph (V,E). Given classes wr ∈ H2

T (M ;R) for all r ∈MT ,

αp(q) = Λ−
q

∑

γ∈Σ(p,q)

|γ|∏

i=1

wγi(γi+1) − wγi(γi)
wγi(q) − wγi(γi)

αγi(γi+1)
Λ−
γi+1

,

whenever the right-hand side is well-defined, i.e., wγi(q) �= wγi(γi) for all
γ ∈ Σ(p, q) and 1 ≤ i ≤ |γ|.

This generalizes the formula in [GT] whenever H2(M ;R) �= R; cf.
Remark 3.1. This case includes, for example, any generic coadjoint orbit
of dimension greater than two. At first glance, the formula above does not
look simpler than the one in [GT] — they both involve sums over the same
set of paths. However, a path γ ∈ Σ(p, q) contributes 0 to the formula if
wγi(γi) = wγi(γi+1) for some 1 ≤ i ≤ |γ|−1. Most of our paper (the proof of
Theorem 0.3 itself takes less than a page) is dedicated to explaining how to
choose the cohomology classes wr so that only a few paths contribute, and
proving that in these cases the formula is manifestly positive whenever the
restrictions themselves are all positive (see Remark 3.3).

In Section 4, we show that we can reduce the number of paths whenever
there exists a cohomology class w whose restriction to H2(M ;R) is in the
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closure of the Hamiltonian cone (see Definition 4.1) and has the property
that w(p) = w(q) �= w(r) for some edges (p, q) and (q, r) in the canonical
graph. For example, ifM is a GKM manifold that admits an invariant Kähler
structure, then it is enough to find a cohomology class in the closure of the
Kähler cone that vanishes on the two-sphere that corresponds to the edge
(p, q), but not on the two-sphere that corresponds to (q, r).

In Section 5, we show that our technique is particularly powerful when
the manifold is a “strong symplectic fibration” over another Hamiltonian
manifold; this class includes, for example, equivariant fiber bundles with the
property that the projection map intertwines compatible invariant complex
structures. Explicit computations are especially easy in this case. In partic-
ular, in Corollary 5.8 we give an inductive formula for the restrictions αp(q)
in terms of the paths in the base and the canonical classes on the fiber.
Finally, by Theorem 5.5, our formula is integral whenever M is a “tower”
of complex projective spaces, that is, a fiber bundle over CPn whose fiber
is also a tower of complex projective spaces. More generally, if the fibers Fj
are not projective spaces, but do satisfy H∗(Fj ;A) � H∗(

CP
nj ;A

)
for some

subring A ⊂ R, then the contributions are all polynomials in the weights
with coefficients in A.

Since coadjoint orbits of type An and Cn are both towers of complex pro-
jective spaces, we immediately get manifestly positive integral formulas for
the restrictions in these cases. Similarly, since coadjoint orbits of type Bn
are towers whose fibers satisfy H∗(Fj ;Z

[
1
2

]) � H∗(
CP

nj ;Z
[

1
2

])
, the contri-

bution of each path is integral when multiplied by a sufficiently large power
of 2. (In a more recent version of [Za], Zara also independently obtained
formulas for Cn and Bn of this type as well.) Finally, coadjoint orbits of
type Bn and Dn are sufficiently close to being towers of complex projective
spaces that we can manipulate the terms to get manifestly positive integral
formulas in these cases as well.

1. Canonical classes

The main goal of this section is to review the properties of canonical classes.
However, we also need to prove a slight variation of these results: Lemma 1.4.

Let’s begin by recalling a definition. Let A ⊂ R be a subring (with unit).
The equivariant cohomology of M with coefficients in A is

H∗
T (M ;A) = H∗(M ×T ET ;A);

it is a module over H∗(BT ;A). Moreover, the inclusion M → M ×T ET
induces a natural restriction map H∗

T (M ;A) → H∗(M ;A). Here, ET is a
contractible space on which T acts freely, and BT = ET/T .
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Let (M,ω, ψ) be a Hamiltonian T -manifold with a discrete-fixed set. Given
a generic ξ ∈ t, the function ϕ = ψξ : M → R is an invariant Morse function;
the critical set of ϕ is exactly the fixed set MT . Our convention for the
moment map implies that, for each p ∈ MT , the weights in the negative
normal bundle ν−(p) of ϕ at p are exactly the positive weights of the isotropy
action on TpM , that is, the weights η such that (η, ξ) > 0. Hence, the index
of ϕ at p is 2λ(p), where λ(p) is the number of such weights. In particular,
H1(M ;R) = 0. Finally, given α ∈ H∗

T (M ;A) and q ∈ MT , let α(q) denote
the image of α under the natural restriction map H∗

T (M ;A) → H∗
T ({q};A).

Throughout this paper, we will frequently need the following lemma, which
is identical to [GT, Lemma 2.8] except that here we consider coefficients in
any subring A ⊂ R instead of just Z. The proof goes through without any
change.

Lemma 1.1. Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-fixed
set, and let ϕ = ψξ be a generic component of the moment map. Given a
canonical class αp ∈ H

2λ(p)
T (M ;A) at p ∈MT ,

αp(q) = 0 for all q ∈MT
� {p} such that ϕ(q) ≤ ϕ(p).

Lemma 1.1 implies that ϕ(r) < ϕ(r′) for all (r, r′) ∈ E. Hence, if γ =
(γ1, . . . , γ|γ|+1) is a path from p to q in (V,E), then ϕ(γi) < ϕ(q) for all
1 ≤ i ≤ |γ|.

The following result is due to Kirwan [Ki]; see also [GT,TW].

Lemma 1.2 (Kirwan). Let (M,ω, ψ) be a Hamiltonian T -manifold with
discrete-fixed set, and let ϕ = ψξ be a generic component of the moment
map. For every fixed point p there exists a class γp ∈ H

2λ(p)
T (M ;Z) so that

(1) γp(p) = Λ−
p , and

(2) γp(q) = 0 for every q ∈MT
� {p} such that ϕ(q) ≤ ϕ(p).

Moreover, for any such classes, the {γp}p∈MT are a basis for H∗
T (M ;Z) as

a module over H∗(BT ;Z).

This has the following corollary, which we have adapted from [GT,
Corollary 2.6] and [T, Corollary 2.3].

Corollary 1.3. Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-
fixed set, and let ϕ = ψξ be a generic component of the moment map. Fix
p ∈ MT and β ∈ H2i

T (M ;A) such that β(q) = 0 for all q ∈ MT satisfying
ϕ(q) < ϕ(p).

• β(p) = xΛ−
p for some x ∈ H2i−2λ(p)(BT ;A); in particular, if λ(p) > i

then β(p) = 0.



�

�

�

�

�

�

�

�

NEW TECHNIQUES FOR OBTAINING SCHUBERT-TYPE FORMULAS 185

• Fix cohomology classes {γq}q∈MT so that γq satisfies conditions (1)
and (2’) above for each q ∈MT . Then

β =
∑

ϕ(q)≥ϕ(p)

xqγq, where xq ∈ H2i−2λ(q)(BT ;A) for all q.

Here, the sum is over all q ∈MT such that ϕ(q) ≥ ϕ(p).

We also need the following closely related fact.

Lemma 1.4. Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-fixed
set, and let ϕ = ψξ be a generic component of the moment map. Assume
that canonical classes αp ∈ H

2λ(p)
T (M ;A) exist for all p ∈ MT . Fix p ∈ MT

and β ∈ H2i
T (M ;A) such that β(q) = 0 for all q ∈ MT so that λ(q) < λ(p).

Then

β =
∑

λ(q)≥λ(p)

xqαq, where xq ∈ H2i−2λ(q)(BT ;A) for all q.

Here the sum is over all q ∈MT such that λ(q) ≥ λ(p).

Proof. Since {αq}q∈MT is a basis for H∗
T (M ;A) as a module over H∗(BT ;A),

we can write β =
∑

q∈MT xqαq, where xq ∈ H2i−2λ(q)(BT ;A) for all q. If the
claim does not hold, then there exists q ∈ MT so that λ(q) < λ(p) and
xq �= 0, but xr = 0 for all r such that λ(r) < λ(q). Hence, by the definition
of canonical class β(q) = xqΛ−

q . Since β(q) = 0 this is impossible. �

2. GKM spaces

We now restrict our attention to an important special case where it is
especially easy to calculate canonical classes. A Hamiltonian T -manifold
(M,ω, ψ) is a GKM space if M has isolated fixed points and if, for every
codimension one subgroup K ⊂ T , the fixed submanifold MK has dimension
at most two [GKM]. Equivalently, M is a GKM space if the weights of the
isotropy representation of T on TpM are pairwise linearly independent for
every fixed point p ∈MT .

Definition 2.1 The GKM graph of a GKM space (M,ω, ψ) is the labelled
directed graph (V,EGKM), defined as follows.

• The vertex set V is the fixed set MT ; we label each p ∈ MT by its
moment image ψ(p) ∈ t∗.

• Given p �= q in V , there is a directed edge (p, q) ∈ EGKM exactly
if there exists a codimension one subgroup K ⊂ T so that p and
q are contained in the same connected component N of MK . We
label each edge (p, q) by the weight η(p, q) associated to the isotropy
representation of T on TqN � C.
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Observe that (p, q) ∈ EGKM exactly if (q, p) ∈ EGKM. Moreover, η(p, q) =
−η(q, p), and ψ(q)−ψ(p) is a positive multiple of η(p, q) for all (p, q) ∈ EGKM.
Additionally, the set of weights of the isotropy representation on the tangent
space at any point p ∈ V is

Πp = Πp(M) =
{
η(r, p)

∣∣ (r, p) ∈ EGKM

}
.

Example 2.2 The complex projective space CPn. The natural action
of (S1)n+1 on Cn+1 descends to an effective Hamiltonian action of T =
(S1)n+1/S1 on CPn. The associated GKM graph is the complete graph
on n + 1 fixed points: p1 = [1, 0, . . . , 0], p2 = [0, 1, . . . , 0], . . . , pn+1 =
[0, 0, . . . , 1]. Finally, the moment image of pi is 1

n+1

∑n+1
j=1

(
xj − xi

)
, and the

weight associated to the edge (pi, pj) is xi− xj . Here, we let x1, . . . , xn+1 be
the standard basis for (Rn+1)∗ and identify t∗ with

{
μ ∈ (Rn+1)∗

∣∣ ∑
μi = 0

}
.

Now fix a generic component of the moment map ϕ = ψξ. As we mentioned
in the previous section, the set of weights in the isotropy representation on
the negative normal bundle of ϕ at p is the set of positive weights in Πp(M).
Hence, λ(p) is the number of edges (r, p) ∈ EGKM such that ϕ(r) < ϕ(p),
and

Λ−
p =

∏

η∈Πp(M)
(η,ξ)>0

η.

It is possible to strengthen Lemma 1.1 when M is a GKM space. We say
that a path γ = (γ1, . . . , γ|γ|+1) in (V,EGKM) is ascending if ϕ(γi) < ϕ(γi+1)
for all i.

Lemma 2.3. Let (M,ω, ψ) be a GKM space, and let ϕ = ψξ be a generic
component of the moment map. Given a canonical class αp ∈ H

2λ(p)
T (M ;A)

at p ∈MT , αp(q) = 0 for all q ∈MT such that there are no ascending paths
from p to q in (V,EGKM).

Proof. Consider any q ∈ MT so that αp(q) �= 0 but αp(r) = 0 for each edge
(r, q) ∈ EGKM such that ϕ(r) < ϕ(q). Then αp(q) is a non-zero multiple of
η(r, q) for all (r, q) ∈ EGKM such that ϕ(r) < ϕ(q). (To see this, recall that
for each (r, q) ∈ EGKM there exists a sphere N ⊂ M containing r and q
which is fixed by the codimension one subgroup associated to η.) Since these
weights are pairwise linearly independent, this implies that αp has degree at
least 2λ(q), that is, λ(q) ≤ λ(p). By the definition of canonical class, this is
impossible unless p = q. The claim follows. �

We say that ϕ is index increasing if λ(p) < λ(q) for every edge (p, q) ∈
EGKM such that ϕ(p) < ϕ(q). In this case, integral canonical classes exist
and it is straightforward to compute the restriction of a canonical class αp
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to q for any p and q in MT such that λ(q) − λ(p) = 1. Conversely, if there
exist canonical classes αp ∈ H∗

T (M ;Q) for all p ∈ MT , then ϕ is index
increasing [GT, Remark 4.2].

More specifically, let ξ◦ = {β ∈ t∗ | (β, ξ) = 0}. Given η ∈ t∗, let
�η : Sym(t∗) → Sym(t∗) be the homomorphism of symmetric algebras
induced by the projection map which sends X ∈ t∗ to X − (X,ξ)

(η,ξ) η ∈ ξ◦ ⊂ t∗.
Following [GZ], for any (p, q) ∈ EGKM we define

Θ(p, q) =
�η(p,q)(Λ−

p )

�η(p,q)

(
Λ−

q

η(p,q)

) ∈ Sym(t∗)0,

where Sym(t∗)0 denotes the ring of fractions of Sym(t∗). Observe that

�η(p,q)

(
Λ−

q

η(p,q)

)
is not zero, since by the GKM assumption the weights at

each fixed point are pairwise linearly independent. The theorem below was
proved in [GZ] over the rationals and then extended to the integers in [GT].

Theorem 2.4. Let (M,ω, ψ) be a GKM space, and let (V,EGKM) be the
associated GKM graph. Let ϕ = ψξ be a generic component of the moment
map; assume that ϕ is index increasing. Then

(1) There exist canonical classes αp ∈ H
2λ(p)
T (M ;Z) for all p ∈MT .

(2) Given fixed points p and q such that λ(q) − λ(p) = 1,

αp(q) =

⎧
⎪⎪⎨

⎪⎪⎩

Λ−
q

Θ(p, q)
η(p, q)

if (p, q) ∈ EGKM, and

0 if (p, q) /∈ EGKM.

(3) Θ(p, q) ∈ Z � {0} for all (p, q) ∈ EGKM such that λ(q) − λ(p) = 1.

In particular, the associated canonical graph has vertex set V = MT and
edge set

E = {(r, r′) ∈ EGKM | λ(r′) − λ(r) = 1}.

3. The most general theorem

In this section, we will prove our most general theorem, Theorem 0.3. As we
mentioned in the introduction, it is a generalization of [GT, Theorem 1.2].
More precisely, it is more general whenever H2(M ;R) �= R; see Remark 3.1.
The main advantage of our formula is that it usually allows us to express
αp(q) as a sum over fewer paths. For the reader’s convenience, we will recall
the statement of Theorem 0.3.

Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-fixed
set, and let ϕ = ψξ be a generic component of the moment map.
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Assume that canonical classes αp ∈ H
2λ(p)
T (M ;A) exist for all

p ∈ MT . Given fixed points p and q, let Σ(p, q) denote the set
of paths from p to q in the associated canonical graph (V,E).
Given classes wr ∈ H2

T (M ;R) for all r ∈MT ,

αp(q) = Λ−
q

∑

γ∈Σ(p,q)

|γ|∏

i=1

wγi(γi+1) − wγi(γi)
wγi(q) − wγi(γi)

αγi(γi+1)
Λ−
γi+1

,

whenever the right-hand side is well-defined, i.e., wγi(q) �=
wγi(γi) for all γ ∈ Σ(p, q) and 1 ≤ i ≤ |γ|.

Remark 3.1. By Lemma 1.1, ϕ(γi) < ϕ(q) for all γ ∈ Σ(p, q) and 1 ≤ i ≤
|γ|; a fortiori, ψ(γi) �= ψ(q). Therefore, the right-hand side of the equation
above is well-defined if wr is a non-zero multiple of [ω + ψ] for all r ∈ MT .
(Here we are using the Cartan model for the equivariant cohomology of M .)
In this case, the theorem agrees with [GT, Theorem 1.2].

Note that a path γ ∈ Σ(p, q) contributes 0 to the formula above exactly
if there exists 1 ≤ i ≤ |γ| − 1 such that wγi(γi) = wγi(γi+1) but wγi(q) �=
wγi(γi). Generally speaking, the best result will come from choosing each
class wr so that wr(r) �= wr(q), but wr(r) = wr(s) for as many edges (r, s) ∈
E as possible. In practice, instead of trying to pick the optimal class at each
fixed point, we will often fix an ordered list of classes. For each fixed point we
will just pick the first class that satisfies the hypotheses of Theorem 0.3. As
we show below, as long as the forms satisfy the technical condition (1), this
technique gives an elegant answer. In the next two sections, we will explain
natural geometric conditions which guarantee that (1) is satisfied.

Corollary 3.2. Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-
fixed set, and let ϕ = ψξ be a generic component of the moment map. Assume
that canonical classes αp ∈ H

2λ(p)
T (M ;A) exist for all p ∈MT . Pick classes1

w1,w2, . . . ,wk in H2
T (M ;R) such that, for each j,

(1) αp(q) = 0∀ p, q ∈MT such that wj(q) �= wj(p) and wξj(q) ≤ wξj(p) ,

where for each p ∈MT , wξj(p) denotes (wj(p), ξ).
Assume that for each (r, r′) ∈ E, there exists j ∈ {1, . . . , k} such that

wj(r) �= wj(r′), and define

h(r, r′) = min
{
j
∣∣ wj(r) �= wj(r′)

}
for all (r, r′) ∈ E.

1In practice, there often exists a symplectic form ωj ∈ Ω2(M) with moment map
ψj : M → t∗ such that [ωj +ψj ] = wj ∈ H2

T (M ;R) for each j. In this case, wj(p) = ψj(p) for

all p ∈ MT ; in particular, wξ
j (p) = ψξ

j (p). However, we do not insist that such symplectic

forms exist; we allow the general case.
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Given p and q in MT, let Σ(p, q) denote the set of paths in the associated
canonical graph (V,E) from p to q. Then

αp(q) = Λ−
q

∑

γ∈C(p,q)

|γ|∏

i=1

wh(γi,γi+1)(γi+1) − wh(γi,γi+1)(γi)
wh(γi,γi+1)(q) − wh(γi,γi+1)(γi)

αγi(γi+1)
Λ−
γi+1

,where

C(p, q) =
{
γ ∈ Σ(p, q) | h(γ1, γ2) ≤ h(γ2, γ3) ≤ · · · ≤ h(γ|γ|, γ|γ|+1)

}
.

Remark 3.3 (Positivity). Note that, if αr(r′) is positive for every edge
(r, r′) in E, then the equation above is manifestly positive, in the sense that
every non-zero term is positive; a fortiori, the restriction αp(q) is positive
for all fixed points p and q. To see this, note that Λ−

r is positive by def-
inition for all r ∈ MT , while wi(r′) − wi(r) is either positive or zero for
each edge (r, r′) ∈ E by assumption (1). Therefore, the formulas in Theo-
rem 4.2 and Theorem 5.5. that are both proved using the above corollary,
a manifestly positive whenever the restrictions themselves are manifestly
positive. In contrast, in general the restriction αp(q) might not be positive
(cf. [GT, Example 5.2]).

We are now ready to prove our claims.

Proof of Theorem 0.3. Since (wp−wp(p))(p) = 0 and αp is a canonical class
at p, the restriction αp(wp − wp(p))(r) is trivial for all r ∈ MT such that
λ(r) ≤ λ(p). By Lemma 1.4, this implies that we can write

αp
(
wp − wp(p)

)
=

∑

λ(r)>λ(p)

xrαr, where xr ∈ H2λ(p)−2λ(r)+2(BT ;R)∀ r.

By the definition of canonical class, evaluating the above equation at r
implies that
(
wp(r) − wp(p)

)αp(r)
Λ−
r

= xr ∈ R for all r ∈MT such that λ(r) = λ(p) + 1.

Moreover, by dimensional arguments, xr = 0 for all r ∈ MT such that
λ(r) > λ(p) + 1. Hence,

αp(wp − wp(p)) =
∑

(p,r)∈E
(wp(r) − wp(p))

αp(r)
Λ−
r
αr.

Restricting to q and dividing by wp(q)−wp(p) (which is not zero by assump-
tion), we have

αp(q) =
∑

(p,r)∈E

wp(r) − wp(p)
wp(q) − wp(p)

αp(r)
Λ−
r
αr(q).

Since the claim is obvious if λ(q) − λ(p) ≤ 1, the claim now follows by
induction. �
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Proof of Corollary 3.2. Definition 0.2 and hypothesis (1) in Corollary 3.2
imply that

either wξj(r) < wξj(r
′) or wj(r) = wj(r′) for all (r, r′) ∈ E and 1 ≤ j ≤ k.

Therefore, if γ is a path from r to q with at least one edge then either
wξj(γi) < wξj(q) or wj(γi) = wj(γi+1) = wj(q) for each j and for each i ≤ |γ|.
Since, by assumption, there exists j ∈ {1, . . . , k} such that wj(γ1) �= wj(γ2),
this implies that wξj(r) < wξj(q). A fortiori, wj(r) �= wj(q), and so we can
define

h(r, q) = min{j | wj(r) �= wj(q)} ∀ r ∈MT
� {q} such that Σ(r, q) �= ∅.

Moreover, if wj(γi) = wj(q) for some γ ∈ Σ(p, q) and i ≤ |γ|, then wj(γi) =
wj(γi+1) = wj(q) as well. Therefore,

(2) h(γi, q) ≤ h(γi+1, q) and h(γi, q) ≤ h(γi, γi+1) for all 1 ≤ i ≤ |γ| − 1.

The hypotheses of Theorem 0.3 will be satisfied if we let the class associ-
ated to r ∈MT be

{
wh(r,q) if r �= q and Σ(r, q) �= ∅, and
0 otherwise.

Therefore,

αp(q) = Λ−
q

∑

γ∈Σ(p,q)

|γ|∏

i=1

wh(γi,q)(γi+1) − wh(γi,q)(γi)
wh(γi,q)(q) − wh(γi,q)(γi)

αγi(γi+1)
Λ−
γi+1

.

Moreover, a path γ ∈ Σ(p, q) contributes 0 to the formula above if
wh(γi,q)(γi) = wh(γi,q)(γi+1) for some i < |γ|. Therefore, we only need to
consider paths γ from p to q so that

h(γi, γi+1) ≤ h(γi, q) for all 1 ≤ i ≤ |γ|.
Combining this fact together with (2), we may restrict to paths γ so that

h(γ1, γ2) ≤ h(γ2, γ3) ≤ · · · ≤ h(γ|γ|, γ|γ|+1) and

h(γi, γi+1) = h(γi, q), for all 1 ≤ i ≤ |γ|.
�

Finally, the lemma below, which we will use in Section 5, follows from
an argument nearly identical to the first three sentences of the proof of
Theorem 0.3.

Lemma 3.4. Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-fixed
set, and let ϕ = ψξ be a generic component of the moment map. Assume
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that canonical classes αp ∈ H
2λ(p)
T (M ;A) exist for all p ∈MT ; let (V,E) be

the canonical graph. Given a class w ∈ H2
T (M ;A),

(
w(r) − w(p)

)αp(r)
Λ−
r

∈ A for all (p, r) ∈ E.

4. The Hamiltonian cone

In this section, we give our first application of Theorem 0.3. Here, we use the
Hamiltonian cone to pick the closed equivariant two-forms and characterize
which paths contribute to the formula.

Definition 4.1 Let a torus T act on a manifold M . The Hamiltonian
cone is the set of classes H ⊂ H2(M ;R), which can be represented by an
invariant symplectic form that has a moment map.

Theorem 4.2. Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-
fixed set, and let ϕ = ψξ be a generic component of the moment map. Assume
that canonical classes αp ∈ H

2λ(p)
T (M ;A) exist for all p ∈ MT . Pick classes

w1, . . . ,wk ∈ H2
T (M ;R) that restrict to classes in the closure of the compo-

nent of the Hamiltonian cone H ⊂ H2(M ;R) containing [ω]. Assume that
for each (r, r′) ∈ E there exists j such that wj(r) �= wj(r′), and define

h(r, r′) = min
{
j
∣∣ wj(r) �= wj(r′)

}
for all (r, r′) ∈ E.

Given p and q in MT, let Σ(p, q) denote the set of paths from p to q in the
associated canonical graph (V,E). Then

αp(q) = Λ−
q

∑

γ∈C(p,q)

|γ|∏

i=1

wh(γi,γi+1)(γi+1) − wh(γi,γi+1)(γi)
wh(γi,γi+1)(q) − wh(γi,γi+1)(γi)

αγi(γi+1)
Λ−
γi+1

, where

C(p, q) =
{
γ ∈ Σ(p, q) | h(γ1, γ2) ≤ h(γ2, γ3) ≤ · · · ≤ h(γ|γ|, γ|γ|+1)

}
.

Remark 4.3. Assume that the following conditions hold:
(X) the restrictions of the wi form a basis for H2(M ;R); and
(Y) the restriction of

∑
i aiwi lies in H for every positive k-tuple a ∈ Rk+.

In this case, Theorem 4.2 can also be proved using the limit techniques found
in [Za], instead of Theorem 0.3. (The argument still relies on Lemmas 4.5
and 4.6.) Note that, in this case, we do not need to assume that for each
(r, r′) ∈ E there exists j such that wj(r) �= wj(r′); this holds automatically.

Remark 4.4. Assume that the torus T acts on a compact manifold M ,
preserving a complex structure J : TM → TM. If the fixed set is empty the
Hamiltonian cone H is empty, so assume that MT �= ∅. The Kähler cone of



�

�

�

�

�

�

�

�

192 S. SABATINI AND S. TOLMAN

M is the set of classes inH2(M ;R) which can be represented by a compatible
symplectic form. Since T is compact, we can represent every such class by
an invariant symplectic form by averaging. Moreover, by Frankel’s theorem,
the action is always Hamiltonian. Hence, the Kähler cone is a subset of the
Hamiltonian cone. (Note that Lemma 4.5 is obvious if [ω′] is in the Kähler
cone containing [ω].) Analogous statements hold if J is an almost complex
structure and H1(M ;R) = 0.

Note also that the Kähler cone is convex because any convex combination
of compatible symplectic forms is itself a compatible symplectic form. In
contrast, a convex combination of arbitrary symplectic forms may or may
not be symplectic.

Lemma 4.5. Let (M,ω, ψ) be a Hamiltonian T -manifold, and let ϕ = ψξ

be a generic component of the moment map. Let ω′ be a symplectic form
on M with moment ψ′ so that [ω′] lies in the component of H ⊂ H2(M ;R)
containing [ω]. Then (Λ′

p)
−, the product of the positive weights of the isotropy

representation of T on (TpM,ω′), is Λ−
p for all p ∈MT .

Proof. Let ϕ′ = (ψ′)ξ. It is sufficient to prove the claim for all ω′ such that
[ω′] lies in some neighborhood of [ω]. Therefore, we may assume that

ϕ(r) < ϕ(s) ⇒ ϕ′(r) < ϕ′(s), for all r and s ∈MT .

Fix p ∈ MT . By applying Lemma 1.2 to ϕ, there exists a class γp ∈
H

2λ(p)
T (M ;Z) so that γp(p) = Λ−

p and γp(q) = 0 for every q ∈ MT
� {p}

such that ϕ(q) ≤ ϕ(p). By the assumption above, this implies that γp(q) = 0
for every q ∈ MT

� {p} such that ϕ′(q) < ϕ′(p). By applying Corollary 1.3
to ϕ′, this implies that Λ−

p = γp(p) is a multiple of (Λ′
p)

−. Since a nearly
identical argument shows that (Λ′

p)
− is a multiple of Λ−

p , the claim follows
from the fact that these are both positive. �

Lemma 4.6. Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-fixed
set, and let ϕ = ψξ be a generic component of the moment map. Fix a class
w ∈ H2

T (M ;R) that restricts to a class in the closure of the component of
H ⊂ H2(M ;R) containing [ω]. Given a canonical class αp ∈ H

2λ(p)
T (M ;A)

at p ∈MT (with respect to ϕ),

αp(q) = 0 for all p and q ∈MT such that w(q) �= w(p) and wξ(q) ≤ wξ(p).

Proof. By perturbing ξ slightly, if necessary, we may assume that w(p) =
w(q) exactly if wξ(p) = wξ(q) for all p and q in MT . Hence, there exists
ε > 0 so that wξ(q) < wξ(p)− ε for all p and q ∈MT such that w(q) �= w(p)
and wξ(q) ≤ wξ(p). By assumption, there exists a symplectic form ω′ with
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moment map ψ′ so that

(3)
∣∣(ψ′)ξ(p) − wξ(p)

∣∣ < 1
2
ε for all p ∈MT ,

and [ω′] lies in the closure of the component of H ⊂ H2(M ;R) containing
[ω]. By Lemma 4.5, the latter fact implies that the product of the positive
weights for the isotropy action on (TpM,ω′) is Λ−

p for all p ∈ MT . Hence,
by the definition of canonical class, αp is also the canonical class at p with
respect to ϕ′. By Lemma 1.1, this implies that

αp(q) = 0 for all p and q ∈MT such that (ψ′)ξ(q) < (ψ′)ξ(p).

Finally, (3) implies that (ψ′)ξ(q) < (ψ′)ξ(p) for all q ∈MT such that wξ(q) <
wξ(p) − ε. �

Proof of Theorem 4.2. The claim follows immediately from Lemma 4.6 and
Corollary 3.2. �

Finally, we make the following observation, which we will not need in this
paper.

Lemma 4.7. Let (M,ω, ψ) be a Hamiltonian T -manifold. Let ω′ be a sym-
plectic form on M with moment map ψ′ so that [ω′] lies in the component
of H ⊂ H2(M ;R) containing [ω]. Then c1(M) = c′1(M), where c1(M) and
c′1(M) ∈ H2

T (M ;Z) are the first equivariant Chern class associated to ω and
ω′, respectively.

Proof. Let ϕ = ψξ be a generic component of the moment map. Since the
weights in the representations (TqM,ω) and (TqM,ω′) agree up to sign,
Lemma 4.5 implies immediately that c1(M)(q) = c′1(M)(q) for all q ∈ MT

such that λ(q) ≤ 1. By Lemma 1.4, this implies that c1(M)−c′1(M) = 0. �

5. Fiber bundles

In this section, we show how to use Theorem 0.3 (and Corollary 3.2) to get
effective formulas for the restrictions αp(q) in the case that our Hamiltonian
T -manifold is a fiber bundle over a Hamiltonian T -manifold (and certain
technical restrictions hold). In certain very nice cases, such as when M is a
“tower of complex projective spaces” (see Definition 5.4) and the restrictions
of the canonical classes are positive, the contribution from each path will be
a positive integer multiple of the product of positive weights. More precisely,
let (M,ω, ψ) and

(
M̃, ω̃, ψ̃

)
be Hamiltonian T -manifolds. We will consider

the following maps.
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Definition 5.1 A map π : M → M̃ is a strong symplectic fibration2 if

(1) the map π is an equivariant fiber bundle with symplectic fibers, that
is, the restriction of ω to the fiber M̂p = π−1(π(p)) is symplectic for all
p ∈M ; and

(2) as symplectic representations (TpM,ω) � (TpM̂p, ω|M̂p
) ⊕ (Tπ(p)M̃, ω̃)

for all p ∈MT .

Example 5.2 There are several situations where an equivariant fiber bundle
π : M → M̃ is automatically a strong symplectic fibration.

(i) Let J and J̃ be compatible almost complex structures on M and M̃ ,
respectively. If π : M → M̃ intertwines J and J̃ , i.e. dπ ◦ J = J̃ ◦ dπ,
then π is a strong symplectic fibration. The fibers are symplectic
because TpM̂p is J invariant for all p ∈ M . For all p ∈ MT , the
symplectic perpendicular Hp = (TpM̂p)ω is a complex subspace and
TpM = TpM̂p ⊕ Hp as complex representations. Finally, π induces
an isomorphism of (Hp, ω|Hp) and (Tπ(p)M̃, ω̃) as symplectic repre-
sentations.

(ii) If π has symplectic fibers and ωμ = μω + (1− μ)π∗(ω̃) is symplectic
for all μ ∈ (0, 1], then π is a strong symplectic fibration. Since (0, 1] is
connected, (TpM,ωμ) � (TpM,ω) as symplectic representations for
all μ ∈ (0, 1] and all p ∈MT . But by Lemma 5.14, for any sufficiently
small μ > 0, (TpM,ωμ) � (TpM̂p, ω|M̂p

)⊕(Tπ(p)M̃, ω̃) for all p ∈MT .

Remark 5.3. Let π : M → M̃ be any equivariant fiber bundle with sym-
plectic fibers. Then (TpM,ω) � (TpM̂p, ω|M̂p

) ⊕ (Hp, ω|Hp) for all p ∈ MT ,

where Hp ⊂ TpM is the symplectic perpendicular to TpM̂p. Moreover,
dπ : Hp → Tπ(p)M̃ is an equivariant isomorphism, and so the weights in
the symplectic representations (Hp, ω|Hp) and (Tπ(p)M̃, ω̃) necessarily agree
up to sign. The map π is a strong symplectic fibration if they agree exactly.

Definition 5.4 Let {(Mj , ωj , ψj)}kj=0 be Hamiltonian T -manifolds with
discrete-fixed sets and let {ρj : Mj+1 → Mj}k−1

j=0 be strong symplectic fibra-
tions. Assume that M0 is a point. Then, given a subring A ⊆ R, Mk is a
tower of complex projective spaces over A if the fiber Fj of ρj satisfies
H∗(Fj ;A) � H∗(

CP
1
2

dim(Fj);A
)

as rings for all j.

2Every map satisfying (1) is a symplectic fibration; see [MS, Lemma 6.2].



�

�

�

�

�

�

�

�

NEW TECHNIQUES FOR OBTAINING SCHUBERT-TYPE FORMULAS 195

Notation: Given a strong symplectic fibration π : M → M̃ and a generic
component of the moment map ϕ = ψξ : M → R, let Λ̂−

p denote the equi-
variant Euler class of the negative normal bundle of the restriction ϕ|

M̂p
at

p ∈ M̂p, and let 2λ̂(p) denote the index of p in M̂p, for all p ∈MT . (Since the
restriction of ω to M̂p is symplectic, the restriction of ψ to M̂p is a moment
map.) Similarly, let Λ̃−

q denote the equivariant Euler class of the negative
normal bundle of ϕ̃ = ψ̃ξ at q and let 2λ̃(q) denote the index of q ∈ M̃ , for
all q ∈ M̃T .

Finally, given a subring A ⊆ R, let A+ = {t ∈ A | t > 0} and let A× ⊂ A
denote the set of units.

We can now state our main theorem in this section.

Theorem 5.5. Let {(Mj , ωj , ψj)}kj=0 be Hamiltonian T -manifolds with
discrete-fixed sets and let {ρj : Mj+1 → Mj}k−1

j=0 be strong symplectic fibra-

tions. Let ϕk = ψξk be a generic component of the moment map. Fix a sub-
ring A ⊆ R. Assume that M0 is a point and that canonical classes αp ∈
H

2λ(p)
T (Mk;A) exist for all p ∈MT

k . Let3 πj = ρj◦ρj+1◦· · ·◦ρk−1 : Mk →Mj

and let ψj = π∗j (ψj) : Mk → t∗ for all j. Finally, define

h(r, r′) = min{j ∈ {1, . . . , k} | πj(r) �= πj(r′)} for all distinct r, r′ in MT .

1. Given p and q in MT
k , let Σ(p, q) denote the set of paths from p to q in

the associated canonical graph (V,E); then

αp(q) =
∑

γ∈C(p,q)

Ξ(γ), where

Ξ(γ) = Λ−
q

|γ|∏

i=1

ψh(γi,γi+1)(γi+1) − ψh(γi,γi+1)(γi)

ψh(γi,γi+1)(q) − ψh(γi,γi+1)(γi)
αγi(γi+1)

Λ−
γi+1

∀γ ∈ C(p, q), and

C(p, q) =
{
γ = (γ1, . . . , γ|γ|+1) ∈ Σ(p, q)

∣∣h(γ1, γ2) ≤ · · · ≤ h(γ|γ|, γ|γ|+1)
}
.

2. Assume that Mk is a tower of complex projective spaces over A. Then for
each path γ ∈ C(p, q),
• Ξ(γ) can be written as the product of positive weights in �∗ and a con-

stant C in A; moreover, C > 0 if αr(r′) is positive for all (r, r′) ∈ E.
• If (M,ω, ψ) is a GKM space, then Ξ(γ) can be written as the product

of distinct positive weights in Πq(M) and a constant C in A. Finally, if

3In this paper, our convention is that an empty composition or product is the identity.
Hence, πk = idMk .
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Θ(r, r′) > 0 for all (r, r′) ∈ E, then C > 0; similarly, if Θ(r, r′) ∈ A×
for all (r, r′) ∈ E, then C ∈ A×.

Remark 5.6. In fact, if Mk is a GKM space, then our proof demonstrates
that claim (1) holds whenever ρj : Mj+1 → Mj is a weight preserving map
for all j; (see Definition 5.10).

Remark 5.7. If Mk has a discrete-fixed set (or is a GKM space), then Mj

has a discrete-fixed set (or is a GKM space) for all j. To see this, consider
any q ∈MT

j . Since the fiber ρ−1
j (q) is a Hamiltonian T -manifold, there exists

r ∈ MT
j+1 such that ρj(r) = q. Since the differential dρj is surjective, the

set of weights in the representation TqMj is a subset of the set of weights
in TrMj+1.

Theorem 5.5 has the following useful corollary.

Corollary 5.8. Let (M,ω, ψ) and
(
M̃, ω̃, ψ̃

)
be Hamiltonian T -manifolds

with discrete-fixed sets, and let π : M → M̃ be a strong symplectic fibra-
tion. Let ϕ = ψξ be a generic component of the moment map. Assume
that canonical classes αp ∈ H

2λ(p)
T (M ;A) exist for all p ∈ MT . Fix p and

q in MT .

1. There exist canonical classes α̂s ∈ H
2λ̂(s)
T (M̂q;A) on the fiber M̂q =

π−1(π(q)) for all s ∈ M̂T
q .

2. Given s ∈ M̂T
q , let Σ(p, s) denote the set of paths γ = (γ1, . . . , γk+1) from

p to s in the associated canonical graph (V,E) such that π(γi) �= π(γi+1)
for all i. Then

αp(q) =
∑

s∈M̂T
q

( ∑

γ∈Σ(p,s)

P (γ)
)
α̂s(q),

where for all s ∈ M̂T
q and γ ∈ Σ(p, s),

P (γ) = Λ̃−
π(s)

|γ|∏

i=1

ψ̃(π(γi+1)) − ψ̃(π(γi))

ψ̃(π(s)) − ψ̃(π(γi))

αγi(γi+1)
Λ−
γi+1

.

3. Assume that H∗(M̃ ;A
) � H∗(

CP
1
2

dim(M̃);A
)

as rings. Then for all s ∈
M̂T
q and each path γ ∈ Σ(p, s)

• P (γ) can be written as the product of positive weights in �∗ and a con-
stant C in A; moreover, C > 0 if αr(r′) is positive for all (r, r′) ∈ E.

• If (M,ω, ψ) is a GKM space, then P (γ) can be written as the product
of distinct positive weights in Πq(M) and a constant C in A. Finally, if
Θ(r, r′) > 0 for all (r, r′) ∈ E, then C > 0; similarly, if Θ(r, r′) ∈ A×
for all (r, r′) ∈ E, then C ∈ A×.
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In Lemma 5.24, we give a different explicit description of P (γ) in the case
that (M,ω, ψ) is a GKM space and H∗(M̃ ;A) � H∗(CP

1
2

dim M̃ ;A).

Proof of Claim 1 of Theorem 5.5. We are now ready to begin the proof
of the first part of our main theorem. We will begin with the special case
of GKM spaces, where the proof is easier and the main ideas are more
transparent. However, the proof in the general case on page 198 is self-
contained; the reader may skip directly to that case.

The case of GKM spaces. Let (M,ω, ψ) and
(
M̃, ω̃, ψ̃

)
be GKM spaces,

and let (V,EGKM) and (Ṽ , ẼGKM) be the associated GKM graphs. If π : M →
M̃ is an equivariant map, the following statements hold:

• Given a vertex p ∈ V , π(p) ∈ Ṽ .
• Given an edge e = (p, q) ∈ EGKM, either π(p) = π(q) ∈ Ṽ or π(e) =

(π(p), π(q)) ∈ ẼGKM and η(π(e)) is a non-zero multiple of η(e).
To see this, letK ⊂ T be the maximal subgroup so that p and q are contained
in the same connected component N ⊂ MK . Since π is equivariant, either
π(N) is a fixed point in M̃ , or π(N) is the connected component of M̃K′

for
some subgroup K ′

� T which contains K.

Definition 5.9 We will say that an edge (p, q) ∈ (V,EGKM) is horizontal
(with respect to π) if π(p) �= π(q); moreover, we will say that a path γ in
(V,EGKM) is horizontal if all its edges are horizontal.

If π : M → M̃ is an equivariant fiber bundle and e ∈ EGKM is a horizon-
tal edge, then η(e) = ±η(π(e)). However, this need not hold for arbitrary
equivariant maps.

Definition 5.10 We will say that a map π : M → M̃ is weight preserving
if it is equivariant and η(e) = η(π(e)) for all horizontal edges (p, q) ∈ EGKM.

Note that the composition of two weight preserving maps is itself weight
preserving. In contrast, the composition of two strong symplectic fibrations
may not be a strong symplectic fibration; indeed, it may not have symplectic
fibers. However, the following assertion is clear; cf. Remark 5.3.

Lemma 5.11. Let (M,ω, ψ) and
(
M̃, ω̃, ψ̃

)
be GKM spaces. If π : M → M̃

is a strong symplectic fibration then π is weight preserving.

To prove Claim 1., we need to check that the pull-back of a symplectic
form and moment map by a weight preserving map satisfies criterion (1) of
Corollary 3.2. We will do this in two steps.

Lemma 5.12. Let (M,ω, ψ) and (M̃, ω̃, ψ̃) be GKM spaces, and let π : M →
M̃ be a weight preserving map. Let ϕ = ψξ be a generic component of the
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moment map. Given a horizontal edge (p, q) in the GKM graph associated
to M ,

ψξ(q) − ψξ(p) > 0, if and only if ψ̃ξ(π(q)) − ψ̃ξ(π(p)) > 0 .

Proof. Since (p, q) is a horizontal edge and π is a weight preserving map,
η(π(p), π(q)) = η(p, q). Therefore, ψξ(q)−ψξ(p) and ψ̃ξ(π(q))− ψ̃ξ(π(p)) are
both positive multiples of η(p, q). �

Lemma 5.13. Let (M,ω, ψ) and
(
M̃, ω̃, ψ̃

)
be GKM spaces, and let π : M →

M̃ be a weight preserving map. Let ϕ = ψξ be a generic component of the
moment map. Given a canonical class αp ∈ H

2λ(p)
T (M ;A) at p ∈MT ,

αp(q) = 0 for all q ∈MT such that π(q) �= π(p) and ψ̃ξ(π(q)) ≤ ψ̃ξ(π(p)).

Proof. Assume that αp(q) �= 0 for some q ∈MT . By Lemma 2.3, there exists
an ascending path γ from p to q in (V,EGKM). By Lemma 5.12 and the
definition of ascending,

ψ̃ξ(π(γi)) < ψ̃ξ(π(γi+1)) or π(γi) = π(γi+1) for each i.

�

We are now ready to prove Claim 1. Let wj = π∗j (ωj+ψj) ∈ H2
T (Mk;R) for

each j ∈ {1, . . . , k}. Since πk = idMk
, it is obvious that wk(r) �= wk(r′) for all

(r, r′) ∈ EGKM. By Lemma 5.11, each ρi is a weight preserving map, and so
πj is a weight preserving map for all j. Therefore, in the case of GKM spaces,
Claim 1. of Theorem 5.5 is an immediate consequence of Corollary 3.2 and
Lemma 5.13.

The general case. The proof in the general case is nearly identical, except
that it takes more work to prove Lemma 5.16, the analog of Lemma 5.13.

Lemma 5.14. Let (M,ω, ψ) and
(
M̃, ω̃, ψ̃

)
be Hamiltonian T -manifolds,

and let π : M → M̃ be a equivariant fiber bundle with symplectic fibers. For
all sufficiently small t > 0,
(1) the two-form ωt = π∗(ω̃) + tω is symplectic; moreover,
(2) as symplectic representations (TpM,ωt) � (TpM̂p, ω|M̂p

) ⊕ (Tπ(p)M̃, ω̃)

for all p ∈MT , where M̂p denotes the fiber π−1(π(p)).

Proof. Let V ⊂ TM be the kernel of the map dπ : TM → TM̃ . By assump-
tion, π is a submersion; hence, V ⊂ TM is a subbundle. Since we have
assumed that π has symplectic fibers, the restriction ω|V is symplectic. Since
π∗(ω̃)|V = 0, this implies that the restriction ωt|V = tω|V is symplectic and
that (Vp, ωt) � (Vp, ω) for all p ∈MT and t > 0.
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Let H = V ω ⊂ TM be the symplectic perpendicular to V with respect
to ω. Since π∗(ω̃)|V = 0, H is also symplectically perpendicular to V with
respect to ωt for all t ≥ 0. Moreover, since ω|V is symplectic, H ⊂ TM

is a subbundle and TM = V ⊕ H. Thus, the map dπ : H → TM̃ is
an isomorphism. Since ω̃ is symplectic, this implies that the restriction
π∗(ω̃)|H is symplectic and that (Hp, π

∗(ω̃)|Hp) � (Tπ(p)M̃, ω̃) for all p ∈MT .
Since being symplectic is an open condition and M is compact, analogous
statements hold for ωt for all sufficiently small t > 0. The claim follows
immediately. �

Lemma 5.15. Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-
fixed set. Let ϕ = ψξ be a generic component of the moment map, and let
ϕ : M → R be an invariant Morse–Bott function. Assume that for all ε > 0
there exists a symplectic form ω′ ∈ Ω2(M) with moment map ψ′ such that:
(a) |(ψ′)ξ(x) − ϕ(x)| < ε for all x ∈M ; and
(b) the product of the positive weights for the isotropy action of T on

(TpM,ω′) is Λ−
p for all p ∈MT .

If αp ∈ H
2λ(p)
T (M ;A) is the canonical class (with respect to ϕ) at p ∈ MT ,

and M̂p is the critical component of ϕ that contains p, then

αp(q) = 0 for all q ∈MT so that q �∈ M̂p and ϕ(q) ≤ ϕ(p).

Moreover, the restriction of αp to ϕ−1(−∞, ϕ(p)− δ) vanishes for all δ > 0.

Proof. We may assume without loss of generality that ϕ(p) = 0. By assump-
tion, for any ε > 0 there exists a symplectic form ω′ with moment map ψ′
such that (a) and (b) hold. Let ϕ′ be (ψ′)ξ. By (b) it follows that αp is also
the canonical class at p with respect to ϕ′; so Lemma 1.1 implies that

αp(q) = 0 for all q ∈MT such that ϕ′(q) < ϕ′(p).

By injectivity, this implies that the restriction of αp to (ϕ′)−1(−∞, ϕ′(p))
vanishes. Finally, (a) implies that

(ϕ)−1(−∞,−2ε) ⊂ (ϕ′)−1(−∞, ϕ′(p)),

and so the restriction of αp to ϕ−1(−∞,−2ε) vanishes.
Since ϕ is a Morse–Bott function there exists ε > 0 so that 0 is the only

critical value of ϕ in [−2ε, 2ε]. Since the restriction of αp to ϕ−1(−∞,−2ε)
vanishes, the restriction of αp to M̂p is a multiple of the equivariant Euler
class of the negative normal bundle of ϕ at M̂p, and so there exists α′

p ∈
H

2λ(p)
T

(
(ϕ)−1(−∞, 2ε);A

)
so that α′

p|M̂p
= αp|M̂p

, but α′
p|C = 0 for every
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other critical set C of ϕ so that ϕ(C) ≤ 2ε. Moreover, since ϕ is invariant
and the fixed set is discrete, every fixed point is critical. Hence,

α′
p(q) = αp(q) for all q ∈ M̂p ∩MT , and(4)

α′
p(q) = 0 for all q ∈MT such that q �∈ M̂p and ϕ(q) ≤ 2ε.(5)

By (a), (ϕ′)−1(−∞, ε) ⊂ (ϕ)−1(−∞, 2ε). Hence, we can restrict α′
p to

(ϕ′)−1(−∞, ε); moreover, this restriction satisfies (4) and

(6) α′
p(q) = 0 for all q ∈MT such that q �∈ M̂p and ϕ′(q) < ε.

By surjectivity, we can extend α′
p to a class (which we still call α′

p) on M
with the same properties. Moreover, by the definition of canonical class,

αp(q) = 0 for all q ∈MT
� {p} such that λ(q) ≤ λ(p).

Therefore, by (4) and (6),

αp(q) = α′
p(q) for all q ∈MT such that ϕ′(q) < ε and λ(q) ≤ λ(p).

Assume that there exists r ∈ MT such that αp(r) �= α′
p(r) and ϕ′(r) < ε

but αp(s) = α′
p(s) for all s ∈ MT such that ϕ′(s) < ϕ′(r). By the equation

above, this implies that λ(r) > λ(p). Since β = αp − α′
p has degree 2λ(p),

this contradicts Lemma 1.3. Therefore,

αp(q) = α′
p(q) for all q ∈MT such that ϕ′(q) < ε.

Finally, since (ϕ)−1((−∞, 0]) ⊂ (ϕ′)−1(−∞, ε) by (a), this implies that

αp(q) = α′
p(q) for all q ∈MT such that ϕ(q) ≤ 0.

Therefore, the claim follows immediately from (5). �

Lemma 5.16. Let {(Mj , ωj , ψj)}kj=1 be Hamiltonian T -manifolds with
discrete-fixed sets and let {ρj : Mj+1 → Mj}k−1

j=1 be strong symplectic fibra-

tions. Let ϕk = ψξk be a generic component of the moment map. Let
π = ρ1◦ρ2◦· · ·◦ρk−1 : Mk →M1. Given a canonical class αp ∈ H

2λ(p)
T (Mk;A)

at p ∈MT
k ,

αp(q) = 0 for all q ∈MT
k so that π(q) �= π(p) and ψξ1(π(q)) ≤ ψξ1(π(p)).

Proof. Given q ∈ MT
k , let qj = (ρj ◦ ρj+1 ◦ · · · ◦ ρk−1)(q) ∈ Mj for all j,

let Xj = ρ−1
j−1(qj−1) ⊂ Mj for j > 1, and let X1 = M1. By the definition of
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strong symplectic fibration and induction on k, as symplectic representations

(TqMk, ωk) � (Tq1X1, ω1|X1) ⊕ · · · ⊕ (TqkXk, ωk|Xk
).

Therefore, by Lemma 5.14 and induction on k, for any ε > 0 there exists a
symplectic form ω′

k ∈ Ω2(Mk) with moment map ψ′
k such that:

• ∣∣(ψ′
k)
ξ(x) − π∗(ψ1)ξ(x)

∣∣ < ε for all x ∈Mk; and
• as symplectic representations (TqMk, ωk) � (TqMk, ω

′
k) for all

q ∈MT
k .

Since M1 has a discrete-fixed set, ψξ1 : M1 → R is a Morse function on M1

with critical set MT
1 . Since π is an equivariant fiber bundle, this implies that

π∗(ψ1)ξ is an invariant Morse–Bott function on M , and that the critical com-
ponent of π∗(ψ1)ξ that contains p ∈ MT

k is the fiber π−1(π(p)). Therefore,
the claim follows from Lemma 5.15. �

We are now ready to prove Claim 1. Let wj = [π∗j (ωj +ψj)] ∈ H2
T (Mk;R)

for each j ∈ {1, . . . , k}. Since πk = idMk
, Lemma 1.1 implies that wk(r) �=

wk(r′) for all (r, r′) ∈ E. Therefore, Claim 1. of Theorem 5.5 is an immediate
consequence of Corollary 3.2 and Lemma 5.16.

Proof of Claim 2. of Theorem 5.5. Let a maximal subtorus T ⊂ SU(n+
1) act on (CPn, ω), and let ϕ be a generic component of the moment map
ψ : CPn → t∗. If [ω] generates H2(CPn;Z) then

Λ−
p =

∏

ϕ(y)<ϕ(p)

ψ(p) − ψ(y),

where the sum is over all y ∈ (CPn)T such that ϕ(y) < ϕ(p). The next
lemma, which is the key ingredient in the proof of Claim 2. of Theorem 5.5
and Claim 3. of Corollary 5.8, generalizes this fact to other manifolds with
isomorphic cohomology rings.

Definition 5.17 Fix a GKM space (M,ω, ψ) with GKM graph (V,EGKM).
The magnitude of an edge (r, s) ∈ EGKM is

m(r, s) =
ψ(s) − ψ(r)
η(r, s)

.

Lemma 5.18. Let (M,ω, ψ) be a Hamiltonian T -manifold with discrete-fixed
set, and let ϕ = ψξ be a generic component of the moment map. Assume that
[ω] generates H2(M ;Z) and that H∗(M ;A) � H∗(

CP
1
2

dimM ;A
)

as rings.
Given p ∈MT , fix a subset S ⊂ {y ∈MT | ϕ(y) < ϕ(p)}. Then

• Λ−
p

∏
y∈S

1
ψ(p)−ψ(y) can be written as the product of positive weights in

�∗ and a constant in A+.
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• If (M,ω, ψ) is a GKM space with GKM graph (V,EGKM), then m(r, s)
is a unit in A+ for all (r, s) ∈ EGKM such that ϕ(r) < ϕ(s). In
particular Λ−

p

∏
y∈S

1
ψ(p)−ψ(y) can be written as the product of distinct

positive weights in Πp(M) and a unit in A+.

Proof. Since the fixed set is discrete and ϕ is a perfect Morse function,
there is exactly one fixed point of index 2i for all i ∈ {

0, . . . , 1
2 dim(M)

}
.

Therefore, there are exactly λ(p) fixed points y with λ(y) < λ(p). Moreover,
by [LT, Lemma 2.7], the fact that [ω] is integral implies that [ω+ψ−ψ(y)] ∈
H2
T (M ;Z) for all y ∈MT . Therefore, we may define a class

β =
∏

λ(y)<λ(p)

[ω + ψ − ψ(y)] ∈ H
2λ(p)
T (M ;Z),

where the product is over all y ∈MT such that λ(y) < λ(p).
Since H2i

(
M ;R

)
= H2i

(
CP

1
2

dim(M);R
)

for all i, [T, Proposition 3.4] (and
the fact that rational ξ ∈ t are dense) implies that

(7) ϕ(y) < ϕ(p) exactly if λ(y) < λ(p) for all y ∈MT .

Since β(y) = 0 for all y ∈ MT such that λ(y) < λ(p), Lemma 1.2, Corol-
lary 1.3, and (7) together imply that we can write

β =
∑

λ(y)≥λ(p)

xyγy,

where the sum is over y ∈ MT such that λ(y) ≥ λ(p), γy ∈ H
2λ(y)
T (M ;Z),

xy ∈ H2λ(p)−2λ(y)(BT ;Z) for all y ∈ MT , and {γy}y∈MT is a basis for
H∗
T (M ;Z) as a H∗(BT ;Z) module. Since p is the only fixed point with

index 2λ(p), by degree considerations this implies that

(8) β = xpγp, where xp ∈ Z.
Since [ω]λ(p) is the image of β under the natural restriction map from

H∗
T (M ;Z) to H∗(M ;Z), this implies that

[ω]λ(p) = xpγ̃p for all p ∈MT ,

where γ̃p, the restriction of γp, generates H2λ(p)(M ;Z). Moreover, since
we have assumed that [ω] generates H2(M ;Z) and that H∗(M ;A) �
H∗(

CP
1
2

dimM ;A
)

as rings, [ω]λ(p) generates H2λ(p)(M ;A). Hence, the equa-
tion above implies that xp must be invertible in A. Therefore, evaluating
both sides of (8) at p,

(9) Λ−
p

∏

ϕ(y)<ϕ(p)

1
ψ(p) − ψ(y)

=
1
xp

∈ A.
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Now observe that ψ(p) − ψ(y) is the product of a positive integer and a
positive weight in �∗ for all y ∈MT such that ϕ(y) < ϕ(p). This proves the
first claim.

If M is a GKM space, then since the GKM graph is 1
2 dim(M)-valent and

has 1
2 dim(M) + 1 vertices, it is a complete graph. Therefore ψ(p) − ψ(y) =

m(y, p)η(y, p) for all y ∈MT ; moreover m(y, p) ∈ Z+ and η(y, p) is a positive
weight in Πp(M) for all y ∈MT such that ϕ(y) < ϕ(p). By (9) we have that

(10) xp =
∏

ϕ(y)<ϕ(p)

m(y, p)

is a unit in A+, which implies that m(y, p) is a unit in A+ for all y, p ∈MT

such that ϕ(y) < ϕ(p). Finally, observe that the weights in Πp(M) are all
distinct since M is a GKM space, and the second claim follows immediately.
(Notice that in the GKM case (7) directly follows from the fact that the
GKM graph is complete.) �

Remark 5.19. Fix a GKM space (M,ω, ψ) with GKM graph (V,EGKM);
assume that H∗(M ;R) � H∗(

CP
1
2

dimM ;R
)

and that [ω] generates H2

(M ;Z). Then by (10), the magnitudes of the edges of (V,EGKM) determine
the ring structure of H∗(M ;Z).

We also need a technical lemma.

Lemma 5.20. Let (M,ω, ψ) and
(
M̃, ω̃, ψ̃

)
be Hamiltonian T -manifolds,

and let π : M → M̃ be a strong symplectic fibration. The natural restriction
map H∗

T (M ;Z) → H∗(M̂p;Z
)

is surjective for all p ∈ M , where M̂p is the
fiber π−1(π(p)).

Proof. Let ϕ = ψξ be a generic component of the moment map. Since M̃ ×T

ET is connected and π induces a fiber bundle M ×T ET → M̃ ×T ET with
fiber M̂p, we may assume that π(p) ∈ M̃T is the minimal fixed point. Hence,
Λ̃−
π(p) = 1.

Consider any point q ∈ M̂T
p . By Lemma 1.2, there exists a class γq ∈

H
2λ(q)
T (M ;Z) such that γq(q) = Λ−

q and γq(r) = 0 for all r ∈ MT
� {q}

such that ϕ(r) ≤ ϕ(q). By definition of strong symplectic fibration and
the paragraph above, Λ−

q = Λ̃−
π(q)Λ̂

−
q = Λ̃π(p)Λ̂−

q = Λ̂−
q . Therefore, if β̂q

denotes the restriction of γq to M̂p, then β̂q(q) = Λ̂−
q , and β̂q(r) = 0 for

all r ∈ M̂T
q � {q} such that ϕ(r) ≤ ϕ(q). By Lemma 1.2, this implies that{

β̂q
}
q∈M̂T

p
is a basis for H∗

T (M̂p;Z) as a H∗(BT ;Z) module. Hence, the map

H∗
T (M ;Z) → H∗

T (M̂p;Z) is surjective. Finally, since the fixed set is discrete,
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H∗(MT ;Z) is torsion-free, and so the natural restriction map H∗
T (M̂p;Z) →

H∗(M̂p;Z) is surjective; see, for example, [T, Section 2]. �

Proof of Claim 2. of Theorem 5.5. Let qj = πj(q) for all j, and let Xj =
ρ−1
j−1(qj−1) ⊂Mj be the fiber over qj−1. Note that the value of Ξ(γ) does not

change if we multiply ωj + ψj by a non-zero constant or add any constant
to it. Moreover, by Lemma 5.20 the restriction map from H2

T (Mj ;Z) to
H2(Xj ;Z) is surjective. Therefore, since H2(Xj ;R) = R, we may assume
that [ωj + ψj ] lies in4 H2

T (Mj ;Z) and that [ωj |Xj ] generates H2(Xj ;Z).
Let Λ̂−

qj denote the equivariant Euler class of the negative normal bundle

of ψξj |Xj at qj ∈ Xj , and let Λ−
qj denote the equivariant Euler class of the

negative normal bundle of ψξj at qj ∈ Mj . By the definition of strong sym-
plectic fibration, Λ−

qj = Λ̂−
qjΛ

−
qj−1

for all j. Since M0 is a point, this implies
by induction that

Λ−
q =

k∏

j=1

Λ̂−
qj .

Therefore, to prove the claim it is enough to prove that given h ∈
{1, . . . , k} such that the fiber Xh satisfies H∗(Xh;A) � H∗(

CP
1
2

dimXh ;A
)

as rings, r and s in MT
k such that πh(s) = πh(q) = qh, and a path γ from r

to s such that h(γi, γi+1) = h for all i ∈ {1, . . . , |γ|}, if we define

Ξh(γ) = Λ̂−
qh

|γ|∏

i=1

ψh(γi+1) − ψh(γi)
ψh(q) − ψh(γi)

αγi(γi+1)
Λ−
γi+1

then
(a1) Ξh(γ) can be written as the product of positive weights in �∗ and a

constant C in A; moreover, C > 0 if αr(r′) is positive for all (r, r′) ∈ E.
(b1) If (Mk, ωk, ψk) is a GKM space, then Ξh(γ) can be written as the prod-

uct of distinct positive weights in Πq(M) and a constant C in A. Finally,
if Θ(r, r′) > 0 for all (r, r′) ∈ E, then C > 0; similarly, if Θ(r, r′) ∈ A×
for all (r, r′) ∈ E, then C ∈ A×.

To prove this, first note that since h(γi, γi+1) = h for all i and πh(s) =
πh(q), πh(γi) ∈ Xh and πh(γi) �= πh(γi+1) for all i. So by Lemma 5.16 (or
Lemmas 5.11 and 5.13 if Mk is GKM)

(11) ψ
ξ
h(γi) < ψ

ξ
h(γi+1) for all 1 ≤ i ≤ |γ|.

4Since the fixed set is discrete H2
T (Mj ;Z) and H2(Xj ;Z) are torsion-free. Therefore,

we can identify these groups with their images in H2
T (Mj ;R) and H2(Xj ;R), respectively.
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Hence, πh(γi) �= πh(γj) for all i �= j and ψ
ξ
h(γi) < ψ

ξ
h(s) for all 1 ≤

i ≤ |γ|. Therefore, since [ωj |Xj ] generates H2(Xj ;Z) and H∗(Xh;A) �
H∗(

CP
1
2

dimXh ;A
)
, Lemma 5.18 implies that

(a2) Λ̂−
qh

∏|γ|
i=1

1
ψh(q)−ψh(γi)

can be written as the product of positive weights
in �∗ and a constant in A+.

(b2) If (Mk, ωk, ψk) is a GKM space then Λ̂−
qh

∏|γ|
i=1

1
ψh(q)−ψh(γi)

can be writ-
ten as the product of distinct positive weights in Πq(Mk) and a unit in
A+.

Here, in the case thatMk is a GKM space, we use the fact that by Remark 5.7
Mj is also a GKM space for all j; moreover by Lemma 5.11 ρj is a weight
preserving map for all j, hence πh is weight preserving as well and Πqh(Xh) ⊂
Πqh(Mh) is a subset of Πq(Mk).

Since [ωh + ψh] is an integral class, Lemma 3.4 and (11) together imply
that for all 1 ≤ i ≤ |γ|,

(
ψh(γi+1) − ψh(γi)

) αγi(γi+1)
Λ−
γi+1

(12)

∈
{
A, and
A+ if αr(r′) is positive ∀(r, r′) ∈ E.

If Mk is a GKM space then by Theorem 2.4, αr(r′)
Λ−

r′
= Θ(r,r′)

η(r,r′) for all (r, r′) ∈
E. Moreover Lemma 1.1 implies that ψξk(r) < ψξk(r

′) and so η(r, r′) is positive
because it is a positive multiple of ψk(r′)−ψk(r). Therefore, if Mk is GKM,
then

(13) αr(r′) is positive exactly if Θ(r, r′) > 0 for all (r, r′) ∈ E.

Moreover, ψh(γi+1)−ψh(γi)
η(γi,γi+1) = m(πh(γi), πh(γi+1)) because πh is a weight pre-

serving map. Hence by Lemma 5.18, we have that

(14)
(
ψh(γi+1) − ψh(γi)

) αγi(γi+1)
Λ−
γi+1

∈ A×
+ ⇔ Θ(γi, γi+1) ∈ A×

+,

where A×
+ denotes the set of positive units in A. The claim now follows from

(a2), (b2), (12), (13) and (14). �

Proof of Corollary 5.8. The proof uses the following lemma.

Lemma 5.21. Let (M,ω, ψ) and
(
M̃, ω̃, ψ̃

)
be Hamiltonian T -manifolds

with discrete-fixed sets, and let π : M → M̃ be a strong symplectic fibration.
Let ϕ = ψξ be a generic component of the moment map. Given q ∈ MT ,
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consider the fiber M̂q = π−1(π(q)). If αs ∈ H
2λ(s)
T (M ;A) is a canonical class

at s ∈ M̂T
q , then there exists α̂s ∈ H∗

T (M̂q;A) such that

Λ̃−
π(q)α̂s = αs|M̂q

.

Proof. Define ϕ = π∗(ψ̃)ξ : M → R. Since M̃ has a discrete-fixed set,
ψ̃ξ : M̃ → R is a Morse function with critical set M̃T . Since π is a fiber
bundle, this implies that ϕ is an invariant Morse–Bott function on M and
that the critical component of ϕ that contains q is the fiber M̂q. Moreover,
the index of ϕ at M̂q is 2λ̃(π(q)), and the equivariant Euler class of the
negative normal bundle of ϕ at M̂q is Λ̃−

π(q). By the definition of strong sym-

plectic fibration, Lemma 5.14 and Lemma 5.15 imply that for any s ∈ M̂T
q

the restriction of αs to ϕ−1
( −∞, ϕ(q) − δ

)
vanishes for all δ > 0. Thus, by

a standard Morse theory argument, there exists α̂s ∈ H
2λ(s)−2λ̃(π(q))
T (M̂q;A)

such that Λ̃−
π(q)α̂s = αs|M̂q

. �

Proof of Corollary 5.8. Since π is a strong symplectic fibration, Λ−
s =

Λ̃−
π(s)Λ̂

−
s = Λ̃−

π(q)Λ̂
−
s and λ(s) = λ̃(π(q)) + λ̂(s) for all s ∈ M̂T

q . Hence,

λ̂(r) ≤ λ̂(s) exactly if λ(r) ≤ λ(s) for all r and s in M̂T
q .

By Lemma 5.21, for all s ∈ M̂T
q there exists a class α̂s ∈ H

2λ̂(s)
T (M̂q;A)

such that Λ̃−
π(q)α̂s = αs|M̂q

. Since αs ∈ H
2λ(s)
T (M ;A) is a canonical class, the

paragraph above implies that α̂s is a canonical class at s on M̂q with respect
to the restriction ϕ|

M̂q
. This proves the first claim. Moreover, applying The-

orem 0.3 (and Remark 3.1) to M̂q, we have

(15) α̂s(q) = Λ̂−
q

∑

γ∈Σ̂(s,q)

|γ|∏

i=1

ψ(γi+1) − ψ(γi)
ψ(q) − ψ(γi)

αγi(γi+1)
Λ−
γi+1

for all s ∈ M̂T
q ,

where Σ̂(s, q) is the set of paths from s to q in the canonical graph associated
to M̂q.

Now, we can apply Theorem 5.5 to π : M → M̃ . Observe that a path
γ = (γ1, . . . , γ|γ|+1) from p to q lies in C(p, q) exactly if there exists j ∈
{1, . . . , |γ|+1} such that π(γi) �= π(γi+1) for all i < j and π(γi) = π(γi+1) for
all i ≥ j, that is, so that (γ1, . . . , γj) belongs to Σ(p, γj), and (γj , . . . , γ|γ|+1)
belongs to Σ̂(γj , q). Hence, since Λ−

q = Λ̂−
q Λ̃−

π(q), the second claim follows
immediately from (15) and Theorem 5.5.

Finally, the third claim follows from (a1) and (b1). �
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Remark 5.22. Claim 1. of Corollary 5.8 is much easier to prove for GKM
spaces. To see this, let (M,ω, ψ) and

(
M̃, ω̃, ψ̃

)
be GKM spaces, and let

π : M → M̃ be a strong symplectic fibration. Let ϕ = ψξ be a generic compo-
nent of the moment map. Assume that canonical classes αp ∈ H

2λ(p)
T (M ;A)

exist for all p ∈ MT . By Remark 4.3 in [GT], this implies that ϕ is index
increasing on M . Since π is a strong symplectic fibration, (M̂q, ω|M̂q

, ψ|
M̂q

)

is a GKM space for all q ∈ MT , and its GKM graph is just the restriction
of the GKM graph of M to M̂T

q . Moreover, λ(s) − λ(r) = λ̂(s) − λ̂(r) for
all r, s ∈ M̂T

q ; so ϕ|
M̂q

is also index increasing. Therefore, the claim follows
from Theorem 2.4.

In our final lemma, we show how to express the polynomials P (γ) appear-
ing in Corollary 5.8 in terms of the magnitudes of the edges of the GKM
graph associated to the base; see Definition 5.17.

Definition 5.23 Fix a GKM space (M̃, ω̃, ψ̃) with GKM graph (Ṽ , ẼGKM),
and let ψ̃ξ be a generic component of the moment map. Given an ascending
path γ̃ = (γ̃1, . . . , γ̃|γ̃|+1), the set of skipped vertices of γ̃ is defined to be

SV (γ̃) =
{
r ∈ Ṽ

∣∣∣ ψ̃ξ(r) < ψ̃ξ
(
γ̃|γ̃|+1

)}
�

{
γ̃1, . . . , γ̃|γ̃|+1

}
.

Lemma 5.24. Let (M,ω, ψ) and
(
M̃, ω̃, ψ̃

)
be GKM spaces with GKM

graphs (V,EGKM) and (Ṽ , ẼGKM) and let π : M → M̃ be a strong sym-
plectic fibration. Let ϕ = ψξ be a generic component of the moment
map. Assume that ϕ is index increasing. Also assume that H∗(M̃ ;A) �
H∗(

CP
1
2

dim(M̃);A
)
.

Given p and s ∈MT and a horizontal path γ = (γ1, . . . , γ|γ|+1) from p to
s in the canonical graph (V,E), define

P (γ) = Λ̃−
π(s)

|γ|∏

i=1

ψ̃(π(γi+1)) − ψ̃(π(γi))

ψ̃(π(s)) − ψ̃(π(γi))

αγi(γi+1)
Λ−
γi+1

.

Then

P (γ) =
|γ|∏

i=1

m(π(γi), π(γi+1))Θ(γi, γi+1)
m(π(γi), π(s))

∏

r∈SV (π(γ))

η(r, π(s)).

Proof. Observe that by Theorem 2.4, canonical classes αp exist for all
p ∈ MT and (V,E) ⊂ (V,EGKM). By Lemma 5.11, π is weight preserving;
hence η(γi, γi+1) = η(π(γi), π(γi+1)) for all i, and by the definition of magni-
tude ψ̃(π(γi+1))−ψ̃(π(γi)) = η(γi, γi+1)m(π(γi), π(γi+1)). SinceH∗(M̃ ;A) �
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H∗(
CP

1
2

dim(M̃);A
)
, (Ṽ , ẼGKM) is a complete graph (see the proof of Lemma

5.18), and so ψ̃(π(s))−ψ̃(π(γi)) = η(π(γi), π(s))m(π(γi), π(s)) for all i ≤ |γ|.
Moreover, by Lemma 1.1, γ is an ascending path; hence Lemma 5.12 implies

that π(γ) is ascending as well (with respect to ψ̃ξ), and so
∏|γ|
i=1

Λ̃−
π(s)

η(π(γi),π(s)) =
∏
r∈SV (π(γ)) η(r, π(s)). Finally observe that by Theorem 2.4 αγi (γi+1)

Λ−
γi+1

=
Θ(γi,γi+1)
η(γi,γi+1) for all i. �

6. Positive integral formulas for Schubert classes

We are now ready to apply our results to the important special case of coad-
joint orbits. Our main goal is to get positive integral formulas for equivariant
Schubert classes on generic coadjoint orbits of type An, Bn, Cn, and Dn.

Let G be a compact simple Lie group with Lie algebra g, and let (·, ·)
denote the natural pairing between g∗ and g. Let T ⊂ G be a maximal torus
with Lie algebra t, R ⊂ t∗ denote the set of roots, and W the Weyl group
of G. Let 〈·, ·〉 be a positive definite symmetric bilinear form on g which is
G-invariant; we use it to embed t∗ in g∗.

Given a point p0 ∈ t∗, consider the coadjoint orbit Op0 = G · p0. Let
Pp0 ⊂ G be the stabilizer of p0; the map that takes g ∈ G to g · p0 ∈ Op0

induces an identification Op0 = G/Pp0 . There is natural G-invariant complex
structure J and a compatible symplectic form ω (the Kostant–Kirillov form)
on Op0 ; the moment map is the inclusion map Op0 ↪→ g∗. Hence, the moment
map ψ : Op0 → t∗ for the T action is the composition of this inclusion with
the natural projection from g∗ to t∗. Moreover, (Op0 , ω, ψ) is a GKM space.
(See [GHZ].) Finally, we will say that Op0 is generic if p0 ∈ t∗ lies in the
interior of a Weyl chamber.

6.1. The canonical graph of a generic coadjoint orbit. Fix a generic
coadjoint orbit Op0 . As we will see, in this special case, the canonical classes
exist and are exactly the equivariant Schubert classes. The main goal of this
subsection is to give an explicit description of the associated canonical graph,
including all labels.

Proposition 6.1. Let the maximal torus T of a compact simple Lie group G
act on a generic coadjoint orbit Op0 ⊂ g∗ with moment map ψ : Op0 → t∗. Let
ϕ = ψξ be a generic component of the moment map that achieves its minimal
value at p0 ∈ t∗, and let R+ = {α ∈ R | (α, ξ) > 0}. There exist canonical
classes αp ∈ H

2λ(p)
T (Op0 ;Z) for all p ∈ OT

p0. Under the identification of the
Weyl group W with OT

p0 given by w �→ w(p0), the canonical graph is (W,E),
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where

ψ(w) = w(p0) for all w ∈W,

E =
{
(w,wsβ) ∈W ×W

∣∣ l(wsβ) = l(w) + 1 and β ∈ R
}
, and

αw(p0)

(
w′(p0)

)

Λ−
w′(p0)

=
1

w(β)
for all (w,w′) ∈ E,where w′ = wsβ and β ∈ R+.

We begin by describing the GKM graph.

Lemma 6.2. Let the maximal torus T of a compact simple Lie group G
act on a generic coadjoint orbit Op0 ⊂ g∗ with moment map ψ : Op0 → t∗.
Let ϕ = ψξ be a generic component of the moment map that achieves its
minimal value at p0 ∈ t∗, and let R+ = {α ∈ R | (α, ξ) > 0}. Under the
identification of the Weyl group W with OT

p0 given by w �→ w(p0), the GKM
graph is (W,EGKM), where

ψ(w) = w(p0) for all w ∈W,

EGKM =
{
(w,wsβ) ∈W ×W

∣∣β ∈ R
}
, and

η(w,w′) = w(β) = −w′(β) for all (w,w′) ∈ E,where w′ = wsβ and β ∈ R+.

Proof. As proved in [GHZ], the GKM graph (V,EGKM) of the coadjoint
orbit Op0 can be described as follows:

• The map from the Weyl group W to t∗ which takes w to w(p0) induces
a bijection between the elements of the Weyl group and the vertices
V = OT

p0 ⊂ t∗ ⊂ g∗. The restriction of the moment map ψ to V is the
inclusion map, that is, ψ(p) = p for all p ∈ V .

• There exists an edge e ∈ EGKM between two vertices p1 = w1(p0)
and p2 = w2(p0) if and only if w2 = sαw1, where sα is the reflection
associated to some α ∈ R. In this case, the weight η(p1, p2) is the
unique α ∈ R such that w2 = sαw1 and 〈p2, α〉 > 0.

In particular, the set of weights of the isotropy representation on (TpOp0 , ω) is

(16) Πp(Op0) = {α ∈ R | 〈p, α〉 > 0} for all p ∈ V.

Since p0 is the minimum, (α, ξ) < 0 for every weight α ∈ Πp0(Op0). By (16),
this implies that

(17) 〈p0, α〉 < 0 for all α ∈ R+.

Moreover, it is easy to check that

(18) sw(β)w = wsβ for all w ∈W and β ∈ R.

Since the Weyl group takes R to itself, this implies that there exists an
edge e ∈ EGKM between two vertices p1 = w1(p0) and p2 = w2(p0) if and
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Figure 1. The GKM graph and the canonical graph of a
generic coadjoint orbit of SO(5).

only if w2 = w1sβ for some β ∈ R+. In this case, since 〈·, ·〉 is G-invariant,
(17) implies that 〈p2, w2(β)〉 = 〈w2(p0), w2(β)〉 = 〈p0, β〉 < 0. Therefore,
η(p1, p2) = −w2(β) = −w1sβ(β) = w1(β). �

In Figure 1, we draw the GKM graph of a generic coadjoint orbit of SO(5)
through the point p0 = −2x1−x2 (here every pair of edges (p, q) and (q, p) is
represented by one single edge), together with the canonical graph associated
to a component of the moment map, which achieves its minimum at p0.

We will need the following standard facts about root systems [Hum].
Given a set of positive roots R+, let R0 ⊂ R+ be the associated simple
roots. Every element w of the Weyl group W can be written as a product
of simple reflections, i.e., w = s1, . . . , sr, where si = sαi and αi ∈ R0 for
all i = 1, . . . , r [Hum, Section 1.5]. The length of w, denoted l(w), is the
smallest r for which such an expression exists. Any such expression with
r = l(w) is a reduced expression for w.
1. Given w ∈ W and β ∈ R+, l(wsβ) > l(w) exactly if w(β) ∈ R+ [Hum,

Section 5.7].
2. If w = s1 · · · sr is a reduced expression for w ∈ W , where si = sαi for

some αi ∈ R0 for all i, then (see [Hum, page 14])

R+ ∩ w−1(−R+) = {β1, . . . , βr} where βi = sr · · · si+1(αi).

Moreover, the βi are distinct.

Lemma 6.3. Let the maximal torus T of a compact simple Lie group G
act on a generic coadjoint orbit Op0 ⊂ g∗ with moment map ψ : Op0 → t∗.
Let ϕ = ψξ be a generic component of the moment map that achieves its
minimal value at p0 ∈ t∗, and let R+ = {α ∈ R | (α, ξ) > 0}. Then for any
w ∈W with reduced expression w = s1 . . . sr,

Π−
w(p0)(Op0) = {η1, . . . , ηr}, where ηi = s1 · · · si−1(αi);

moreover, the ηi are distinct. Therefore,

λ(p) = l(w), for all p = w(p0) ∈ V.
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Proof. By Lemma 6.2, Πw(p0)(Op0) = w(−R+). Thus, since the set of weights
Π−
p (Op0) in the negative normal bundle at p is the set of positive weights in

the representation (TpOp0 , ω),

Π−
p (Op0) = R+ ∩ w(−R+) = −w (

R+ ∩ w−1(−R+)
)

(19)

for all p = w(p0) ∈ V.

Hence, the first claim follows directly from Fact 2. above. Since λ(p) =
|Π−

p (Op0)|, the next claim is immediate. �

By Theorem 2.4, the next lemma demonstrates that canonical classes
exist on Op0 , thus proving the first claim of Proposition 6.1. Recall that ϕ
is index increasing exactly if λ(p) < λ(q) for every (p, q) ∈ EGKM such that
ϕ(p) < ϕ(q).

Lemma 6.4. Let the maximal torus T of a compact simple Lie group G act
on a generic coadjoint orbit Op0 ⊂ g∗ with moment map ψ : Op0 → t∗. Then
each generic component of the moment map, ϕ = ψξ, is index increasing.

Proof. Assume that ϕ achieves its minimum value at p0 ∈ t∗, and define
R+ = {α ∈ R | (α, ξ) > 0}. Consider an edge (p1, p2) = (w1(p0), w2(p0)) ∈
EGKM so that ϕ(p2) > ϕ(p1). By Lemma 6.2, there exists β ∈ R+ so that
w2 = w1sβ and η(p1, p2) = w1(β). Since ψ(p2)− ψ(p1) is a positive multiple
of η(p1, p2), the fact that ϕ(p2) > ϕ(p1) implies that w1(β) ∈ R+. By Fact
1. above, this implies that l(w2) = l(w1sβ) > l(w1). Therefore, Lemma 6.3
implies that λ(p2) > λ(p1), as required. �

Given a choice of positive roots R+, Op0 can be identified as a T -space with
the flag variety GC/B, where GC is the complexification of G and B is the
Borel subgroup associated to R+. In the Schubert calculus literature, there
is a well-know basis for H∗

T (GC/B;Z), whose elements are called equivariant
Schubert classes.

Define

(20) Λ−
w =

∏
{η ∈ R+ | w−1(η) ∈ −R+}.

For every w ∈ W there exists a unique element Kw ∈ H
2l(w)
T (GC/B;Z)

satisfying the following conditions:
(1)′ Kw(w′) = 0 for all w′ ∈W \ {w} such that l(w′) ≤ l(w).
(2)′ Kw(w) = Λ−

w .

Moreover the set {Kw}w∈W is a basis for H∗
T (GC/B;Z) as a module over

H∗(BT ;Z) (see [Ku]).

Proposition 6.5. Let the maximal torus T of a compact simple Lie group
G act on a generic coadjoint orbit Op0 ⊂ g∗ with moment map ψ : Op0 → t∗.
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Let ϕ = ψξ be a generic component of the moment map that achieves its
minimal value at p0 ∈ t∗, and let {αp}p∈OT

p0
be the canonical classes. Let GC

be the complexification of G, B the Borel subgroup associated to R+ = {α ∈
R | (α, ξ) > 0}, and {Kw}w∈W be the set of equivariant Schubert classes.
The canonical classes are the equivariant Schubert classes, i.e.,

αw(p0)(w
′(p0)) = Kw(w′) for all w,w′ ∈W.

Proof. Since, by [GT, Lemma 2.7], canonical classes are characterized by
properties (1) and (2) in Definition 0.1, it is sufficient to prove that the
equivariant Schubert classes also satisfy these properties. But this follows
immediately by observing that Lemma 6.2, Lemma 6.3, and (20) imply that
(1) is equivalent to (1′) and (2) to (2′). �

The explicit description of the canonical graph given in Proposition 6.1 fol-
lows immediately from Theorem 2.4, Lemmas 6.2 and 6.3, and the following
proposition, which describes the integers Θ(p, q) that appear in Theorem 2.4.

Proposition 6.6. Let the maximal torus T of a compact simple Lie group
G act on a generic coadjoint orbit Op0 ⊂ g∗ with moment map ψ : Op0 → t∗.
Let ϕ = ψξ be a generic component of the moment map. Then

Θ(p, q) = 1 for all (p, q) ∈ EGKM with λ(q) − λ(p) = 1.

Proof. Assume that ϕ achieves its minimum value at p0 ∈ t∗, and let R+ =
{α ∈ R | (α, ξ) > 0}. Consider an edge (p, q) = (w(p0), w′(p0)) ∈ EGKM

such that λ(q) − λ(p) = 1. By Lemma 6.2, there exists β ∈ R+ so that
w′ = wsβ and η(p, q) = w(β). By (18), we can also write w′ = sαw, where
α = w(β) = η(p, q).

Let Π−
p (Op0) and Π−

q (Op0) denote the set of weights in the negative normal
bundle of ϕ at p and q, respectively. In order to prove that Θ(p, q) = 1, it
is sufficient to find a bijection f : Π−

p (Op0) → Π−
q (Op0) � {α} such that for

each η ∈ Π−
p (Op0), η = f(η) mod α, i.e. there exists an integer n such that

f(η) − η = nα.
Let w′ = s1s2 · · · sr be a reduced expression for w′, where si = sαi for

some αi ∈ R0 for all i. By Lemma 6.3 l(w′) = l(w)+1 > l(w). Therefore, by
the Strong Exchange Condition (see [Hum, Section 5.8]) w = s1 · · · ŝj · · · sr
for some (unique) j, where ŝj indicates that we are omitting the j’th term.
Let w̃ = s1s2 · · · sj−1. Then by (18) we have that for all j ≤ k ≤ r,

s1s2 · · · sk = w̃sjsj+1 · · · sk = sw̃(αj)w̃sj+1 · · · sk = sw̃(αj)s1s2 · · · ŝj · · · sk.
In particular, w′ = sw̃(αj)w, and so sw̃(αj) = sα. Hence,

s1s2 · · · sk(αk+1) ≡ s1s2 · · · ŝj · · · sk(αk+1) mod α for all j ≤ k < r.
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Moreover, the fact that l(w′) > l(w) implies that α > 0. Therefore,
Lemma 6.3 implies that w̃(αj) = α,

Π−
q � {α} = {α1, . . . , s1 · · · sj−2(αj−1), s1 · · · sj(αj+1), . . . , s1 · · · sr−1(αr)},

and

Π−
p = {α1, . . . , s1 · · · sj−2(αj−1), s1 · · · sj−1(αj+1), . . . , s1 · · · ŝj · · · sr−1(αr)}.

The claim follows immediately. �
Remark 6.7. Let w1 and w2 be two elements of the Weyl group W such
that l(w1) < l(w2) and w2 = w1sβ , for some β ∈ R; in this case, we will
write w1 → w2. The Bruhat order is the transitive closure of this order, i.e.,
w ≺ w′ in the Bruhat order if there exists a sequence of elements of the Weyl
group w0, w1, . . . , wm such that w0 = w, wm = w′ and wi → wi+1 for all
i = 0, . . . ,m− 1. By Lemma 6.2, 6.3 and 6.4, w ≺ w′ exactly if there exists
an ascending path from w to w′ in (V,EGKM).

6.2. Maps between coadjoint orbits. Before turning to consider indi-
vidual Lie groups, we need to establish a few facts about the maps between
different coadjoint orbits.

Consider two points p0 and p̃0 ∈ t∗ such that Pp̃0 ⊃ Pp0 , where Pp0 and Pp̃0
are the stabilizers of p0 and p̃0, respectively. Let Op0 and Op̃0 be the coadjoint
orbits through p0 and p̃0, respectively, and let (V,EGKM) and (Ṽ , ẼGKM) be
the GKM graphs associated to Op0 and Op̃0 , respectively. Since Op0 = G/Pp0
and Op̃0 � G/Pp̃0 , there is a natural projection map

π : Op0 → Op̃0
g · p0 �→ g · p̃0 .

Proposition 6.8. The natural projection π : Op0 → Op̃0 described above is
a strong symplectic fibration.

Proof. It is well known that π is a T -equivariant fiber bundle with sym-
plectic fibers, isomorphic to Pp̃0/Pp0 . Moreover, we can choose the complex
structures J and J̃ on Op0 and Op̃0 so that π intertwines them. Hence, the
claim is a direct consequence of the discussion in Example 5.2 (i). �

Given any fixed point q ∈ OT
p0 , let Ôq = π−1(π(q)) be the fiber over π(q).

It is a GKM space; the associated GKM graph is just the restriction to the
fiber of the GKM graph associated to Op0 . These fibers are equivariantly
symplectomorphic, but only with respect to a non-trivial automorphism of
the torus. In [GSZ], the authors analyze projections of GKM spaces from a
combinatorial point of view, and describe how the GKM structure of different
fibers changes. As our next result shows, this is particularly well behaved
when Op0 is a generic coadjoint orbit.
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Proposition 6.9. Assume that Op0 is a generic coadjoint orbit. Let ϕ = ψξ

be a generic component of the moment map that achieves its minimal value

at p0 ∈ t∗. Given any s ∈ OT
p0, let α̂s ∈ H

2λ̂(s)
T (Ôs;Z) be the canonical

class5 at s with respect to ϕ|Ôs
, regarded as a map from ÔT

s to H∗(BT ;Z).
Let τ ∈ W be an element of the Weyl group such that τ(p0) is the point in
Ôτ(p0) at which ϕ|Ôτ(p0)

achieves its minimum value. Then

α̂τ(r)(τ(s)) = τ (α̂r(s)) for all r, s ∈ ÔT
p0 .

Here, by a slight abuse of notation, τ : H∗(BT ;Z) → H∗(BT ;Z) is the map
induced by τ : t∗ → t∗ under the identification H∗(BT ;R) � Sym(t∗).

Proof. To begin, consider any element g in N(T ), the normalizer of T . With
respect to the automorphism of T given by t �→ gtg−1, the maps f : Op0 →
Op0 and f̃ : Op̃0 → Op̃0 given by left multiplication by g are equivariant
symplectomorphisms; moreover, f̃◦π = π◦f . Hence, f induces an equivariant
symplectomorphism from Ôp0 to Ôg·p0 .

So assume that g represents τ ∈ W = N(T )/T , that is, τ = Ad∗
g : t∗ →

t∗. Since Ad∗
g−1 is the transpose of Adg, the homomorphism t �→ gtg−1

and the linear transformation Ad∗
g−1 = τ−1 induce the same automorphism

of H∗(BT ;Z) ⊂ Sym(t∗). Hence, if we fix any r ∈ OT
p0 , the map ÔT

p0 →
H∗(BT ;Z) defined by s �→ τ−1(α̂τ(r)(τ(s))) is an equivariant cohomology
class on Ôp0 . In fact, this class is the canonical class on Ôp0 at r with respect
to the restriction of ψξ

′
, where ξ′ = Adg−1(ξ).

Finally, since Op0 is a generic coadjoint orbit, the set of weights Πs(Op0)
of the isotropy representation on the tangent space at the fixed point s ∈ Op0

agrees with Πp0(Op0) up to sign, that is, Πs(Op0)∪−Πs(Op0) = Πp0(Op0)∪
−Πp0(Op0). Since π is a strong symplectic fibration, this implies that – up to
sign – Πs(Ôp0) agrees with Πp0(Ôp0) for all fixed points s ∈ Ôp0 . Because p0

is the point in Ôp0 where both ψξ and ψξ
′
achieve their minimum value, this

implies that (α, ξ) > 0 exactly if (α, ξ′) > 0 for every weight α ∈ Πs(Ôp0)
and each fixed point s ∈ Ôp0 . Hence, by [GT, Remark 2.4] the canonical
classes on Ôp0 with respect to the restriction of ψξ

′
are exactly the canonical

classes with respect to the restriction of ψξ. �

Finally, given the projection π : Op0 → Op̃0 , we can describe explicitly
how to lift ascending paths in (Ṽ , ẼGKM).

5These classes exist by Corollary 5.8 and Proposition 6.8. Here, 2λ̂(s) is the index of
ϕ|Ôs

at s.



�

�

�

�

�

�

�

�

NEW TECHNIQUES FOR OBTAINING SCHUBERT-TYPE FORMULAS 215

Lemma 6.10. Let ϕ̃ : Op̃0 → R be a generic component of the moment map.
Given p ∈ V and an ascending path γ̃ in (Ṽ , ẼGKM) that begins at π(p), there
exists a unique path γ of length |γ̃| in (V,EGKM) such that

• γ begins at p,
• V (π(γ)) = V (γ̃), and
• λ(γi+1) > λ(γi) for all i.

If γ̃i+1 = sβi(γ̃i) for βi ∈ R for each 1 ≤ i ≤ |γ̃|, then the endpoint of γ is
w(p), where

w = sβ|γ̃|sβ|γ̃|−1
. . . sβ1 .

Proof. Fix p ∈ V . Since π is an equivariant fiber bundle, there is a unique
lift γ of each path γ̃ starting at p, that is, a unique path γ of length |γ̃|
in (V,EGKM) that starts at p such that π(γi, γi+1) = (γ̃i, γ̃i+1) for all i.
By Lemma 5.12 and Lemma 6.4, λ(γi+1) > λ(γi) for all i exactly if γ̃ is
ascending; this proves the first claim. The second claim is an consequence of
the fact that π : Op0 → Op̃0 satisfies π(w(p0)) = w(π(p0)) for all w ∈W . �

6.3. Generic coadjoint orbits of type An. As we will see below, a
generic coadjoint orbit of SU(n) is a tower of complex projective spaces over
Z. Therefore, Theorem 5.5 (together with the results of Section 6.1) imme-
diately implies that in this case each restriction of any equivariant Schubert
class can be expressed as a sum of terms Ξ(γ) over certain paths γ, where
each term is the product of distinct positive roots. In Proposition 6.11 below,
we give this description explicitly; this formula is equivalent to a particular
case of the combinatorial formula given in [AJS] (Appendix D.3) and [B],
as proved by Zara in [Za].

Let G = SU(n+ 1), and let T ⊂ G be the subtorus of diagonal matrices.
Under the natural identification of the dual of the Lie algebra of T as t∗ ={
μ ∈ (Rn+1)∗

∣∣ ∑n+1
i=1 μi = 0

}
, the roots are the vectors xi − xj ∈ t∗ for all

1 ≤ i �= j ≤ n. Here, and throughout this section, {xi}n+1
i=1 is the standard

basis of (Rn+1)∗. The Weyl group Sn+1 of G is the group of permutations of
n+ 1 elements.

Proposition 6.11. Let B ⊂ GC be the Borel subgroup associated to the posi-
tive roots R+ = {xi−xj | 1 ≤ i < j ≤ n+1}, where GC is the complexification
of G = SU(n + 1). Given w and w′ in Sn+1, let Kw ∈ H

2l(w)
T (GC/B;Z) be

the equivariant Schubert class associated to w. Let C(w,w′) be the set of
tuples σ = (σ1, . . . , σ|σ|+1) ∈ (Sn+1)|σ|+1 such that σ1 = w, σ|σ|+1 = w′, and
the following properties hold for all 1 ≤ i ≤ |σ|:

• l(σi+1) = l(σi) + 1;
• σi+1 = σi sxhi

−xki
for some 1 ≤ hi < ki ≤ n+ 1; and

• hi ≤ hi+1.
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(1) For all w and w′ in Sn+1,

Kw(w′) =
∑

σ∈C(w,w′)

Ξ(σ), where

Ξ(σ) = Λ−
w′

⎛

⎝
|σ|∏

i=1

1
xσi(hi) − xσ|σ|+1(hi)

⎞

⎠ for all σ ∈ C(w,w′).

(2) For all σ ∈ C(w,w′), Ξ(σ) is the product of distinct positive roots.

Proof. For each 0 ≤ j ≤ n, fix a point

μj ∈ t∗ such that μj1 < · · · < μjj < μjj+1 = · · · = μjn+1;

for simplicity assume that μjj+1 = μjj + 1. Let (Oμj , ωj , ψj) be the coadjoint
orbit through μj for each j. Observe that Oμ0 is a single point and that
Oμn is isomorphic to F l(Cn+1), the variety of complete flags in Cn+1. The
stabilizer of μj is

Pμj = S
(
U(1) × · · · × U(1) × U(n− j + 1)

)
for all j;

in particular, Pμj+1 ⊂ Pμj . By Proposition 6.8, the natural projection map
ρj : Oμj+1 → Oμj is a strong symplectic fibration with fiber Pμj/Pμj+1 �
CPn−j for all 0 ≤ j < n. So Oμn is a tower of complex projective spaces
over Z.

Each element σ ∈ Sn+1 can be represented in one line notation by σ =
σ(1), . . . , σ(n+1); the action of σ on a point μ =

∑n+1
i=1 μixi ∈ t∗ is given by

σ(μ) =
∑n+1

i=1 μixσ(i). Let πj = ρj ◦ ρj+1 ◦ · · · ◦ ρn−1 : Oμn → Oμj , and define

h(σ, σ′) = min{j ∈ {1, . . . , n} | πj(σ(μn)) �= πj(σ′(μn))} ∀σ �= σ′ in Sn+1.

Fix any distinct σ and σ′ in Sn+1. Since πj(σ(μn)) = σ(μj) and μji = μjj+1

exactly if i > j, πj(σ(μn)) = πj(σ′(μn)) exactly if σ(i) = σ′(i) for all 0 ≤
i ≤ j. Hence,

h(σ, σ′) = min{j ∈ {1, . . . , n} | σ(j) �= σ′(j)}; in particular

h(σ, σsxh−xk
) = h for all 1 ≤ h < k ≤ n+ 1.

Let ψj = π∗(ψj) : Oμn → t∗ for all j. Since ψj : OT
μj → t∗ is the inclusion

map, ψj(σ(μn)) =
∑n+1

i=1 μ
j
ixσ(i) for all j. Since

∑n+1
m=1(xσ′(m) − xσ(m)) = 0
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and μjj + 1 = μjj+1 = · · · = μjn+1, this implies that for all j

ψj(σ
′(μn)) − ψj(σ(μn)) =

n+1∑

m=1

μjm(xσ′(m) − xσ(m))

=
n+1∑

m=1

(μjm − μjj+1)(xσ′(m) − xσ(m))

=
j∑

m=1

(μjm − μjj+1)(xσ′(m) − xσ(m)) ; therefore,

ψj(σ
′(μn)) − ψj(σ(μn)) = xσ(j) − xσ′(j) for all j ≤ h(σ, σ′).

Thus, for all 1 ≤ h < k ≤ n+ 1 we have

ψh(σsxh−xk
(μn)) − ψh(σ(μn)) = xσ(h) − xσ(k) = σ(xh − xk).

To conclude, let ϕ = ψξn : Oμn → R be a generic component of the moment
map that achieves its minimum value at μn. By the definition of μn, the set
R+ coincides with {α ∈ R | (α, ξ) > 0}. So by Proposition 6.5, canonical
classes on Oμn correspond to equivariant Schubert classes on GC/B through
the usual identification of OT

μn
with W . Both claims now follow directly

from Theorem 5.5 and Proposition 6.1. (Here, we also use the fact that
h(σi, σi+1) ≤ h(σi, σ|σ|+1) for any σ = (σ1, . . . , σ|σ|+1) ∈ C(w,w′).) �

6.4. Generic coadjoint orbits of type Cn. Let G = Sp(n) be the sym-
plectic group, i.e. the quaternionic unitary group U(n;H). As we will see
below, a generic coadjoint orbit of Sp(n) is a tower of complex projective
spaces over Z. Therefore, Theorem 5.5 (together with the results of Sec-
tion 6.1) immediately implies that in this case each restriction of any equi-
variant Schubert class can be expressed as a sum of terms Ξ(γ) over certain
paths γ, where each term is the product of distinct positive roots. In Propo-
sition 6.12 below, we give this description explicitly, cf. [Za].

Let T ⊂ G be a maximal torus. We can identify the dual of the Lie algebra
of T as t∗ = (Rn)∗; the roots are the vectors ±xi±xj ∈ t∗ and ±2xi ∈ t∗ for
all 1 ≤ i �= j ≤ n. Here, and throughout this section, {xi}ni=1 is the standard
basis of (Rn)∗. The Weyl group W of G is the group of signed permutations
of n elements. Each element τ ∈ W can be represented in one line notation
by τ = (−1)ε1σ(1), . . . , (−1)εnσ(n), where εi ∈ {0, 1} for all i and σ ∈ Sn.
Proposition 6.12. Let B ⊂ GC be the Borel subgroup associated to the
positive roots R+ = {xi ± xj | 1 ≤ i < j ≤ n} ∪ {2xi | 1 ≤ i ≤ n},
where GC is the complexification of G = Sp(n). Given w and w′ in W , let
Kw ∈ H

2l(w)
T (GC/B;Z) be the equivariant Schubert class associated to w. Let
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C(w,w′) be the set of tuples τ = (τ1, . . . , τ|τ |+1) ∈ W |τ |+1 such that τ1 = w,
τ|τ |+1 = w′ and the following properties hold for all 1 ≤ i ≤ |τ |:

• l(τi+1) = l(τi) + 1;
• either τi+1 = τisxhi

±xki
for some 1 ≤ hi < ki ≤ n or τi+1 = τis2xhi

for some 1 ≤ hi ≤ n; and
• hi ≤ hi+1.

Let τi = (−1)ε
i
1σi(1), . . . , (−1)ε

i
nσi(n), where σi ∈ Sn and εij ∈ {0, 1} for all

i and j.

(1) For all w and w′ in W ,

Kw(w′) =
∑

τ∈C(w,w′)

Ξ(τ), where

Ξ(τ) = Λ−
w′

⎛

⎝
|τ |∏

i=1

1

(−1)ε
|τ |+1
hi xσ|τ |+1(hi) − (−1)ε

i
hixσi(hi)

⎞

⎠ for all τ ∈ C(w,w′).

(2) For all τ ∈ C(w,w′), Ξ(τ) is the product of distinct positive roots.

Proof. For each 0 ≤ j ≤ n, fix a point

μj ∈ t∗ such that μj1 < · · · < μjj < 0 = μjj+1 = · · · = μjn;

for simplicity assume that μjj = −1. Let (Oμj , ωj , ψj) be the coadjoint orbit
through μj for each j. Observe that Oμ0 is a single point. The stabilizer of
μj is

Pμj = S1 × · · · × S1 × U(n− j;H) for all j ;

in particular, Pμj+1 ⊂ Pμj . By Proposition 6.8, the natural projection map
ρj : Oμj+1 → Oμj is a strong symplectic fibration with fiber Pμj/Pμj+1 �
CP

2(n−j)−1 for all 0 ≤ j < n. So Oμn is a tower of complex projective spaces
over Z.

Let τ = (−1)ε1σ(1), . . . , (−1)εnσ(n), where εi ∈ {0, 1} for all i and σ ∈
Sn; the action of τ on a point μ =

∑n
i=1 μixi ∈ t∗ is given by τ(μ) =∑n

i=1(−1)εiμixσ(i). Let πj = ρj ◦ ρj+1 ◦ · · · ◦ ρn−1 : Oμn → Oμj , and define

h(τ, τ ′) = min{j ∈ {1, . . . , n} | πj(τ(μn)) �= πj(τ ′(μn))} ∀ τ �= τ ′ in W.

Let τ = (−1)ε1σ(1), . . . , (−1)εnσ(n) and τ ′ = (−1)ε
′
1σ′(1), . . . , (−1)ε

′
nσ′(n) in

W be distinct. Since πj(τ(μn)) = τ(μj) and μji = μjj+1 = 0 exactly if i > j,
πj(τ(μn)) = πj(τ ′(μn)) exactly if σ(i) = σ′(i) and εi = ε′i for all 0 ≤ i ≤ j .
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Hence,

h(τ, τ ′) = min{j ∈ {1, . . . , n} | σ(j) �= σ′(j) or εj �= ε′j}; in particular,

h(τ, τsxh±xk
) = h for all 1 ≤ h < k ≤ n, and

h(τ, τs2xh
) = h for all 1 ≤ h ≤ n.

Let ψj = π∗(ψj) : Oμn → t∗ for all j. Since ψj : OT
μj → t∗ is the inclusion

map, ψj(τ(μn)) =
∑n

i=1 μ
j
i (−1)εixσ(i) for all j. Hence,

ψj(τ
′(μn))−ψj(τ(μ

n)) =
j∑

m=1

μjm

(
(−1)ε

′
mxσ′(m) − (−1)εmxσ(m)

)
for all j,

and so

ψj(τ
′(μn)) − ψj(τ(μ

n)) =
(
(−1)εjxσ(j) − (−1)ε

′
jxσ′(j)

)
for all j ≤ h(τ, τ ′);

therefore

ψh(τsxh±xk
(μn)) − ψh(τ(μ

n)) = (−1)εhxσ(h) ∓ (−1)εkxσ(k) = σ(xh ± xk)

for all 1 ≤ h < k ≤ n, and

ψh(τs2xh
(μn)) − ψh(τ(μ

n)) = (−1)εh(2xσ(h)) = σ(2xh) for all 1 ≤ h ≤ n.

To conclude, let ϕ = ψξn : Oμn → R be a generic component of the moment
map that achieves its minimum value at μn. By the definition of μn, the set
R+ coincides with {α ∈ R | (α, ξ) > 0}. So by Proposition 6.5, canonical
classes on Oμn correspond to equivariant Schubert classes on GC/B through
the usual identification of OT

μn with W . The claim now follows directly from
Theorem 5.5 and Proposition 6.1. (Here, we use the fact that h(τi, τi+1) ≤
h(τi, τ|τ |+1) for any τ = (τ1, . . . , τ|τ |+1) ∈ C(w,w′).) �

6.5. Generic coadjoint orbits of type Bn. The main result of this sec-
tion is an inductive positive integral formula that expresses the restrictions
of the equivariant Schubert classes on a generic coadjoint orbit of type Bn
in terms of products of distinct positive roots with positive integer coeffi-
cients, and the restriction of equivariant Schubert classes on a generic coad-
joint orbit of type Bn−1. To find this formula, we will apply Corollary 5.8
to the natural projection from a generic coadjoint orbit of SO(2n + 1) to
Gr+2 (R2n+1), the Grassmannian of oriented 2-planes in R2n+1.

Let G = SO(2n+1), T ⊂ G be a maximal torus, and W be the associated
Weyl group; assume n > 1. We can identify the dual of the Lie algebra of T
with (Rn)∗ so that the set of roots is

R = {±xi ± xj | 1 ≤ i < j ≤ n} ∪ {±xi | 1 ≤ i ≤ n} ⊂ t∗.
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Let Ĝ = SO(2n − 1). We can identify the dual of the Lie algebra of a
maximal torus T̂ of Ĝ with the set of (a1, . . . , an) ∈ t∗ such that a1 = 0.
This identifies the roots of Ĝ with the set

R̂ = {±xi ± xj | 2 ≤ i < j ≤ n} ∪ {±xi | 2 ≤ i ≤ n} ⊂ R,

and the Weyl group Ŵ of Ĝ with the subgroup of W generated by reflec-
tions across the roots in R̂; moreover, it induces a map from H∗(BT̂ ;Z) to
H∗(BT ;Z). Equivalently, let Ṽ = {±x1,±x2, . . . ,±xn}; Ŵ is the kernel of
the map π : W → Ṽ defined by π(w) = w(−x1).

To state our main theorem, we will need several additional definitions. Let

R+ = {xi ± xj | 1 ≤ i < j ≤ n} ∪ {xi | 1 ≤ i ≤ n} ⊂ R

be the set of positive roots. Define

(21) E = {(τ, τsβ) ∈W ×W | l(τsβ) = l(τ) + 1 and β ∈ R}.
Given w and w′ ∈W , let Σ(w,w′) denote the set of paths γ = (γ1, . . . , γ|γ|+1)
from w to w′ in (W,E) such that π(γi) �= π(γi+1) for all i. Equivalently,
Σ(w,w′) is the set of paths from w to w′ such that each edge is of the form
(τ, τsβ), where l(τsβ) = l(τ) + 1 and β ∈ R � R̂. Given a sequence γ̃ ∈ Ṽ k,
let V (γ̃) be the set of “vertices” of γ̃:

V (γ̃) = {γ̃1, . . . , γ̃k} ⊂ Ṽ .

We need the following lemma, which we prove on page 222.

Lemma 6.13. Given any path γ = (γ1, γ2, . . . , γ|γ|+1) ∈ Σ(w,w′), the
sequence γ̃ = π(γ) = (π(γ1), π(γ2), . . . , π(γ|γ|+1)) is a subsequence of
(−x1,−x2, . . . ,−xn, xn, . . . , x2, x1).

Definition 6.14 A path γ ∈ Σ(w,w′) with π(γ) = γ̃ is incomplete if both
the following conditions are satisfied:

(i) {π(w′),−π(w′)} ⊂ V (γ̃), and
(ii) γ does not contain any edge e of the form (τ, τsx1), that is, an edge

such that π(e) = (−xj , xj) for some j ∈ {1, . . . , n}.
Otherwise γ is complete.

Definition 6.15 A path γ ∈ Σ(w,w′) with π(γ) = γ̃ is relevant if either it
is complete or if it is incomplete and xk(γ)+1 ∈ V (γ̃), where6 k(γ) = max{j |
{−xj , xj} ⊂ V (γ̃)}.

6Observe that if γ is incomplete then condition (i) in the definition above implies that
{j | {−xj , xj} ⊂ V (γ̃)} �= ∅ and—by Lemma 6.13—condition (ii) implies that k(γ) < n.
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Finally, given a path γ ∈ Σ(w,w′), define

P (γ) = Λ̃−
π(w′)

⎛

⎝
|γ|∏

i=1

1
π(w′) − π(γi)

π(γi+1) − π(γi)
η(γi, γi+1)

⎞

⎠ ,

where Λ̃−
π(w′) is the product of the α ∈ R+ such that 〈π(w′), α〉 > 0 and

π(sα(w′)) �= π(w′).
The main theorem of this section can be stated as follows.

Theorem 6.16. Let B ⊂ GC and B̂ ⊂ ĜC be the Borel subgroups associated
to R+ and R+∩R̂, respectively, where GC and ĜC are the complexifications of
G = SO(2n+1) and Ĝ = SO(2n−1), and other symbols are defined as above.
Given w and w′ in W , let Kw ∈ H

2l(w)
T (GC/B;Z) be the equivariant Schubert

class associated to w, and let τ ∈W be the shortest element such that π(τ) =
π(w′). For all ŵ ∈ Ŵ , let K̂ŵ ∈ H

2l(ŵ)

T̂
(ĜC/B̂;Z) be the equivariant Schubert

class associated to ŵ, and let R(w, τŵ) ⊂ Σ(w, τŵ) denote the set of relevant
paths from w to τŵ in (W,E).
(1) For all w and w′ in W

Kw(w′) =
∑

ŵ∈Ŵ

( ∑

γ∈R(w,τŵ)

Q(γ)
)
τ

(
K̂ŵ(τ−1w′)

)
,

where for every γ ∈ R(w, τŵ)

Q(γ) =

⎧
⎪⎨

⎪⎩

P (γ) if γ is complete,

P (γ)
2π(w′)

π(w′) + xk(γ)+1
if γ is incomplete.

(2) Q(γ) is the product of distinct positive roots and a constant which is
either 1 or 2 for all γ ∈ R(w, τŵ).

Example 6.17 Consider the case that G = SO(5). Let w = s2 and w′ =
s1s2s1s2, where s1 = sx1−x2 and s2 = sx2 . We want to compute Kw(w′) using
Theorem 6.16. Since π−1(π(w′)) = {τ, w′} ⊂ W , where τ = s1s2s1, τ is the
shortest element in π−1(π(w′)). Since Ŵ = {Id, s2} and τs2 = w′, we need
to find the sets of relevant paths R(w, τ) and R(w,w′). It is straightforward
to check that the following hold:

• Σ(w, τ) = {γ1, γ2}, where γ̃1 = π(γ1) = (−x1, x2, x1) and γ̃2 =
(−x1,−x2, x1); so the paths γ1 and γ2 are incomplete, and γ1 is rele-
vant. Hence R(w, τ) = {γ1}; moreover, Q(γ1) = x1.

• Σ(w,w′) = {γ3}, where γ̃3 = π(γ3) = (−x1,−x2, x2, x1); so the path
γ3 is complete and hence relevant. So R(w,w′) = {γ3} and Q(γ3) = 1.
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Moreover K̂Id ≡ 1, K̂s2(s2) = x2 and τ(x2) = x2. Therefore, Theorem 6.16
implies that

Kw(w′) = Q(γ1)τ(K̂Id(s2)) +Q(γ3)τ(K̂s2(s2)) = x1 + x2 .

To prove Theorem 6.16, we need to translate it into geometrical language.
Fix a point

μj ∈ t∗ such that μj1 < · · · < μjj < 0 = μjj+1 = · · · = μjn for each 0 ≤ j ≤ n;

for simplicity assume that μjj = −1. Let (Oμj , ωj , ψj) be the coadjoint orbit
through μj for each j. The stabilizer of μj is

SO(2) × · · · × SO(2) × SO(2n− 2j + 1) for all j;

in particular, Pμi ⊆ Pμj for all 1 ≤ j ≤ i ≤ n. Moreover, let ϕ = ψξn : Oμn →
R be a generic component of the moment map that achieves its minimum
value at μn. Observe that, by the definition of μn, the set R+ coincides with
{α ∈ R | (α, ξ) > 0}. By Proposition 6.1, there exists a canonical class
αp ∈ H

2λ(p)
T (Oμn ;Z) for each p ∈ OT

μn . The map from W to OT
μn given

by w �→ w(μn) identifies the canonical graph of Oμn with (W,E); we shall
identify these without further comment. Moreover, by Proposition 6.6 and
Lemma 6.3, Θ(r, r′) = 1 for each edge (r, r′) in E.

Let π : Oμn → Oμ1 be the natural projection. Note that Σ(w,w′) is exactly
the set of horizontal paths (with respect to π) from w to w′; see Definition 5.9.
Moreover, given any γ ∈ Σ(w,w′), the projection γ̃ = π(γ) is an ascending
path in the GKM graph (Ṽ , ẼGKM) associated to (Oμ1 , ω1, ψ1) by Lem-
mas 5.11 and 5.12; this proves Lemma 6.13. Finally, note that (Ṽ , ẼGKM) is
a complete graph, where Ṽ = {±x1,±x2, . . . ,±xn}, and that Λ̃−

π(w′) is the

equivariant Euler class of the negative normal bundle of ϕ̃ = ψξ1 : Oμ1 → R

at π(w′).

Remark 6.18. By Proposition 6.8, the natural projection map ρj : Oμj+1 →
Oμj is a strong symplectic fibration with fiber the Grassmannian
Pμj/Pμj+1 � Gr+2 (R2n−2j+1) for all 0 ≤ j < n. Hence, since H∗
(
Gr+2 (R2n−2j+1);Z

[
1
2

]) � H∗(
CP

2n−2j−1;Z
[

1
2

])
and Θ(r, r′) = 1 for each

edge (r, r′) in E, Theorem 5.5 (together with Proposition 6.5) immediately
implies that, for any w,w′ ∈ W we can express the restriction Kw(w′) as a
sum of terms Ξ(γ) over paths γ ∈ C(w,w′) where each term is a polynomial
in the simple roots with positive rational coefficients; more precisely, Ξ(γ)
is the product of distinct positive roots and a constant that is a (possibly
negative) power of 2; cf. [Za].
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To prove the theorem, we need to analyze how the expression of P (γ)
changes depending on whether γ is complete or incomplete.

Proposition 6.19. Let γ = (γ1, . . . , γ|γ|+1) be a path in Σ(p, s). Let γ̃ =
π(γ) and let SV (γ̃) be the skipped vertices of γ̃; see Definition 5.23. Then

P (γ) = c
∏

r∈SV (γ̃)

η(r, π(s)), where c =

⎧
⎨

⎩
1 or 2 if γ is complete, and
1
2

if γ is incomplete.

More precisely, c = 2 exactly if neither condition in Definition 6.14 is satis-
fied.

Proof. The edge (−xj , xj) ∈ ẼGKM has magnitude 2 for all j; all the other
edges (r, r′) ∈ ẼGKM have magnitude 1; see Definition 5.17. Moreover, by
Lemma 6.13, γ̃ can have at most one edge of type (−xj , xj). Therefore, since
Θ(r, r′) = 1 for all (r, r′) ∈ E, the claim follows from Lemma 5.24. �

We also need the following two lemmas.

Lemma 6.20. Let γ be a path in Σ(p, s). If {−xl, xl} ⊂ V (π(γ)) for some
l < n, then {−xl+1, xl+1} ∩ V (π(γ)) �= ∅.
Lemma 6.21. Let γ be a path in Σ(p, s) such that {−xl, xl} ⊂ V (π(γ))
for some l. If {−xl+1, xl+1} ∩ V (π(γ)) = {xl+1} for some l, then there
exists a unique path γ′ ∈ Σ(p, s) such that V (π(γ′)) is obtained from
V (π(γ)) by replacing the vertex xl+1 with −xl+1. That is, −xl+1 ∈ V (π(γ′))
and V (π(γ′)) � {−xl+1} = V (π(γ)) � {xl+1}. A similar claim holds if
{−xl+1, xl+1} ∩ V (π(γ)) = {−xl+1}.

To simplify the proof of these lemmas, let sl = sxl−xl+1
denote the reflec-

tion across the root xl − xl+1 for all l ∈ {1, . . . , n− 1},
We recall the following relations; for all l ∈ {1, . . . , n − 1} and j ∈

{1, 2, . . . , n} with j /∈ {l, l + 1}
sxl

= slsxl+1
sl,

sxl±xj = slsxl+1±xjsl,

sxl+xl+1
= slsxl+xl+1

sl.

(22)

Proof of Lemma 6.20. Let γ̃ = π(γ). Suppose that, on the contrary,
{−xl, xl} ⊂ V (γ̃) but {−xl+1, xl+1} ∩ V (γ̃) = ∅. Let γ̃′ be the ascending
path in (Ṽ , ẼGKM) such that V (γ̃′) = {−xl+1, xl+1} ∪ V (γ̃). There exists
βi ∈ R such that γ̃i+1 = sβi(γ̃i) for all i = 1, . . . , |γ̃|, and there exists δi ∈ R
such that γ̃′i+1 = sδi(γ̃

′
i) for all i = 1, . . . , |γ̃′|. Define w and w′ in the Weyl

group W of G by

w = sβ|γ̃|sβ|γ̃|−1
· · · sβ1 and w′ = sδ|γ̃′|sδ|γ̃′|−1

· · · sδ1 .
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• If γ̃ = (. . . ,−xl, xl, . . .), then w = w1sxl
w2 and w′ = w1slsxl+1

slw2

for some w1 and w2 ∈W . Hence w = w′ by (22).
• If (−xl, xl) is not an edge of γ̃, then there exists i and h > l so

that w = w1sxl±xh
w0sxl±xiw2 and w′ = w1slsxl+1±xh

w0sxl+1±xislw2

for some w0, w1, and w2 ∈ W such that w0 commutes with sl.
Hence by (22) we again have w′ = w1slsxl+1±xh

slw0slsxl+1±xislw2 =
w1sxl±xh

w0sxl±xiw2 = w.
Moreover, by Lemma 6.10 there exists a path γ′ of length |γ̃′| in (V,EGKM)

that starts at p such that V (π(γ′)) = V (γ̃′) and λ(γ′i+1) > λ(γ′i) for all 1 ≤
i ≤ |γ̃′|. Moreover, since w = w′, the endpoints s = w(p) of γ and s′ = w′(p)
of γ′ are equal. On the other hand, the fact that γ ∈ Σ(p, s) ⊂ Σ(p, s) implies
that λ(s)− λ(p) = |γ̃|. Moreover, λ(γ′i+1) > λ(γ′i) for all 1 ≤ i ≤ |γ̃′|. Hence,
λ(s′) − λ(p) ≥ |γ̃′| = |γ̃| + 2. Since s = s′, this is impossible. �

Proof of Lemma 6.21. Let γ̃ = π(γ). Assume that {−xl+1, xl+1} ∩ V (γ̃) =
{xl+1}. Let γ̃′ be the ascending path in (Ṽ , ẼGKM) such that V (γ̃′) is
obtained from V (γ̃) by replacing the vertex xl+1 with −xl+1. As before,
there exists βi ∈ R such that γi+1 = sβi(γi) for all i = 1, . . . , |γ|, and there
exists δi ∈ R such that γ′i+1 = sδi(γ

′
i) for all i = 1, . . . , |γ′|. By Lemma 6.10,

this implies that γ̃i+1 = sβi(γ̃i) and γ̃′i+1 = sδi(γ̃
′
i) for all i. Define w and

w′ ∈W by

w = sβ|γ̃|sβ|γ̃|−1
· · · sβ1 and w′ = sδ|γ̃′|sδ|γ̃′|−1

· · · sδ1 .
• If γ̃ = (. . . ,−xl, xl+1, xl, . . .) then w = w1slsxl+xl+1

w2 and w′ =
w1sxl+xl+1

slw2 for some w1, w2 ∈W . Hence w = w′ by (22).
• If (−x1, xl+1) is not an edge of γ̃, then there exists h and i > l+ 1 so

that w = w1slsxl+1±xh
w0sxl±xiw2 and w′ = w1sxl±xh

w0sxl+1±xislw2

for some w0, w1, and w2 ∈ W such that w0 commutes with sl.
Hence again by (22) we have w = w1slsxl+1±xh

slw0slsxl±xiw2 =
w1sxl±xh

w0sxl+1±xislw2 = w′.

One the other hand, the fact that γ ∈ Σ(p, s) implies that λ(s)−λ(p) = |γ|.
Moreover, since γ̃′ is an ascending path, Lemmas 5.12 and 6.4 together imply
that λ(γ′i+1) − λ(γ′i) ≥ 1 for all 1 ≤ i ≤ |γ′| = |γ|. But this is impossible
unless λ(γ′i+1) − λ(γ′i) = 1 for all i, which implies that γ′ ∈ Σ(p, s). �

We are now ready to prove Theorem 6.16

Proof of Theorem 6.16. Let p = w(μn) and q = w′(μn). For all s ∈ ÔT
q , let

α̂s ∈ H∗
T (Ôq;Z) be the canonical class on the fiber Ôq = π−1(π(q)) ⊂ Oμn .

Since Proposition 6.8 implies that π is a strong symplectic fibration and ψ1 is
the inclusion, Corollary 5.8, Proposition 6.1 and Lemma 6.2 together imply
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that
αp(q) =

∑

s∈ÔT
q

( ∑

γ∈Σ(p,s)

P (γ)
)
α̂s(q).

If γ ∈ Σ(p, s) is complete, then γ is relevant and P (γ) = Q(γ). On the
other hand, by Lemmas 6.20 and 6.21, the set of incomplete paths can
be decomposed into pairs of paths γ and γ′, so that V (γ̃′) = V (π(γ′)) is
obtained from V (γ̃) = V (π(γ)) by replacing xk(γ)+1 by −xk(γ)+1, where
k(γ) = max{j | {−xj , xj} ⊂ V (γ̃)}. In particular, SV (γ̃) � {−xk(γ)+1} =
SV (γ̃′)�{xk(γ)+1}. Additionally, by the definition of k(γ), π(s) �= ±xk(γ)+1,
and so η(±xk(γ)+1, π(s)) = π(s) ∓ xk(γ)+1. Hence, by Proposition 6.19

Q(γ) = π(s)
∏

r∈SV (γ̃)∩SV (γ̃′)

η(r, π(s))

=
η(−xk(γ)+1, π(s)) + η(xk(γ)+1, π(s)

2

⎛

⎝
∏

r∈SV (γ̃)∩SV (γ̃′)

η(r, π(s))

⎞

⎠

= P (γ) + P (γ′).

Since γ is relevant, but γ′ is not, this implies that
∑

γ∈Σ(p,s)

P (γ) =
∑

γ∈R(p,s)

Q(γ).

By Propositions 6.5 and 6.9 , this proves part (1) of Theorem 6.16. Finally, by
the definition of SV (γ̃), η(r, π(s)) is a positive root for all r ∈ SV (γ̃). Hence,
if γ is complete then Q(γ) = P (γ) is the product of distinct positive roots
and a constant which is either 1 or 2. On the other hand, if γ is incomplete
then, by definition of incomplete path, π(s) must be a positive root. and so
again Q(γ) is the product of distinct positive roots. �

6.6. Generic coadjoint orbit of type Dn. The main result of this section
is an inductive positive integral formula that expresses the restrictions of
the equivariant Schubert classes on a generic coadjoint orbit of type Dn in
terms of products of distinct positive roots with positive integer coefficients,
and the restriction of equivariant Schubert classes on a generic coadjoint
orbit of type Dn−1. To find this formula, we will apply Corollary 5.8 to the
natural projection from a generic coadjoint orbit of SO(2n) to Gr+2 (R2n),
the Grassmannian of oriented two-planes in R2n for all n ≥ 4. (If n = 3
then a generic coadjoint orbit of type Dn is also the complete flag on C4,
and so we can use the techniques of Section 6.3.) Despite the fact that
H2n−2(Gr+2 (R2n);R) = R

2 �= R = H2n−2(CP2n−2;R), we will then proceed
as in Section 6.5.
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Let G = SO(2n), T ⊂ G be a maximal torus, and W be the associated
Weyl group; assume n > 1. We can identify the dual of the Lie algebra of T
with t∗ = (Rn)∗, so that the set of roots is

R = {±xi ± xj | 1 ≤ i < j ≤ n} ⊂ t∗.

Let Ĝ = SO(2n−2). We can identify the dual of the Lie algebra of a maximal
torus T̂ of Ĝ with the set of (a1, . . . , an) ∈ t∗ such that a1 = 0. This identifies
the roots of Ĝ with the set

R̂ = {±xi ± xj | 2 ≤ i < j ≤ n} ⊂ R,

and the Weyl group Ŵ of Ĝ with the subgroup of W generated by reflec-
tions across the roots in R̂; moreover, it induces a map from H∗(BT̂ ;Z) to
H∗(BT ;Z). Equivalently, let Ṽ = {±x1,±x2, . . . ,±xn}; Ŵ is the kernel of
the map π : W → Ṽ defined by π(w) = w(−x1).

To state our main theorem, we will need several additional definitions. Let

R+ = {xi ± xj | 1 ≤ i < j ≤ n} ⊂ R

be the set of positive roots. Define

(23) E = {(τ, τsβ) ∈W ×W | l(τsβ) = l(τ) + 1 and β ∈ R}.
Given w and w′ ∈W , let Σ(w,w′) denote the set of paths γ = (γ1, . . . , γ|γ|+1)
from w to w′ in (W,E) such that π(γi) �= π(γi+1) for all i. Equivalently,
Σ(w,w′) is the set of paths from w to w′ such that each edge is of the form
(τ, τsβ), where l(τsβ) = l(τ) + 1 and β ∈ R � R̂. Given a sequence γ̃ ∈ Ṽ k,
let V (γ̃) be the set of “vertices” of γ̃:

V (γ̃) = {γ̃1, . . . , γ̃k} ⊂ Ṽ .

We need the following lemma, which we prove on page 228.

Lemma 6.22. Given any path γ = (γ1, γ2, . . . , γ|γ|+1) ∈ Σ(w,w′), the
sequence γ̃ = π(γ) = (π(γ1), π(γ2), . . . , π(γ|γ|+1)) is a subsequence of
(−x1,−x2, . . . ,−xn, xn, . . . , x2, x1).

Definition 6.23 A path γ ∈ Σ(w,w′) with π(γ) = γ̃ is incomplete if
{−π(w′), π(w′)} ⊂ V (γ̃). Otherwise γ is complete.

Definition 6.24 A path γ ∈ Σ(w,w′) with π(γ) = γ̃ is relevant if either it
is complete or if it is incomplete and xk(γ)+1 ∈ V (γ̃), where7 k(γ) = max{j |
{−xj , xj} ⊂ V (γ̃)}.

7Observe that if γ is incomplete then by definition {j | {−xj , xj} ⊂ V (γ̃)} �= ∅. More-
over, since ±xi is not a root γ cannot contain any edge whose projection is (−xn, xn), and
so—by Lemma 6.22 – k(γ) < n.
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Finally, given a path γ ∈ Σ(w,w′), define

P (γ) = Λ̃−
π(w′)

⎛

⎝
|γ|∏

i=1

1
π(w′) − π(γi)

π(γi+1) − π(γi)
η(γi, γi+1)

⎞

⎠ ,

where Λ̃−
π(w′) is the product of the α ∈ R+ such that 〈π(w′), α〉 > 0 and

π(sα(w′)) �= π(w′).
The main theorem of this section can be stated as follows.

Theorem 6.25. Fix n > 3. Let B ⊂ GC and B̂ ⊂ ĜC be the Borel subgroups
associated to R+ and R+ ∩ R̂, respectively, where GC and ĜC are the com-
plexifications of G = SO(2n) and Ĝ = SO(2n − 2), and other symbols are
defined as above. Given w and w′ in W , let Kw ∈ H

2l(w)
T (GC/B;Z) be the

equivariant Schubert class associated to w, and let τ ∈W be the shortest ele-
ment such that π(τ) = π(w′). For all ŵ ∈ Ŵ , let K̂ŵ ∈ H

2l(ŵ)

T̂
(ĜC/B̂;Z) be

the equivariant Schubert class associated to ŵ, and let R(w, τŵ) ⊂ Σ(w, τŵ)
denote the set of relevant paths from w to τŵ in (W,E).
(1) For all w and w′ in W

Kw(w′) =
∑

ŵ∈Ŵ

( ∑

γ∈R(w,τŵ)

Q(γ)
)
τ

(
K̂ŵ(τ−1w′)

)
,

where for every γ ∈ R(w, τŵ)

Q(γ) =

⎧
⎨

⎩

P (γ) if γ is complete,

P (γ)
2π(w′)

π(w′) + xk(γ)+1
if γ is incomplete.

(2) Q(γ) is the product of distinct positive roots for all γ ∈ R(w, τŵ).

To prove Theorem 6.25, we need to translate it into geometrical language.
Fix a point

μj ∈ t∗ such that μj1 < · · · < μjj < 0 = μjj+1 = · · · = μjn for each 0 ≤ j ≤ n;

for simplicity assume that μjj = −1. Let (Oμj , ωj , ψj) be the coadjoint orbit
through μj for each j. The stabilizer of μj is

SO(2) × · · · × SO(2) × SO(2n− 2j) for all j;

in particular, Pμi ⊆ Pμj for all 1 ≤ j ≤ i ≤ n. Moreover, let ϕ = ψξn : Oμn →
R be a generic component of the moment map that achieves its minimum
value at μn. Observe that, by the definition of μn, the set R+ coincides with
{α ∈ R | (α, ξ) > 0}. By Proposition 6.1, there exists a canonical class
αp ∈ H

2λ(p)
T (Oμn ;Z) for each p ∈ OT

μn . The map from W to OT
μn given
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by w �→ w(μn) identifies the canonical graph of Oμn with (W,E); we shall
identify these without further comment. Moreover, by Proposition 6.6 and
Lemma 6.3, Θ(r, r′) = 1 for each edge (r, r′) in E.

Let π : Oμn → Oμ1 be the natural projection. Note that Σ(w,w′) is exactly
the set of horizontal paths (with respect to π) from w to w′; see Defini-
tion 5.9. Moreover, given any γ ∈ Σ(w,w′), the projection γ̃ = π(γ) is an
ascending path in the GKM graph (Ṽ , ẼGKM) associated to (Oμ1 , ω1, ψ1)
by Lemmas 5.11 and 5.12; this proves Lemma 6.22. Note that (Ṽ , ẼGKM)
is not a complete graph, because it does not contain the edge (−xj , xj) for
any j, but it does contain all other edges. Finally, observe that Λ̃−

π(w′) is the

equivariant Euler class of the negative normal bundle of ϕ̃ = ψξ1 : Oμ1 → R

at π(w′).

Remark 6.26. By Proposition 6.8, the natural projection map ρj : Oμj+1 →
Oμj is a strong symplectic fibration with fiber the Grassmannian
Pμj/Pμj+1 � Gr+2 (R2n−2j) for all 0 ≤ j < n. However, since H2n−2j−2

(Gr+2 (R2n−2j);R) = R
2, we can not use Theorem 5.5 to express the restric-

tion Kw(w′) as a sum of polynomial terms.

To prove the theorem, we need to analyze how the expression of P (γ)
changes depending on whether γ is complete or incomplete.

Proposition 6.27. Let γ = (γ1, . . . , γ|γ|+1) be a path in Σ(p, s). Let γ̃ =
π(γ), and let SV (γ̃) be the skipped vertices of γ̃; see Definition 5.23. Then

P (γ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∏

r∈SV (γ̃)\{−π(s)}
η(r, π(s)) if γ is complete, and

1
2π(s)

∏

r∈SV (γ̃)

η(r, π(s)) if γ is incomplete.

Proof. All the edges (r, r′) ∈ ẼGKM have magnitude 1; see Definition 5.17.
Therefore, since Θ(r, r′) = 1 for all (r, r′) ∈ E, the claim follows from an
argument similar to the proof of Lemma 5.24. �
We are now ready to prove Theorem 6.25.

Proof of Theorem 6.25. Let p = w(μn) and q = w′(μn). For all s ∈ ÔT
q , let

α̂s ∈ H∗
T (Ôq;Z) be the canonical class on the fiber Ôq = π−1(π(q)) ⊂ Oμn .

Since Proposition 6.8 implies that π is a strong symplectic fibration and ψ1 is
the inclusion, Corollary 5.8, Proposition 6.1 and Lemma 6.2 together imply
that

αp(q) =
∑

s∈ÔT
q

( ∑

γ∈Σ(p,s)

P (γ)
)
α̂s(q).
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If γ ∈ Σ(p, s) is complete, then γ is relevant and P (γ) = Q(γ). On the
other hand, Lemmas 6.20 and 6.21 still hold when G = SO(2n) instead
of SO(2n + 1). Indeed, the proof is identical, except that in the proof of
Lemma 6.20 we no longer need to consider the case that (−xl, xl) is an edge of
γ̃. Hence, as before, the set of incomplete paths can be decomposed into pairs
of paths γ and γ′, so that V (γ̃′) = V (π(γ′)) is obtained from V (γ̃) = V (π(γ))
by replacing xk(γ)+1 by −xk(γ)+1, where k(γ) = max{j | {−xj , xj} ⊂ V (γ̃)}.
In particular, SV (γ̃) � {−xk(γ)+1} = SV (γ̃′) � {xk(γ)+1}. Additionally, by
the definition of k(γ), π(s) �= ±xk(γ)+1, and so η(±xk(γ)+1, π(s)) = π(s) ∓
xk(γ)+1. Hence by Proposition 6.27

Q(γ) =
∏

r∈SV (γ̃)∩SV (γ̃′)

η(r, π(s))

=
η(−xk(γ)+1, π(s)) + η(xk(γ)+1, π(s))

2π(s)

⎛

⎝
∏

r∈SV (γ̃)∩SV (γ̃′)

η(r, π(s))

⎞

⎠

= P (γ) + P (γ′).

By Propositions 6.5 and 6.9, this proves part (1) of Theorem 6.25. The proof
of part (2) also proceeds analogously to the proof of Theorem 6.16 (2) in the
previous subsection. �
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