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BERNSTEIN POLYNOMIALS, BERGMAN KERNELS AND
TORIC KÄHLER VARIETIES

Steve Zelditch

We show that the classical Bernstein polynomials BN (f)(x) on the
interval [0, 1] (and their higher dimensional generalizations on the sim-
plex Σm ⊂ R

m) may be expressed in terms of Bergman kernels for
the Fubini–Study metric on CP

m : BN (f)(x) is obtained by applying
the Toeplitz operator f(N−1Dθ) to the Fubini–Study Bergman ker-
nels. The expression generalizes immediately to any toric Kähler variety
and Delzant polytope, and gives a novel definition of Bernstein “poly-
nomials” BhN (f) relative to any toric Kähler variety. They uniformly
approximate any continuous function f on the associated polytope P
with all the properties of classical Bernstein polynomials. Upon integra-
tion over the polytope, one obtains a complete asymptotic expansion
for the Dedekind–Riemann sums 1

Nm

∑
α∈NP f( α

N ) of f ∈ C∞(Rm), of
a type similar to the Euler–MacLaurin formulae.

1. Introduction

Our starting point is the observation that the classical Bernstein polynomials

(1.1) BN (f)(x) =
∑

α∈Nm:|α|≤N

(
N

α

)

xα(1 − ‖x‖)N−|α|f
( α

N

)
,

on the m-simplex Σm ⊂ R
m may be expressed in terms of the Bergman–

Szegö kernels ΠhN
FS

(z, w) for the Fubini–Study metric on CP
m: Let eiθ denote

the standard Tm = (S1)m action on C
m and and let Dθj

denote the lineariza-
tion (or “quantization”) of its infinitesimal generators on H0(CP

m,O(N)).
As will be shown in Section 2 (see also Section 4),

(1.2) BN (f)(x) =
1

ΠhN
FS

(z, z)
f(N−1Dθ)ΠhN

FS
(eiθz, z)|θ=0,z=μ−1

hFS
(x),

where f ∈ C∞
0 (Rm). Here, ΠhN

FS
denotes the Bergman–Szegö kernel on pow-

ers O(N) → CP
m of the invariant hyperplane line bundle, f(N−1Dθ) is
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defined by the spectral theorem and μhFS is the moment map correspond-
ing to hFS. Thus, the Bernstein polynomial BNf(x) is the Berezin covari-
ant symbol of the Toeplitz operator ΠhN

FS
f(N−1Dθ)ΠhN

FS
, i.e., the quotient

N
hN
FS

(z,z)

Π
hN
FS

(z,z) of its kernel NhN
FS

(z, z) on the diagonal by the Bergman–Szegö on

the diagonal. From this formula, many properties of Bernstein polynomials
may be derived from properties of the Fubini–Study Bergman–Szegö kernel.

Furthermore, the formula (1.2) generalizes immediately to any polarized
toric Kähler variety (L, M, ω) and defines analogs BhN (f)(x) of Bernstein
polynomials for any Delzant poytope P and any positively curved toric her-
mitian metric h on the invariant line bundle associated to P . We simply
replace the Hermitian line bundle O(1) → CP

m with its Fubini–Study metric
by any toric invariant Hermitian line bundle (L, h) → (M, ω) (see Definition
3.1).

The connection between Bernstein polynomials and Bergman–Szegö ker-
nels may be used to obtain asymptotic expansions of Bernstein polynomials
as the degree N → ∞;

Theorem 1.1. Let (L, h) → (M, ω) be a toric Hermitian invariant line
bundle over a toric Kähler variety with associated moment polytope P . Let
f ∈ C∞

0 (Rm) and let BhN (f)(x) denote its Bernstein polynomial approxima-
tion in the sense of Definition 3.1. Then there exists a complete asymptotic
expansion,

BhN (f)(x) = f(x) + L1f(x)N−1 + L2f(x)N−2 + · · · + Lmf(x)N−m

+ O(N−m−1),

in C∞(P̄ ), where Lj is a differential operator of order 2j depending only
on curvature invariants of the metric h; the expansion may be differentiated
any number of times.

In the case of classical Bernstein polynomials (1.1) (i.e., the interval or
simplex), this expansion has recently been derived by Hörmander [18] by a
different method (see (2.2)). The approach taken here is to use the Boutet
de Monvel–Sjöstrand approximations of Bergman–Szegö kernels, with some
simplifications in the case of toric hermitian metrics [8, 24]. The operators
Lj are computable from the coefficients of the asymptotic expansion of the
Bergman–Szegö kernel ΠhN (z, z) on the diagonal in [22, 32]. It should be
noted that for general toric Hermitian line bundles, the Bernstein “poly-
nomials” are not quite polynomials in the usual sense, although they are
algebro-geometric objects in the sense of [10, 31]; see Section 3 for further
discussion.
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As defined in (1.2) and in Definition 3.1, the Bernstein polynomials are
quotients

(1.3) BhN (f)(x) =
NhN f(x)

ΠhN (μ−1
h (x), μ−1

h (x))

of a numerator polynomial NhN f(x) by the denominator ΠhN (z, z) with
μh(z) = x. Here, μh is the moment map associated to the Kähler form ωh

associated to h. The numerator polynomials also admit complete asymptotic
expansions, and indeed the Bernstein polynomial expansions are derived
from the numerator expansion and from the asymptotic expansion of the
denominator. Hence, Theorem 1.1 follows from:

Theorem 1.2. With the same assumptions as above, there exist differential
operators Nj, such that

NhN (f)(x) ∼ Nm

πm
(f(x) + N−1N1f(x) + · · · ),

where the operators Nj are computable from the Bergman kernel expansion
for ΠhN (z, z). In particular,

N1f(x) =
1
2
(f(x)S(μ−1

h (x)) + ∇μh(μ−1
h (x)) · ∇2f(x)),

where S(z) is the scalar curvature of the Kähler metric ωh.

The operator N1 is calculated in Section 6. Note that S is constant on
μ−1(x), so it may be evaluated at any point of this set.

Theorem 1.2 has an application to Dedekind–Riemann sums over lattice
points in dilates of the polytope P , i.e., sums of the form

∑

α∈NP

f
( α

N

)
, f ∈ C∞

0 (Rm).

Upon integration of NhN f(x) over P and multiplication by a universal con-
stant, one obtains:

Corollary 1.3. Let f ∈ C∞
0 (Rm). Then there exist differential operators

Ej, such that

∑

α∈NP

f
( α

N

)
∼ Nm

∫

P
f(x)dx +

Nm−1

2

∫

∂P
f(x)dσ

+ Nm−2
∫

P
E2f(x)dx + · · · ,

where σ is the Leray measure on ∂P corresponding to the affine defining
functions �r(x) = 〈x, νr〉 of the boundary facts (cf. 3.1). That is, on the rth
facet of ∂P , d�r ∧ dσ = dx.
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Exact and asymptotic formulae for
∑

α∈NP f( α
N ) have been previously

proved for special f using the generalized Euler–MacLaurin formulae
of Khovanskii–Pukhlikov, Brion–Vergne, Guillemin–Sternberg and others
(cf. [15–17, 19]). For purposes of comparison, Theorem 4.2 of [16] states
that for f ∈ C∞

0 (Rn),

1
Nm

∑

α∈Nm:|α|≤N

f
( α

N

)
∼

⎛

⎝
∑

F

∑

γ∈Γ1
F

τγ

(
1
N

∂

∂h

) ∫

Ph

f(x)dx

⎞

⎠

× |h=0 + O(N−∞),(1.4)

where the sums involve various data associated to the polytope P and where
Ph is a parallel dilate of P . We refer to [16] for the notation. The two-term
expansion given in Corollary 1.3 was stated in [28]. It is straightforward to
generalize the formula and proof to the case where f is a symbol as in [17],
and to obtain remainder estimates in the expansion.

A significant difference between the Euler–MacLaurin and the Bernstein
methods for obtaining expansions of Dedekind–Riemann sums

∑
α∈Nm:|α|≤N

f( α
N ) is that the Bernstein approaches uses an arbitrary toric Kähler metric

while the Euler–MacLaurin approach is metric independent. This reflects
the fact that the Bernstein approach is to integrate the pointwise expansion
of Theorem 1.2, which depends on the metric h. The metric independence
of the expansion in Corollary 1.3 is equivalent to a sequence of integration
by parts identities involving curvature invariants. For instance, we obtain
the second term in the expansion in Section 7 by using an integration by
parts identity on polytopes due to Donaldson [12]; see also Section 2 for the
simplest case. Conversely, comparison of the metric expansion in Theorem
1.2 and the Euler–MacLaurin expansion in (1.4) gives another proof of this
identity, and generates further identities in the lower order terms for any
choice of toric hermitian metric.

The connection between Bernstein polynomials, Bergman kernels and
Berezin symbols appears to be new, and one of the principal motiva-
tions of this article is simply to point out the toric geometry underly-
ing the classical Bernstein polynomials. We then exploit it to simplify
the approximation theory and to extend it to general toric Kähler vari-
eties. The generalized Bernstein approximation theory should be use-
ful in the program of Yau–Tian–Donaldson of making algebro-geometric
(i.e., polynomial) approximations to transcendental geometric objects on
Kähler varieties (cf. [11, 31]). For instance, in [26] what we recognize
in this article as Bernstein polynomials were used to approximate geo-
desic rays in C2 (see also [23]). However, in [26], the function denoted
by f in Definition 3.1 in Section 3 (denoted RN in [26]) also depended
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on N in a subtle way, and so the polynomial approximations were much
more complicated than the Bernstein polynomials of this article. One
of our purposes in this article is to separate out the role of Bernstein
polynomial approximations implicit in [26] for other applications, for
instance to test configuration geodesics in [27]. In particular, the mea-
sures μz

N defined in (3.9) are studied in detail in [27], and the “law
of large numbers” in Corollary 3.4 is developed into a large deviations
principle.

We close the introduction with references to related work. As mentioned
above, the article [18] also concerns relations between Bernstein polyno-
mials and Bergman kernels, for the opposite purpose of deriving Bergman
kernel expansions on Reinhardt domains from classical Bernstein polynomial
expansions on the simplex. The exposition in Section 6 was influenced by its
analysis of Bernstein polynomials. It also draws on the analysis of [24–26].
More on Berezin symbols of Toeplitz operators can be found in [9, 25] and
specifically in the toric case in [24].

Bernstein introduced Bernstein polynomials to uniformly approximate
continuous functions on [0, 1] [5–7]. Kac and Szasz introduced analogous
analytic functions on [0,∞] to approximate continuous functions uniformly
on compact subsets of [0,∞]. In [14], it is explained that the Szasz analytic
functions are also of the form (1.2), but with the Bargmann–Fock Bergman
kernel replacing the Fubini–Study one. Feng then generalizes the results of
this article to infinite volume toric varieties (e.g., Calabi–Yau toric varieties),
and explains how the Szasz analytic function is the scaling limit towards the
boundary of a toric Bergman polynomial.

In addition to the Bergman-toric generalization of Bernstein polynomi-
als, there also exists a probabilistic generalization of Bernstein polynomial
which replaces

(
N
α

)
by the weighted number of lattice paths from 0 to α

with steps in the polytope P . This definition also coincides with the canon-
ical one in the case of the Fubini–Study metrics on CP

m but in general
gives a different class of polynomials defined on the simplex of probability
measures on {1, . . . , m}. In the case of the simplex Σm = P , both spaces
are the same, but in general they are not. The relevant analysis could be
obtained from [30]; we will not discuss these generalizations here. In [29],
Tate defines yet another kind of Bernstein polynomial on a convex polytope,
based on certain “Bernstein measures”. They are closely related to the anal-
ysis in [18]. In his recent survey [13, Section 2.3], Donaldson discusses a
number of problems and results on norms of monomials and measures on
lattice points in convex polytopes which are closely related to the material in
[24,26,29].

We would like to thank H. Hezari for a careful reading of the article and
for pointing out some notational inconsistencies and misprints in an earlier
version.
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2. Fubini–Study and classical Bernstein polynomials

Let us begin by explaining in more detail the Bernstein–Bergman connec-
tion for the Fubini–Study metric in one complex dimension. We recall that
Bernstein polynomials of one variable give canonical uniform polynomial
approximations to continuous functions f ∈ C([0, 1]):

(2.1) BN (f)(x) =
N∑

j=0

(
N

j

)

f

(
j

N

)

xj(1 − x)N−j .

They have the special feature that they simultaneously uniformly approxi-
mate all derivatives of f if f ∈ Ck, i.e., BN (f)(k)(x) → f (k)(x) (cf. [21]), and
if f ∈ C∞, there exists a complete asymptotic expansion ( [18]; see also [1])

(2.2) BN (f)(x) ∼
∞∑

μ=0

Lμ

(

x,
d

dx

)

f(x)N−μ

for certain polynomial differential operators Lμ(x, d
dx),

L0 = 1, L1 =
1
2
(x−x2)

d2

dx2 , L2 =
1
6
(x−x2)(1−2x)

d3

dx3 +
1
8
(x−x2)2

d4

dx4 .

In this case, BN (f) = 1
N+1NN (f) (cf. Theorem 1.2), and also

(
N

j

) ∫ 1

0
xj(1 − x)N−jdx =

(
N

j

)
j!(N − j)!
(N + 1)!

=
1

N + 1
.

Hence, (2.1) implies that

∫ 1

0
NN (f)(x)dx

=
N∑

j=0

f

(
j

N

)

= (N + 1)
(∫ 1

0
f(x)dx +

1
2N

∫ 1

0
(x − x2)f ′′(x)dx + · · ·

)

= (N + 1)
(∫ 1

0
f(x)dx +

1
2N

(

f(1) − f(0) − 2
∫ 1

0
f(x)dx

)

+ · · ·
)

= N

∫ 1

0
f(x)dx +

1
2
(f(1) − f(0)) + O

(
1
N

)

.

(2.3)

We included the routine details to point out that obtaining the first two
terms of the Euler–MacLaurin Riemann sum expansion in Corollary 1.3
required two integrations by parts and cancellations of

∫ 1
0 f(x)dx in the con-

stant term between the subleading term of the dimension (Riemann–Roch)
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polynomial (N +1) term and in the
∫ 1
0 L1f(x)dx term. Similar cancellations

occur in the general case (see the proof of Theorem 1.3).
We now relate the Bernstein polynomials BN (f) on [0, 1] to the Bergman

kernel for the Fubini–Study metric on CP
1. The discussion is almost the

same for the m-simplex Σm ⊂ R
m and the Bergman kernel for the Fubini

metric on CP
m, so we carry it out in all dimensions. We first need to recall

some standard facts about the Bergman or Szegö kernels for the Fubini–
Study metric.

By the m-simplex we mean the convex set Σm = {(x1, . . . , xm) ∈ R
m
+ :

‖x‖ :=
∑m

j=1 xj ≤ 1}. We denote its dilate by N ∈ N by NΣm. As discussed
in [24] and elsewhere (see [24] for references), the space Poly(NΣm) of
polynomials with exponents α ∈ NΣm can be identified with the space
of degree-N homogeneous holomorphic polynomials in m + 1 variables by
identifying the (non-homogeneous) polynomial

f(z1, . . . , zm) =
∑

|α|≤N

cαzα (zα = zα1
1 · · · zαm

m )

with the homogeneous polynomial

F (ζ0, . . . , ζm) =
∑

|α|≤N

cαζ
N−|α|
0 ζα1

1 · · · ζαm
m .

The space Poly(NΣm) has a natural L2 inner product,

(2.4) 〈f, ḡ〉 =
1
m!

∫

S2m+1
FG dν,

where dν is normalized Haar measure on S2m+1.
This inner product is equivalent to viewing f, g as a holomorphic sections

of the Nth power O(N) of the hyperplane line bundle O(1) → CP
m dual to

the tautological line bundle. The line bundle O(1) carries a natural metric
hFS given by

(2.5) ‖s‖hFS([w]) =
|(s, w)|

|w| , w = (w0, . . . , wm) ∈ C
m+1,

for s ∈ C
m+1∗ ≡ H0(CP

m,O(1)), where |w|2 =
∑m

j=0 |wj |2 and [w] ∈ CP
m

denotes the complex line through w. The Kähler form on CP
m is the Fubini–

Study form

(2.6) ωFS =
√

−1
2

ΘhFS =
√

−1
2

∂∂̄ log |w|2.

The natural Fubini–Study inner product on sections is then

〈s1, s2〉 =
∫

CPm

(s1, s2)hFSω
m
FS/m!.
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In an affine chart and local frame e, sections have the form fe, where f is a
polynomial and the inner product takes the explicit form

(2.7) 〈f, ḡ〉 =
1
m!

∫

Cm

f(z)g(z)
(1 + ‖z‖2)N

dVFS(z), f, g ∈ Poly(NΣm),

where dVFS =
∏d

j=1 dzj∧dz̄j

(1+|z|2)(d+1) is the Fubini–Study volume form. Both versions
of the inner product generalize to any holomorphic line bundle.

A basis for Poly(NΣm) is given by the monomials χα(z) = zα1
1 · · · zαm

m ,
|α| ≤ N . The monomials {χα} are orthogonal but not normalized. Their L2

norms given by the inner product (2.4) are:

(2.8) ‖χα‖ =
[
(N − |α|)!α1! · · ·αm!

(N + m)!

]1/2

.

Thus, an orthonormal basis for Poly(NΣm) is given by the monomials

1
‖χα‖ χα =

[
(N + m)!

(N − |α|)!α1! · · ·αm!

]1/2

χα =

√
(N + m)!

N !

(
N

α

)

χα,

|α| ≤ N,(2.9)

where

(2.10)
(

N

α

)

=
N !

(N − |α|)!α1! · · ·αm!
.

We let χ̂N
α : S2m+1 → C denote the homogenization of χα:

(2.11) χ̂N
α (x) = x

N−|α|
0 xα1

1 · · ·xαm
m .

The Bergman or Szegö kernel ΠhN
FS

for the Fubini–Study metric is the
orthogonal projection to the space H0(CP

m,O(N)) of holomorphic sections
with respect to the inner produced induced by hFS, which lifts to the orthog-
onal projection Π̂hN

FS
onto Poly(NΣ). The latter is given by

(2.12) Π̂hN
FS

(x, y) =
∑

|α|≤N

1
‖χα‖2 χ̂α(x)χ̂α(y) =

(N + m)!
N !

〈x, ȳ〉N ,

for x, y ∈ S2m+1. In particular, on the diagonal we have 〈x, x〉 = 1 and

(2.13) Π̂hN
FS

(x, x) =
(N + m)!

N !
.

In terms of the standard local affine frame on C
m, we have χ̂N

α (z) =
zα

(1+‖z‖2)N/2 , and hence

(2.14) ΠhN
FS

(z, w) =
(N + m)!

N !

∑
|α|≤N

(
N
α

)
zαw̄α

(1 + ‖z‖2)N/2(1 + ‖w‖2)N/2 .
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We now have the ingredients to identify Bernstein polynomials for the
simplex NΣm in terms of the Fubini–Study Bergman–Szegö kernel. The
Kähler potential of the Fubini–Study metric is ϕFS = log(1 + ‖z‖2), where
‖z‖2 =

∑
j |zj |2, and its moment map is

μhFS(z) =
(

|z1|2
1 + ‖z‖2 , . . . ,

|zm|2
1 + ‖z‖2

)

.

The Fubini–Study symplectic potential is the convex function on Σm given
by the Legendre transform of ϕFS in logarithm coordinates,

u0(x) =
m∑

j=1

xj log xj + (1 − ‖x‖) log(1 − ‖x‖),

where ‖x‖ =
∑m

j=1 xj . A simple calculation shows that the Bernstein terms
may be expressed in terms of the symplectic potential as

(2.15)
(

N

α

)

xα(1 − ‖x‖)N−|α| =
N !

(N + m)!
eN(u0(x)+〈(α/N)−x,∇u0(x)〉)

‖zα‖2
hN
FS

.

It follows that the Fubini–Study Bernstein polynomial is given by
(2.16)

BN (f)(x) =
1

ΠhN
FS

(z, z)

N∑

α=0

f
( α

N

) eN(u0(x)+〈(α/N)−x,∇u0(x)〉)

‖zα‖2
hN
FS

, z = μ−1
hFS

(x).

On the other hand, one can also express the Bergman–Szegö kernel in terms
of the symplectic potential at the points (eiθz, z) as

ΠhN
FS

(eiθz, z) =
N∑

α=0

ei〈θ,α〉 e
N(u0(x)+〈(α/N)−x,∇u0(x)〉)

‖zα‖2
hN
FS

= ΠhN
FS

(z, z)
N∑

α=0

(
N

α

)

ei〈θ,α〉xα(1 − ‖x‖)N−|α|.(2.17)

Indeed, comparing (2.14) and (2.17), we see that the two expressions for the
Bergman–Szegö kernel agree as long as
(2.18)

|zα|2e−N log(1+‖z‖2) = eN(u0(x)+〈(α/N)−x,∇u0(x)〉), when μhFS(z) = x,

and this follows from the pair of identities,

|zα|2 = e〈α,∇u0(x)〉, log(1 + |z|2) = 〈x,∇u0(x)〉 − u0(x) when μhFS(z) = x.

On the open orbit, we may use logarithmic coordinates z = eρ/2+iθ. Then
ρ = ∇u0(x) and the identities are equivalent to the fact that the Kähler
potential and symplectic potential are Legendre transforms of each other.
Since both sides of (2.17) are continuous, the equality extends to all of
M and P̄ .
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Applying the operator f(Dθ
N ) just replaces ei〈θ,α〉 by f( α

N ). Then, dividing
by ΠhN

FS
(z, z) gives (2.16) and (1.2). Together with the formulae above for

norms of monomials and the Szegö kernel in dimension m, the formula (1.1)
also reduces to (2.16).

3. Definition of the generalized Bernstein polynomials

We now generalize the definition of Bernstein polynomial to any polarized
toric Kähler variety, and generalize the calculations of the previous section.

We recall that a toric Kähler manifold is a Kähler manifold (M, J, ω) on
which the complex torus (C∗)m acts holomorphically with an open orbit
Mo. We assume that M is projective and that P is a Delzant polytope,
i.e., a convex integral polytope in R

m with the property that each vertex
is contained in exactly m facets, and the normals to the m facets at each
vertex form a Z-basis for a lattice Γ ⊂ R

m so that Tm = R
m/Γ is the torus

acting on MP . The convex polytope P is defined by a set of inequalities of

(3.1) 〈x, vr〉 ≥ λr, r = 1, . . . , d,

where vr is a primitive element of the lattice and inward-pointing normal to
the rth (n − 1)-dimensional face of P .

We denote by Tm = (S1)m the real torus underlying (C∗)m. By a toric
Kähler metric we mean a Kähler metric ω invariant under Tm. We assume
that 1

πω is a de Rham representative of the Chern class c1(L) ∈ H2(M, R)
of the invariant holomorphic line bundle L → M . We let h denote the
Hermitian metric on L inducing the Chern connection with curvature (1, 1)
form ωh = ω. Here, given a Hermitian metric h,

(3.2) ωh = −
√

−1
2

∂∂̄ log ‖eL‖2
h,

where eL denotes a local holomorphic frame (i.e., a nonvanishing section) of
L over an open set U ⊂ M , and ‖eL‖h = h(eL, eL)1/2 denotes the h-norm
of eL. We often write ω for ωh when the metric is fixed.

Now fix a basepoint m0 on the open orbit and identify Mo ≡ (C∗)m,
endowing Mo with the logarithmic coordinates

z = eρ/2+iϕ ∈ (C∗)m, ρ, ϕ ∈ R
m.

Over the open orbit, ω has a Kähler potential, i.e., ω = −2i∂∂̄ϕ(z). The
associated Hermitian metric then has the form h = e−ϕ. Invariance under
the real torus action implies that ϕ only depends on the ρ-variables, hence

ω =
i

2

∑

j,k

∂2ϕ

∂ρkρj

dzj

zj
∧ dz̄k

z̄k
.

We sometimes subscript ω to indicate the associated hermitian metric or
Kähler potential, e.g., ω = ωh = ωϕ. By a slight abuse of notation, we denote
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the Kähler potential in the logarithmic coordinates by ϕ(ρ). Positivity of ω
implies that ϕ is strictly convex of ρ ∈ R

n.
The real torus Tm acts on (M, ω) in a Hamiltonian fashion with respect

to ω, and its moment map μϕ = μh with respect to ωϕ = ωh is defined by

(3.3) μh(z1, . . . , zm) = ∇ρϕ(ρ1, . . . , ρm), (z = eρ/2+iθ).

The symplectic potential uϕ associated to the Kähler potential is defined to
be the Legendre-dual of ϕ, defined as follows: for x ∈ P there is a unique ρ
such that μϕ(eρ/2) = ∇ρϕ = x. Then the Legendre transform is defined to
be the convex function

(3.4) uϕ(x) = 〈x, ρ〉 − ϕ(ρ), eρ/2 = μ−1
ϕ (x)

on P .
Guillemin [15] (see also [2]) has defined a “canonical” Kähler metric and

symplectic potential, as follows: let lr : Rn → R be the affine functions,

�r(x) = 〈x, vr〉 − λr.

Then the canonical symplectic potential is defined by

(3.5) u0(x) =
∑

k

�k(x) log �k(x),

which in turn corresponds to a canonical Kähler potential. Every symplectic
potential has the same singularities on the boundary ∂P as the canonical
symplectic potential.

In general, we denote by Gϕ = ∇2
xuϕ the Hessian of the symplectic poten-

tial. It has simple poles on ∂P . We also denote by Hϕ(ρ) = ∇2
ρϕ(eρ/2)

the Hessian of the Kähler potential on the open orbit in ρ coordinates. By
Legendre duality,

(3.6) Hϕ(ρ) = G−1
ϕ (x), μϕ(eρ/2) = x.

We now let (L, h) → M denote the invariant Hermitian line bundle
with curvature ωh = ω. A natural basis of the space of holomorphic sec-
tions H0(M, LN ) associated to the Nth power of L → M corresponds to
monomials zα where α is a lattice point in the Nth dilate of the polytope,
α ∈ NP ∩Z

m. The hermitian metric h on L induces inner products HilbN (h)
on H0(M, LN ), defined by

〈s1, s2〉hN =
∫

M
(s1(z), s2(z))hN

ωm
h

m!
.

The monomials are orthogonal with respect to any such toric inner product
and have the norm-squares

(3.7) QhN (α) =
∫

Cm

|zα|2e−Nϕ(z)dVϕ(z),
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where dVϕ = (i∂∂̄ϕ)m/m!. Integrating over the torus fibers, we obtain an
expression in terms of the symplectic potential,

(3.8) QhN (α) = CL

∫

P
eN(uϕ(x)+〈(α/N)−x,∇uϕ(x)〉dx,

where CL is the (common) volume of the torus fibers. It depends on the
expression for ωm

h
m! in action-angle variables with respect to the moment map

μh, hence on the first Chern class c1(L).
The Bergman–Szegö kernels for this hermitian metric are the orthogonal

projections with respect to HilbN (h) to H0(M, LN ). If we denote the sections
corresponding to the monomials by Sα, then

ΠhN (z, w) =
∑

α∈NP

Sα(z) ⊗ Sα(w)∗

QhN (α)
.

The diagonal contraction of the kernel is denoted by ΠhN (z, z) =
∑

α∈NP ‖Sα(z)‖2
hN

Q
hN (α) .

The following definition generalizes the formula of (1.1) to any toric
Kähler manifold.

Definition 3.1. Let f ∈ C(P̄ ). The N th normalized (Bergman-)Bernstein
polynomial approximation to f with respect to the hermitian metric h on
L → M is defined by

⎧
⎨

⎩

BhN f(x) =
1

ΠhN (z, z)
NhN f(x), where

NhN f(x) =
∑

α∈NP f
(

α
N

)
eN(uϕ(x)+〈(α/N)−x,∇uϕ(x)〉)

Q
hN (α) .

To our knowledge, the only previously studied cases are the Bernstein
polynomials for the simplex (1.1) or the d-cube, where

BN (f)(x) =
∑

0≤i1,...,id≤N

f

(
i1
N

, . . . ,
id
N

) d∏

k=1

(
N

ik

)

xik
k (1 − xk)N−ik .

Here, (x1, . . . , xd) ∈ [0, 1]d.

3.1. Associated measures μz
N . As in the classical case, Bernstein poly-

nomials are closely related to certain probability measures on P̄ . We define

(3.9) μz
N :=

∑

α∈NP

PhN (α, z)
ΠhN (z, z)

δα/N ,

where PhN (α, z) denote the Fourier coefficients of the Bergman kernel with
respect to the Tm,

(3.10) PhN (α, z) :=
|zα|2e−Nϕ(z)

QhN (α)
.
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Proposition 3.2. Let f ∈ C(P̄ ) and let x = μϕ(z) and let h = e−ϕ. Then,

BhN f(x) =
∫

P
f(y)dμz

N (y).

Proof. This follows from the pair of identities,
∫

P
f(y)dμz

N (y) =
∑

α∈NP

f
( α

N

) PhN (α, z)
ΠhN (z, z)

,

=
1

ΠhN (z, z)

∑

α∈NP

f
( α

N

) eN(uϕ(x)+〈(α/N)−x,log μ−1
ϕ (x)〉

QhN (α)
.

The first equality is obvious from the definition. The second equality gener-
alizes the identity (2.18):

(3.11) |zα|2e−Nϕ(z) = eN(uϕ(x)+〈(α/N)−x,log μ−1
ϕ (x)〉), when μϕ(z) = x.

As in the case of the Fubini–Study metric, the identity splits into two iden-
tities on the open orbit,

(3.12) |zα|2 = e〈α,ρ〉, e−Nϕ(z) = eN(uϕ(x)−〈x,log μ−1
ϕ (x)〉).

The first follows from the fact that

(3.13) ∇xuϕ(x) = log μ−1
ϕ (x) = ρ,

since by (3.4), ∇xuϕ(x) = ρ + 〈x,∇xρ〉 − 〈∇ϕ(ρ),∇xρ〉 = ρ, as ∇ϕ(ρ) = x.
The second then follows from the fact that ϕ(ρ) and uϕ(x) are Legendre
duals. The identity of the proposition then extends by continuity to the
closure. �

As a simple corollary, we obtain one of the standard properties of Bern-
stein polynomials.

Corollary 3.3. Let f ∈ C(P̄ ). Then minP̄ f ≤ BhN (f)(x) ≤ maxP̄ f .

Furthermore, as an obvious consequence of the leading order asymptotics
in Theorem 1.1, we have:

Corollary 3.4. In the weak topology of measures on C(P̄ ), μz
k → δμh(z).

In [27], it will be shown that in addition the sequence {μz
k}∞

k=1 of prob-
ability measures satisfies a large deviations principle for each z (which is
uniform in z).
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3.2. Bernstein polynomials for the Guillemin Kähler metric. Let us
calculate explicitly the numerator polynomials for the canonical symplectic
potential (3.5) or Kähler form. We have,

∇u0(x) =
∑

k

(log �k)vk + v̄, v̄ =
∑

k

vk.

Hence,
〈 α

N
− x,∇u0(x)

〉
=

∑

k

〈 α

N
− x, vk

〉
log �k +

〈 α

N
− x, v̄

〉
,

and

eN(u0(x)+〈(α/N)−x,∇u0(x)〉) = e〈α−Nx,v̄〉
∏

k

(�k(x))N
k(x)+〈α−Nx,vk〉

= e〈α−Nx,v̄〉
∏

k

(�k(x))−Nλk+〈α,vk〉,

where in the last line we use that �k(x)−〈x, vk〉 = −λk. Hence, the numerator
of the canonical Bernstein polynomial may be rewritten as

(3.14) NhN f(x) =
∑

α∈NP

f
( α

N

) 1
QhN

can
(α)

e〈α−Nx,v̄〉
∏

k

(�k(x))−Nλk+〈α,vk〉,

which closely resembles the classical cases (where also v̄ = 0). Here, QhN
can

(α)
is the norming constant with respect to the canonical Hermitian met-
ric, given by (3.8) where the symplectic potential is chosen to be the
canonical one.

In general, the symplectic potential has the form

(3.15) uϕ(x) = u0(x) + gϕ(x) =
∑

k

�k(x) log �k(x) + gϕ(x),

where gϕ ∈ C∞(P̄ ) is smooth up the boundary [2,12,15]. Hence the α term
gets multiplied by the additional factor

eN(gϕ(x)+〈(α/k)−x,∇gϕ(x)〉).

4. Bernstein polynomials, Toeplitz operators and Berezin
symbols

In this section, we prove formula (1.2) in the setting of general toric Kähler
varieties. We use the notation and terminology of [24].

We state the general result in the following

Proposition 4.1. We have,

NhN (f)(x) =
(
Π̂hN f(N−1Dθ)Π̂hN

)
(eiθz, z)|θ=0;μh(z)=x.
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Remark 4.2. We note that when f ≡ 1, then NhN (f)(x) ≡ ΠhN (z, z)
(with μh(z) = x).

Proof. The proof is simply a matter of unwinding the definitions and using
some basic Fourier analysis. The Bergman kernel is a section of the bundle
(LN ) ⊗ (LN )∗ → M × M . It is simpler to deal with scalar kernels, and so
we lift the Bergman kernel to a kernel Π̂hN (x, y) on the unit circle bundle
π : X → M with respect to h in the dual line bundle L∗. In other words,
X = ∂D∗

h is the boundary of the unit disc bundle with respect to h in the
dual line bundle L∗. We use local product coordinates x = (z, θ) ∈ M × S1

on X where x = eiθ e(z)
‖e(z)‖ in terms of a local holomorphic frame e(z) for L.

When working on M we tacitly use the representative of ΠhN relative to the
frame e(z)N of LN . For the sake of brevity, we will not review the definitions
but refer to [24] for the relevant background.

The space H0(M, LN ) is naturally isomorphic to the space H2
N (X) of

CR holomorphic functions transforming by eiNθ under the S1 action of the
circle bundle X → M . The generator of the S1 action is denoted by ∂

∂θ . We
further denote by s → ŝ the lift of a section to an equivariant CR function
and by Π̂hN (x, y) the lifted Szegö kernel, i.e., the orthogonal projection from
L2(X) → H2

N (X). The monomial sections sα which equal zα on the open
orbit lift to equivariant functions ŝα on X.

By the standard linearization of geometric quantization (reviewed in this
context in [24]), the Tm action lifts to X as contact transformations of
the Chern connection form associated to h. For the sake of completeness,
let us recall the lift of the torus action to H2

N (X), and its linearization
on H0(M, LN ): The generators ∂

∂θj
of the Tm action on M lift to contact

vector fields Ξ1, . . . ,Ξm on X with respect to the vertical contact 1-form α
satisfying dα = π∗ω. The horizontal lifts of the Hamilton vector fields ξj are
then defined by

π∗ξ
h
j = ξj , α(ξh

j ) = 0,

and the contact vector fields Ξj are given by:

Ξj = ξh
j + 2πi〈μ ◦ π, ξ∗

j 〉 ∂

∂θ
= ξh

j + 2πi(μ ◦ π)j
∂

∂θ
,

where μ is the moment map corresponding to h, and where ξ∗
j ∈ R

m is the
element of the Lie algebra of Tm which acts as ξj on M .

It follows that the vector fields act as differential operators on the CR
Hardy spaces, Ξj : H2

N (X) → H2
N (X) satisfying

(4.1) (ΞjŜ)(ζ) =
∂

∂ϕj
Ŝ(eiϕ · ζ)|ϕ=0, Ŝ ∈ C∞(X) .
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Furthermore, the generator of the S1 action acts on these spaces and

(4.2)
∂

∂θ
: H2

N (X) → H2
N (X),

1
i

∂

∂θ
ŝN = NŝN for ŝN ∈ H2

N (X).

Since by (4.1), the operators Ξj act by translating functions by the Tm

action lifted to X, we henceforth denote 1
i Ξj by Dθj

. Then for 1 ≤ j ≤ m, the
lifted monomials χ̂α ∈ H2

N (X) are joint eigenfunctions of these commuting
operators,

Dθj
χ̂α = αjχ̂α, ∀α ∈ NP.

The dilation P → NP is best viewed in terms of constructing a conic set of
eigenvalues in one higher dimension by adding the operator

(4.3) Îm+1 =
1
i

∂

∂θ
−

m∑

j=1

Dθj
.

The monomials χ̂α̂ are then the joint eigenfunctions of these (m + 1) com-
muting operators and we define the “homogenization” N̂P ⊂ Z

m+1 of the
lattice points in the polytope NP to be the set of all lattice point α̂N of the
form

(4.4) α̂N = α̂ := (α1, . . . , αm, N − |α|), α = (α1, . . . , αm) ∈ NP ∩ Z
m.

Given f ∈ C∞(Rm), we now define f(Dθ) on L2(X) by the spectral
theorem for m commuting operators, i.e.,

f(Dθ) =
∫

Rm

f̂(ξ)ei〈ξ,Dθ〉dξ, where 〈ξ, Dθ〉 =
m∑

j=1

ξjDθj
.

We then have

(4.5) f(N−1Dθ)ŝα = f
( α

N

)
ŝα

Since Π̂hN (ẑ, ŵ) =
∑

α∈NP ŝα(ẑ)ŝα(ŵ), where ẑ (etc.) denotes any point of
X projecting to z under π, we have

(4.6) f(N−1Dθ)Π̂hN (eiθẑ, ŵ) =
∑

α∈NP

f
( α

N

)
ŝα(ẑ)ŝα(ŵ).

It follows that

(4.7) f(N−1Dθ)Π̂hN (eiθẑ, ŵ)|ẑ=ŵ =
∑

α∈NP

f
( α

N

)
|ŝα(ẑ)|2.

The right hand side is constant along the orbits of the S1 action and may be
identified with a function of z ∈ M . On M , we have |ŝα(ẑ)|2 = ‖sα(z)‖2

hN

and by Proposition 3.2 we obtain the definition of the numerator polynomials
when we substitute z = μ−1

h (x). This is equivalent to the statement in the
proposition. �
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To obtain the Bernstein polynomial formula, we divide by ΠhN (z, z).
As mentioned above, the ratio is the Berezin covariant symbol of
Π̂hN f(N−1Dθ)Π̂hN .

5. Proof of Theorems 1.1 and 1.2

We now use the Boutet de Monvel – Sjöstrand parametrix [3,4,8] to obtain
a complete asymptotic expansion for the Bernstein polynomials from Propo-
sition 4.1. There now exist many expositions of the construction and prop-
erties of this parametrix, so we will only briefly recall the essential elements
in the case of toric varieties [24,26]. We also use the notation x, y for points
of X, hoping that no confusion with coordinates on P will occur.

We first recall that, on the diagonal, the Bergman–Szegö kernel has a
complete asymptotic expansion,
(5.1)

ΠhN (z, z) =
dN∑

i=0

‖SN
i (z)‖2

hN
=

Nm

πm

[
1 + a1(z)N−1 + a2(z)N−2 + · · ·

]
,

for certain smooth coefficients aj(z), of which the first two lower coefficients
are

(5.2)

{
a1 = 1

2S,

a2 = 1
3ΔS + 1

24(|R|2 − 4|Ric|2 + 3S2),

where R, Ric and S denote the curvature tensor, the Ricci curvature and
the scalar curvature of ωh, respectively, and Δ denotes the Laplace operator
of (M, ωh); see [4,8, 22,32].

Off the diagonal, we have the following expansion:

Proposition 5.1. For any C∞ positive hermitian line bundle (L, h),
there exists a semi-classical amplitude in the parameter N−1, sN (z, w) ∼
Nms0(z, w) + Nm−1s1(z, w) + · · · , such that

ΠhN (z, w) = eN(ϕ(z,w)−(1/2)(ϕ(z)+ϕ(w)))sN (z, w) + O(N−∞),

where ϕ is a smooth local Kähler potential for h, and where ϕ(z, w) is the
almost-analytic extension of ϕ(z) = ϕ(z, z̄).

Since the local Kähler potentials (e.g., the Kähler potential on the open
orbit) are invariant under the Tm action, they can be expressed in the form
F (|z|2) where F ∈ C∞(R). We denote by F (z · w̄) the almost analytic
extension of F . Thus, we have:
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Proposition 5.2. For any hermitian toric positive line bundle over a toric
variety, the Szegö kernel for the metrics hN

ϕ have the asymptotic expansions
in a local frame on M ,

ΠhN (z, w) ∼ eN(F (z·w̄)−(1/2)(F (‖z‖2)+F (‖w‖2)))AN (z, w) mod N−∞,

where AN (z, w) ∼ (N
π )m(1 + a1(z,w)

N + · · · ) is a semi-classical symbol of
order m.

We now prove Theorems 1.1 and 1.2.

Proof. We apply the geometric quantizations of the torus action to get, by
Definition 3.1,

ei〈ξ,N−1Dθ〉ΠhN (eiθz, w)|z=w;θ=0 =
∑

α∈NP∩Zm

ei〈N−1α,ξ〉|zα|2e−NF (|z|2)

QhN (α)
.

By Proposition 4.1, we obtain NhN f(x) by integrating the right side against
f̂(ξ). We note that in general ei〈ξ,N−1Dθ〉ψ(eiθw)|θ=0 = ψ(ei(θ+(ξ/N))w)|θ=0 =
ψ(eiξ/Nw). Performing the same transformation on the parametrix gives

(5.3) NhN (f)(x) ∼
∫

Rm

f̂(ξ)eN(F (eiN−1ξ|z|2)−F (|z|2))AN (z, ei(ξ/N)z)dξ,

where ∼ means that the difference is a function which decays rapidly in N
along with its derivatives. Such a remainder may be neglected if we only
consider expansions modulo rapidly decaying functions of N .

We have,

FC(eiN−1ξ|z|2) − F (|z|2)

=
∫ 1

0

d

dt
FC(eitN−1ξ|z|2)dt

= iN−1
∫ 1

0
〈∇ξF (eitN−1ξ+ρ), θ〉dt

= iN−1〈∇ξF (eρ), (iξ)〉 + (iN)−2
∫ 1

0
(t − 1)∇2

ρ(F (eitN−1ξ+ρ))(iξ)2/2dt

= iN−1〈μ(z), ξ〉 + (iN)−2∇2
ρ(F (eρ))(iξ)2 + R3(ξ, N, α)

= iN−1〈μ(z), ξ〉 + (iN)−2〈Hzξ, ξ〉 + N−2R3(ξ, N, z),

(5.4)

where

(5.5) R3(ξ, N, z) := N−3
∫ 1

0
(t − 1)2∇3

ρ(F (eitξ+ρ))(iξ)3/3!,
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and where Hz = ∇2F (|z|2) = ∇2ϕ(eρ) is the Hessian in the notation (3.6).
Hence, (5.3) takes the form

NhN (f)(x)

∼
∫

Rm

f̂(ξ)ei〈μ(z),ξ〉e(iN)−1〈Hzξ,ξ〉+N−1R3(ξ,N,z)AN (z, ei(ξ/N)z, 0, N)dθ

(5.6)

and by Taylor expanding, the factor e(iN)−1〈Hzξ,ξ〉+N−1R3(θ,N,z), one obtains
an amplitude ÃN such that

(5.7) NhN (f)(x) ∼
∫

Rm

f̂(ξ)ei〈μ(z),ξ〉ÃN (z, ei(ξ/N)z, 0, N)dθ.

The amplitude ÃN has an expansion of the form,

ÃN (z, ei(ξ/N)z, 0, N
)

= Nma0 + Nm−1a1 + O(Nm−1),

for various smooth coefficients aj(z); the first one is constant. If we divide
by ΠhN (z, z) we cancel the constant and by expanding the denominator we
obtain,

NhN (f)(x) ∼
(

N

π

)m

(f(μ(z)) + N−1(i−1〈HzDx, Dx〉f(μ(z))

+ a1(z, z)f(μ(z))) + O(N−2)).(5.8)

As a check on the leading term, we set f ≡ 1 and use Remark 4.2. Since
μ(z) = x, we obtain Theorem 1.2. Dividing by ΠhN (z, z) and using (5.1)
completes the proof of Theorem 1.1. �

It is difficult (but possible) to calculate the coefficients in explicit geomet-
ric terms by this method. In the next section, we will reduce the calculation
to the known calculation of Bergman kernel expansion coefficients.

6. Calculation of coefficients for the Bernstein expansion of
Theorems 1.1 and 1.2

In this section, we give a second proof of Theorems 1.1 and 1.2 which gives a
more effective approach to the calculation of the coefficients in the Bernstein
polynomimal expansion, and in particular we calculate the operator N1 in
the expansion of Theorem 1.2. The approach is based on the localization
of the sum over α

N ∈ P ∩ 1
N Z

m around the image of z under the moment
map. For classical Bernstein polynomials, this is well-known and various
expositions can be found in [18, 20, 21]; see also [10] Lemma 6.3.5). The
localization approach reduces the calculation of the lower order terms in the
Bernstein polynomial expansion to that of the Bergman kernel expansion
in [22,32] and elsewhere.



70 S. ZELDITCH

The relevant localization lemma was proved in [26]. We use a notation
similar to [18].

Lemma 6.1 (Localization of Sums [26]). Let f ∈ C(P̄ ). Then, there
exists C > 0 so that

∑

α∈NP∩Zm

f
( α

N

) |Sα(z)|2
hN

QhN (α)
=

∑

α:|(α/N)−μh(z)|≤N−1+δ

f
( α

N

) |Sα(z)|2
hN

QhN (α)

+ Oδ(N−C).

Given the localization lemma, it is natural to Taylor expand f around
μh(z) to obtain

f
( α

N

)
=

∑

ν<2M

f (ν)(μh(eρ))
( α

N
− μh(eρ)

)ν
/ν! + RM

(
f, eρ,

α

N

)
,

where RM is the Mth order Taylor remainder. We then have,

NhN f(x) =
∑

β:|β|≤M

1
β!

Dβ
xf(μ(z))

(
∑

α∈NP∩Z

( α

N
− μh(z)

)β |Sα|2
hN

QN (α)

)

+ R(M, N, z),(6.1)

where the remainder is obtained by summing RM (f, eρ, α
N ) in the variable α

N .
The next step is to study the special functions

Iν
hN (z) :=

∑

α∈NP∩Z

( α

N
− μh(z)

)ν |Sα(z)|2
hN

QN
h (α)

=
∑

α∈P∩Z

( α

N
− μh(eρ/2)

)ν e〈α,ρ〉−Nϕt(eρ/2)

QN
h (α)

.(6.2)

Proposition 6.2. Uniformly for z ∈ M , we have

(6.3) Iν
hN (z) = O(Nm−ν/2(log N)ν).

Proof. The localization lemma implies that

Iν
hN (z) =

∑

α∈NP∩Zm:| α
N

−μh(z)|≤ C log N
N

( α

N
− μh(z)

)ν |Sα(z)|2
hN

QN (α)
+ O(N−C).
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In the domain of summation, we then have
( α

N
− μh(eρ/2)

)ν
=

(
log N√

N

)ν

,

and this implies the statement. �

We can explicitly evaluate these functions by relating them to deriva-
tives of the Bergman–Szegö kernels. The following lemma was also used
in [26]. We employ a tensor product notation ( α

N − μh(eρ/2))⊗2
ij for (αi

N −
μh(eρ/2)i)(

αj

N − μh(eρ/2)j). In the following, we implicitly assume that z lies
in the open orbit and express it as z = eρ/2+iθ. Similar formula holds at
the boundary as well where the vector fields ∂

∂ρj
are replaced by deriva-

tives in affine coordinates. For the sake of brevity, we refer to [26] for the
modifications to the formulae around the boundary.

Proposition 6.3. We have:

(1)
∑

α∈NP∩Zm( α
N − μ(eρ/2)) e〈α,ρ〉−Nϕ(eρ/2)

Q
hN (α) = 1

N ∇ρΠhN (eρ/2, eρ/2);

(2)
∑

α∈NP∩Zm( α
N − μ(eρ/2))⊗2

ij
e〈α,ρ〉−Nϕ(eρ/2)

Q
hN (α) = 1

N ΠhN (eρ/2, eρ/2)∇2
ρϕ

+ 1
N2 ∇2ΠhN (eρ/2, eρ/2).

Proof. To prove (1.1), we differentiate (3.3) to obtain

∇ρΠhN (eρ/2, eρ/2) = N
∑

α∈NP∩Zm

( α

N
− μ(eρ/2)

)

× e〈α,ρ〉−Nϕ(eρ/2)ΠhN (eρ/2, eρ/2)
QhN (α)

.

To prove (1.2), we take a second derivative of (1.1) in ρ to get

∇2
ρΠhN (eρ/2, eρ/2) = −N∇μh(eρ/2))ΠhN (eρ/2, eρ/2)

+ N2
∑

α∈NP∩Zm

( α

N
− μh(eρ/2)

)⊗2 e〈α,ρ〉−Nϕ(eρ/2)

QhN (α)
.

�

We now evaluate these functions geometrically. Recall that S is the scalar
curvature of the Kähler metric ωh. Below, Cm denotes a constant depending
only on the dimension (which may vary in each occurrence).

Proposition 6.4. We have

(1) I
(1)
hN (z) = CmNm−2∇S(z) + O(Nm−3);

(2) I
(2)
hN (z) = π−mNm−1∇2

ρϕ + 1
2Nm−2S(z)∇2

ρϕ + O(Nm−3).
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Proof. From (5.1) it follows that

∇ρΠhN (z, z) = π−mNm−1 1
2
∇S(z) + O(Nm−2),

∇ρμh(z)ΠhN (z, z) = π−mNm(∇μh +
1
2
N−1S(z)∇μh(z) + O(N−2));

∇2
ρΠhN (eρ/2, eρ/2) =

1
2
π−mNm−1∇2

ρS(z) + O(Nm−2).

We also use that ∇μh(eρ/2) = ∇2ϕ. �

To complete the second proof of Theorem 1.1, it suffices to observe that
the remainder in (6.1) after expanding to order M is O(Nm−M/2(log N)M ),
which follows from the fact that R(M, N, z) ≤ CfNmIν+1

hN (z).

6.1. Calculation of N1. By Proposition 6.4 and by (5.1) and (5.2),

NhN (f)(μ(z)) = f(μ(z))ΠhN (z, z)

+
∑

|β|=1

Dβf(μ(z))I(β)
hN (μ(z))

+
1
2

∑

|β|=2

Dβf(μ(z))Iβ
hN (μ(z)) + O(N−3/2(log N)3)

=
(

N

π

)m (

f(μ(z))+
N−1

2
(f(μ(z))S(z)+∇μh(z) · ∇2f(μ(z))

)

+ O(Nm−3/2(log N)3).

(6.4)

After multiplying by πm we obtain the stated result.

7. Dedekind–Riemann sums over lattice points: Proof of
Corollary 1.3

To prove the corollary, we integrate the expansion (5.8) over P . The terms in

(7.1) (Π̂hN f(N−1Dθ)Π̂hN )(eiθz, z)|θ=0

are the values on the diagonal of an orthonormal basis of H0(M, LN ). When
integrated over M one obtains

∑
α∈NP f( α

N ). Since (7.1) is constant along
torus orbits, and since ωm

h
m! is a constant multiple of dθ dx, we obtain

(7.2)
∑

α∈NP

f
( α

N

)
= πm

∫

P
NhN (f)(x)dx.

Here, we use that πm is the common volume of the torus fibers. We can
calculate this constant by putting f ≡ 1 and determining the leading order
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term in the asymptotics as N → ∞. The left side is #{α ∈ NP ∩ Z
m} ∼

NmVol(P ) + · · · while the right side is CL(N
π )mVol(P ) + · · · . Matching

expressions shows that the fiber volume is πm.
The existence of an asymptotic expansion for the Riemann sums thus

follows immediately from Theorem 1.2. However, it is an expansion in terms
of integrals of curvature invariants against derivatives of f over P . We now
prove that the first two terms can be put in the form stated in Corollary 1.3,
and thus to clarify the relation between the Bernstein and Euler–MacLaurin
approaches to lattice point sums.

By Proposition 6.4, only the zeroth and second order terms of the Taylor
expansion of f contribute to the N−1 term of the Riemann sum expansion,
and we have

∑

α∈NP

f
( α

N

)
= πm

∫

P
f(x)ΠhN (μ−1(x), μ−1(x))dx

+
πm

2

∑

|β|=2

∫

P
Dβf(x)Iβ

hN (x)dx + O(N−3/2(log N)3)

= Nm

∫

P
f(x)dx + Nm−1

∫

P

(
1
2
f(x)S(μ−1(x)

)

+
1
2
〈∇ρμh(μ−1(x),∇2

xf(x)〉)dx + O(Nm−3/2(log N)3).

(7.3)

Here, 〈∇μh,∇2f(μ(z))〉 denotes the Hilbert–Schmidt inner product of the
tensors.

By Legendre duality, the Hessians of the Kähler potential and symplectic
potentials are inverses, i.e.,

(7.4) ∇ρμh(μ−1(x) = (∇2uϕ(x))−1.

Hence,

(7.5) 〈∇ρμh(μ−1(x),∇2
xf(x)〉dx =

∫

P

∑

jk

ujk
ϕ f,jk dx.

Further, we recall (cf. [2, 12]) that the scalar curvature of a toric Kähler
metric is given in terms of the symplectic potential by

(7.6) S = −
∑

j,k

∂2ujk
ϕ

∂xj∂xk
,

where ujk
ϕ , 1 ≤ j, k ≤ n are the entries of the inverse of the matrix ∇2uϕ;

see [12, 3.1.4].
We now use the following integration by parts formula due to Donaldson:
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Lemma 7.1 ( [12], Lemma 3.3.5). For any symplectic potential uϕ and
f ∈ C∞,

∑
jk ujk

ϕ f,jk ∈ L1(P ) and
∫

P

∑

jk

ujk
ϕ f,jk =

∫

P

∑

jk

(ujk
ϕ ),jkf dx +

∫

∂P
fdσ,

where dσ is the measure defined in Corollary 1.3.

Combining Lemma 7.1 and (7.6) we obtain
∫

P

1
2
f(x)S(μ−1(x)) +

1
2
〈∇ρμh(μ−1(x),∇2

xf(x)〉dx =
1
2

∫

∂P
fdσ,

proving that the two term expansion in Corollary 1.3 is correct.

Remark 7.2. (i) We note that in [12, Lemma 3.3.5], the boundary term
is given the − sign. However, the measure dσ was only defined there (page
307) up to sign. The sign of this term is universal and by comparing with
the one-dimensional case, we see that it is positive.

(ii) To connect this calculation to the classical one-dimensional case (2.3),
and perhaps clarify the notation, we note that its Nm−1 term (with m = 1),

∫ 1

0
f(x)dx +

1
2

∫ 1

0
(x − x2)f ′′(x)dx,

may be expressed in terms of the Fubini–Study Kähler potential and moment
map as

∫ 1

0

d

dρ
μFS(μ−1(x))f ′′(x)dx, x = μ(eρ/2),

since

ϕFS(eρ/2) = log(1 + eρ),
d

dρ
ϕFS(eρ/2) = μFS(eρ/2) =

eρ

1 + eρ
= x,

and
d2

dρ2 ϕFS(eρ/2) =
eρ

(1 + eρ)2
= x(1 − x).

Regarding S, we recall that it is the scalar curvature of the metric g11̄
associated to the Kähler form ωFS = i

2∂∂̄(1 + |z|2), thus

S = − ∂2

∂z∂z̄
log(1 + |z|2)−2 = 2 Tr g11̄ = 2.
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