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LEGENDRIAN CONTACT HOMOLOGY AND
NONDESTABILIZABILITY

Clayton Shonkwiler and David Shea Vela-Vick

We provide the first example of a Legendrian knot with non-
vanishing contact homology whose Thurston–Bennequin invariant is
not maximal.

1. Introduction

Since it was proposed by Etnyre [Etn99] and first implemented by Etnyre
and Honda [EH01], the most common strategy for classifying Legendrian
knots in a given knot type K has been to approach the problem in two steps.
First, find all Legendrian representatives of K with maximal Thurston–
Bennequin invariant, then attempt to show that all other Legendrian repre-
sentatives of K can be destabilized to one of these maximal examples.

This method has proven quite effective, but, as observed by Etnyre and
Honda [EH05], not all nondestabilizable Legendrian knots have maximal
Thurston–Bennequin invariant. Thus, one needs a means for determining
which Legendrian knots are nondestabilizable.

A candidate for identifying nondestabilizable Legendrian knots is Legen-
drian contact homology, which has been one of the most powerful nonclassi-
cal invariants of Legendrian knots since it was defined by Chekanov [Che02]
and Eliashberg [Eli98]. This invariant, which takes the form of a differential
graded algebra (A, ∂) and is a specialized variant of symplectic field the-
ory [EGH00], vanishes for stabilized Legendrian knots and is nonvanishing
for every nondestabilizable Legendrian knot for which it has been computed.
All such examples to date have had maximal Thurston–Bennequin invariant,
but in Theorem 1.1 we show that the Legendrian contact homology is non-
vanishing for a certain nondestabilizable Legendrian knot with nonmaximal
Thurston–Bennequin invariant.

We do this by showing that a related invariant, the characteristic alge-
bra, is nontrivial. The characteristic algebra was defined by Ng [Ng01] as
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C(L) := AF /〈im ∂〉, where F is a front diagram for L, AF is the free, non-
commutative, unital Z/2-algebra generated by the crossings and right cusps
of F , and 〈im ∂〉 ⊂ AF is the two-sided ideal generated by the image of
the contact homology differential. If L and L′ are Legendrian isotopic, then
the characteristic algebras C(L) and C(L′) become tamely isomorphic after
adding some (possibly different) number of generators to each.

Ng conjectured that the characteristic algebra of a nondestabilizable
Legendrian knot is nonvanishing [Ng01, Conjecture 6.4.1], which would
imply that the Legendrian contact homology for such knots is also nonvan-
ishing (see Proposition 3.1). We give some evidence for Ng’s conjecture by
providing the first example of a Legendrian knot with nonvanishing charac-
teristic algebra which does not have maximal Thurston–Bennequin invariant.

Theorem 1.1. The contact homology and characteristic algebra of Chong-
chitmate and Ng’s nondestabilizable Legendrian m(10161) are nonvanishing.

Remark 1.1. A similar argument to that given in the proof of Theorem 1.1
shows that the contact homology and characteristic algebra of Chongchit-
mate and Ng’s nondestabilizable Legendrian m(10145) are also nonvanishing.

Remark 1.2. There is a lift of the contact homology and characteristic alge-
bra to Z[t, t−1] (see [ENS02]). Nonvanishing over Z/2 implies nonvanishing
in the more general Z[t, t−1] setting.

The general situation is still far from clear, however, as we also provide
some evidence against Ng’s conjecture. Chongchitmate and Ng exhibited
a Legendrian m(10139) which does not have maximal Thurston–Bennequin
invariant and which they conjectured, based on computational evidence, is
nondestabilizable and sits atop its own peak in the tb–r mountain range. In
Section 4 we prove:

Proposition 1.1. The contact homology and characteristic algebra of
Chongchitmate and Ng’s Legendrian m(10139) vanish identically over Z[t, t−1].

Assuming this knot is actually nondestabilizable, this would provide the
first example of a nondestabilizable Legendrian knot with vanishing charac-
teristic algebra or contact homology. This suggests the following:

Conjecture 1.1. There exist nondestabilizable Legendrian knots with van-
ishing contact homology.

For background information on Legendrian knots and Legendrian contact
homology, we refer the reader to Etnyre’s survey [Etn05].
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Figure 1. Chongchitmate and Ng’s nondestabilizable m(10161).

2. The m(10161)

As mentioned in the Introduction, Etnyre and Honda [EH05] presented
the first example of a nondestabilizable Legendrian knot whose Thurston–
Bennequin invariant is nonmaximal for its knot type. This example is a
Legendrian (2, 3)-cable of the (2, 3)-torus knot.

Recently, Chongchitmate and Ng produced a conjectural atlas [CN09]
for low-crossing Legendrian knots. Included in this atlas are several new
examples of nondestabilizable Legendrian knots whose Thurston–Bennequin
invariants are not maximal. In particular, Chongchitmate and Ng give
examples of nondestabilizable Legendrian m(10161) and m(10145) whose
Thurston–Bennequin invariants are nonmaximal (m here stands for
“mirror”).

For the purposes of computing the contact homology differential for a
Legendrian knot, it is useful to have it presented as the plat closure of a
positive braid. Using Chongchitmate and Ng’s original presentation, it is not
difficult to derive the plat diagram for the m(10161) appearing in Figure 1.

The braid word defining the plat diagram in Figure 1 is

4, 5, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 4, 5, 6, 7, 8, 9, 2, 3, 4, 5, 6, 7, 5, 6, 7, 3, 4, 4, 1, 2, 6, 7, 8.

In Figure 1 there are a total of 35 crossings and five right cusps. The
crossings are labeled x1 through x35 from left to right and the right cusps
are labeled x36 through x40 from top to bottom. Therefore, for this front
diagram for the m(10161), Am(10161) is equal to Z/2〈x1, . . . , x40〉, the free
unital Z/2-algebra of rank 40 generated by x1, . . . , x40. The full boundary
map is given in Appendix A.

3. The proof of Theorem 1.1

We begin with a straightforward observation relating (non)vanishing prop-
erties of the characteristic algebra to contact homology.



36 C. SHONKWILER AND D.S. VELA-VICK

Proposition 3.1. Let L be a Legendrian knot in the standard contact
3-sphere. If the characteristic algebra of L is nontrivial, then so is its contact
homology.

Proof. Suppose that the contact homology

CH(L) =
ker ∂

im ∂

of L is trivial. Then, since ∂(1) = 0, it must be the case that im ∂ contains
the unit element 1. This implies that 1 must also be contained in the two-
sided ideal 〈im ∂〉 generated by the image of the boundary map inside the
full algebra AL. Therefore, the characteristic algebra of L also vanishes,
completing the proof of Proposition 3.1. �

By Proposition 3.1, Theorem 1.1 will follow if we can show that the charac-
teristic algebra of the Legendrian m(10161) depicted in Figure 1 is nontrivial.

The characteristic algebra C(m(10161)) = Am(10161)/〈im ∂〉 is

C(m(10161)) = Z/2〈x1, . . . , x40〉/〈∂x1, . . . , ∂x40〉.
From the differential we have that

∂x2 = x1, ∂x6 = x3, ∂x5 = x3x2 + x4, ∂x8 = x7,

∂x10 = x9, ∂x15 = x14, ∂x17 = x16, and ∂x26 = x25,

so, in C(m(10161)),

(3.1) x1 = x3 = x4 = x7 = x9 = x14 = x16 = x25 = 0.

To show that C(m(10161)) �= 0 we will actually show that a quotient,
C = C(m(10161))/I, is nontrivial.

Define I as the two-sided ideal generated by the elements

x5, x6, x8, x10, x15, x17, x18, x19, x20, x21, x22, x23, x24, x26, x31, x32, x35, x36,

x37, x38, x39, x40, x30 + 1, x34 + 1, x27x2 + 1, x11x2, x28 + x2, x11 + x33

and let

C := C(m(10161))/I.

Using (3.1) and the relations of I, the defining relations of C(m(10161))
(i.e., the boundary maps in Appendix A) can be simplified as

x2x13 + x12x11 = 1
x11x12 + x27x12 = 0
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x13x2 = 1

x11(x29 + 1) = 1(3.2)

(x29 + 1)x11 + x2x27 = 1
x27x12 = 1
x27x2 = 1
x11x2 = 0.

Therefore, C is isomorphic to Z/2〈x2, x11, x12, x13, x27, x29〉 modulo the rela-
tions in (3.2).

Lemma 3.1. The algebra C is isomorphic to the algebra

Z/2〈a, b, c, d〉/〈ac + db = 1, ba = 0, bd = 1, ca = 1, cd = 0〉.
Proof. Define the map

x12 �→ a

x13 �→ b

x27 �→ c

x29 + 1 �→ d

x2 �→ e

x11 �→ f.

Under this map, the relations in (3.2) become

eb + af = 1(3.3)

fa + ca = 0(3.4)

be = 1(3.5)

fd = 1(3.6)

df + ec = 1(3.7)

ca = 1(3.8)

ce = 1(3.9)

fe = 0,(3.10)

so C is isomorphic to Z/2〈a, b, c, d, e, f〉 modulo these relations.
Note that, by adding (3.4) to (3.8), the above relations imply

(3.11) fa = 1.

Now, we claim that the relations in (3.3)–(3.10) are equivalent to the
relations

ca = 1(3.12)
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b + c + f = 0(3.13)

ba = 0(3.14)

a + d + e = 0(3.15)

cd = 0(3.16)

bd = 1(3.17)

ac + db = 1.(3.18)

The relations (3.3)–(3.10) imply the relations (3.12)–(3.18) as follows:

• The relation (3.12) already appears as (3.8).
• Multiply (3.3) on the left by c and simplify using (3.8) and (3.9) to

get (3.13).
• Multiply (3.13) on the right by a and simplify using (3.11) and (3.8)

to get (3.14).
• Multiply (3.7) on the right by a and simplify using (3.11) and (3.8)

to get (3.15).
• Multiply (3.15) on the left by c and simplify using (3.8) and (3.9) to

get (3.16).
• Multiply (3.13) on the right by d and simplify using (3.6) and (3.16)

to get (3.17).
• Finally, multiply (3.13) on the left by a, multiply (3.15) on the right

by b, add the results and simplify using (3.3) to get (3.18).

On the other hand, we can derive (3.3)–(3.10) from (3.12)–(3.18) as
follows:

• Multiply (3.13) on the left by a, add to (3.18) and simplify using
(3.15) to get (3.3).

• Multiply (3.13) on the right by a and simplify using (3.14) to get
(3.4).

• Multiply (3.15) on the left by b and simplify using (3.14) and (3.17)
to get (3.5).

• Multiply (3.13) on the right by d and simplify using (3.16) and (3.17)
to get (3.6).

• Multiply (3.13) on the left by d, add to (3.18) and simplify using
(3.15) to get (3.7).

• The relation (3.8) appears as (3.12).
• Multiply (3.15) on the left by c and simplify using (3.8) and (3.16) to

get (3.9).
• Finally, (3.13) and (3.15) imply that fe = (b + c)(a + d); simplify

using (3.12), (3.14), (3.16), and (3.17) to get (3.10).
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Therefore, since the two collections of relations (3.3)–(3.10) and (3.12)–
(3.18) are equivalent, we see that

C � Z/2〈a, b, c, d, e, f〉/〈ca = 1, b + c + f = 0, ba = 0,

a + d + e = 0, cd = 0, bd = 1, ac + db = 1〉.
Since e = a + d and f = b + c, we can re-write C as

C � Z/2〈a, b, c, d〉/〈ac + db = 1, ba = 0, bd = 1, ca = 1, cd = 0〉,
completing the proof of the lemma. �

The goal now is to show that C is nontrivial, which will imply that
C(m(10161)) is nontrivial as well.

Lemma 3.2. The algebra

C = Z/2〈a, b, c, d〉/〈ac + db = 1, ba = 0, bd = 1, ca = 1, cd = 0〉
is nontrivial.

Proof. To prove this, we define an action of C on H, where H is a countably
infinite-dimensional vector space over Z/2. Provided we can show this action
is nontrivial, this will imply that C is nontrivial.

As with any infinite-dimensional vector space, H can be written as

H = H1 ⊕H2,

where H1 � H2 � H as Z/2-vector spaces, so any map H → H1 ⊕ H2 or
H1 ⊕H2 → H defines an endomorphism of H.

Fix identifications H ∼= H1 and H ∼= H2 (throughout what follows the
symbol ∼= will refer to these fixed identifications).

Let a, b, c, d act on H as follows:
• Define a : H → H1 ⊕H2 by the diagram

H1
����0 �

H ⊕����∼= � H2.

• Define b : H1 ⊕H2 → H by the diagram

H1 ����
∼= �⊕ H.

����
0

�
H2

• Define c : H1 ⊕H2 → H by the diagram

H1 ����0 �⊕ H.
����

∼=
�

H2
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• Define d : H → H1 ⊕H2 by the diagram
H1

����∼= �
H ⊕����

0
� H2.

Extending by linearity, the defining relations of C are preserved by this
action, so the above induces a well-defined action of C on H (alternatively,
a representation of C into End(H)). Since the actions of a, b, c, and d are
clearly nontrivial, this is a nontrivial action, completing the proof of the
lemma. �

Since C is a quotient of C(m(10161)), Lemma 3.2 implies that C(m(10161))
is nontrivial, completing the proof of Theorem 1.1.

4. The contact homology of the m(10139)

Our goal in this section is to prove Proposition 1.1 by showing that 1 is
in the image of the differential of Chongchitmate and Ng’s conjecturally
nondestabilizable m(10139). This Legendrian m(10139) is one of two exam-
ples given by Chongchitmate and Ng with nonmaximal Thurston–Bennequin
invariants which computations suggest sit atop their own peaks in the tb–r
mountain range. That the other — a Legendrian m(12n242) — also has van-
ishing contact homology and characteristic algebra follows from a similar
argument to the one given below.

The plat diagram for the m(10139) given in Figure 2 is obtained from
Chongchitmate and Ng’s presentation.

The braid word for the plat diagram in Figure 2 is
6, 7, 8, 9, 10, 11, 12, 13, 13, 5, 7, 9, 11, 2, 4, 6, 8, 10, 11,

13, 12, 10, 11, 9, 10, 8, 9, 7, 8, 6, 7, 5, 6, 4, 5, 3, 4, 2

Figure 2. Chongchitmate and Ng’s conjecturally nondesta-
bilizable m(10139).
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In order to prove that the contact homology and characteristic algebra of
the m(10139) are trivial, it suffices to construct an element a ∈ A such that
∂a = 1. From the presentation of the differential given in Appendix B, we
see that

1 = ∂

(
(x2 + x10)

((
(x41x11 + x14x42)x15 + x41 − x44

)
x22 + x24

)

+ (x4 + x16)(x15x22 + x19) + x6 + x43

)
.

Therefore, the contact homology and characteristic algebra of Chongchit-
mate and Ng’s m(10139) both vanish over Z[t, t−1].

Appendix A. The differential over Z/2 for the m(10161)

∂x1 = 0
∂x2 = x1

∂x3 = 0
∂x4 = x3x1

∂x5 = x3x2 + x4

∂x6 = x3

∂x7 = 0
∂x8 = x7

∂x9 = 0
∂x10 = x9

∂x11 = x3

∂x12 = 0
∂x13 = 0
∂x14 = 0
∂x15 = x14

∂x16 = 0
∂x17 = x16

∂x18 = 0
∂x19 = x1 + x12x4 + x12x11x1

∂x20 = x2x13 + x12x5x13 + x12x11x2x13 + 1 + x12x6 + x12x11 + x19x13

∂x21 = x2x14 + x12x5x14 + x12x11x2x14 + x12x7 + x19x14

∂x22 = x2x15 + x12x5x15 + x12x11x2x15 + x12x8 + x19x15 + x21

∂x23 = x2x16 + x12x5x16 + x12x11x2x16 + x12x9 + x19x16

∂x24 = x2x17 + x12x5x17 + x12x11x2x17 + x12x10 + x19x17 + x23

∂x25 = 0
∂x26 = x25

∂x27 = 0
∂x28 = 0
∂x29 = x28x25
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∂x30 = 0
∂x31 = x4 + x11x1

∂x32 = x5x13x28 + x11x2x13x28 + x6x28 + x11x28 + x5x14 + x11x2x14 + x7

+ x31x13x28 + x31x14

∂x33 = 0
∂x34 = 0
∂x35 = x33x2x18 + x33x12x5x18 + x33x12x11x2x18 + x33x12 + x33x19x18

+ x34x27x2x18 + x34x27x12x5x18 + x34x27x12x11x2x18 + x34x27x12

+ x34x27x19x18

∂x36 = x13x28 + x14 + 1
∂x37 = x5x13x29x30 + x11x2x13x29x30 + x6x29x30 + x11x29x30 + x5x15x25x30

+x11x2x15x25x30 +x8x25x30 +x5x16x30 +x11x2x16x30 +x9x30 +x5x13

+ x11x2x13 + x6 + x11 + x31x13x29x30 + x31x15x25x30 + x31x16x30

+ x31x13 + x32x25x30 + 1
∂x38 = x33 + x30x28x26x33 + x30x29x33 + x30x28x27 + 1
∂x39 = x27x2x18 + x27x12x5x18 + x27x12x11x2x18 + x27x12 + x27x19x18 + 1
∂x40 = x33x2 + x33x12x5 + x33x12x11x2 + x33x19 + x34x27x2 + x34x27x12x5

+ x34x27x12x11x2 + x34x27x19 + 1

Appendix B. The differential over Z[t,t−1] for the m(10139)

∂x1 = 0
∂x2 = −x1

∂x3 = 0
∂x4 = −x3

∂x5 = 0
∂x6 = −x5

∂x7 = 0
∂x8 = −x7

∂x9 = 0
∂x10 = x1

∂x11 = 0
∂x12 = 0
∂x13 = 0
∂x14 = 0
∂x15 = 0
∂x16 = x2x11 + x10x11 + x3

∂x17 = x11x12

∂x18 = x12x13

∂x19 = x12

∂x20 = 0
∂x21 = x18x9x20 − x19x13x9x20 + x18 − x19x13

∂x22 = 0
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∂x23 = x9x20 + 1 + x22x13x9x20 + x22x13

∂x24 = x11x18x22 + x17x13x22 + x11x19 + x17

∂x25 = x11x18x23 + x17x13x23 + x11x21 − x24x13x9x20 − x24x13

∂x26 = x13x22 + 1
∂x27 = x13x23 + x26x13x9x20 + x26x13

∂x28 = x2x17x26 +x10x17x26 +x4x12x26 +x5x26 +x16x12x26 +x2x24 +x10x24

+ x4x18x22 + x16x18x22 + x6x13x22 + x7x22 + x4x19 + x16x19 + x6

∂x29 = x2x17x27 +x10x17x27 +x4x12x27 +x5x27 +x16x12x27 +x2x25 +x10x25

+x4x18x23 +x16x18x23 +x6x13x23 +x7x23 +x4x21 +x16x21 +x8x9x20

+ x20 + x8 − x28x13x9x20 − x28x13

∂x30 = x12x26 + x18x22 + x19

∂x31 = x12x27 + x18x23 + x21 + x30x13x9x20 + x30x13

∂x32 = x15x11x30 + x15x17x26 + x15x24

∂x33 = x15x11x31 + x15x17x27 + x15x25 − x32x13x9x20 − x32x13

∂x34 = x11x30 + x17x26 + x24

∂x35 = x11x31 + x17x27 + x25 + x34x13x9x20 + x34x13

∂x36 = x14x15x34 + x14x32

∂x37 = x14x15x35 + x14x33 − x36x13x9x20 − x36x13

∂x38 = x15x34 + x32

∂x39 = x14x38 + x36 + 1
∂x40 = x15x35 + x33 + x38x13x9x20 + x38x13 + 1
∂x41 = x14x15 + 1
∂x42 = x15x11 + 1
∂x43 = x2x17 + x10x17 + x4x12 + x5 + x16x12 + 1
∂x44 = x11x18 + x17x13 + 1
∂x45 = x18x9 − x19x13x9 + t−1
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