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COMPACTNESS FOR PUNCTURED HOLOMORPHIC
CURVES

K. Cieliebak and K. Mohnke

Bourgeois, Eliashberg, Hofer, Wysocki and Zehnder recently proved
a general compactness result for moduli spaces of punctured holomor-
phic curves arising in symplectic field theory. In this paper we present
an alternative proof of this result. The main idea is to determine a pri-
ori the levels at which holomorphic curves split, thus reducing the proof
to two separate cases: long cylinders of small area, and regions with
compact image. The second case requires a generalization of Gromov
compactness for holomorphic curves with free boundary.

1. Introduction

In this paper we prove the following compactness result for holomorphic
curves under the splitting of a symplectic manifold along a stable hyper-
surface. See Section 2 for all the definitions.

Theorem 1.1. Let (X, ω, J) be a closed symplectic manifold with a tamed
almost complex structure. Let M ⊂ X be a closed stable hypersurface on
which all closed Reeb orbits are Morse–Bott non-degenerate. Let Jk be the
sequence of almost complex structures obtained by stretching the neck along
M . Let fk : (Σk, jk) → (X, Jk) be a sequence of holomorphic curves of the
same genus such that the areas

∫
Σk

f∗
kω are uniformly bounded. Then a sub-

sequence of (fk) converges to a stable broken holomorphic curve F .

Here the notion of convergence includes the following:

• convergence of the underlying Riemann surfaces to a decorated nodal
curve;
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• uniform convergence of maps (after reparameterizations) that is smooth
outside some collection of simple loops;

• convergence of areas and of homology classes.
This notion of convergence is relevant in symplectic field theory [5]. An

analogous compactness theorem was proved by Bourgeois et al. [3]. In fact,
Theorem 1.1 is only formulated for a closed manifold X instead of a general
symplectic cobordism. This special situation was chosen in order to keep
the notation simple and because it naturally arises in applications, e.g., [4].
Moreover, all the essential features are already present in this situation and
the proof immediately generalizes to a general symplectic cobordism, see
Remark 2.15.

So why bother to present a new proof of the result in [3]? In fact, we
had developed the ideas for the present paper (in the contact case) before
[3] became available. It then became clear that our proof is orthogonal to
the one in [3]. Roughly speaking, the proof in [3] focuses on the domains,
ignoring the level structure in the image (and reconstructing it a posteriori),
while our proof focuses on the level structure in the image, ignoring the
domains (and reconstructing them a posteriori). More technically, the proof
in [3] is based on repeated bubbling off analysis at points where the gradient
explodes, while our proof follows the strategy of Gromov’s proof [6] in the
closed case. Analyzing changes of action and topology of sub-level sets, we
determine a priori the levels at which splitting occurs. This reduces the proof
to two separate cases: long cylinders of small area and regions with compact
image. The first case also arises in [3] and we quote the main technical
result in Section 4. The second case requires the following generalization of
Gromov compactness to holomorphic curves with free boundary, which is
proved in Section 3 (the precise statement is Theorem 3.2).

Theorem 1.2. Let fk : (Σk, jk) → (X, J) be a sequence of holomorphic
curves defined on compact surfaces with boundary of the same genus and with
the same number of boundary components. X is not necessarily closed here.
Suppose that the areas are uniformly bounded and the images are contained
in a compact subset. Moreover, suppose that the boundary circles have dis-
joint collars whose modulus is uniformly bounded below by a sufficiently large
constant and the differentials of fk on these collars are uniformly bounded
below and above. Then a subsequence of (fk) converges to a nodal holo-
morphic curve.

A similar situation was considered in [11]. The point here is that the
convergence is up to the boundary and no area nor topology is lost.

This paper was originally restricted to the case that the hypersurface
M is of contact type and separates X into two components. Following the
referee’s suggestion, we subsequently rewrote the paper to accommodate the
general situation of a stable hypersurface considered in [3].
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2. Statement of the compactness theorem

2.1. Hamiltonian structures. Let M be a (2n − 1)-dimensional closed
manifold. A Hamiltonian structure is a closed 2-form ωM of (maximal) rank
n − 1 on it. This implies that the kernel Ker(ωM ) = {v ∈ TxM | ωM (v, ·) =
0} is a one-dimensional subspace of TxM for all x ∈ M . We will call it the
Hamiltonian line field. Such a form ωM is said to be stable if there exists a
1-form λ on M with Ker(ωM ) ⊂ Ker(dλ) while λ|Ker(ωM ) �= 0 everywhere.
Notice that the form ωM + d(rλ) is a symplectic form on (−ε, ε) × M , with
r ∈ (−ε, ε) for ε > 0 so small that r dλ + ωM is non-degenerate on Ker(λ)
for |r| < ε.

Example 2.1. Let λ ∈ Ω1(M) be a contact 1-form. Then dλ is of maximal
rank and thus defines a Hamiltonian structure.

2.2. Reeb vector field. In particular, λ uniquely determines a section of
the Hamiltonian line field, R, by the condition λ(R) ≡ 1 which we will refer
to as the Reeb vector field. A closed orbit γ of the Reeb vector field is called
non-degenerate if the linearized return map on a transverse section has no
eigenvalue 1. The closed Reeb orbits are called Morse–Bott non-degenerate
in the sense of [2, 3] if the following holds: For all T > 0, the set NT ⊂ M
formed by the T -periodic Reeb orbits is a closed submanifold, the rank of
dλ|NT

is locally constant, and TpNT = ker(TpφT − 1l) for all p ∈ NT , where
φt is the Reeb flow. Note that the case dim NT = 1 corresponds to non-
degeneracy of closed Reeb orbits. We will refer to this case as the Morse
case.

2.3. Stable hypersurfaces. A hypersurface in a symplectic manifold is
called stable if the restriction of the symplectic form is a stable Hamiltonian
structure.

Example 2.2. If the Hamiltonian structure of the hypersurface is defined
by a contact form λ, i.e., ω|M = dλ, we call it a hypersurface of contact type.

The name “stable” is explained by the following.

Lemma 2.3. For a closed hypersurface M in a symplectic manifold (X, ω),
the following are equivalent:

(a) M is stable in the sense of [10], i.e., there exists a tubular neighborhood
(−ε, ε) × M of M = {0} × M such that the Hamiltonian line fields on
{r} × M are conjugate for all r ∈ (−ε, ε).

(b) There exists a vector field Y transverse to M such that ker(ω|M ) ⊂
ker(LY ω|M ).

(c) (M, ωM := ω|M ) is a stable Hamiltonian structure.
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Proof.
(a) =⇒ (b): Let (−ε, ε) × M be a tubular neighborhood such that

ker(ω|{r}×M ) is independent of r. Set Y := ∂
∂r on (−ε, ε) × M and denote

by φt : (r, x) �→ (r + t, x) its flow. Then ker(φ∗
t ω|{0}×M ) is constant in t and

differentiation at t = 0 yields ker(ω|M ) ⊂ ker(LY ω|M ).
(b) =⇒ (c): Set λ := iY ω|M .
(c) =⇒ (a): The closed 2-form

ω̃ := ωM + d(rλ) = ωM + dr ∧ λ + r dλ

is symplectic on (−ε, ε)×M for ε sufficiently small. Its kernel ker(ω̃|{r}×M )
contains the Reeb vector field R and is thus independent of r ∈ (−ε, ε). By
the coisotropic neighborhood theorem, a neighborhood of M in (X, ω) is
symplectomorphic to

(
(−ε, ε) × M, ω̃

)
. �

2.4. Symplectic cobordisms. A symplectic cobordism is a compact
symplectic manifold (X̄, ω) with stable boundary ∂X̄ = M 	 M . Here
we allow one or both of M, M to be empty. A connected component
M of the boundary belongs to M if its collar is symplectomorphic to(
(−ε, 0] × M, ω|M + d(rλ)

)
and to M otherwise. Notice that this specifi-

cation depends on the choice of λ and can be reversed by replacing λ by
−λ. Let X be the manifold obtained by gluing R+ × M and R− × M to
X̄ identifying the corresponding components of the boundary. X is diffeo-
morphic to Xε obtained by gluing [0, ε)×M and (−ε, 0]×M to X̄ instead of
the infinite cylinders. On the collars of the boundary components, we have
ω = ωM + d(rλ). For ε small enough we can thus extend the symplectic
structure to Xε and obtain a symplectic structure on X which will control
the almost complex structure introduced below. We usually refer to X as the
symplectic cobordism with positive end R+ × M and negative end R− × M
although the symplectic structure on it is not determined by ω on X̄. We
will not need to specify it nor should we due to the character of the control
by Hofer’s energy. Obvious examples of symplectic cobordisms are closed
symplectic manifolds and cylinders over manifolds with stable Hamiltonian
structures.

2.5. Almost complex structures. Let (M, ωM ) be a Hamiltonian
structure. Let J be a translation invariant almost complex structure on
the cylinder R × M . Denote by λ ∈ Ω1(M) the 1-form which is uniquely
determined by π∗

Mλ(J(∂/∂r)) ≡ 1 and λ|ξ = 0 for the CR-structure
ξ := T ({0} × M) ∩ J(T ({0} × M)).

We call J tamed by ωM if
• J(∂/∂r) = R is a vector field on M ;
• ωM (R, ·) = 0;
• dλ(R, ·) = 0;
• ωM (v, Jv) > 0 for all v ∈ ξ.



PUNCTURED HOLOMORPHIC CURVES 593

Notice that λ(R) ≡ 1 by the definition of λ and the first requirement.
The existence of such structure implies that ωM is stable. Note that there
exists an ε > 0, such that (ωM + rdλ)(v, Jv) > 0 for all v ∈ ξ and |r| ≤ ε.
There also exists a (possibly smaller) ε > 0 such that (ωM +rdλ)(v, Jv) > 0
for all v ∈ T (R × M) and |r| ≤ ε.

An almost complex structure on a symplectic cobordism (X, ω) is called
tamed if it is equal to a structure on the cylinders R×∂X̄ tamed by ω|∂X̄ on
the cylindrical ends and ω(v, Jv) > 0 for all v ∈ TX̄. Tamed almost complex
structures exist and form a contractible space J (with the C∞ topology).

2.6. Punctured holomorphic curves. Consider an almost complex struc-
ture JM on R × M which is tamed by a stable Hamiltonian structure ωM .
Let λ be the corresponding 1-form. Let γ : [0, T ] → M be a (not necessarily
simple) closed orbit of the Reeb vector field R of period T . A J-holomorphic
map f = (a, u) : D\0 → R×M of the punctured unit disk is called positively
(resp. negatively) asymptotic to γ if limρ→0 a(ρeiθ) = ∞ (resp. −∞) and
limρ→0 u(ρeiθ) = γ(Tθ/2π) (resp. limρ→0 u(ρeiθ) = γ(−Tθ/2π)) uniformly
in θ.

Now let (X, ω) be a symplectic cobordism with tamed almost complex
structure J . A punctured holomorphic curve in (X, J) consists of the follow-
ing data:

• A Riemann surface (Σ, j) with distinct positive and negative points
z := (z1, . . . , zp), z := (z1, . . . , zp). We denote by Σ∗ := Σ\{zi, zj} the
corresponding punctured Riemann surface.

• Corresponding vectors Γ := (γ1, . . . , γp), Γ := (γ1, . . . , γp
) of closed

Reeb orbits in M, M .
• A (j, J)-holomorphic map f : Σ∗ → X which is positively (resp. nega-

tively) asymptotic to γj (resp. γ
j
) at the punctures zj (resp. zj).

In a symplectization R × M , a cylinder over a T -periodic Reeb orbit γ

f : R × R

Z
→ R × M, (s, t) �→

(
Ts, γ(Tt)

)

is a punctured holomorphic curve with one positive and one negative
puncture.

Denote by Σ̄ the compactification of the punctured surface Σ∗ by adding
a circle at each puncture, and abusing notation by X̄ the compactifica-
tion of the manifold X by adding a copy of M resp. M at the positive
resp. negative end. The latter space is indeed diffeomorphic to the original
symplectic manifold with boundary. In view of the behavior near the punc-
tures, the holomorphic map f : Σ∗ → X above extends to a continuous map
f̄ : Σ̄ → X̄. This extension represents a relative homology class

[f̄ ] ∈ H2(X̄, Γ ∪ Γ).
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2.7. Neck stretching. Consider a closed connected symplectic manifold
(X, ω) and a closed stable hypersurface M ⊂ X. Let λ be the correspond-
ing 1-form on M and ωM := ω|M . Fix a parameterization of a bi-collar
neighborhood by [−ε, ε] × M on which ω = ωM + d(rλ). Pick a tamed
almost complex structure J on (X, ω), i.e., ω(X, JX) > 0 for any X ∈ TX.
Suppose its restriction JM to [−ε, ε] × M is the restriction of an ωM–tamed
structure on R × M with λJ = λ.

Define a sequence of symplectic manifolds as follows. Denote by X̄0 :=
X\(−ε, ε)×M the manifold with boundary ∂X̄0 = M+

∐
M−, where M− :=

{−ε} × M and M+ := {ε} × M . For an integer k ≥ 0, let

Xk := X̄0 ∪M−�M+ ([−k − ε, ε] × M)

where M− is identified with {−k − ε} × M while M+ is identified with
{ε} × M . This manifold is, of course, canonically diffeomorphic to X, but
Xk is a more convenient domain for describing the deformed structures.
Define an almost complex structure on Xk by

Jk :=

{
J on X̄0,

JM on [−k − ε, ε] × M.

This almost complex structure is tamed by the symplectic form on Xk

given by

ωφ :=

{
ω on X̄0,

ωM + d(φλ) on [−k − ε, ε] × M,

where φ : [−k − ε, ε] → [−ε, ε] is a diffeomorphism with φ′ ≡ 1 near the end
points of the interval. Note that the cohomology class [ωφ] does not depend
on the choice of such a function φ. As k → ∞, an observer in Xk will see
either one of the following symplectic cobordisms arising as a limit: one of
the connected components of X0 (X̄0 completed with half cylinders over M
at their boundary components) or R × M . The almost complex structures
will converge to tamed ones on all of these cobordisms, ωM–tamed on the
ends and translation invariant on R × M . The symplectic forms, however,
will only converge in a certain sense if we carefully choose a sequence (φk) of
such functions. Moreover, there is no canonical choice of symplectic forms
in the limit.

Example 2.4 [The contact case]. Let us consider the case that M ⊂ X is a
hypersurface of contact type and that M separates X into two components
X̄0 = X̄+

0 	 X̄−
0 . In this case, we can define another sequence of symplectic

structures ωk by setting

ωk :=

⎧
⎪⎨

⎪⎩

ω on X̄+
0 ,

d(erλ) on [−k, 0] × M,

e−kω on X̄−
0 .
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Here we use a slightly different symplectic identification of a neighborhood
of M with ([log(1 − ε), log(1 + ε)] × M, d(erλ)). The results of the present
paper were originally restricted to this case. This explains why all our figures
show this feature.

In contrast to the general case, here the limits are equipped with natural
symplectic structures: Each cylinder R×M is equipped with the symplectic
form d(erλ), and X0 = X+

0 	 X−
0 is equipped with the symplectic forms

ω± on X±
0 satisfying ω± = ω on X̄±

0 and ω± = d(erλ) on R± × M . Notice
that to “see” these symplectic structures on R × M and X−

0 in the limit,
the observer has to rescale them. For example, ω− is obtained as the limit
of ekωk on compact subsets of X−

0 .

2.8. Broken holomorphic curves. We will now describe the limiting
objects of sequences of Jk-holomorphic curves in the neck stretching pro-
cedure. We retain the setup of the preceding section. Assume for simplicity
that M is connected; see Remark 2.14 at the end of this section for the
modifications required in the disconnected case.

Given an integer N ≥ 1, we set

(X(ν), J (ν)) :=

{
(X0, J) for ν = 0, N + 1
(R × M, JM ) for ν = 1, . . . , N.

Define the disjoint union

X∗ := X(0) 	
N∐

ν=1

X(ν),

equipped with the almost complex structures J∗ induced by the J (ν). Glue
the positive boundary component of the compactification X(ν) (by copies
of M) to the negative boundary component of X(ν+1) to obtain a compact
topological space X̄.

Note that X̄ is naturally homeomorphic to X (see the proof of Lemma 2.6
for a particular homeomorphism), so we can identify homology classes in X
and X̄. The natural inclusion X∗ ⊂ X̄ is dense. Its complement consists of
a finite number of disjoint copies of M .

Let Σ̄ be a closed oriented surface, z = (z1, . . . , zq) ∈ Σ̄ q distinct points,
and ∆ = ∆n ∪ ∆p ⊂ Σ̄\{z1, . . . , zq} a collection of finitely many disjoint
simple loops divided into two disjoint sets. Denote by Σ the surface obtained
by collapsing the curves in ∆n to points. This way we think of ∆n as the set
of nodes of Σ. The points z1, . . . , zq will usually be referred to as marked
points. Write

Σ∗ := Σ\∆p =: Σ(0) 	
N∐

ν=1

Σ(ν),
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as a disjoint union of (not necessarily connected) components Σ(ν). Let j be
a conformal structure on Σ̄\∆ such that (Σ̄\∆, j) is a punctured Riemann
surface together with an identification of distinct pairs of punctures given
by the elements of ∆. This gives Σ∗ the structure of a nodal punctured
Riemann surface with a remaining identification of punctures given by the
loops {δi}i∈I = ∆p. A broken holomorphic curve (with N + 1 levels)

F = (F (0), F (1), . . . , F (N)) : (Σ∗, j) → (X∗, J∗)

is a collection of punctured holomorphic curves F (ν) : (Σ(ν), j) → (X(ν), J (ν))
such that F : Σ∗ → X∗ extends to a continuous map F̄ : Σ → X̄. Moreover,
we require that F is stable: For 1 ≤ ν ≤ N , F (ν) is not the union of cylinders
over closed Reeb orbits without any marked points on them. Moreover, Σ∗

does not contain any sphere with less than three special points (punctures,
nodal or marked points), nor a torus without special points, on which F is
constant.

See Figure 1 for the case N = 2 and X0 = X+
0 	 X−

0 consisting of two
connected components X+ and X−. In this case, we denote by X

(0)
± , F

(0)
±

the sets and maps which belong to either side of M .
Note that, by continuity of F̄ , the number of positive punctures of F (ν)

agrees with the number of negative punctures of F (ν+1) and the asymptotic
Reeb orbits at the punctures agree correspondingly: Γ(ν) = Γ(ν+1).

Remark 2.5. Every broken holomorphic curve has an underlying graph.
Its vertices are the connected components of Σ∗, and each loop δi defines
an edge between the corresponding components. Note that if Σ̄ has genus
zero, the underlying graph is a tree. See Figure 1 for a genus three case.

Pick a homeomorphism Φ : X̄ → X which is the identity on X\(−ε, ε)×M
and of the form (r, x) ∈ R × M �→

(
φ(r), x

)
on the cylindrical parts, where

the homeomorphism

φ : [−ε, ∞] ∪±∞ [−∞,∞] ∪±∞ · · · ∪±∞ [−∞, ε] → [−ε, ε]

is a diffeomorphism outside the points ±∞ and φ(r) = r near ±ε. Denote
by φ(ν) the restriction to the union of the first and last interval if ν = 0 and
to the (ν +1)st interval if ν = 1, . . . , N . Note that Φ∗ω defines a symplectic
form ωφ on X∗ which is of the form ωM + d(φλ) on the cylindrical part.
Moreover, the continuous map Φ◦ F̄ : Σ → X represents the homology class
A ∈ H2(X; Z).

Lemma 2.6. The homology class A := [F̄ ] ∈ H2(X; Z) of a non-constant
broken holomorphic curve F : (Σ∗, j) → (X∗, J∗) satisfies

〈[ω], A〉 =
∫

Σ∗
(Φ ◦ F )∗ω =

∫

Σ∗
F ∗ωφ > 0.

In particular, the integral of ωφ does not depend on the choice of φ.
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X
(0)
+ F

(0)
+

X(2) ∼=R× FM (2)

X(1) ∼=R× FM (1)

X
(0)
− F

(0)
−

Figure 1. A broken holomorphic curve of genus 3 in the
setting X0 = X+

0 	 X−
0 .

Proof. We first note that Φ∗ω is tamed by J∗. Hence
∫

Σ∗
(Φ ◦ F )∗ω =

∫

Σ∗
F ∗ωφ > 0

for every non-constant broken holomorphic curve F : (Σ∗, j) → (X∗, J∗).
For the proof of the equality, we first describe a situation were

Stokes’ theorem holds which is maybe well-known but included for sake of
completeness.

2.9. Claim. Let F : C → M be a continuous map from a smooth compact
manifold C with boundary ∂C = B to another smooth manifold M . Suppose
that F |int C and F |B are smooth and there exists an exhaustion C1 ⊂ C2 ⊂
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· · · ⊂ intC, where Ci are smooth manifolds with boundaries Bi, together
with diffeomorphisms ϕi : B → Bi ⊂ C such that F ◦ϕi → F |B in C1. Then
Stokes’ theorem holds, i.e., for any k-form λ on M , k = dimC − 1, we have

∫

int C
d(F ∗λ) =

∫

B
F ∗λ

whenever the integrand of the left-hand side is absolutely integrable.
Using the standard form of Stokes’ theorem the proof is very simple. Since

the Ci are smooth manifolds, we have
∫

Ci

F ∗dλ =
∫

Bi

F ∗λ.

Now by assumption, both sides converge to the corresponding expressions
of the claim.

Turning back to the proof of the lemma, note that in view of the asymp-
totic behavior of the F (ν) the assumptions of the claim are satisfied. More-
over, in some small neighborhood N (ν) of the corresponding set of Reeb
orbits Γ(ν) = Γ(ν+1), the form ωM is exact, i.e., there is a 1-form α(ν) on N (ν)

with dα(ν) = ωM |N(ν) . For R sufficiently large Γ(ν)
R := F (ν)(Σ(ν)) ∩ ({R} ×

M) ⊂ N (ν) consists of as many loops as Γ(ν) and each of them is C1-
close to the corresponding Reeb orbit. Analogously, Γ(ν)

R := F (ν)(Σ(ν)) ∩
({−R} × M) ⊂ N (ν−1) is a set of loops which is C1-close to Γ(ν). Now
γ

(ν)
R := (F (ν))−1(Γ(ν)

R ) and γ
(ν)
R := (F (ν))−1(Γ(ν)

R ) are small simple loops
around the corresponding positive and negative punctures, respectively. The
region between γ

(ν)
R and γ

(ν+1)
R in Σ̄ consists of a disjoint union A(ν) of annuli

bounded by one component of each set. So we can deform F̄ to a smooth
map F̃ : Σ → X̄ (i.e., Φ ◦ F̃ is smooth) which agrees with F outside these
annuli and maps each A(ν) into the corresponding neighborhood N (ν). Now
by the claim above,

∫

A(ν)
F ∗(ωM + d(φλ)) =

∫

γ
(ν+1)
R

(
F (ν+1)

)∗ ((
α(ν) + φ(ν+1)(−R)λ

)

−
∫

γ
(ν)
R

(
F (ν)

)∗(
α(ν) + φ(ν)(R)λ

))
,

since the integrals over the common boundaries of the annuli cancel each
other. But the integrals on the right-hand side are exactly the same as the
integral of F̃ ∗(α(ν) + φλ) over the same set of loops. Thus by (ordinary)
Stokes’ theorem, we obtain

∫

A(ν)
F ∗(ωM + d(φλ)

)
=

∫

A(ν)
F̃ ∗(ωM + d(φλ)

)
.
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Since F = F̃ outside the annuli A(ν), we conclude that
∫

Σ∗
F ∗Φ∗(ω) =

∫

Σ̄
F̃ ∗Φ∗(ω) = 〈[ω], [F̃ ]〉 = 〈[ω], A〉,

where [F̃ ] = [F̄ ] = A because F̃ was a deformation of F̄ . �

For ∆p = (δi)i∈I , let I(ν) be the set of i such that δi is adjacent to Σ(ν)

and Σ(ν+1). Fix disjoint embedded annuli

Ai ∼= [−1, 1] × R

Z
⊂ Σ\∆n

such that {0} × R/Z = δi, and {−1} × R/Z ⊂ Σ(ν) for i ∈ I(ν).

2.10. Convergence to a stable broken holomorphic curve. Now we
return to the sequence of almost complex manifolds (Xk, Jk) defined above.
For R ∈ R, denote by

Xk → X̄0 ∪M−�M+ [−k − ε + R, ε + R] × M, x �→ x + R

the map which equals the identity on X̄0 and is given by (r, x) �→ (r + R, x)
on [−ε − k, ε] × M . Consider sequences of numbers

−k = r
(0)
k < r

(1)
k < · · · < r

(N+1)
k = 0

such that r
(ν+1)
k − r

(ν)
k → ∞ as k → ∞. Define the manifolds

X
(ν)
k := X̄0 ∪M−�M+ [−ε − k − r

(ν)
k , ε − r

(ν)
k ] × M, ν = 1, . . . , N,

X
(0)
k :=

[

−k

2
, ε

]

× M ∪M+ X̄0 ∪M−

[

−ε,
k

2

]

× M

(−k/2, x)
∼

(
k

2
, x

)

.

Note that for an observer in (0, x) ∈ X
(ν)
k with x ∈ M , we have X

(ν)
k → X(ν)

on compact subsets containing (0, x) as k → ∞. For maps fk : Σk → Xk

define

f
(ν)
k : Σk → X

(ν)
k , f

(ν)
k (z) := fk(z) − r

(ν)
k , ν = 1, . . . , N.

For ν = 0, let f
(0)
k : Σk → X

(0)
k be composition of f with the map Xk → X

(0)
k

that equals the identity on [−k/2, ε] × M ∪ X̄0 and maps (r, x) �→ (r + k, x)
on [−k − ε, −k/2] × M . Denote by πR : R × M → R and πM : R × M → M
the obvious projections.

Finally, let a sequence of diffeomorphisms φk : [−ε − k, ε] → [−ε, ε] be
given with φ′

k ≡ 1 near the boundaries. Define

φ
(ν)
k := φk

(
· +r

(ν)
k

)
:
[
−ε − k − r

(ν)
k , ε − r

(ν)
k

]
→ [−ε, ε]

for ν = 1, . . . , N . For ν = 0, let

φ
(0)
k : [−k/2, ε] ∪ [−ε, k/2]

(−k/2 ∼ k/2)
−→ [−ε, ε]
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be the map which equals φk on [−k/2, ε] and φk(·−k) on [−ε, k/2]. Suppose
that limk→∞ φ

(ν)
k = φ(ν) in C∞

loc for ν = 0, . . . , N , with φ(ν) as defined right
before Lemma 2.6.

Definition 2.7. A sequence of punctured holomorphic curves with q marked
points fk : (Σk, jk, zk) → (Xk, Jk) converges to a broken holomorphic curve
with q marked points F : (Σ∗, j, z) → (X∗, J∗) if there exist orientation
preserving diffeomorphisms ϕk : Σk → Σ̄ and numbers −k = r

(0)
k < r

(1)
k <

· · · < r
(N+1)
k = 0 with r

(ν+1)
k − r

(ν)
k → ∞ such that the following holds:

(a) (ϕk)∗jk → j in C∞
loc on Σ∗\∆n and ϕk(zl

k) → zl for l = 1, . . . , q.
(b) For every i ∈ I, the annulus

(
Ai, (ϕk)∗jk

)
is conformally equivalent to

a standard annulus [−Li
k, L

i
k] × R/Z by a diffeomorphism of the form

(s, t) �→
(
σ(s), t

)
, with Li

k → ∞ as k → ∞.
(c) f

(ν)
k ◦ ϕ−1

k → F (ν) in C∞
loc on Σ(ν)\∆n and in C0

loc on Σ(ν).
(d) For every i ∈ I(ν), πM ◦fk ◦ϕ−1

k → πM ◦ F̄ uniformly on Ai. Moreover,
for every R > 0, there exist ρ > 0 and K ∈ N such that πR ◦ fk ◦
ϕ−1

k (s, t) ∈ [r(ν)
k + R, r

(ν+1)
k − R] for all k ≥ K and all (s, t) ∈ Ai with

|s| ≤ ρ.
(e)

∫
Σk

f∗
kωφk

→
∫
Σ∗ F ∗ωφ = ω([F̄ ]).

Remark 2.8.
(1) Condition (b) implies that the conformal structures (ϕk)∗jk converge

to j as a (partially) decorated nodal surface in the sense of [3].
(2) The sequence r

(ν)
k is almost uniquely determined by condition (c): If

condition (c) also holds with r
(ν)
k replaced by s

(ν)
k , then r

(ν)
k − s

(ν)
k

remains bounded as k → ∞. Here we use the stability assumption.
(3) Condition (d) implies convergence of homology classes [fk ◦ ϕ−1

k ] →
[F̄ ] ∈ H2(X; Z) under the canonical identifications H2(Xk) ∼= H2(X̄) ∼=
H2(X).

2.11. Compactness. We will actually prove the following more precise
version of Theorem 1.1 .

Theorem 2.9 (Gromov–Hofer compactness). Let (X, ω) be a closed sym-
plectic manifold and M ⊂ X a stable closed hypersurface. Assume that
all closed Reeb orbits on (M, λ) are Bott non-degenerate. Define (Xk, Jk)
as above. Let fk : (Σk, jk, zk) → Xk be a sequence of Jk-holomorphic
curves of the same genus with q marked points and with uniformly bounded
area

∫
Σk

f∗
kω ≤ E0, where we identify Xk

∼= X. Then a subsequence
of (fk) converges to a broken holomorphic curve with q marked points
F : (Σ∗, j, z) → (X∗, J∗) in the sense of Definition 2.7.

The proof of Theorem 2.9 is carried out in Section 5. As explained above,
the proof reduces to two separate cases: long cylinders of small area and
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regions with compact image. The first case also arises in [3] and we quote the
main technical result in Section 4. The second case requires a generalization
of Gromov compactness to holomorphic curves with free boundary, which is
proved in Section 3.

The following corollary is sometimes useful [4].

Corollary 2.10. In the situation of Theorem 2.9, assume in addition that
the genus is zero and all the fk represent a homology class A which cannot
be written as A = B + C with B, C ∈ H2(X; Z) satisfying ω(B), ω(C) > 0.
Then F is a broken holomorphic curve without nodes, i.e., ∆n = ∅ and the
convergence statements simplify accordingly .

Proof. Suppose F has a node. Since the genus is zero, the node decomposes
the domain Σ into two connected components Σ0, Σ1. The restrictions of F
to these components define non-constant stable broken holomorphic curves
F0, F1 representing homology classes A0, A1 ∈ H2(X; Z) with A0 + A1 = A.
Then Lemma 2.6 yields ω(A0), ω(A1) > 0, contradicting the assumption
on A. �

Next consider the case that M ⊂ X is a hypersurface of contact type
which separates X into X̄0 = X̄+

0 	 X̄−
0 . Define the symplectic structures

ωk on Xk and ω± on X±
0 as in Example 2.4. Denote by

F
(0)
± : Σ(0)

± → X±
0 ⊂ X0

the components of F (0) in X±
0 . The following corollary is important for the

applications in [4]. It will be proved at the end of Section 5.

Corollary 2.11. In the situation of Theorem 2.9, assume in addition that
M is of contact type and separates X into two components X±

0 . Then with
the above notation, we have

lim
k→∞

∫

Σk

f∗
kωk =

∫

Σ(0)

(
F

(0)
+

)∗
ω+.

2.12. Reformulation. Before turning to the proof, let us give a reformu-
lation of Theorem 2.9. Define the intervals

E(ν) :=

⎧
⎪⎨

⎪⎩

[0,∞) for ν = 0,

(−∞,∞) for ν = 1, . . . , N,

(−∞, 0] for ν = N + 1

and glue their compactifications along their endpoints to

Ē := E(1) ∪±∞ E(2) ∪±∞ · · · ∪±∞ E(N+1).

Then the topological space X̄ can be written as

X̄ = X̄0 ∪M−�M+ (Ē × M).
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Since Ē is homeomorphic to a closed interval, X̄ has naturally the struc-
ture of a topological manifold. We can define a smooth structure on X̄
as follows. Set E∗ :=

∐N
ν=1 E(ν) ⊂ Ē. Pick a strictly increasing smooth

parameterization

Φ : Ē → [a, b]

onto a closed interval [a, b] ⊂ R whose restriction to E∗ is a diffeomorphism
onto its image. The induced homeomorphism Φ̂ : X̄ → Y onto the smooth
manifold

Y := X̄0 ∪M−�M+ [a, b] × M

(with the identity on X̄0) induces a smooth structure on X̄. Any two such
smooth structures are obviously diffeomorphic. Fix a model Y and denote
the restrictions of Φ to E(ν) by

Φ(0) : [0,∞) →
[
a(0), a(1)), Φ(N+1) : (−∞, 0] →

(
a(N), a(N+1)],

Φ(ν) : (−∞,∞) →
(
a(ν−1), a(ν)), ν = 1, . . . , N,

where a = a(0) < a(1) < · · · < a(N+1) = b.
Now consider sequences −k = r

(0)
k < r

(2)
k < · · · < r

(N+1)
k = 0 with

r
(ν+1)
k − r

(ν)
k → ∞ as above. For diffeomorphisms Φk : [−k, 0] → [a, b] define

Φ(ν)
k :

[
−k − r

(ν)
k ,−r

(ν)
k

]
→ [a, b], Φ(ν)

k (x) := Φk

(
x + r

(ν)
k

)
.

We impose the following hypothesis on the sequence (Φk):

(2.1) Φ(ν)
k −→

k→∞
Φ(ν)

in C∞
loc on E(ν). Note that the convergence makes sense because, by the hypo-

thesis r
(ν+1)
k − r

(ν)
k → ∞, every compact subset of E(ν) is contained in the

domain of definition of Φ(ν)
k for k sufficiently large. Denote by Φ̂k : Xk → Y

the map induced by Φk and the identity on X̄0.

Proposition 2.12. Let fk : (Σk, jk) → (Xk, Jk) be a sequence of punctured
holomorphic curves and F : (Σ∗, j) → (X∗, J∗) a broken holomorphic curve.
Let Φk : [−k, 0] → [a, b] be a sequence of diffeomorphisms satisfying hypo-
thesis (2.1). Then conditions (c) and (d) in the definition of convergence
fk → F are equivalent to

(c′) Φ̂k ◦ fk ◦ ϕ−1
k → Φ̂ ◦ F̄ in C∞

loc on Σ∗ (away from the nodes),
(d′) Φ̂k ◦ fk ◦ ϕ−1

k → Φ̂ ◦ F̄ uniformly on Σ.

Proof. The equivalence of (c) and (c′) follows immediately from Φ̂k ◦ fk =
Φ(ν)

k ◦ f
(ν)
k and hypothesis (2.1). We prove the implication (c′), (d) =⇒ (d′).
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Let ε > 0 be given. By hypothesis (2.1) and monotonicity of Φ(ν)
k , there

exist R > 0 and K0 ∈ N such that for all k ≥ K0 and ν = 0, . . . , N ,

Φ(ν)
k (r) ≥ a(ν) − ε

2
for r ≥ R, Φ(ν+1)

k (r) ≤ a(ν) +
ε

2
for r ≤ −R.

By the definition of Φ(ν)
k , this is equivalent to

Φk(r) ≥ a(ν)− ε

2
for r ≥ r

(ν)
k +R, Φk(r) ≤ a(ν)+

ε

2
for r ≤ r

(ν+1)
k −R.

Consider now i ∈ I(ν). By (d), there exist ρ0 > 0 and K1 ≥ K0 such that
for all k ≥ K1 and (s, t) ∈ Ai with |s| ≤ ρ0, we have πR ◦ fk ◦ φ−1

k (s, t) ∈
[r(ν)

k + R, r
(ν+1)
k − R], and hence

πR ◦ Φ̂k ◦ fk ◦ ϕ−1
k (s, t) ∈

[

a(ν) − ε

2
, a(ν) +

ε

2

]

.

By πR ◦ Φ̂ ◦ F̄ (δi) = a(ν) and continuity of πR ◦ Φ̂ ◦ F̄ , there exists a ρ1 < ρ0

such that for all k ≥ K1 and (s, t) ∈ Ai with |s| ≤ ρ1, we have |πR ◦ Φ̂ ◦
F (s, t) − a(ν)| ≤ ε/2 and hence

|πR ◦ Φ̂k ◦ fk ◦ ϕ−1
k (s, t) − πR ◦ Φ̂ ◦ F̄ (s, t)| ≤ ε.

Together with the uniform convergence of the M -components in (d), this
shows that for k ≥ K2 sufficiently large and every i ∈ I, the maps Φ̂k ◦ fk ◦
ϕ−1

k and Φ̂ ◦ F̄ are uniformly ε-close on some annulus [−ρ2, ρ2]×R/Z ⊂ Ai.
By the C∞

loc-convergence on Σ∗ in (c′), the maps are also ε-close on the
complement of these annuli for k ≥ K3 sufficiently large. This proves (c′),
(d) =⇒ (d′). The converse implication is proved similarly. �

Remark 2.13. Condition (d) implies properties analogous to (a) and (b)
for the almost complex structures (Φ̂k)∗Jk. Consider the almost complex
structure Φ̂∗J∗ on Y \Ω, where Ω :=

∐N
ν=1{a(ν)} × M . For the analog of

(a), note that the C∞
loc-convergence Φ(ν)

k → Φ(ν) and Jk → J∗ imply C∞
loc-

convergence (Φ̂k)∗Jk = (Φ(ν)
k )∗Jk → Φ∗J∗ on Y \Ω. For the analog of (b),

note that in view of the C∞
loc-convergence Φ(ν)

k → Φ(ν), the numbers

b
(ν)
k :=

(
Φ(ν)

k

)−1
(

a
(ν)
k + a

(ν−1)
k

2

)

remain bounded as k → ∞. Thus Φ̂−1
k maps the cylinder

([
a

(ν)
k + a

(ν−1)
k

2
,
a

(ν)
k + a

(ν+1)
k

2

]

× M, (Φk)∗Jk

)
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bi-holomorphically onto the standard cylinder ([r(ν)
k + b

(ν)
k , r

(ν+1)
k + b

(ν+1)
k ]×

M, JM ), and the “modulus” (r(ν+1)
k + b

(ν+1)
k ) − (r(ν)

k + b
(ν)
k ) tends to ∞ as

k → ∞.

Remark 2.14. If the hypersurface M is disconnected, everything remains
valid with the following adjustments. Denote by Mι the connected compo-
nents of M . For every ι, take some number Nι of copies X

(ν)
ι of R×Mι and

define

X∗ := X0 	
∐

ι

Nι∐

ν=1

X(ν)
ι .

A broken holomorphic curve is now a collection F = (F (0), F
(ν)
ι ) of stable

punctured holomorphic curves in X
(ν)
ι which extends to a continuous map

F̄ �→ X̄, where X̄ is obtained from X∗ as before. Now the definition of
convergence and Theorem 2.9 carries over with the obvious adjustments.

Remark 2.15. If X is not closed but already a symplectic cobordism, every-
thing remains valid with the following adjustments. In the hypothesis of
Theorem 2.9, the uniform area bound

∫
Σk

f∗
kω ≤ E0 must be replaced by

a uniform bound on the Hofer energy (Section 4). Then the discussion in
Sections 4 and 5 also applies to the ends R+ × M and R− × M . In this
case, besides the components F (ν) described in Theorem 2.9, the limit bro-
ken holomorphic curve F will also have finitely many levels of punctured
holomorphic curves in the symplectizations R × M and R × M .

3. Gromov compactness with free boundary

In this section, we extend Gromov’s compactness theorem to holomorphic
curves with boundary which satisfy gradient bounds near the boundary.
This extension is needed in the proof of the compactness Theorem 2.9. Our
proof follows Gromov’s original arguments and their exposition in [12]. How-
ever, the extension to the case with boundary is not entirely straightforward;
it involves a detailed analysis of embedded annuli in Riemann surfaces.

Throughout this section, (X, J, µ) denotes an almost complex, not neces-
sarily closed, manifold (X, J) with a Hermitian metric µ, i.e., a J-invariant
Riemannian metric. To a map f : Σ → X from a compact surface, we
associate its µ-area areaµ(f).

Let Σ̄ be a compact surface of genus g with m smooth boundary compo-
nents and q distinct marked points z = (z1, . . . , zq) ⊂ int(Σ̄) in the interior
of Σ̄. Here g is by definition the genus of the surface obtained by filling in a
disk at each boundary component. Consider a finite collection ∆ of disjoint
simple loops in the interior of Σ̄. Denote by Σ the nodal surface obtained
by collapsing the loops in ∆. Thus Σ is a finite disjoint union of smooth
surfaces with finitely many pairs of points identified. As above, denote by ∆
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also the image of ∆ under the projection π : Σ̄ → Σ. A conformal structure
j on Σ is a conformal structure on each component of Σ. The pair (Σ, j) is
called a nodal Riemann surface. A continuous map f : (Σ, j) → (X, J) is
called a nodal holomorphic curve if its restriction to each component of Σ
is holomorphic. Moreover, we require that there is no sphere with less than
three nodal or marked points on which f is constant. As before, we will
refer to this property as stability. Marked and nodal points will be some-
times called special points. Denote by f : Σ̄ → X its lift (which is constant
on each component of ∆).

Definition 3.1. We say that a sequence of holomorphic curves with q
marked points fk : (Σk, jk, zk) → (X, J) converges to a nodal holomorphic
curve f : (Σ, j, z) → (X, J) if there exist diffeomorphisms φk : Σk → Σ̄ such
that
(a) (φk)∗jk → π∗j in C∞

loc on Σ̄\∆ and φk(zl
k) → zl;

(b) fk ◦ φ−1
k → f in C∞

loc on Σ̄\(∆ ∪ ∂Σ);
(c) fk ◦ φ−1

k → f in C0
loc on Σ\∂Σ;

(d) areaµ(fk) → areaµ(f̄).
Here ∆ ⊂ Σ̄ and f : Σ → X are as above.

We will impose the following conditions on a holomorphic curve
f : (Σ, j) → (X, J).
(A1) Σ is a compact Riemann surface of genus g with m boundary compo-

nents and q distinct marked points z = {z1, . . . , zq} in the interior.
(A2) The µ-area of f is at most C.
(A3) The image of f is contained in a compact subset K ⊂ X.
(A4) At the boundary components γ of (Σ, j), there exist mutually disjoint

conformal embeddings βγ : [0, 5L] × R/Z ↪→ Σ\z mapping {0} × R/Z

onto γ for some L ≥ L0(g, m, q, C, K) ≥ 1.
(A5) For each boundary component γ, the differential of f ◦ βγ satisfies

1/D ≤ ‖T (f ◦ βγ)‖ ≤ D with respect to the Euclidean metric on
[0, 5L] × R/Z and µ, for some constant D > 0.

Here [0, 5L] × R/Z is equipped with the conformal structure induced from
C. Now we can state the main result of this section.

Theorem 3.2 (Gromov compactness with free boundary). Let (X, J, µ) be
an almost complex manifold with Hermitian metric. Let fk : (Σk, jk, zk) →
(X, J) be a sequence of holomorphic curves with q marked points satisfying
(A1–A5) with g, m, q, C, K, L, D independent of k. Then a subsequence of
(fk) converges to a nodal holomorphic curve with q marked points f :
(Σ, j, z) → (X, J).

Moreover, we can choose the maps φk such that the restricted maps φk ◦
βγ

k : [0, L] × R/Z → Σ\∆ are independent of k for all γ.
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Remark 3.3. The constant L0(g, m, q, C, K) in hypothesis (A4) is deter-
mined by Lemma 3.19. It depends only on g, m, C in (A1 and A2) and
the constants ε0, CML, CSL associated below to the set K ⊂ X. These con-
stants depend on the injectivity radius of K, as well as on the Monotonicity
Lemma 3.17 and the Schwarz Lemma 3.18 on K.

3.1. Conformal modulus. The following discussion is borrowed from
Ahlfors [1]. Let (Σ, j) be a Riemann surface, possibly with smooth bound-
ary, and let Γ be an isotopy class of simple smooth loops in Σ. A measurable
conformal metric ρ is a symmetric (0, 2) tensor that in local conformal coor-
dinates is a multiple of the Euclidean metric by a non-negative measurable
function. Define the minimum length of curves in Γ by

Lρ(Γ) := inf
γ∈Γ

Lρ(γ).

Define the modulus of Γ by

M(Γ) := inf
ρ

areaρ(Σ)
Lρ(Γ)2

,

where the infimum is taken over all measurable conformal metrics with 0 <
Lρ(Γ) < ∞. Clearly, M(Γ) is a conformal invariant. Its reciprocal, 1/M(Γ),
is known as the “extremal length.”

An annulus is a surface diffeomorphic to [0, 1]×R/Z. We restrict ourselves
to closed annuli, but the discussion below extends to open or semi-open
annuli. By the uniformization theorem, every conformal annulus is confor-
mally equivalent to an annulus [0, L] × R/Z with the standard conformal
structure induced from C.

Lemma 3.4. For an annulus A, let ΓA be the class of simple loops isotopic
to a boundary component. If A is conformally equivalent to [0, L] × R/Z,
then

M(ΓA) = L.

Proof. Let A = [0, L]×R/Z with conformal coordinates s+ it. Any measur-
able conformal metric on A can be written as ρ = f(s, t)2(ds⊗ds+dt⊗dt) for
a non-negative measurable function f : A → R. Suppose that Lρ(ΓA) ≥ 1.
Then

∫ 1
0 f(s, t)dt ≥ 1 for almost all s and we compute

L ≤
∫

A
f(s, t)ds dt ≤

(∫

A
f(s, t)2ds dt

)1/2 (∫

A
1 ds dt

)1/2

=
√

L
√

areaρ(A).

Thus L ≤ areaρ(A) for every measurable conformal metric ρ such that
Lρ(ΓA) ≥ 1. This proves L ≤ M(ΓA). Moreover, in the computation above,
equality is attained if and only if ρ is a constant multiple of the Euclidean
metric. �
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The number M(ΓA) is called the modulus of the annulus A and denoted
by Mod(A). This definition agrees with the one in [1] and differs from the
one in [12] by a factor of 2π.

Lemma 3.5. Let Σ0 ⊂ Σ be an embedded surface (with boundary) in a
Riemann surface (Σ, j) and set Σ1 := Σ\Σ0. Let Γ be an isotopy class of
loops in Σ and set Γi := {γ ∈ Γ | γ ⊂ Σi} for i = 0, 1. Then

M(Γ0) + M(Γ1) ≤ M(Γ)

where M(Γi) = 0 if Γi = ∅.

Proof. Let ρ be a measurable conformal metric on Σ and ρi its restriction
to Σi. Then clearly areaρ0(Σ0) + areaρ1(Σ1) ≤ areaρ(Σ). Moreover, since
Lρi(γ) = Lρ(γ) for every γ ∈ Γi, Lρi(Γi) ≥ Lρ(Γ). Hence

areaρ(Σ)
Lρ(Γ)2

≥ areaρ0(Σ0) + areaρ1(Σ1)
min(Lρ0(Γ0)2, Lρ1(Γ1)2)

≥ areaρ0(Σ0)
Lρ0(Γ0)2

+
areaρ1(Σ1)
Lρ1(Γ1)2

≥ M(Γ0) + M(Γ1).

Taking the infimum on the left-hand side, the lemma follows. �

In particular, if an embedded annulus A0 ⊂ A in a conformal annulus A
is non-contractible, then Mod(A0) ≤ Mod(A). Note that this is generally
false if A0 is contractible. Lemma 3.5 also immediately implies

Corollary 3.6. For any isotopy class Γ of loops in a Riemann surface (Σ, j),

sup{Mod(A) | A ⊂ Σ embedded annulus containing a curve in Γ} ≤ M(Γ).

Remark 3.7. In fact, the inequality in Corollary 3.6 is an equality [13].
But we will not need this deeper fact.

The following lemma and its proof were explained to us by Kerckhoff, see
Figure 2.

Lemma 3.8. Let γ be a boundary component of a Riemann surface (Σ, j).
Suppose that there exists a conformal embedding [0, L + 1/2] × R/Z ↪→ Σ
mapping {0}×R/Z onto γ. Let p ∈ Σ be the image of a point (L, t) under this
embedding. Then for every embedded annulus A ⊂ Σ\{p} whose boundary
is isotopic to γ in Σ\{p},

Mod(A) ≤ L +
1
2
.

Remark 3.9. Note that the modulus of A is surprisingly close to L. If in
the hypothesis L + 1/2 is replaced by L + r with large r, the estimate can
be further sharpened. Ahlfors [1] shows that in the limit r → ∞, one can
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A
p

0 L L+ 1
2

Σ

Figure 2. Embedded annulus adjacent to a boundary
component.

replace 1/2 in the conclusion by ln 16/4π. For our purposes, however, any
universal constant in place of 1/2 would suffice.

Proof. Denote the images of [0, L] × R/Z and [L, L + 1/2] × R/Z under
the embedding by A0 and A1, respectively. Note that Mod(A0) = L and
Mod(A1) = 1/2. Consider the isotopy class Γ of simple loops in Σ\{p} that
are isotopic to γ in Σ\{p}. Corollary 3.6 implies

Mod(A) ≤ M(Γ) = inf
ρ

areaρ(Σ\{p})
Lρ(Γ)2

.

Thus we can estimate Mod(A) from above by picking a particular conformal
metric on Σ\{p}. Let ρ be the measurable conformal metric on Σ which
corresponds to the Euclidean metric on A0 ∪ A1 and equals zero outside.

Let λ be a loop in Γ (e.g., λ could be a boundary component of the
annulus A in Figure 2).

If λ is contained in A0 ∪ A1, its ρ-length is at least 1. Otherwise, λ contains
two arcs in A1 connecting its two boundary components ∂0A1, ∂1A1 and we
obtain Lρ(λ) ≥ 2 dist(∂0A1, ∂1A1) = 1. This shows that Lρ(Γ) ≥ 1. On the
other hand, the ρ-area of Σ equals L + 1/2, and therefore

Mod(A) ≤ areaρ(Σ\{p})
Lρ(Γ)2

= L +
1
2
.

�

3.2. Hyperbolic surfaces. Here we follow the discussion in Chapter IV
of [12]. A hyperbolic surface (Σ, h) is a complete oriented surface with
a metric of curvature −1 having geodesic boundary and finite area. Its
topology is determined by its signature (g, m, l). Here m is the number of
boundary components, l is the number of ends and g is the genus of the
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g

l

m

Ch(γ)

Figure 3. Riemann surface of genus g with m boundary
components and l cusps.

surface obtained by filling in a disk at each boundary geodesic and a point
at each end, see Figure 3. Denote by j the conformal structure induced by
h. Since each end is part of a standard cusp ([12], Proposition IV.3.6), j
extends uniquely to a conformal structure on the compact surface obtained
by adding a point at each end. Hence (Σ, j) is conformally equivalent to
a closed surface of genus g with m open disks and l points removed. Its
Euler characteristic is given by χ(Σ) = 2 − 2g − m − l < 0. Conversely, by
the uniformization theorem, every closed Riemann surface of genus g with
m open disks and l points removed carries a unique compatible hyperbolic
metric, provided that 2 − 2g − m − l < 0.

Lemma 3.10. Let (Σ, h) be a hyperbolic surface and let A ⊂ Σ be an embed-
ded annulus containing a simple closed (interior or boundary) geodesic γ.
Then

Lh(γ)2 ≤ −2πχ(Σ)
Mod(A)

.

Proof. Since γ minimizes the length in its isotopy class Γ (see, e.g., Theo-
rem 4.3.2. in [14]), Corollary 3.6 yields

Lh(γ)2 = Lh(Γ)2 ≤ areah(Σ)
M(Γ)

≤ areah(Σ)
Mod(A)

.

Now the lemma follows because by the Gauss–Bonnet theorem (see [12],
Proposition IV.2.8) the area of a hyperbolic surface equals −2πχ(Σ). �

The following lemma is proved in [12], Lemma IV.1.5, Lemma IV.1.6 and
Proposition IV.2.2, see Figure 3.
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Lemma 3.11. Let (Σ, h) be a hyperbolic surface. Then its boundary geo-
desics γ possess mutually disjoint embedded collars Ch(γ) = {z ∈ Σ |
dh(z, γ) < wh(γ)} whose widths wh(γ) satisfy

sinhwh(γ) · sinhLh(γ) = 1.

Next we recall the compactness theorem for hyperbolic surfaces. Consider
a surface Σ̄ of signature (g, m, l) and a finite collection ∆ of disjoint simple
non-contractible (interior or boundary) loops of Σ̄. Denote by Σ the nodal
surface obtained by collapsing the loops in ∆. Thus Σ is a finite disjoint
union of smooth surfaces with finitely many pairs of points identified. As
before, we denote by ∆ also the image of ∆ under the projection Σ̄ → Σ.
A hyperbolic structure h on Σ is a hyperbolic structure on Σ\∆. The pair
(Σ, h) is called a nodal hyperbolic surface.

We say that a sequence (Σk, hk) of hyperbolic surfaces converges to a
nodal hyperbolic surface (Σ, h) if there exist collections ∆k ⊂ Σk of simple
hk-geodesics and diffeomorphisms φk : Σk → Σ̄ with φk(∆k) = ∆ such that
(φk)∗hk → h in C∞

loc on Σ̄\∆ where we denote by h the pull-back of h
under the projection Σ̄ → Σ. For the proof of the following result, see [12],
Proposition IV.5.1 (the result is formulated there only in the case where no
pinching of interior geodesics occurs; the general case follows by applying
this special case to all the pieces in a pair-of-pants decomposition, cf. [12],
Theorem IV.3.7).

Proposition 3.12 (compactness of hyperbolic surfaces). Let (Σk, hk) be
a sequence of hyperbolic surfaces of the same signature. Suppose that the
lengths of all boundary geodesics are uniformly bounded from above. Then a
subsequence converges to a nodal hyperbolic surface.

Remark 3.13. Consider a sequence (Σk, jk) of compact Riemann surfaces
of genus g with m boundary components. Fix an integer l ≥ 0 such that
2−2g−m−l < 0. For each k, let Fk ⊂ Σk be a set of l non-boundary points.
Let hk be the unique hyperbolic metric on Σk\Fk, and suppose that the
lengths of all boundary geodesics of (Σk\Fk, hk) are uniformly bounded from
above. Then Proposition IV.5.1 in [12] yields the following refined result.
After passing to a subsequence, there exists a compact surface Σ̄ of genus
g with m boundary components, a subset F ⊂ Σ̄ with |F | = |Fk|, a finite
set ∆ of disjoint simple non-contractible loops in Σ\F and diffeomorphisms
φk : Σk → Σ̄ with φk(Fk) = F and φk(∆k) = ∆ for collections ∆k of simple
hk-geodesics such that the following holds. Let Σ be the nodal surface
obtained by collapsing the loops in ∆. Denote by ∆ and F also the images
of ∆ and F in Σ. Then there exist a hyperbolic metric h on Σ\(F ∪ ∆) and
a compatible conformal structure j on Σ\∆ such that

• (φk)∗hk → h in C∞
loc on Σ̄\(F ∪ ∆) and

• (φ̄k)∗jk → j in C∞
loc on Σ̄\∆.
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Define convergence to a nodal Riemann surface as convergence of nodal
holomorphic curves in X = pt. In view of Lemma 3.10, the preceding remark
implies

Corollary 3.14 (compactness of Riemann surfaces). Let (Σk, jk) be a
sequence of compact Riemann surfaces of the same genus and with the same
number of boundary components. Suppose that all boundary components are
contained in mutually disjoint embedded annuli whose moduli are uniformly
bounded from below. Then a subsequence converges to a nodal Riemann
surface.

3.3. Thick-thin decomposition. Let (Σ, h) be a hyperbolic surface with-
out boundary. For 0 < δ < arsinh(1), define the δ-thin part of (Σ, h) as the
set of all points at which the injectivity radius is less than δ and the δ-thick
part as its complement. The following lemma is proved in [12], Proposition
IV.4.2 and Example I.5.5.

Lemma 3.15. For 0 < δ < arsinh(1), every component of the δ-thin part of
a hyperbolic surface without boundary is conformally equivalent to a punc-
tured disk or an annulus. Moreover, for all 0 < δ < arsinh(1) and L > 0,
there exists a δ′ > 0 (depending only on δ, L) such that every component
of the δ′-thin part is contained in an annulus A of modulus Mod(A) > 5L
which is contained in the δ-thin part.

For z ∈ Σ, let Bρ(z) := {z′ ∈ Σ | dh(z, z′) < ρ}. Note that Bρ(z) is
the image of an isometric immersion of a hyperbolic disk of radius ρ. The
following lemma is proved in [12] (replacing arsinh(1) by δ in the proof of
Lemma V.2.3), see Figure 4.

z z

Bρ0(z)

A
Bδ0(z)

A
z

Bρ0(z)

Figure 4. δ0-thick part (left) and δ0-thin part (right).
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Lemma 3.16. For any positive constants C, L, δ, ε, there exists a ρ0 > 0
(depending only on C, L, δ, ε) such that δ0 := 2

√
ρ0 < δ and the following

holds. For any hyperbolic surface without boundary (Σ, h), any point z ∈
Σ, and any holomorphic map f : (Σ, h) → (X, J, µ) to an almost complex
manifold with Hermitian metric with areaµ(f) ≤ C, there exists an embedded
annulus A ⊂ Σ with the following properties.

(i) Bρ0(z) ⊂ A.
(ii) Mod(A) > 3L.
(iii) Lµ

(
f(∂iA)

)
< ε for both boundary components ∂0A, ∂1A of A.

(iv) If z lies in the δ0-thick part, then A ⊂ Bδ0(z) is contractible and can
be chosen to enclose a given point z′ with dh(z, z′) = 2ρ0.

(v) If z lies in the δ0-thin part, then A is contained in the δ-thin part and
is non-contractible.

3.4. Monotonicity and Schwarz Lemma. Let (X, J, µ) be an almost
complex manifold with Hermitian metric µ and K ⊂ X a compact subset.
The following two lemmas were proved by Gromov [6], see Chapter II in
[12] for more detailed proofs.

Lemma 3.17 (Monotonicity Lemma). There exist constants εML, CML > 0
such that for any J-holomorphic map f : Σ → X from a compact Riemann
surface, passing though a point x ∈ K and with f(∂Σ) outside the µ-ball
Bρ(x) of radius ρ < εML, we have

areaµ(Bρ(x) ∩ f(Σ)) ≥ CMLρ2.

For a map f : D → X from the unit disk, denote by ‖T0f‖µ the norm of
its differential at 0, measured with respect to the hyperbolic metric on the
disk and the metric µ.

Lemma 3.18 (Schwarz Lemma). There exist constants εSL, CSL > 0 such
that for any J-holomorphic map f : D → X whose image is contained in a
µ-ball of radius εSL centered at x ∈ K,

‖T0f‖µ ≤ CSL.

As in [12], Remark II.4.3, we pick an ε0 > 0 satisfying the following
conditions:

(i) ε0 is smaller than the µ-injectivity radius of K,
(ii) ε0 is smaller than the constants εML, εSL in the Monotonicity resp.

Schwarz Lemma,
(iii) every closed J-holomorphic curve in X whose image is contained in a

µ-ball of radius ε0 centered at x ∈ K is constant.

3.5. Gradient bounds. Let (X, J, µ) be an almost complex manifold with
Hermitian metric µ. Let f : (Σ, j) → (X, J) be a holomorphic curve satis-
fying conditions (A1–A5). Note that since f ◦ βγ is holomorphic, condition
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(A5) is equivalent to

‖v‖Eucl

D
≤ ‖T (f ◦ βγ) · v‖µ ≤ D‖v‖Eucl

for all v ∈ T ([0, 5L] × R/Z).
Let ε0, CML, CSL be the constants associated above to the compact set

K ⊂ X (arising in the Monotonicity and Schwarz Lemma). For 0 < l ≤ 5L,
set

Al(γ) := βγ

(

[0, l] × R

Z

)

, Al := ∪γAl(γ).

Now we proceed as in Gromov’s original compactness proof, following
Chapter V of [12]. For z ∈ Σ, denote by U(z) the connected compo-
nent of f−1Bε0/18

(
f(z)

)
containing z. Pick a maximal set F of points in

Σ\(intAL ∪ z) such that for any z ∈ F , U(z) is disjoint from U(z′) and
U(zi) for any z′ ∈ F \{z} and any marked point zi ∈ z. By the Mono-
tonicity Lemma 3.17, the number of points is bounded by (18/ε0)2C/CML,
where C is the constant from (A2). Now enlarge F so that it contains
points of ∂AL(γ), ∂A2L(γ) and ∂A4L(γ) for each boundary geodesic γ and
all marked points. Moreover, pick enough points such that the punctured
surface Σ̇ := Σ\F has negative Euler characteristic. The cardinality |F | is
still bounded by a constant depending only on m, q, C, ε0 and CML. Notice
that the Riemann surface Σ̇ depends on L. Let h be the unique hyperbolic
metric on Σ̇ compatible with the conformal structure.

Lemma 3.19. There exist constants L0 ≥ 1 and l+, w− > 0 depending
only on g, m, q, C, ε0 and CML, and for every L ≥ L0, there exist constants
l−, w+ > 0 depending only on L, such that the following holds. For every
J-holomorphic curve f satisfying (A1–A5) and (Σ̇, h) as above, there exist
mutually disjoint collars Ch(γ) ⊂ Σ̇ around the boundary geodesics of (Σ̇, h)
of width wh(γ) such that for all boundary geodesics γ,

l− ≤ Lh(γ) ≤ l+, w− ≤ wh(γ) ≤ w+.

Moreover, we may assume Ch(γ) ⊂ AL(γ).

Proof. By hypothesis, each boundary geodesic γ of (Σ̇, h) is contained in
an annulus of modulus L0. Hence by Lemma 3.10, its length is bounded

from above by l+ :=
√

−2πχ(Σ̇)/L0. By this bound and Lemma 3.11, the
boundary geodesics possess mutually disjoint collars Ch(γ) whose widths
are bounded from below by a constant w− depending only on l+. Note that
l+ → 0 and w− → ∞ as L0 → ∞. Moreover, the width and the modulus of
a collar are related by an increasing bijective function R+ → R+ (see [12],
Proposition IV.2.2 and Example I.5.5). So if L0 is sufficiently large, then
each collar will have modulus at least 1.
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Consider a collar C = Ch(γ). Let C0 ⊂ C be a smaller collar such that
Mod(C0) < L0−1/2 and Mod(C\C0) ≥ 1/2. Suppose that C0 is not contained
in AL0(γ). Then there exists a point p ∈ ∂C0 which is not contained in
AL0(γ). Applying Lemma 3.8 with A = AL0(γ) and L = Mod(C0), we
conclude L0 = Mod

(
AL0(γ)

)
≤ Mod(C0) + 1/2, contradicting the choice of

C0. Hence C0 ⊂ AL0(γ), so after replacing the Ch(γ) by smaller collars, we
may assume Ch(γ) ⊂ AL0(γ).

Now let L ≥ L0. Remember that in Σ̇ we have removed a point of ∂AL(γ)
for each boundary geodesic γ. Hence by Lemma 3.8, applied to the non-
punctured surface (Σ, j), every embedded annulus A in Σ̇ with one boundary
component γ has modulus Mod(A) ≤ L + 1/2. Applying this to the collar
Ch(γ) ⊂ Σ̇ at γ, we see that its modulus is at most L+1/2. Since the width
and the modulus of a collar are related by an increasing bijective function
R+ → R+, the width is bounded from above by a constant w+ depending
only on L. Now again by Lemma 3.11, the length of each boundary geodesic
is bounded from below by a universal constant l− depending only on L. �

Lemma 3.20. Let A ⊂ Σ̇ be an annulus such that neither of its bound-
ary components ∂0A, ∂1A is entirely contained in A2L and such that
Lµ

(
f(∂iA)

)
< ε := min(ε0/6, L/D). Then A ⊂ Σ̇ \ AL and f(A) has

µ-diameter smaller than ε0.

Proof. First suppose that some boundary component ∂iA meets AL. Since
∂iA is not contained in A2L, there exists a boundary geodesic γ such that ∂iA
meets AL(γ) and is not contained in A2L(γ). Let λ be an arc of (βγ)−1(∂iA)
that connects the two boundary components in [L, 2L] × R/Z. Then by
condition (A5),

Lµ

(
f(∂iA)

)
≥

∫ ∥
∥
∥
∥T (f ◦ βγ) · dλ

dt

∥
∥
∥
∥dt ≥ 1

D
LEucl(λ) ≥ L

D
,

contradicting the hypothesis Lµ

(
f(∂iA)

)
< L/D. This shows that both

boundary components of A, and therefore A itself, are contained in Σ̇\AL.
The remaining argument carries over without changes from Chapter V of

[12]. We first show that d
(
f(z), f(∂A)

)
< ε0/6 for every z ∈ A. Indeed, if

U(z) intersects ∂A, then d
(
f(z), f(∂A)

)
< ε0/18. Otherwise, by maximality

of F , there exists a point z0 ∈ F with U(z0) ∩ U(z) �= ∅. Since z0 /∈ A,
there exists a point z′ ∈ U(z0) ∩ ∂A and we conclude d

(
f(z), f(∂A)

)
≤

d
(
f(z), f(z0)

)
+ d

(
f(z0), f(z′)

)
< ε0/6. Since A is connected,

{

z ∈ A | d
(
f(z), f(∂0A)

)
<

ε0

6

}

∩
{

z ∈ A | d
(
f(z), f(∂1A)

)
<

ε0

6

}

�= ∅,

and therefore d
(
f(∂0A), f(∂1A)

)
< ε0/3. Combining the estimates, we find

d
(
f(z), f(z′)

)
< ε0 for all z, z′ ∈ A. �
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Let Σ̇ ∪∂Σ Σ̇ be the hyperbolic surface without boundary obtained by
gluing two copies of Σ̇ along their boundary. For 0 < δ < arsinh(1), define
the δ-thin part of (Σ̇, h) as the set of all points at which the injectivity radius
of Σ̇ ∪∂Σ Σ̇ is less than δ and the δ-thick part as its complement. Following
Chapter V of [12], we shall call a constant universal if it depends only on
ε0, CML, CSL, g, m, q, C, L and D.

Lemma 3.21. There exists a universal constant ρ0 > 0 with the following
property. Every point z ∈ Σ̇ \A2L is the center of an immersed h-disk
B ⊂ Σ̇\AL of radius ρ0 such that f(B) has µ-diameter < ε0.

Proof. Pick 0 < δ < min(w−, l−/2). In view of Lemma 3.19, the condition
δ < l−/2 ensures that ∂Σ belongs to the δ-thick part. Let ε > 0 be the
constant defined in Lemma 3.20, and let C, L be the constants in hypothe-
ses (A1–A5). Let ρ0 > 0 and δ0 := 2

√
ρ0 be the constants provided by

Lemma 3.16.
Consider first a point z ∈ Σ̇\A2L in the δ0-thick part of Σ̇. By Lemma 3.19,

z /∈ AL implies z /∈ ∪γCh(γ). From this and δ0 < w−, we conclude Bδ0(z) ⊂
Σ̇\∂Σ. Pick a point z′ ∈ Σ̇\A2L with dh(z, z′) = 2ρ0. Let A ⊂ Bδ0(z) ⊂
Σ̇\∂Σ be the annulus provided by Lemma 3.16, enclosing the point z′. It
contains the hyperbolic disk B = Bρ0(z) and satisfies Lµ

(
f(∂iA)

)
< ε. If one

boundary component of A was contained in A2L, we would have z′ ∈ A2L,
contradicting the choice of z′. So A satisfies the hypotheses of Lemma 3.20
and we conclude that f(A), and therefore also f(B), has diameter < ε0.

Next consider z ∈ Σ̇\A2L in the δ0-thin part. Let A ⊂ Σ̇ ∪∂Σ Σ̇ be the
annulus provided by Lemma 3.16. It is contained in the δ-thin part. Since
∂Σ belongs to the δ-thick part, this ensures A ⊂ Σ̇\∂Σ. Moreover, A is
non-contractible in Σ̇, it contains the immersed hyperbolic disk B = Bρ0(z),
and it satisfies Mod(A) > 3L and Lµ

(
f(∂iA)

)
< ε. Now there are two cases.

Case 1. A is non-contractible in Σ. Then if one boundary component ∂iA
is contained in A2L, it is isotopic to some boundary geodesic γ in A2L(γ).
Now remember that the set F contains a point p ∈ ∂A2L(γ), thus A ⊂ Σ\{p}
with boundary isotopic to γ. But then Lemma 3.8 yields Mod(A) ≤ 2L+1/2,
contradicting Mod(A) > 3L. So A satisfies the hypotheses of Lemma 3.20
and we conclude that f(A), and therefore also f(B), has diameter < ε0.
Case 2. A is contractible in Σ. Denote by ∂1A the outer boundary com-
ponent. Since z /∈ A2L, ∂1A cannot be contained in A2L. A length estimate
as in the proof of Lemma 3.20 shows that ∂1A ⊂ Σ̇ \AL. This implies
A ⊂ Σ̇\AL. Now the last part of the proof of Lemma 3.20 shows that f(A),
and therefore also f(B), has diameter < ε0. �

By the Schwarz Lemma 3.18 and rescaling, the differential of f at the
center of B in the preceding lemma is universally bounded with respect to
the metrics h and µ. This proves
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Proposition 3.22. Let f : (Σ, j) → (X, J, µ) satisfy (A1–A5). Then there
exists a finite set F ⊂ Σ\AL such that the differential of f on Σ\(F ∪A2L) is
universally bounded with respect to the hyperbolic metric h and the Hermitian
metric µ. Moreover, the number of points in F is universally bounded.

Corollary 3.23. There exists a universal constant δ1 > 0 such that no sim-
ple loop λ in Σ̇ with Lh(λ) ≤ 2δ1 which is non-contractible in Σ meets A3L.

Proof. Let δ be the constant defined in the proof of Lemma 3.21. Pick
δ1 < δ′, where δ′ is the constant provided by Lemma 3.15. Let λ be a
simple loop in Σ̇ with Lh(λ) ≤ 2δ1 which is non-contractible in Σ. Suppose
first that λ is contained in A4L. Since λ is non-contractible in Σ, it must
be isotopic to some boundary geodesic γ in A4L(γ). Hence by Lemma 3.8,
Mod(A) ≤ 4L+1/2 for every annulus in Σ̇ containing λ. On the other hand,
λ is contained in the δ1-thin part and δ1 < δ′. Hence, by Lemma 3.15, λ
is contained in an annulus A ⊂ Σ̇ ∪∂Σ Σ̇ of modulus Mod(A) ≥ 5L which
is contained in the δ-thin part. Since (by the choice of δ) ∂Σ belongs to
the δ-thick part, it follows that A ⊂ Σ̇\∂Σ, and we get the contradiction
Mod(A) ≤ 4L + 1/2.

Now suppose that λ is not contained in A4L(γ) and meets A3L(γ). Let
λ1 be an arc of (βγ)−1 ◦ λ that connects the two boundary components in
[3L, 4L] × R/Z. Then

Lµ

(
f ◦ βγ(λ1)

)
=

∫ ∥
∥
∥
∥T (f ◦ βγ) · dλ1

dt

∥
∥
∥
∥dt ≥ 1

D
LEucl(λ1) ≥ L

D
.

On the other hand, by Proposition 3.22, the differential of f with respect
to the hyperbolic metric satisfies ‖Tf‖ ≤ U on Σ̇\A2L, for some universal
constant U . Thus

Lµ

(
f ◦ βγ(λ1)

)
≤ U Lh(λ) ≤ 2U δ1.

For δ1 small, these two inequalities contradict each other. �
Proof of Theorem 3.2. Let (X, J, µ) and fk : (Σk, jk) → (X, J) be as in
Theorem 3.2. For 0 < l ≤ 5L, let Zl be the disjoint union of m copies of
[0, l] × R/Z. Denote by βk : Z5L → Σk the embedding induced by the βγ

k .
For each k, pick a finite subset Fk ⊂ Σk\βk(ZL) as in Proposition 3.22 and

a constant δ1 as in Corollary 3.23. After passing to a subsequence, we may
assume that the cardinality |Fk| is the same for all k. By Lemma 3.19, the
lengths of the boundary geodesics for the hyperbolic metrics hk on Σk\Fk

are uniformly bounded. Hence, by Proposition 3.12, a subsequence of (Σk\
Fk, hk) converges to a nodal hyperbolic surface (Σ̄, h̄). More precisely, by the
remark following Proposition 3.12, the following holds. After passing to a
subsequence, there exists a compact surface Σ̄ of genus g with m boundary
components, a subset F ⊂ Σ̄ with |F | = |Fk|, a finite set ∆ of disjoint
simple non-contractible loops in Σ̄\F and diffeomorphisms φk : Σk → Σ̄
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with φk(Fk) = F and φk(∆k) = ∆ for collections ∆k of simple hk-geodesics
such that the following holds. Let Σ be the nodal surface obtained by
collapsing the loops in ∆. As above, denote by ∆ and F also the images in
Σ. Then there exist a hyperbolic metric h on Σ\(F ∪ ∆) and a compatible
conformal structure j on Σ\∆ such that

• (φk)∗hk → h in C∞
loc on Σ̄\(F ∪ ∆) and

• (φk)∗jk → j in C∞
loc on Σ̄\∆,

with the same conventions for h and j as above. Define

h̄k := (φk)∗hk, j̄k := (φk)∗jk,

and consider the holomorphic maps

f̄k := fk ◦ φ−1
k : (Σ̄\∆, j̄k) → (X, J),

β̄k := φk ◦ βk : (Z5L, i) → (Σ̄\∆, j̄k).

By Proposition 3.22, the differential of f̄k is uniformly bounded with respect
to h̄k and µ on Σ̄0 := Σ̄\

(
F∪∆∪β̄k(Z2L)

)
. By the Arzela–Ascoli theorem and

standard elliptic estimates, it follows that a subsequence of f̄k converges in
C∞

loc on Σ̄0 to a holomorphic map f : (Σ̄0, j) → (X, J). By the uniform area
bound and removal of singularities (see [12], Theorem III.2.1), f extends
smoothly over the points of F and f̄k → f converges in C∞

loc on Σ̄\
(
∆ ∪

β̄k(Z2L)
)
.

By Corollary 3.23, β̄k(Z4L) does not meet any component of the δ1-thin
part of (Σ, hk) containing a geodesic from ∆k. Thus the β̄k(Z4L) are con-
tained in a uniform compact subset of Σ̄\∆. Hence a subsequence of β̄k

converges in C∞ on Z3L to a holomorphic map β : (Z3L, i) → (Σ̄\∆, j).
(This is a special case of Gromov compactness with Lagrangian boundary
conditions with the Lagrangians being curves in surfaces). Since the β̄k are
embeddings, so is β (otherwise β would be a branched covering, contradict-
ing injectivity of β̄k for large k).

By hypothesis (A5) and the Arzela–Ascoli theorem, a subsequence of
f̄k ◦ β̄k converges in C∞

loc on the interior of Z3L. Since β̄k converges to an
embedding β, this implies C∞

loc-convergence of f̄k on the interior of β̄(Z3L) to
a map f which agrees with the previous map on β̄(Z3L\Z2L). Altogether, we
have shown C∞

loc-convergence f̄k → f on Σ̄\∆ to a (j, J)-holomorphic map
f . This proves properties (a) and (b) of the convergence to the nodal holo-
morphic curve f . Now properties (c) and (d) follow as in Chapter V of [12].

It remains to show that we can make the maps φk ◦ βk : ZL → Σ̄\∆
independent of k. Recall that the embeddings β̄k converge in C∞ on Z3L

to an embedding β : Z3L → Σ̄\∆. So we can modify the βk to embeddings
β̂k : Z5L → Σ̄ satisfying β̂k = β̄k on Z5L\Z2L, β̂k = β on ZL and β̂k → β in
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C∞ on Z3L. Define maps φ̂k : Σk → Σ by

φ̂k :=

{
φ̄k on Σk\βk(Z2L),
β̂k ◦ β−1

k on βk(Z5L).

Note that the two definitions agree on βk(Z5L\Z2L), so the φ̂k lift to diffeo-
morphisms Σk → Σ̄. Moreover, on ZL, the maps φ̂k◦βk = β are independent
of k. The conformal structures ĵk := (φ̂k)∗jk agree with j̄k on Σ̄\β̄(Z2L) and
with (β̂k)∗i on β̄k(Z5L). In particular, ĵk → j̄ in C∞

loc on Σ̄\∆. Now replace
φ̄k by φ̂k and j̄k by ĵk and conclude the proof as before.

There is one more subtlety to consider. It could happen that the limit
curve f obtained by forgetting the additional marked points in F is unstable.
By construction, even the domain Σ of the limit is stable if we include all
points of F into the set of marked points. Forgetting all but the q marked
points in F , a sphere on which f is constant may end up with less than
three special points. By the choice of F , such a sphere contains at most
one point of F . Hence the image of the constant sphere can only be a
double point in the image. To solve this problem, we remove these unsta-
ble components from the limiting curve while the two corresponding nodal
points on the adjacent components fit into one pair of nodal points of the
new curve which we will also denote by f : (Σ, j, z) → (X, J). Notice that
the corresponding surface Σ̄ is diffeomorphic to the old one. However, the
set ∆ ⊂ Σ̄ of nodal curves has changed. An unstable sphere corresponds
to a pair of nodal curves which bounded an annulus A ⊂ Σ parameter-
ized by S1 × [−1, 1], say. Let the neighborhood of A be parameterized by
[−1 − ε, 1 + ε] × S1 extending that parameterization and the neighborhood
of the new single nodal curve γ be parameterized by [−ε, +ε] × S1. Pick a
sequence of diffeomorphisms ψk : [−1− ε, 1+ ε]×S1 → [−ε, +ε]×S1, which
are given by diffeomorphisms of the intervals, which are simply translations
by ±1 near the boundaries, and which converge uniformly to

ψ(s) =

⎧
⎪⎨

⎪⎩

s + 1 s ∈ [−1 − ε, −1]
0 s ∈ [−1, 1]
s − 1 s ∈ [1, 1 + ε].

Then ψk ◦ φk, fk and the new stable f : Σ → (X, J) with its model Σ̄ will
satisfy Definition 3.1. Since ψk converges in C∞ to a diffeomorphism outside
A, it is clear that (ψ−1

k )∗◦(φ−1
k )∗jk and fk ◦ φ−1

k ◦ ψ−1
k converge in C∞

loc in the
complement of γ in a neighborhood of it and therefore in the complement of
the new set ∆. The issue here is uniform convergence across ∆ which is satis-
fied since the sequence fk◦φk|A uniformly converges to the nodal point corre-
sponding to the unstable sphere. This finishes the proof of Theorem 3.2. �



PUNCTURED HOLOMORPHIC CURVES 619

4. Holomorphic cylinders of small area

In this section, we establish uniform convergence of holomorphic cylinders
of small area (Theorem 4.18). The main technical ingredient for this result,
Proposition 4.5, is proved in [9] in the Morse case and in [3] in the Morse–
Bott case. Moreover, we estimate the conformal modulus of a holomorphic
cylinder from below (Lemma 4.20).

Throughout, (M, ω, J) is a compact odd-dimensional manifold with a
stable Hamiltonian structure ω and J is an ω-tamed, translation invariant
almost complex structure on R × M . Let λ = λJ be the associated 1-form.
We assume that the closed Reeb orbits are Morse–Bott non-degenerate as
defined in Section 2. Throughout this section, we fix an ε > 0 such that

(r dλ + ω)(v, Jv) > 0 for 0 �= v ∈ ker λ and |r| ≤ ε.

4.1. Various notions of energy. For a collection of (not necessarily
embedded) smooth curves Γ in M , let us denote by Aλ(Γ) its λ-action:

Aλ(Γ) :=
∫

Γ
λ.

To a smooth map f : Σ → R × M from a (not necessarily closed) surface Σ,
we associate the following quantities:
its ω-energy (or area)

Eω(f) :=
∫

Σ
f∗ω;

its λ-energy and its (ε, λ)-energy

Eλ(f) := sup
φ∈S

∫

Σ
f∗(φ′(r)dr ∧ λ

)
, Eε

λ(f) := sup
φ∈Sε

∫

Σ
f∗d

(
φ(r)λ

)
,

where S resp. Sε denotes the set of all smooth non-decreasing functions
φ : R → [0, 1] resp. φ : R → [−ε, ε]; its Hofer energy and ε-energy

E(f) := Eω(f) + Eλ(f), Eε(f) := Eω(f) + Eε
λ(f).

Note that Eλ(f) and Eε
λ(f) are nonnegative by definition (since φ ≡ 0 is

allowed) and Eω(f) ≥ 0 if f is J-holomorphic. Here J-holomorphicity of a
map

f = (a, u) : (Σ, j) → R × M

translates into the equations

u∗λ ◦ j = da, πTu ◦ j = JM ◦ πTu,

or in local holomorphic coordinates s + it on Σ,

as = λ(ut), at = −λ(us), πus + Jπut = 0.

Here as etc. denotes partial derivatives and π : TM → ξ is the projection
along the Reeb vector field. Denote by R the set of regular values of the
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map a : Σ → R. We always orient a non-empty regular level set a−1(R) as
the boundary of the region {a ≤ R}.

The following lemma shows that for holomorphic maps, the energies E(f)
and Eε(f) are equivalent.

Lemma 4.1. For a J-holomorphic map f = (a, u) : (Σ, j) → R × M , the
following holds.
(a)

∫
a−1(R) u∗λ > 0 for every R ∈ R with a−1(R) �= ∅, and

Eλ(f) = sup
R∈R

∫

a−1(R)
u∗λ.

(b) The energies with and without ε are related by

2εEλ(f) − Eω(f) ≤ Eε
λ(f) ≤ 2εEλ(f) + Eω(f),

2ε

1 + 2ε
E(f) ≤ Eε(f) ≤ 2 max(1, ε)E(f).

Proof.
(a) The orientation of a−1(R) as the boundary of the region {a ≤ R} means

that a tangent vector v to a−1(R) is orienting the level iff da(−jv) > 0.
Since u∗λ(v) = da(−jv), this shows

∫
a−1(R) u∗λ > 0. For the second

statement, we compute for φ ∈ S and regular values R < S of a:

φ(S)
∫

a−1(S)
u∗λ − φ(R)

∫

a−1(R)
u∗λ =

∫

a−1([R,S])
f∗d

(
φ(r)λ

)

=
∫

a−1([R,S])
f∗(φ′(r)dr ∧ λ

)
+

∫

a−1([R,S])
f∗(φ(r)dλ

)
.

Since its integrand is non-negative, the first term in the last line is
≤ Eλ(f). The second term in the last line becomes arbitrarily small
if we choose R close to S. Taking φ(R) = 0 and φ(S) = 1, this shows∫
a−1(R) u∗λ ≤ Eλ(f). The converse inequality follows from the

following estimate for φ ∈ S:
∫

Σ
f∗(φ′(r)dr ∧ λ

)
=

∫

R
φ′(r)

(∫

a−1(r)
u∗λ

)

dr

≤ sup
R∈R

∫

a−1(R)
u∗λ

∫ ∞

−∞
φ′(r)dr ≤ sup

R∈R

∫

a−1(R)
u∗λ.

(b) Write the (ε, λ)-energy as

Eε
λ(f) = sup

φ∈Sε

( ∫

Σ
f∗(φ′(r)dr ∧ λ

)
+

∫

Σ
f∗(φ(r)dλ

)
)

.

The absolute value of the second integral on the right-hand side is not
bigger than

∫
Σ f∗ω = Eω(f) by definition of ε while the supremum



PUNCTURED HOLOMORPHIC CURVES 621

of the first integral equals 2εEλ(f). This shows the first statement
|Eε

λ(f) − 2εEλ(f)| ≤ Eω(f). Rewrite this as 2εEλ(f) ≤ Eε(f) and
Eε(f) ≤ 2εEλ(f) + 2Eω(f). The second statement follows from these
inequalities:

(1 + 2ε)Eε(f) ≥ Eε(f) + 2εEω(f) ≥ 2εE(f),

Eε(f) ≤ 2εEλ(f) + 2Eω(f) ≤ 2 max(1, ε)E(f). �

The following lemma gives a lower bound for the area of an arbitrary
punctured holomorphic curve with no negative punctures.

Lemma 4.2. There is a number β1 > 0, depending only on (M, ω, J), such
that for any punctured holomorphic curve f : Σ̇ → R × M without negative
or without positive punctures

Eω(f) > β1.

Note that the statement includes J-holomorphic curves without any punc-
tures at all and that β1 does not depend on the number of punctures, the
genus of Σ, nor the Hofer energy of f .

Proof. Assume that f = (a, u) has no negative punctures. We apply the
Monotonicity Lemma 3.17 to R × M equipped with the product metric
ω(·, J ·) + dr2 +λ2, which is J-invariant by assumption. Pick any point f(z)
on the curve. Then the area of (a connected component of) the pre-image
C of a ball B of radius ρ < εML satisfies

∫

C
(u∗ω + da ∧ u∗λ) ≥ CMLρ2.

Let ρ := min(ε, εML)/4. Pick a function φ : R → [−ε/2, 0] with φ′ ≥ 0 and
φ(r) → 0 as r → ∞ with φ′ ≡ 1 on [a(z) − ε/4, a(z) + ε/4]. Then we have

Eω(f) =
∫

Σ

(
u∗ω + f∗d(φλ)

)

≥
∫

C

(
u∗ω + f∗d(φλ)

)

≥
∫

C

(
1
2
u∗ω + f∗(dφ ∧ λ)

)

=
∫

C

(
1
2
u∗ω + da ∧ u∗λ

)

≥ CMLρ2/2.

Here, in the first line, we have used
∫
Σ f∗d(φλ) = 0; in the second line the

positivity of the integrand on Σ; in the third line the positivity of f∗(φdλ)+
1
2u∗ω which is due to |φ| ≤ ε/2 and the definition of ε; in the fourth line
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φ′(a) ≡ 1 on C which holds because |a − a(z)| < ε/4 on C; in the last line
the positivity of da ∧ u∗λ.

The case that f has no positive punctures is similar. Here we choose
φ : R → [0, ε/2]. �

4.2. Estimates for holomorphic cylinders. Set S1 := R/Z, so an annu-
lus [R, S] × S1 (with the standard conformal structure) has modulus S − R,
cf. Section 3, Lemma 3.4.

Lemma 4.3. For every J-holomorphic cylinder f = (a, u) : [−L, L]×S1 →
R×M satisfying E(f) ≤ E0 and Eω(f) ≤ β1 and every δ > 0, all derivatives
of f (of order ≥ 1 for a) on [−L + δ, L − δ] × S1 are bounded by constants
depending only on M, ω, J, E0 and δ.

Proof. By elliptic bootstrapping, it suffices to prove uniform gradient
bounds. Suppose by contradiction that there is a sequence of J-holomorphic
cylinders fk : [−Lk, Lk] × S1 → R × M satisfying E(fk) ≤ E0 and
Eω(fk) ≤ β1 whose gradients are unbounded at points in [−Lk + δ, Lk − δ].
Then standard bubbling off analysis as in [7] (see also [3]) yields a non-
constant punctured J-holomorphic plane f with E(f) ≤ E0 and Eω(f) ≤ β1.
Hence the singularity at ∞ is either removable or gives rise to one (positive
or negative) puncture. Hence Lemma 4.2 implies Eω(f) > β1, which is a
contradiction. �

Recall next the asymptotic behavior of holomorphic curves with finite
energy. The following result was proved in [7] in the Morse case and in
[2, 8] in the Morse–Bott case.

Proposition 4.4. Let f = (a, u) : R+ × S1 → R × M be a J-holomorphic
half-cylinder of finite Hofer energy such that a is not bounded from above.
Then there exists a closed Reeb orbit γ of period T > 0 and a constant a0
such that (

a(s, t) − a0 − Ts, u(s, t)
)

−→
s→∞

(
0, γ(Tt)

)

uniformly in t with all derivatives.

The following proposition shows that the M -components of long holo-
morphic cylinders approach closed Reeb orbits. It was proved in [9] in the
Morse case and in [3] (Proposition 5.7) in the Morse–Bott case. Let d be
any Riemannian distance on M .

Proposition 4.5. For all E0, δ > 0, there exist β, � > 0 (depending only on
M, ω, J, E0 and δ) such that for every J-holomorphic cylinder f = (a, u) :
[−L, L] × S1 → R × M with L > � satisfying E(f) ≤ E0 and Eω(f) ≤ β,
we have

d
(
u(s, t), u(0, t)

)
< δ

for all (s, t) ∈ [−L + �, L − �] × S1.
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The following lemma guarantees that the area of a J-holomorphic cylin-
der (a punctured holomorphic sphere with one positive and one negative
puncture) cannot be arbitrarily small. It was proved in [3] (Lemma 11.8.).
We include the proof here for sake of completeness.

Lemma 4.6. For every E0 > 0, there exists a constant β2 > 0 (depending
only on M, ω, J and E0) such that the area of every J-holomorphic cylinder
f : R × S1 → R × M with E(f) ≤ E0 and Eω(f) > 0 satisfies

Eω(f) > β2.

Remark 4.7. If ω = dλ for a contact form λ, this statement follows
immediately from discreteness of the action spectrum (which is an easy
consequence of the Morse–Bott hypothesis). In the general case, discreteness
of the values of Eω still holds as a consequence of Gromov–Hofer compact-
ness. However, as we want to use Lemma 4.6 in the proof of this compactness
theorem, we cannot use discreteness here.

Proof. Assume on the contrary that there is a sequence fn = (an, un) :
R × S1 → R × M of J-holomorphic cylinders with E(fn) ≤ E0 and positive
areas 0 < Eω(fn) = δn → 0. Denote the asymptotic orbits of fn by γ±

n . By
Proposition 4.4, there exist Ln > 0 such that

d
(
un(s, t), γ+

n (t)
)

<
1
n

for s ∈ [Ln,∞),

d
(
un(s, t), γ−

n (t)
)

<
1
n

for s ∈ (−∞,−Ln].

Let �n, βn be the constant in Proposition 4.5 corresponding to E0, δ = 1/n.
By relabeling the sequence {fn}, we may assume that δn < βn. The maps
fn|[−Ln−
n,Ln+
n]×S1 have energy ≤ E0 and area ≤ δn. Hence, by Proposi-
tion 4.5,

d
(
un(s, t), un(0, t)

)
<

1
n

for all s ∈ [−Ln, Ln]. It follows that

d
(
un(s, t), γ±

n (t)
)

<
4
n

for all s ∈ R, so un stays in the 4/n-neighborhood of γ± in the loop space ΛM
of M (equipped with the C0-topology). In particular, d

(
γ+(t), γ−(t)

)
< 4/n

for all t ∈ S1. By compactness of M and the Morse–Bott assumption,
there are only finitely many connected manifolds of closed Reeb orbits of
λ-action smaller than E0. Pick n so large that the 4/n-neighborhoods of
these manifolds in ΛM are disjoint. Then the asymptotic orbits γ±

n must
belong to the same connected manifold C of closed Reeb orbits. Moreover,
the path un : R → ΛM in the loop space stays in the C/n-neighborhood of
C for a constant C that only depends on the compact submanifold C ⊂ ΛM .
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Therefore, for n sufficiently large, we can project un onto a smooth path
vn : R → C connecting γ± in the manifold C. Since vn(s, ·) is a closed Reeb
orbit for all s, we have v∗

nω ≡ 0 and thus
∫

R×S1 v∗
nω = 0. Since ω is closed

and the cylinders un, vn : R × S1 → M are homotopic with fixed loops at
±∞, it follows that

δn = Eω(fn) =
∫

R×S1
v∗
nω = 0,

contradicting the assumption δn > 0. �
Corollary 4.8. Let f : R × S1 → R × M be a holomorphic map with Hofer
energy E(f) < E0 and action Eω(f) < β1. Then f must be constant or has
exactly one positive and one negative puncture. Moreover, if Eω(f) < β2, f
is a cylinder over a closed Reeb orbit.

Fix a number E0 < ∞. We will study J-holomorphic curves (in fact,
cylinders) f : (Σ, j) → (R × M, J) satisfying the following hypothesis:

(B1) E(f) ≤ E0, Eω(f) ≤ β0 := min(β1, β2),

where β1, β2 are the constants from Lemma 4.2 and Lemma 4.6, respectively.
We first note a sharpening of Proposition 4.5.

Corollary 4.9. For all E0, δ > 0, there exists an � > 0 (depending only on
M, ω, J, E0 and δ) such that for every J-holomorphic cylinder f = (a, u) :
[−L, L] × S1 → R × M with L > � satisfying hypothesis (B1), we have

d
(
u(s, t), u(0, t)

)
< δ

for all (s, t) ∈ [−L + �, L − �] × S1.

Proof. Assume that, on the contrary (after replacing � by 2�), there is a δ̄ > 0
such that for any � > 0, there is an L > 2� and a J-holomorphic cylinder
f = (a, u) : [−L, L] × S1 → R × M with E(f) ≤ E0 and Eω(f) ≤ β0 such
that d

(
u(s, t), u(0, t)

)
≥ δ̄ for some (s, t) ∈ [−L+2�, L− 2�]×S1. Let β̄ > 0

and �̄ > 0 be the constants corresponding to δ̄ and E0 in Proposition 4.5.
Applying Proposition 4.5 to the restriction g := f |[−L+
,L−
]×S1 for � ≥ �̄,
we conclude that Eω(g) > β̄. Write g = (b, v) : [−c, c] × S1 → R × M with
c := L − �.

Now we argue as in the proof of Lemma 4.6. By the Morse–Bott assump-
tion, there are finitely many connected manifolds of closed Reeb orbits of
λ-action smaller than 2E0. Fix ρ > 0 so small that the ρ-neighborhoods of
these manifolds in the loops space ΛM (with the C0-topology) are disjoint.
Suppose that v(s, ·) is ρ-close to a closed Reeb orbit for all s ∈ [−c, c]. Since
E(f) ≤ E0, this implies that v(s, ·) is ρ-close to one connected manifold C
of Reeb orbits for all s ∈ [−c, c]. As in the proof of Lemma 4.6, we project
v onto a path v̄ in C. Let v± be the shortest path connecting v(±c, ·) to
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its projection v̄(±c, ·). Then v, v̄ and v± form a null-homotopic loop ṽ in
ΛM , so

∫
ṽ∗ω = 0. Now

∫
v̄∗ω = 0 because v̄ consists of Reeb orbits, and∫

v∗
±ω < Cρ for a constant C only depending on C because ω = dλ± is

exact in the ρ-neighborhood of v̄(±c, ·). So we conclude that
∫

v∗ω < 2Cρ
if v(s, ·) is ρ-close to a closed Reeb orbit for all s ∈ [−c, c]. For ρ < β̄/2C,
this implies that there exists a s̄ ∈ [−L + �, L − �] such that u(s̄, .) is not
ρ-close any closed Reeb orbit.

Now pick a sequence �n → ∞ and define the sequence of J-holomorphic
cylinders fn = (an, un) : [−Ln, Ln] × S1 → R × M as above, with Ln > 2�n.
Thus E(fn) ≤ E0, Eω(fn) ≤ β0, and there exist s̄n ∈ [−Ln + �n, Ln − �n]
such that un(s̄n, .) is not ρ-close to any closed Reeb orbit (with ρ > 0 fixed
as above). Set gn := (bn, vn) : [−�n, �n] × S1 → R × M with

vn(s, t) := un(s + s̄n, t), bn(s, t) := an(s + s̄n, t) − an(s̄n, t).

By Lemma 4.3, all derivatives of gn are uniformly bounded. Hence a
subsequence of gn converges in C∞

loc to an infinite holomorphic cylinder
g = (b, v) : R × S1 → R × M with E(g) ≤ E0 and Eω(g) ≤ β0. Since
β0 ≤ β2, Lemma 4.6 implies Eω(g) = 0, so g is a cylinder over a closed
Reeb orbit. On the other hand, by construction of gn and C∞

loc-convergence,
v(0, ·) is not ρ-close to a closed Reeb orbit. This contradiction concludes the
proof. �

The next lemma describes the R-components of long holomorphic cylin-
ders. Notice that the action of a closed Reeb orbit cannot be arbitrarily
small: ∫

γ
λ > δ0 > 0

for any closed R-orbit γ.

Lemma 4.10. There exists an � > 0 (depending only on M, ω, J and E0)
such that for every J-holomorphic cylinder f = (a, u) : [−L, L]×S1 → R×M
with L > � satisfying hypothesis (B1),

∂a

∂s
(s, t) > δ0 > 0

for all (s, t) ∈ [−L + �, L − �] × S1.

Proof. Suppose not. Then there exist sequences Lk > �k → ∞ and J-
holomorphic cylinders fk = (ak, uk) : [−Lk, Lk] × S1 → R × M satisfying
hypothesis (B1) such that

∂ak

∂s
(sk, tk) ≤ δ0
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for some (sk, tk) ∈ [−Lk + �k, Lk − �k] × S1. Consider the shifted maps
gk = (bk, vk) : [−�k, �k] × S1 → R × M ,

gk(s, t) := fk(s + sk, t + tk) −
(
ak(sk, tk), 0

)
.

By the C∞-bounds in Lemma 4.3 and the Arzela–Ascoli theorem, a sub-
sequence of gk converges in C∞

loc to an infinite holomorphic cylinder g =
(b, v) : R × S1 → R × M of energy E(g) ≤ E0. By Proposition 4.4, g is
asymptotic at its punctures to closed Reeb orbits γ−, γ+. By construction,
we have E(g) ≤ E0 and Eω(g) ≤ β0. By Lemma 4.6, g has area zero and
is hence a cylinder over a closed Reeb orbit γ of action T > δ0. So we
have ∂b

∂s(0, 0) = T > δ0. On the other hand, ∂bk
∂s (0, 0) ≤ δ0 for all k implies

∂b
∂s(0, 0) ≤ δ0 and we have a contradiction. �

4.3. C∞
loc-convergence. Consider now a sequence of J-holomorphic

cylinders
fk = (ak, uk) : [−Lk − 1, Lk + 1] × S1 → R × M

satisfying hypothesis (B1) with uniform constants E0, β0. Set

r−
k := inf

t
ak(−Lk, t), r+

k := sup
t

ak(Lk, t),

and impose the hypothesis

(B2) Lk −→
k→∞

∞, r+
k − r−

k −→
k→∞

∞.

Define the shifted maps

f−
k (s, t) := fk(s − Lk, t) − (r−

k , 0), s ∈ [0, 2Lk],

f+
k (s, t) := fk(s + Lk, t) − (r+

k , 0), s ∈ [−2Lk, 0].

Lemma 4.11. A subsequence of the shifted maps f−
k : [0, 2Lk] × S1 →

R × M converges in C∞
loc on [0,∞) × S1 to a holomorphic half-cylinder f− :

[0,∞) × S1 → R × M . Similarly, a subsequence of the f+
k : [−2Lk, 0] ×

S1 → R × M converges in C∞
loc on (−∞, 0] × S1 to a holomorphic half-

cylinder f+ : (−∞, 0] × S1 → R × M . Moreover, f− and f+ are positively
resp. negatively asymptotic to closed Reeb orbits γ−, γ+ of length not greater
than E0.

Proof. The uniform bounds on derivatives in Lemma 4.3 and the Arzela–
Ascoli theorem imply C∞

loc-convergence of subsequences f−
k → f− and

f+
k → f+. The limit maps have Hofer energy at most E0. Moreover, hypoth-

esis (B2) implies that a− is not bounded from above and a+ is not bounded
from below. So, by Proposition 4.4, f−, f+ are asymptotic to closed Reeb
orbits γ−, γ+. By Lemma 4.1, we have

∫
γ− λ,

∫
γ+ λ ≤ E0. �

The following two lemmas control the maps fk over the middle parts of
the cylinders.
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Lemma 4.12. The asymptotic orbits agree: γ− = γ+ =: γ. Moreover, for
every δ > 0, there exist a constant L > 0 (depending only on M, ω, J, E0 and
δ) such that for all sufficiently large k and for all (s, t) ∈ [−Lk + L, Lk −
L] × S1,

d
(
uk(s, t), γ(t)

)
≤ δ.

Proof. Let δ > 0 be given. By Corollary 4.9, there exists an L > 0 (depend-
ing only on M, ω, J, E0 and δ) such that d

(
uk(s, t), uk(0, t)

)
< δ for all

(s, t) ∈ [−Lk + L, Lk − L] × S1 and all sufficiently large k. By the asymp-
totics, for s ≥ L sufficiently large, u−(s, t) is δ-close to γ−(t) for all t ∈ S1.
By the C∞

loc-convergence of u−
k , for k sufficiently large, uk(−Lk + s, t) is δ-

close to u−(s, t) for all t ∈ S1. Thus uk(0, t) is 3δ-close to γ−(t) for all
t ∈ S1. Similarly, uk(0, t) is 3δ-close to γ+(t) for all t ∈ S1. Hence γ−(t)
is 6δ-close to γ+(t) for all t ∈ S1. Since this holds for all δ, we conclude
γ− = γ+ =: γ. Moreover, the preceding argument shows that for k suffi-
ciently large, uk(s, t) is 4δ-close to γ(t) for all (s, t) ∈ [−Lk +L, Lk −L]×S1.
Now replace 4δ by δ. �
Lemma 4.13. For every R > 0, there exist a constant L > 0 (depending
on the sequence (fk) and R) such that for all sufficiently large k and for all
(s, t) ∈ [−Lk + L, Lk − L] × S1,

ak(s, t) ∈ [r−
k + R, r+

k − R].

Proof. By Lemma 4.10, there exists an � > 0 such that ∂ak
∂s (s, t) > 0 for all

(s, t) ∈ [−Lk +�, Lk−�]×S1 and sufficiently large k. By the asymptotics, for
L ≥ � sufficiently large, a−(L, t) ≥ R + 1 for all t ∈ S1. By the C∞

loc-conver-
gence of a−

k , for k sufficiently large, ak(−Lk + L, t) ≥ r−
k + R for all t ∈ S1.

Similarly, ak(Lk − L, t) ≤ r+
k − R for all t ∈ S1. Now the statement follows

from the monotonicity ∂ak
∂s (s, t) > 0 for (s, t) ∈ [−Lk + L, Lk − L] × S1. �

4.4. Uniform convergence. Let fk = (ak, uk) : [−Lk − 1, Lk + 1] × S1 →
R × M and f± = (a±, u±) be as above. That is, fk satisfies (B1 and B2)
and f± are the limit maps provided by Lemma 4.11. Consider a sequence of
increasing diffeomorphisms θk : [−Lk, Lk] → [−1, 1] and define the shifted
maps

θ−
k (s) := θk(s − Lk), s ∈ [0, 2Lk],

θ+
k (s) := θk(s + Lk), s ∈ [−2Lk, 0].

We impose the following hypothesis on the sequence θk:

(B3) θ−
k −→

k→∞
θ− : [0,∞) −→ [−1, 0), θ+

k −→
k→∞

θ+ : (−∞, 0] → (0, 1],

where the convergence is in C∞
loc on [0,∞) resp. (−∞, 0] and the maps θ−, θ+

are diffeomorphisms.
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Remark 4.14. Such a sequence clearly exists: Pick arbitrary diffeomor-
phisms θ± and let θk be any diffeomorphism with θk(s) = θ−(s + Lk) for
s ∈ [−Lk,−1] and θk(s) = θ+(s − Lk) for s ∈ [1, Lk].

Define maps

gk(s, t) := fk

(
θ−1
k (s), t

)
, s ∈ [−1, 1],

g−
k (s, t) := f−

k

(
(θ−

k )−1(s), t
)
, s ∈ [−1, 1],

g+
k (s, t) := f+

k

(
(θ+

k )−1(s), t
)
, s ∈ [−1, 1],

g−(s, t) := f−
(
(θ−)−1(s), t

)
, s ∈ [−1, 0),

g+(s, t) := f+
(
(θ+)−1(s), t

)
, s ∈ (0, 1].

Lemma 4.15. We have C∞
loc-convergence g−

k → g− on [−1, 0) × S1 and
g+
k → g+ on (0, 1] × S1.

Proof. Note that the inverse maps to θ±
k are given by

(θ−
k )−1(s) = θ−1

k (s) + Lk, (θ+
k )−1(s) = θ−1

k (s) − Lk.

The convergence assumption (B3) implies θ−1
k (0) + Lk → ∞ and θ−1

k (0) −
Lk → −∞. Moreover, the restrictions (θ−

k )−1 : [−1, 0) → [0, θ−1
k (0) + Lk)

and (θ+
k )−1 : (0, 1] → (θ−1

k (0)−Lk, 0] converge in C∞
loc to (θ−)−1 resp. (θ+)−1.

Therefore, the maps f−
k

(
(θ−

k )−1(s), t
)

converge to g− in C∞
loc on [−1, 0)×S1

and similarly for g+. �

Write gk = (bk, vk) and g± = (b±, v±). By the asymptotics of f±, the
M -components v± fit together to a continuous map (which is smooth in t)

v(s, t) :=

⎧
⎪⎨

⎪⎩

v−(s, t) : s ∈ [−1, 0),
γ(t) : s = 0,

v+(s, t) : s ∈ (0, 1].

Lemma 4.16. The maps vk converge to v uniformly on [−1, 1] × S1.

Proof. Let δ > 0 be given. In view of the continuity of v and the C∞
loc-

convergence in Lemma 4.15, it suffices to find σ > 0 and K ∈ N such that

d
(
vk(s, t), γ(t)

)
≤ δ

for all (s, t) ∈ [−σ, σ] × S1 and k ≥ K. By Lemma 4.12, there exist K ∈ N

and L > 0 such that for all k ≥ K and for all (s, t) ∈ [−Lk +L, Lk −L]×S1,

d
(
uk(s, t), γ(t)

)
≤ δ.
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Recall that (θ−)−1 maps [−1, 0) diffeomorphically onto [0,∞). Thus we find
a σ > 0 such that (θ−)−1(−σ) ≥ L + 1. By the C∞

loc-convergence, we obtain

θ−1
k (−σ) + Lk = (θ−

k )−1(−σ) ≥ L

for k sufficiently large, hence θ−1
k (−σ) ≥ −Lk +L. Similarly, we can achieve

θ−1
k (σ) ≤ Lk − L and, therefore, by monotonicity of θk,

θ−1
k

(
[−σ, σ]) ⊂ [−Lk + L, Lk − L].

Then for s ∈ [−σ, σ] and k sufficiently large,

d
(
vk(s, t), γ(t)

)
= d

(
uk

(
θ−1
k (s), t

)
, γ(t)

)
≤ δ. �

The following lemma asserts a kind of uniform convergence of the R-
components.

Lemma 4.17. For every R > 0, there exist ρ > 0 and K ∈ N such that
bk(s, t) ∈ [r−

k + R, r+
k − R] for all k ≥ K and (s, t) ∈ [−ρ, ρ] × S1.

Proof. Let R > 0 be given. By Lemma 4.13, there exists L > 0 such that
ak(s, t) ∈ [r−

k + R, r+
k − R] for all sufficiently large k and (s, t) ∈ [−Lk +

L, Lk − L] × S1. As in the proof of Lemma 4.16, we find a ρ > 0 such that

θ−1
k

(
[−ρ, ρ]) ⊂ [−Lk + L, Lk − L]

for sufficiently large k. Then for s ∈ [−ρ, ρ] and k sufficiently large,

bk(s, t) = ak

(
θ−1
k (s), t

)
∈ [r−

k + R, r+
k − R]. �

Lemmas 4.15–4.17 yield the main result of this section:

Theorem 4.18. Let fk : [−Lk − 1, Lk + 1] × S1 → R × M be a sequence of
J-holomorphic cylinders satisfying hypotheses (B1) and (B2) with constants
independent of k. Let θk : [−Lk, Lk] → [−1, 1] be a sequence of diffeo-
morphisms satisfying hypothesis (B3). Define the maps gk = (bk, vk), g± =
(b±, v±) and v as above. Then for a subsequence of gk, the following holds:

(i) g−
k → g− on [−1, 0) × S1 and g+

k → g+ on (0, 1] × S1 in C∞
loc.

(ii) vk → v uniformly on [−1, 1] × S1.
(iii) For every R > 0, there exist ρ > 0 and K ∈ N such that bk(s, t) ∈

[r−
k + R, r+

k − R] for all k ≥ K and (s, t) ∈ [−ρ, ρ] × S1.

4.5. Reformulation. We have stated Theorem 4.18 in the form it is needed
in the proof of Theorem 2.9. For the sake of aesthetics, we will reformulate it
in a more symmetric form. Recall that by hypothesis (B2), the numbers r±

k

satisfy r+
k − r−

k → ∞ as k → ∞. Moreover, by Lemma 4.11, there exists an
R0 > 0 such that ak(s, t) ∈ [r−

k − R0, r
+
k + R0] for all (s, t) ∈ [−Lk, Lk] × S1.
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Consider a sequence of increasing diffeomorphisms Θk : [r−
k −R0, r

+
k +R0] →

[−1, 1] and define the shifted maps

Θ−
k (s) := Θk(s + r−

k ), s ∈ [−R0, r
+
k − r−

k + R0],

Θ+
k (s) := Θk(s + r+

k ), s ∈ [r−
k − r+

k − R0, R0].

We impose the following hypothesis on the sequence Θk:
(B4)

Θ−
k −→

k→∞
Θ− : [−R0,∞) → [−1, 0), Θ+

k −→
k→∞

Θ+ : (−∞, R0] → (0, 1],

where the convergence is in C∞
loc on [−R0,∞) resp. (−∞, R0] and the maps

Θ−, Θ+ are diffeomorphisms. By the asymptotics of f±, the maps Θ± ◦ b±

fit together to a continuous map (which is smooth in t)

c(s, t) :=

⎧
⎪⎨

⎪⎩

Θ− ◦ b−(s, t) : s ∈ [−1, 0),
0 : s = 0,

Θ+ ◦ b+(s, t) : s ∈ (0, 1].

Corollary 4.19. Let fk : [−Lk − 1, Lk + 1] × S1 → R × M be a sequence of
J-holomorphic cylinders satisfying hypotheses (B1) and (B2) with constants
independent of k. Let θk : [−Lk, Lk] → [−1, 1] and Θk : [r−

k , r+
k ] → [−1, 1] be

sequences of diffeomorphisms satisfying hypotheses (B3) and (B4), respec-
tively. Define the maps

hk := (Θk ◦ bk, vk) : [−1, 1] × S1 −→ [−1, 1] × M,

h := (c, v) : [−1, 1] × S1 −→ [−1, 1] × M

as above. Then a subsequence of hk converges to h in C∞
loc on

(
[−1, 1]\{0}

)
×

S1 and uniformly on [−1, 1] × S1.

Proof. Since
Θ−

k ◦ b−
k = Θk ◦ bk = Θ+

k ◦ b+
k ,

the C∞
loc-convergence follows from Lemma 4.15 and hypothesis (B4). For the

uniform convergence, let δ > 0 be given. In view of the continuity of c and
the C∞

loc-convergence, it suffices to find ρ > 0 and K ∈ N such that

|Θk ◦ bk(s, t)| ≤ δ

for all (s, t) ∈ [−ρ, ρ] × S1 and k ≥ K. Recall that Θ− maps [−R0,∞)
diffeomorphically onto [−1, 0). Thus we find an R > 0 such that Θ−(R) ≥
−δ/2. By the C∞

loc-convergence, we obtain

Θk(r−
k + R) = Θ−

k (R) ≥ −δ

for k sufficiently large. Similarly, we can achieve Θk(r+
k − R) ≤ δ and,

therefore, by monotonicity of Θk,

Θk

(
[r−

k + R, r+
k − R]) ⊂ [−δ, δ].
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By Lemma 4.17, there exists a ρ > 0 such that bk(s, t) ∈ [r−
k + R, r+

k − R]
for all sufficiently large k and (s, t) ∈ [−ρ, ρ] × S1. Hence

Θk ◦ bk

(
[−ρ, ρ] × S1) ⊂ [−δ, δ]. �

4.6. Estimates on the conformal modulus

Lemma 4.20. Denote by AL := [0, L]×S1 the annulus of conformal modulus
L. Let f = (a, u) : AL → R × M be a J-holomorphic map with boundary
conditions a(0, t) = R and a(L, t) = S. Then

S − R

L
≤

∫

{L}×S1
u∗λ +

1
ε

∫

AL

u∗ω ≤ 1
ε
E(f),

where ε > 0 is the constant from the beginning of this section. The first
inequality is an equality if and only if u∗ω ≡ 0.

Proof. Recall that in coordinates (s, t) on the annulus, J-holomorphicity of
f is equivalent to

as = λ(ut), at = −λ(us), πus + Jπut = 0.

We compute
∫

AL

ds ∧ u∗λ =
∫ L

0
ds

∫

{s}×S1
u∗λ =

∫ L

0
ds

∫

{s}×S1
as(s, t)dt

=
∫ L

0
ds

d

ds

∫

{s}×S1
a(s, t)dt =

∫

S1

(
a(L, t) − a(0, t)

)
dt

= S − R.

Now we use the hypothesis u∗(εdλ + ω) ≥ 0 to obtain
∫

AL

ds ∧ u∗λ =
∫

AL

d(su∗λ) −
∫

AL

su∗dλ

≤
∫

AL

d(su∗λ) +
L

ε

∫

AL

u∗ω

= L

( ∫

{L}×S1
u∗λ +

1
ε

∫

AL

u∗ω

)

≤ LE(f)
ε

,

where the last inequality follows from Lemma 4.1. The last statement of the
lemma holds since u∗(ε dλ + ω) = 0 only if u∗ω = 0. �
Corollary 4.21. Let f = (a, u) : AL → R × M be a J-holomorphic map
such that supt a(0, t) < inft a(L, t). Then

inf
t

a(L, t) − sup
t

a(0, t) ≤ L

( ∫

{L}×S1
u∗λ +

1
ε

∫

AL

u∗ω

)

≤ LE(f)
ε

.
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Proof. Pick ε1 > 0 and regular levels R, S of a such that

sup
t

a(0, t) < R < sup
t

a(0, t) + ε1 < inf
t

a(L, t) − ε1 < S < inf
t

a(L, t).

Then there exists a component γR of a−1(R) separating {0}×S1 from {L}×
S1. (Otherwise we could connect {0} × S1 to {L} × S1 in AL \a−1(R),
contradicting the hypothesis.) Similarly, there exists a component γS of
a−1(S) separating γR from {L} × S1. Since γR, γS are disjoint embedded
loops isotopic to {0} × S1, they bound an annulus A′ ⊂ AL of modulus
L′ ≤ L (see Section 3). Now apply Lemma 4.20 to A′ to obtain

−2ε1 + inf
t

a(L, t) − sup
t

a(0, t) ≤ S − R(4.1)

≤ L′
( ∫

γS

u∗λ +
1
ε

∫

A′
u∗ω

)

≤ L

( ∫

{L}×S1
u∗λ +

1
ε

∫

AL

u∗ω

)

.(4.2)

Here the last inequality follows from nonnegativity of u∗(ε dλ + ω). As
ε1 → 0, the result follows. �

The following lemma will be used in the proof of Theorem 2.9 to verify
the hypotheses of Theorem 4.18.

Lemma 4.22. Let f = (a, u) : [−L − 1, L + 1] × S1 → R × M be a J-
holomorphic map such that a(−L − 1, t) = R < S = a(L + 1, t) for all
t ∈ S1. Then

inf
t

a(−L, t) ≤ R + E(f)/ε, sup
t

a(L, t) ≥ S − E(f)
ε

.

Proof. If inft a(−L, t) ≤ R, the first inequality holds, so suppose inft a(−L,
t) > R. Then apply Corollary 4.21 to the restriction of f to [−L−1,−L]×S1

to obtain

inf
t

a(−L, t) − R ≤ E(f)
ε

.

The second inequality follows similarly. �

5. Proof of the compactness theorem

Now we return to the setup of Section 2, which we briefly recall. We are
given a closed connected symplectic manifold (X, ω) and a closed stable
hypersurface (M, ωM := ω|M , λ) in X. Fix ε > 0 such that ω = ωM + d(rλ)
on [−ε, ε] × M . Fix a tamed almost complex structure J on (X, ω) whose
restriction JM to [−ε, ε]×M is ωM -tamed with λJ = λ. Define the sequence
of manifolds (Xk, Jk, ωφk

) as in Section 2. Recall that ωφk
depends on the

choice of a diffeomorphism φk : [−k − ε, ε] → [−ε, ε] with φ′ ≡ 1 near the
end points of the interval, but its cohomology class [ωφk

] is independent of
this choice.
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5.1. Monotonicity. The metric gM := ωM (·, JM .) + dr2 + λ2 on R × M is
invariant under translation and under JM . Pick a J-invariant metric g on
X which equals gM on the neck [−ε, ε] × M . Equip each Xk with the Jk-
invariant Riemannian metric gk which equals gM on the neck [−k−ε, ε]×M
and g on X0. Pick ε1 > 0 smaller than the injectivity radius of (X, g), ε
and 1

2 . Then any ball in (Xk, gk) of radius ρ ≤ ε1 is isometric to some
ball in (X, g) and the almost complex structures agree under this isometry
(which is simply given by a shift in the R-component). Let εML, CML be
the constants in the Monotonicity Lemma 3.17 for (X, J, g). Then by the
preceding discussion, the Monotonicity Lemma holds on (Xk, Jk, gk) with
constants

ε0 := min(ε1, εML)

and CML independent of k:

Lemma 5.1. For any Jk-holomorphic map f : Σ → Xk from a compact
Riemann surface, passing through a point x with f(∂Σ) outside the gk-ball
Bρ(x) of radius ρ < ε0, we have areagk

(f) ≥ CMLρ2.

Since Jk is tamed by ω on X0 and by ωM on the neck, the compactness
of X0 and M and translation invariance imply

Lemma 5.2. There exist a constant CT > 0, not depending on k, such that

(ωM + sdλ + dr ∧ λ)(v, Jv) ≥ CT |v|2gk
for s ∈ [−ε, ε],

v ∈ T ([−k − ε, ε] × M)

ω(v, Jv) ≥ CT |v|2gk
for v ∈ TX0.

5.2. Energy estimates. Now let Σ be a closed connected Riemann surface
and f : (Σ, j) → Xk be a Jk-holomorphic curve. Define its ω-energy (or
area)

E(f) :=
∫

Σ
f∗ωφk

,

and recall that it does not depend on the choice of the function φk. Over
the set f−1([−k, 0] × M), we write

f = (a, u) : f−1([−k, 0] × M) → R × M.

For a subset A ⊂ [−k, 0], we introduce the abbreviation

a−1(A) := f−1(A × M).

Lemma 5.3. The energy of the restriction f |a−1([−k,0]) satisfies

2ε

1 + 2ε
E(f |a−1([−k,0])) ≤ Eε(f |a−1([−k,0])) ≤ E(f).
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Moreover, the action of every regular level R of the function a : a−1

([−k, 0]) → R satisfies
∫

a−1(R)
u∗λ ≤ 1

2ε
E(f).

Proof. Set C := f−1([−k, 0] × M). Consider any smooth non-decreasing
function φ : [−k, 0] → (−ε, ε). Extend φ to a smooth non-decreasing func-
tion φ̃ : [−k − ε, ε] → [−ε, ε] such that φ̃′ ≡ 1 near the end points. Non-
negativity of the integrand f∗ωφ̃ implies

∫

C
f∗ωφ ≤

∫

Σ
f∗ωφ̃ = E(f).

Taking the supremum over all such φ yields the inequality Eε(f |C) ≤ E(f).
The other inequalities now follow from Lemma 4.1 and ε < 1/2. �
Remark 5.4. Lemma 5.3 remains valid if X is a symplectic cobordism and
E(f) is the Hofer energy of f .

5.3. Bounds on the topology. Consider a smooth map f : Σ → Xk from
a surface Σ. For a regular level −k + 1 ≤ R ≤ −1, let CR be the collection
of connected components of a−1([R, R + 1]) and a−1([R − 1, R]). We define
subsets C±

R ⊂ CR as follows: First, we include in C+
R all components that

meet a−1(R + 1), as well as those in a−1([R, R + 1]) that do not meet R.
Similarly, we include in C−

R all components that meet a−1(R − 1), as well as
those in a−1([R − 1, R]) that do not meet R. Next, we inductively include
in C+

R all components that can be connected in CR to C+
R without passing

through C−
R . Finally, we include all remaining components in C−

R .
For regular levels −k + 1 ≤ R < S ≤ −1 with S − R ≥ 2, we define the

following subsets of Σ, see Figure 5:

ΣS
R(f) := a−1([R + 1, S − 1]) ∪ C+

R ∪ C−
S ,

ΣR
S (f) := Σ\ΣS

R(f).

Note that in ΣS
R, closed components of a−1([R−1, R+1]) that meet a−1(R)

are excluded and closed components of a−1([S − 1, S +1]) that meet a−1(S)
are included. All boundary components of ΣS

R lie in a−1(R) or a−1(S). More-
over, for −k + 1 ≤ R < S < T ≤ −1 with S − R, T − S ≥ 2, we have

ΣS
R(f) ∪ ΣT

S (f) = ΣT
R(f), ΣS

R ∩ ΣT
S ⊂ a−1(S).

We will always assume without further mentioning that R and S, as well as
R±1 and S ±1, are regular values of the function a : f−1([−k, 0]×M) → R

associated to f .

Lemma 5.5. For any Jk-holomorphic curve f : Σ → Xk and regular levels
−k +1 ≤ R < S ≤ −1 with S −R ≥ 2, the number of connected components
of each of the sets ΣR

S (f) and ΣS
R(f) is at most 2E(f)/CMLCT ε2

0.
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Proof.

(i) Fix a smooth non-decreasing map φ : [−k, 0] → [−ε, ε] with φ(R) = −ε
and φ(S) = ε and define the 2-form ωφ := ωM + d(φλ) on [−k, 0] × M
as before. By Lemma 5.3, we have

∫

ΣS
R

f∗ωφ ≤ Eε(f |a−1([−k,0])) ≤ E(f).

Now let Σ0 be a connected component of ΣS
R(f). We construct a point

z0 ∈ Σ0 as follows. If Σ0 has a boundary component on level R, we
choose z0 ∈ Σ0 on level R + 1/2 (which exists by definition of ΣS

R).
If Σ0 has no boundary component on level R but one on level S, we
choose z0 ∈ Σ0 on level S − 1/2. If Σ0 has no boundary, pick any
z0 ∈ Σ0. Let B be the gk-ball around b := f(z0) of radius ε0. The
choice of z0 and ε0 ≤ 1/2 implies f(∂Σ0) ∩ B = ∅. Hence Lemma 5.1
yields

areagk
(f |Σ0) ≥ CMLε2

0.

Now assume first that ∂Σ0 �= ∅. Pick a smooth non-decreasing map
φ0 : [−k, 0] → [−ε, ε] with φ0(R) = −ε and φ0(S) = ε such that
φ0(r) = r − b for r ∈ [b − ε0, b + ε0] (this is possible because ε0 < ε).
Then ωφ0 = ωM +d

(
(r−b)λ

)
on B, so Lemma 5.2 yields ωφ0(v, Jkv) ≥

CT |v|2gk
for v ∈ TB, which in view of f∗ωφ0 ≥ 0 implies

∫

Σ0

f∗ωφ =
∫

Σ0

f∗ωφ0 ≥ CT CMLε2
0.

ΣS
R(f)

S

S − 1

R

R − 1

Figure 5. Ignoring small “stalactites” in ΣS
R(f).
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Here the first equality follows from Stokes’ theorem in view of φ(R) =
φ0(R) and φ(S) = φ0(S). If Σ0 is closed, we take φ0 : [b − ε, b + ε] →
[−ε, ε], φ0(r) := r − b, and obtain the same estimate. Thus for any
connected component Σ0 of ΣS

R, we have
∫

Σ0

f∗ωφ ≥ CT CMLε2
0.

Since
∫
ΣS

R
f∗ωφ ≤ E(f), the number of connected components cannot

exceed E(f)/CT CMLε2
0.

(ii) The proof for ΣR
S (f) works similarly. Here we choose a surjective non-

decreasing map φ : [−k, 0] → [−ε, ε] with φ(R) = φ(S) = 0. If ∂Σ0 �= ∅,
we choose z0 ∈ Σ0 such that a(z0) = R−1/2 or a(z0) = S +1/2. Thus
this time, we obtain a bound given by 2E(f)/CT CMLε2

0. �

Let −k + 1 ≤ R0 ≤ −1. A subset Σ0 ⊂ Σ is called an essential local
minimum on level R0 of f : Σ → Xk if Σ0 is a connected component of
a−1([−k, R0 + 1]) and R0 = minΣ0a. See Figure 6.

Similarly, an essential local maximum on level R0 is a connected compo-
nent Σ0 of a−1([R0 − 1, 0]) such that R0 = maxΣ0a.

Note that a closed component Σ0 of a−1([−k + 1,−1]) gives rise to both
an essential local minimum and maximum.

Lemma 5.6. For any Jk-holomorphic curve f : Σ → Xk, the number of
essential local minima and maxima is bounded above by E(f)/CT CMLε2

0.

Proof. The proof is very similar to that of Lemma 5.5. Consider a point
on an essential local minimum or maximum Σ0 with a(z0) = R0 and let B
be the gk-ball of radius ε0 around f(z). Pick a smooth non-decreasing map
φ : [−k, 0] → [−ε, ε] with φ(−k) = −ε and φ(0) = ε such that φ(r) = r −R0
for r ∈ [R0 − ε0, R0 + ε0]. As in the proof of Lemma 5.5, we find

CT CMLε2
0 ≤

∫

Σ0

f∗ωφ ≤ E(f).

Choosing disjoint balls around all local minima and maxima, this bounds
the number of essential local minima and maxima by E(f)/CT CMLε2

0. �

Finally, we need to bound the Euler characteristic χ of the sets ΣR
S (f) and

ΣS
R(f). Recall that the Euler characteristic of a compact connected oriented

surface Σ0 of genus g with n boundary components is given by

χ(Σ0) = 2 − 2g − n.

In particular, χ(Σ0) ≤ 2 with equality iff Σ0 is the sphere; χ(Σ0) = 1 iff Σ0
is the disk; χ(Σ0) = 0 iff Σ0 is the torus or the cylinder. The surface Σ0 ∪Σ1
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obtained by gluing two surfaces Σ0, Σ1 along some of their boundary circles
has Euler characteristic

χ(Σ0 ∪ Σ1) = χ(Σ0) + χ(Σ1).

From now on, we assume that Σ is connected and E(f) ≤ E0. Set

N0 := 2 max
(

E0

CT CMLε2
0, 1

)

.

Lemma 5.7. With the notation of Lemma 5.5, we have the following esti-
mates for the Euler characteristic:

χ(Σ) − N0 ≤ χ
(
ΣR

S (f)
)

≤ N0,

χ(Σ) − N0 ≤ χ
(
ΣS

R(f)
)

≤ N0.

Proof. By Lemma 5.5, ΣR
S has at most N0 components. If one component

is a sphere, then it equals Σ because Σ is connected, so χ(ΣR
S ) ≤ 2 ≤ N0 in

this case. Otherwise all components have Euler characteristic at most 1, and
again χ(ΣR

S ) ≤ N0. The other upper estimate follows similarly. The lower
estimates follow from χ(Σ) = χ(ΣR

S ) + χ(ΣS
R) ≤ χ(ΣR

S ) + N0 and similarly
for the other case. �

Lemma 5.5 and Lemma 5.7 show that the number of possible topological
types of each of the sets ΣR

S (f) and ΣS
R(f) is uniformly bounded. To see

this, note that the genus of each of the sets is bounded above by the genus of
Σ, thus the bounds on the Euler characteristic yield bounds on the number
of boundary components. The following lemma gives a more precise control
of the topology.

Lemma 5.8. With the notation of Lemma 5.5, we have

χ
(
ΣS

R(f)
)

≤ #{essential minima or maxima Σ0 ⊂ ΣS
R}.

If ΣS
R(f) contains neither essential minima nor maxima and χ

(
ΣS

R(f)
)

= 0,
then ΣS

R(f) is a disjoint union of cylinders connecting the levels R and S.

Proof. Let Σ1 be a component of ΣS
R(f) with χ(Σ1) > 0. If Σ1 is a sphere,

then it has at least one essential maximum and one essential minimum. If
Σ1 is not a sphere, then χ(Σ1) = 1 and Σ1 is a disk with boundary in
a−1(S) (resp. a−1(R)). Now Σ1 ⊂ ΣS

−k(f) (resp. Σ1 ⊂ Σ0
R(f)) implies

that R0 := minΣ1a ≤ S − 1 (resp. R0 := maxΣ1a ≥ R + 1). Let Σ0 be
a component of Σ1 ∩ a−1([R0, R0 + 1]) (resp. Σ1 ∩ a−1([R0 − 1, R0]) on
which the minimum (resp. maximum) R0 is attained. Since Σ1 has no lower
(resp. upper) boundary, Σ0 is a connected component of a−1([−k, R0 + 1])
(resp. a−1([R0 − 1, 0]) and is thus an essential minimum (resp. maximum).
This proves the estimate.
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For the last statement, suppose that ΣS
R contains neither essential minima

nor maxima. Then, by the argument above, each component Σ1 of ΣS
R

has Euler characteristic ≤ 0. Thus χ(ΣS
R) = 0 implies χ(Σ1) = 0. If Σ1

had no boundary, it would be an essential local minimum (and maximum),
contradicting the hypotheses. So Σ1 has non-empty boundary and is thus a
cylinder. If this cylinder had both boundary components on level R (resp.
level S), it would contain an essential local maximum (resp. minimum), so
each cylinder connects the levels R and S. �

Define a function χf : [−k + 1,−3]reg → Z on regular values of a by

χf (r) := χ
(
Σ−1

r (f)
)
.

This function will play an important role in the compactness proof. It is
bounded by Lemma 5.7. We call a value r ∈ [−k +1,−3] an upward jump if

h+(r) := lim sup
S↘r

χf (S) − lim inf
R↗r

χf (R) > 0,

and a downward jump if

h−(r) := lim sup
R↗r

χf (R) − lim inf
S↘r

χf (S) > 0.

Here the infima and suprema are taken over regular values of the function
a. The numbers h+(r) and h−(r) are called the height of the jump, see
Figure 6.

Lemma 5.9. The height of a downward jump of the function χf at r ∈
[−k + 1,−3] is at most the number of essential local minima on levels r and
r − 1 plus the number of essential local maxima on level r + 1. The total
height of all downward jumps, in particular their number, is at most N0.
The total height of all upward jumps, in particular their number, is at most
3N0 − χ(Σ).

Proof. Consider regular values −k + 1 < R < S < −3. By construction,
we have Σ−1

S (f) ⊂ Σ−1
R (f). Hence the difference χf (S) − χf (R) equals the

sum of −χ(C) over all connected components C of Σ−1
R (f)\Σ−1

S (f). The
contribution −χ(C) of a connected component C is negative only in the
case that C is either a sphere or a disk. If C is a sphere, we must have
R < minC a < S (the first condition ensuring C ⊂ Σ−1

R (f) and the second
one C �⊂ Σ−1

S (f)), so C contains an essential local miminum in the interval
[R, S]. If C is a disk, its boundary must lie on {R}×M or {S}×M . In the
first case, we must have R+1 < maxC a < S+1 (the first condition ensuring
C ⊂ Σ−1

R (f) and the second one C �⊂ Σ−1
S (f)), so C contains an essential

local maximum in the interval [R+1, S+1]. Similarly, in the second case we
must have R−1 < minC a < S−1, so C contains an essential local minimum
in the interval [R − 1, S − 1]. Choosing suitable sequences of regular values
R ↗ r and S ↘ r, this proves the first assertion of the lemma.
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x

y

r

r − 1

R0 + 1

R0

Figure 6. An upward jump at r due to a non-extremal
critical point x and a downward jump at R0 + 1 due to an
essential local minimum y. Notice that no jump occurs at
the other local minimum.

It follows that the total height of all downward jumps is bounded by
twice the number of essential local extrema (maxima and minima), which is
at most N0 by Lemma 5.6. Since by Lemma 5.7, the values of χf (r) lie in
an interval of length 2N0 − χ(Σ), the total height of all upward jumps is at
most 3N0 − χ(Σ). �

In view of the preceding lemma, we can extend χf from the regular values
to a function χf : [−k + 1,−3] → Z which is locally constant except at the
finitely many jumps.

5.4. Detecting the levels. Let now (fk)k∈N be a sequence of Jk-holo-
morphic maps fk : (Σk, jk) → Xk of the same genus and with uniformly
bounded energy E(fk) ≤ E0. We will screen the neck of Xk for the essential
parts fk which have the potential to give rise to non-trivial components of
the limit. This part of the proof is borrowed from the Floer theory. The
new feature here is that, in addition to non-trivial action, we also have to
detect non-trivial topology.
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For each k, consider the functions

χk : [−k + 1,−3] → Z, r �−→ χ
(
Σ−1

r (fk)
)
,

Ak : [−k, 0] → R, r �−→
∫

f−1
k ([r,0]×M)

f∗
kωM .

More precisely, both functions are first defined on regular values and then
extended such that Ak becomes continuous and χk is locally constant except
for finitely many jumps as above. Note that the function Ak is strictly
decreasing because f∗

kωM ≥ 0. Recall the definition of β0 from Section 4.
Call a level r ∈ [−k, 0] essential for fk if it satisfies one of the following

conditions:

• r = 0 or r = −k;
• Ak(r) = jβ0 for some j ∈ Z;
• fk has an essential minimum on the level r−1 or an essential maximum

on the level r + 1;
• χk has a jump at r;
• fk has a marked point on level r.

In view of Lemma 5.6, Lemma 5.9 and the energy bound 0 ≤ Ak(r) ≤ E0,
the number of essential levels of fk is bounded by a constant independent
of k. After passing to a subsequence, we may assume that this number is
constant, say N ′ + 2. For each k order, the essential levels as −k = s

(0)
k <

· · · < s
(N ′+1)
k = 0. Call two levels ν and µ equivalent if s

(ν)
k −s

(µ)
k is uniformly

bounded for all k. Retain only one level in each equivalence class, including
the highest and lowest level. Pass to a subsequence such that the number
of equivalence classes is constant, say N + 2 for some N ≤ N ′. Order the
remaining levels again as

−k = r
(0)
k < · · · < r

(N+1)
k = 0.

By construction, limk→∞ r
(ν+1)
k − r

(ν)
k = ∞. Since every equivalence class

above contained only finitely many levels, there exists an R0 > 0 such that
all the dropped levels s

(µ)
k that were equivalent to r

(ν)
k are contained in the

interval (r(ν)
k − R0, r

(ν)
k + R0).

For k > 2R0, define the essential regions E(ν)
k and the cylindrical regions

Z(ν)
k by (Figure 7).

E(0)
k := Σ−k+R0

−R0
(fk), E(ν)

k := Σr
(ν)
k +R0

r
(ν)
k −R0

(fk), ν = 1, . . . , N,

Z(ν)
k := Σr

(ν+1)
k −R0

r
(ν)
k +R0

(fk), ν = 0, . . . , N.
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Xk

r
(3)
k = 0

r
(2)
k

r
(1)
k

r
(0)
k =−k

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E(0)
k↪+

Z(2)
k

E(2)
k

⎫
⎬

⎭
Z(1)

k

⎫
⎬

⎭
E(1)

k

Z(0)
k⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

E(0)
k↪−

Figure 7. Essential and cylindrical parts in Σk of fk.

By construction, for k sufficiently large, the interval [r(ν)
k +R0, r

(ν+1)
k −R0]

contains neither essential minima nor maxima nor jumps of the function χk.
Hence χ(Z(ν)

k ) = χk(r
(ν)
k + R0) − χk(r

(ν+1)
k − R0) = 0, so by Lemma 5.8,

Z(ν)
k is a union of cylinders connecting the levels r

(ν)
k + R0 and r

(ν+1)
k − R0.

We summarize this discussion in the following lemma.

Lemma 5.10. There exist constants N and R0, independent of k, and levels
−k = r

(0)
k < · · · < r

(N+1)
k = 0 with the following properties.

(i) limk→∞ r
(ν+1)
k − r

(ν)
k = ∞ for ν = 0, . . . , N .
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(ii) For k sufficiently large and ν = 0, . . . , N , the region Z(ν)
k is a union of

at most N0 cylinders (with N0 as defined before Lemma 5.7) connecting
the levels r

(ν)
k + R0 and r

(ν+1)
k − R0.

(iii) For every ν = 0, . . . , N , there exists a j ∈ Z such that for sufficiently
large k, the area in Z(ν)

k satisfies

jβ0 ≤ Ak

(
r
(ν)
k + R0

)
≤ Ak

(
r
(ν+1)
k − R0

)
≤ (j + 1)β0.

Bookmark for later that we have already obtained the number N of levels
of the limit curve.

Corollary 5.11. In Lemma 5.10, after increasing R0 and passing to a
subsequence, we may further assume the following properties.

(i) The topology of the surfaces E(ν)
k and Z(ν)

k is independent of k.
(ii) The conformal modulus of each component of Z(ν)

k tends to infinity as
k → ∞.

Proof.
(i) It follows from Lemma 5.5 and Lemma 5.7, see the discussion following

Lemma 5.7.
(ii) It follows from Lemma 4.20 and the upper bound on the action in

Lemma 5.3. �

5.5. Decomposing the domains. Next we will slightly modify the regions
Ek and Zk to make them fit into the setup of Sections 3 and 4. Let β0 > 0 be
the constant defined in Section 4 and � > 0 be the constant in Lemma 4.10.
Let L0 > 1 be the constant in the remark after Theorem 3.2, where ε0, CML
and cSL are the constants associated to (Xk, Jk, gk) (which are independent
of k). Fix some L ≥ L0.

Consider one connected component Ck of a cylindrical region Z(ν)
k . (In the

following discussion, ν is fixed and often suppressed in the notation.) Let βk :
[−Lk −5L− �, Lk +5L+ �]×S1 → (Ck, jk) be a conformal parameterization
from a standard annulus. Consider the JM -holomorphic map hk := fk ◦βk :
[−Lk − 5L − �, Lk + 5L + �] × S1 → R × M . Denote by ‖∇hk‖ the norm of
the gradient with respect to the Euclidean metric on the cylinder and the
metric gM on R × M defined at the beginning of this section.

Lemma 5.12. After passing to a subsequence and increasing R0, we may
assume that for every component of Z(ν)

k , the corresponding maps hk =
(ck, wk) : [−Lk − 5L − �, Lk + 5L + �] × R/Z → R × M have the following
properties, with constants D > 0 and R1 ≥ R0 not depending on k and ν:

(i) Lk → ∞ as k → ∞;
(ii) E(hk) ≤ E0/ε and EωM (hk) ≤ β0;
(iii) 1/D ≤ ‖∇hk(s, t)‖ ≤ D for all (s, t) ∈ [−Lk − 5L, Lk + 5L] × S1;
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(iv) r
(ν)
k + R0 − 1 ≤ inft ck(−Lk − 1, t) ≤ supt ck(−Lk, t) ≤ r

(ν)
k + R1 and

r
(ν+1)
k − R1 ≤ inft ck(Lk, t) ≤ supt ck(Lk + 1, t) ≤ r

(ν+1)
k − R0 + 1.

Proof.
(i) It is contained in Corollary 5.11.
(ii) The first statement follows from Lemma 5.3 and the second one from

Lemma 5.10 (iii).
(iii) Lemma 4.10 and the choice of � yield the lower estimate ‖∇hk(s, t)‖ ≥

∂ck
∂s (s, t) ≥ δ0 for s ∈ [−Lk − 5L, Lk + 5L]. The upper estimate follows
from Lemma 4.3 and property (ii) above.

(iv) Set

r−
k := inf

t
ck(−Lk − 5L − � + 1, t), r+

k := sup
t

ck(Lk + 5L + � − 1, t).

Then Lemma 4.22 with R = r
(ν)
k + R0, S = r

(ν+1)
k − R0 and E1 := E0/ε2

yields
r−
k ≤ r

(ν)
k + R0 + E1, r+

k ≥ r
(ν+1)
k − R0 − E1.

In particular, r+
k − r−

k → ∞ as k → ∞. Hence the maps hk satisfy hypothe-
ses (B1) and (B2) of Section 4. By Lemma 4.11, a subsequence of the shifted
maps h−

k (s, t) := hk(s − Lk − 5L − � + 1, t) − (r−
k , 0) converges in C∞

loc on
[0,∞) × S1. In particular, their R-components c−

k satisfy

ck(−Lk, t) − r−
k = c−

k (5L + � − 1, t) ≤ ρ

for all sufficiently large k and a constant ρ. With the estimate on r−
k , this

yields
ck(−Lk, t) ≤ r

(ν)
k + R0 + E1 + ρ = r

(ν)
k + R1

for R1 := R0 + E1 + ρ. An analogous argument shows

ck(Lk, t) ≥ r
(ν+1)
k − R0 − E1 − ρ = r

(ν+1)
k − R1.

For the converse estimates, note that βk(−Lk − 1, t) ∈ Z(ν)
k for all t, so by

the definition of Z(ν)
k , we have

ck(−Lk − 1, t) = ak ◦ βk(−Lk − 1, t) ≥ r
(ν)
k + R0 − 1.

An analogous argument yields ck(Lk +1, t) ≤ r
(ν+1)
k −R0+1. This concludes

the proof. �

Now we need some notation. Recall that the number of components of
Z(ν)

k is independent of k. So we can parameterize the components by the
same index set I(ν) for all k and write

Z(ν)
k =

⋃

i∈I(ν)

Zi
k
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as a disjoint union of cylinders. Each cylinder is parameterized by a confor-
mal diffeomorphism

βi
k : [−Li

k − 5L − �, Li
k + 5L + �] × S1 → Zi

k

as above. Define the slightly smaller cylinders

Zi
k := βi

k

(
[−Li

k − 1, Li
k + 1] × S1) ⊂ Zi

k

and set

Z
(ν)
k :=

⋃

i∈I(ν)

Zi
k, I :=

N−1⋃

ν=1

I(ν), Zk :=
⋃

i∈I

Zi
k =

N−1⋃

ν=1

Z
(ν)
k .

Define the slightly larger essential regions

E
(ν)
k := E(ν)

k ∪
⋃

i∈I(ν)

βi
k

(
[−Li

k − 5L − �,−Li
k] × S1

)

× ∪
⋃

i∈I(ν−1)

βi
k

(
[Li

k, L
i
k + 5L + �] × S1

)

and set

Ek :=
N⋃

ν=1

E
(ν)
k .

Note that Σk = Ek ∪ Zk and

E
(ν)
k ∩ Z

(ν)
k =

⋃

i∈I(ν)

βi
k

(
[−Li

k − 1,−Li
k] × S1

)
,

E
(ν)
k ∩ Z

(ν−1)
k =

⋃

i∈I(ν−1)

βi
k

(
[Li

k, L
i
k + 1] × S1

)
.

5.6. Essential components. Consider the holomorphic maps fk : (Ek,
jk) → (Xk, Jk) on the essential components. Define the maps

f
(0)
k : E

(0)
k −→ X0,

f
(ν)
k := fk|E(ν)

k

− r
(ν)
k : E

(ν)
k −→ R × M, ν = 1, . . . , N,

where f
(0)
k equals the composition of fk|E(0)

k

with the map Xk\{−k/2}×M →
X0 that shifts by k on [−k,−k/2) × M .

Lemma 5.13. For every ν = 0, . . . , N , the maps f
(ν)
k satisfy hypotheses

(A1–A5) in Section 3 with constants independent of k.

Proof. By Corollary 5.11 (i), for any g, n±, the number of connected compo-
nents with genus g and n+ positive and n− negative boundary components
of the regions E

(ν)
k is independent of k. By Lemma 5.12 (iv), the image of

f
(ν)
k is contained in the compact region [−R1, R1] × M for ν = 1, . . . , N and
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in X0 ∪ [−R1, 0] × M ∪ [0, R1] × M for ν = 0. By Lemma 5.3, the gk-areas
of f

(ν)
k are uniformly bounded by a constant independent of k. This shows

hypotheses (A1–A3) with µ = gk.
By construction, we have at each positive boundary component of E

(ν)
k

an embedded annulus

βi−
k : [−5L, 0] × S1 −→ E

(ν)
k , (s, t) �−→ βi

k(s − Li
k, t), i ∈ I(ν),

and at each negative component

βi+
k : [0, 5L] −→ S1 → E

(ν)
k , (s, t) �−→ βi

k(s + Li
k, t), i ∈ I(ν−1).

By Lemma 5.12 (iii), the gradients of the maps

f
(ν)
k ◦ βi−

k : [−5L, 0] × S1 → R × M, f
(ν)
k ◦ βi+

k : [0, 5L] × S1 → R × M

are bounded from below and above by positive constants independent of k.
This shows hypotheses (A4 and A5). �

Now Theorem 3.2 implies.

Corollary 5.14. Subsequences of f
(ν)
k converge as k → ∞ to nodal holo-

morphic curves

f (0) :
(
E(0), j(0)) −→ X0 ∪ [−R1, 0] × M ∪ [0, R1] × M,

f (ν) :
(
E(ν), j(ν)) −→ [−R1, R1] × M, ν = 1, . . . , N.

To simplify notation, we have dropped all the bars and do not distinguish
between Ē(ν) and E(ν) etc. Moreover, by starting with a slightly larger
region, we may assume that the convergence is up to the boundary of E(ν).
With this understood, there exist diffeomorphisms ϕ

(ν)
k : E

(ν)
k → E(ν) such

that
• (ϕ(ν)

k )∗jk → j(ν) in C∞ (away from the nodes),
• f

(ν)
k ◦ (ϕ(ν)

k )−1 → f (ν) in C∞ (away from the nodes) and in C0 over the
nodes.

Moreover, for each boundary component i ∈ I(ν) resp. i ∈ I(ν−1), the maps

ϕ
(ν)
k ◦ βi−

k : [−1, 0] × S1 −→ E(ν), ϕ
(ν)
k ◦ βi+

k : [0, 1] × S1 −→ E(ν)

are independent of k.

5.7. Cylindrical components. For i ∈ I, consider the JM -holomorphic
cylinders

hi
k := fk ◦ βi

k : [−Li
k − 1, Li

k + 1] × S1 → R × M.

Lemma 5.15. For each i ∈ I, the maps hi
k = (ci

k, w
i
k) satisfy hypotheses

(B1 and B2) in Section 4 with constants independent of k.
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Proof. Hypothesis (B1) follows from Lemma 5.12 (ii). Hypothesis (B2) fol-
lows from Lemma 5.12 (i) and (iv) and r

(ν+1)
k − r

(ν)
k → ∞ as k → ∞. �

Consider i ∈ I(ν). By Lemma 5.12 (with R0 ≥ 1), we have

ri−
k := inf

t
ci
k(−Li

k, t) ∈ [r(ν)
k , r

(ν)
k + R1],

ri+
k := sup

t
ci
k(L

i
k, t) ∈ [r(ν+1)

k − R1, r
(ν+1)
k ].

This allows us to replace ri−
k by r

(ν)
k and ri+

k by r
(ν+1)
k in the statements in

Section 4. Thus by Lemma 4.11, a subsequence of the shifted maps

hi−
k (s, t) := hi

k(s − Li
k, t) − r

(ν)
k , hi+

k (s, t) := hi
k(s + Li

k, t) − r
(ν+1)
k

converges in C∞
loc to holomorphic half cylinders

hi− : [0,∞) × S1 −→ R × M, hi+ : (−∞, 0] × S1 −→ R × M.

By Lemma 4.12, the half cylinders hi− and hi+ are asymptotic to the same
closed Reeb orbit γi.

Pick a sequence of diffeomorphisms

θi
k : [−Li

k − 1, Li
k + 1] → [−2, 2]

such that

θi
k(s) =

{
s + Li

k − 1 for s ∈ [−Li
k − 1,−Li

k],
s − Li

k + 1 for s ∈ [Li
k, L

i
k + 1].

The reason for choosing these slightly larger intervals will become clear
below. Moreover, we assume that their restrictions to [−Li

k, L
i
k] satisfy hypo-

thesis (B3). Thus the shifted maps

θi−
k (s) := θi

k(s − Li
k), θi+

k (s) := θi
k(s + Li

k)

converge in C∞
loc to diffeomorphisms

θi− : [−1,∞) −→ [−2, 0), θi+ : (−∞, 1] −→ (0, 2].
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By abuse of notation, let us denote the maps [−Li
k − 1, Li

k + 1] × S1 →
[−2, 2] × S1 induced by θi

k by the same letter. As in Section 4, define

gi
k := (bi

k, v
i
k) := hi

k ◦ (θi
k)

−1 : [−2, 2] × S1 −→ R × M,

gi−
k := (bi−

k , vi−
k ) := hi−

k ◦ (θi−
k )−1 : [−2, 2] × S1 −→ R × M,

gi+
k := (bi+

k , vi+
k ) := hi+

k ◦ (θi+
k )−1 : [−2, 2] × S1 −→ R × M,

gi− := (bi−, vi−) := hi− ◦ (θi−)−1 : [−2, 0) × S1 −→ R × M,

gi+ := (bi+, vi+) := hi+ ◦ (θi+)−1 : (0, 2] × S1 −→ R × M,

vi(s, t) :=

⎧
⎪⎨

⎪⎩

vi−(s, t) : s ∈ [−2, 0),
γi(t) : s = 0,

vi+(s, t) : s ∈ (0, 2].

Corollary 5.16. For each i ∈ I and a subsequence of gi
k, the following

holds:
(i) gi−

k → gi− on [−2, 0) × S1 and gi+
k → gi+ on (0, 2] × S1 in C∞

loc.
(ii) vi

k → vi uniformly on [−2, 2] × S1.
(iii) For every R > 0, there exist ρ > 0 and K ∈ N such that bi

k(s, t) ∈
[r(ν)

k + R, r
(ν+1)
k − R] for all k ≥ K and (s, t) ∈ [−ρ, ρ] × S1.

Proof. For the restrictions to [−1, 1] × S1, this follows from Lemma 5.13
and Theorem 4.18. Moreover, by Lemma 5.12 (iv), the maps hi

k also satisfy
hypotheses (B1 and B2) of Section 4 with Lk replaced by (Lk+1). Hence the
convergence on [−2,−1] × S1 and [1, 2] × S1 follows from Lemma 4.11. �

5.8. Domain of the limit curve. For the following discussion, see
Figure 8.

Define the disjoint unions of standard annuli

Ck :=
∐

i∈I

[−Li
k − 1, Li

k + 1] × S1, C :=
∐

i∈I

[−2, 2] × S1,

C−
k :=

∐

i∈I

[−Li
k − 1,−Li

k] × S1, C− :=
∐

i∈I

[−2,−1] × S1,

C+
k :=

∐

i∈I

[Li
k, L

i
k + 1] × S1, C+ :=

∐

i∈I

[1, 2] × S1.

The diffeomorphisms θi
k : [−Li

k −1, Li
k +1] → [−2, 2] induce diffeomorphisms

θk : Ck → C which are of the form (s, t) �→ (s+const, t) on each component
of C−

k ∪ C+
k .

Recall that Zk = ∪i∈IZ
i
k and Ek = ∪N

ν=0E
(ν)
k . The diffeomorphisms

βi
k : [−Li

k − 1, Li
k + 1] × S1 → Zi

k induce conformal diffeomorphisms

βk : (Ck, i) −→ (Zk, jk).
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E(ν)

β

2

1

−1

−2

Ci

θi
k

Li
k + 1

Li
k

−Li
k

−Li
k − 1

Ci
k

βi
k

ϕ
(ν)
k

Xk

fk

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zi
k

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

E
(ν)
k

Figure 8. Patching together the cylindrical and essential
pieces of fk.

Set Z±
k := βk(C±

k ) and note that Ek ∩ Zk = Z−
k ∪ Z+

k . The diffeomorphisms
ϕ

(ν)
k : E

(ν)
k → E(ν) induce diffeomorphisms

ϕk : Ek −→ E :=
N∐

ν=0

E(ν)

such that (ϕk)∗jk converges to the (nodal) conformal structure j on E

induced by the j(ν). Moreover, the embeddings

β := ϕk ◦ βk ◦ θ−1
k : C− ∪ C+ −→ E

are independent of k. Glue E and C to obtain a closed surface

Σ := E ∪β C.

Since β ◦ θk ◦ β−1
k = ϕk on Ek ∩ Zk, the maps ϕk : Ek → E and θk ◦ β−1

k :
Zk → C fit together to yield diffeomorphisms

ϕk : Σk −→ Σ.
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5.9. Convergence of conformal structures. Define the union of disjoint
simple loops

∆ :=
∐

i∈I

{0} × S1 ⊂ C.

Viewing ∆ as a subset of Σ, we define

Σ∗ := Σ\∆ =:
N∐

ν=0

Σ(ν),

where Σ(=nu) is the component containing E(ν). The diffeomorphisms θi− :
[−1,∞) → [−2, 0) and θi+ : (−∞, 1] → (0, 2] induce a diffeomorphism

θ :
( ∐

i∈I

[−1,∞) × S1
)

	
( ∐

i∈I

(−∞, 1] × S1
)

−→ C\∆.

Since θi±
k → θi± in C∞

loc, the conformal structures (θk)∗i converge in C∞
loc

on C \∆ to θ∗i. Moreover, by construction, we have (θk)∗i = θ∗i = i on
C− ∪C+. On the other hand, we have (ϕk)∗jk → j in C∞

loc on E (away from
the nodes). Moreover, on β(C− ∪ C+), we have

(ϕk)∗jk = (ϕk ◦ βk)∗i = β∗i

for all k, and therefore j = β∗i. This shows that the structures j on E
and θ∗i on C\∆ fit together to a conformal structure j on Σ∗ making it a
punctured Riemann surface.

By definition of ϕk : Σk → Σ, the structure (ϕk)∗jk on Σ is given by
(ϕk)∗jk on E and by (θk ◦ β−1

k )∗jk = (θk)∗i on C. Hence by the preceding
discussion, (ϕk)∗jk → j in C∞

loc on Σ∗. This proves property (a) of Defini-
tion 2.7 for the sequence Fk : (Σk, jk) → (Xk, Jk). Property (b) holds with
annuli (θi

k)
−1([−Li

k, L
i
k] × S1]) : [−1, 1] × S1 → [−Li

k, L
i
k] × S1.

5.10. Convergence of maps. For k ∈ N and ν = 0, . . . , N , define the
maps

Fk := fk ◦ ϕ−1
k : Σ −→ Xk,

F
(ν)
k := f

(ν)
k ◦ ϕ−1

k : Σ(ν) −→ X
(ν)
k .

First consider their restriction to an essential component E(ν). By Corol-
lary 5.14, a subsequence of F

(ν)
k = f

(ν)
k ◦ (ϕ(ν)

k )−1 : E(ν) → X(ν) converges in
the sense of Definition 3.1 to the nodal holomorphic curve f (ν) : E(ν) → X(ν).

Next consider a cylindrical component Ci = [−2, 2] × S1 with i ∈ I(ν).
Recall that ϕk is given on Zi

k by θi
k ◦ (βi

k)
−1 : Zi

k → Ci. This implies

Fk|Ci = fk ◦ βi
k ◦ (θi

k)
−1 = hi

k ◦ (θi
k)

−1 = gi
k : Ci −→ R × M,

and similarly
F

(ν)
k |Ci = gi−

k , F
(ν+1)
k |Ci = gi+

k .
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By Corollary 5.16, for subsequences, we have C∞
loc-convergence gi−

k → gi−

on [−2, 0) × S1 and gi+
k → gi+ on (0, 2] × S1. By construction, the maps

f (ν), gi− for i ∈ I(ν) and gj+ for j ∈ I(ν−1) fit together to punctured nodal
holomorphic curves F (ν) : Σ(ν) → X(ν), and a subsequence of F

(ν)
k converges

to F (ν) in C∞
loc on Σ(ν) (away from the nodes). This proves property (c) of

Definition 2.7. Denote by F : Σ∗ → X∗ the map induced by the F (ν) :
Σ(ν) → X(ν). By construction, each F (ν) contains an essential level and is
thus stable.

For property (d), consider first the M -components πM ◦Fk|Ci = πM ◦gi
k =

vi
k : Ci → M . By Corollary 5.16, a subsequence of vi

k converges uniformly
to vi : Ci → M . This shows that F : Σ∗ → X∗ extends to a continuous map
F̄ : Σ → X̄ and πM ◦ Fk → πM ◦ F̄ uniformly on Ai = [−1, 1] × S1 ⊂ Ci.
The R-components satisfy πR ◦ Fk|Ci = πR ◦ gi

k = bi
k : Ci → R. Thus the

second statement of property (d) follows from Corollary 5.16 (iii).

5.11. Stability. Unfortunately, it may happen that the so-obtained broken
holomorphic curve is unstable, i.e., one of the pieces F (ν) is a disjoint union
of cylinders without marked points over a collection of closed Reeb orbits
Γ(ν). By construction of the essential levels r

(ν)
k , this can only happen if

there is a j ∈ Z such that for all sufficiently large k, we have Ak(r) = jβ

for some r ∈ [r(ν)
k − R0, r

(ν)
k + R0]. It follows that the two neighboring

pieces F (ν±1) are both stable: If one of them, say F (ν+1), was unstable,
it would have to be the same collection of orbit cylinders as F (ν) because
the asymptotics agree; on the other hand, it would satisfy Ak(r) = j′β for
some r ∈ [r(ν+1)

k − R0, r
(ν+1)
k + R0] with j′ �= j ∈ Z, which contradicts the

vanishing of ωM on cylinders over Reeb orbits.
Notice that this discussion remains true for any choice of sufficiently small

β0. Now repeat the selection of essential levels with β0 replaced by β0/2.
If a limit piece F (ν) is unstable, we omit, a posteriori, the level r

(ν)
k and go

again through the process in the compactness proof. Since by the previ-
ous discussion no two adjacent levels become unstable, the ωM -areas of the
cylindrical parts are at most β0. So the compactness proof goes through as
before, yielding a stable broken holomorphic curve in the limit.

5.12. Convergence of area. Let φk : [−ε−k, ε] → [−ε, ε] be a sequence of
diffeomorphisms with φ′

k ≡ 1 near the boundaries. For ν = 0, . . . , N , define
φ(ν) and φ

(ν)
k as in Section 2 and assume that φ

(ν)
k → φ(ν) in C∞

loc. We need
to show

∫

Σk

f∗
kωφk

−→
∫

Σ∗
F ∗ωφ.
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With the form ω
φ

(ν)
k

on X
(ν)
k which equals ωM + d(φ(ν)

k λ) on the neck and ω

on X0, this is equivalent to
N∑

ν=0

∫

Σ(ν)

(
F

(ν)
k

)∗
ω

φ
(ν)
k

−→
N∑

ν=0

∫

Σ(ν)

(
F (ν))∗

ωφ.

In view of the hypothesis φ
(ν)
k → φ(ν), we have ω

φ
(ν)
k

→ ωφ in C∞
loc on X(ν).

Together with the C∞
loc-convergence of maps F

(ν)
k → F (ν) this implies

∫

K

(
F

(ν)
k

)∗
ω

φ
(ν)
k

−→
∫

K

(
F (ν))∗

ωφ

for every compact subset K ⊂ Σ(ν). Thus it suffices to show that all the
integrals are arbitrarily small outside a sufficiently large compact subset.
More precisely, let [−δ, δ] × S1 ⊂ Ci be a small annulus around a loop
∆i ⊂ ∆ in Σ and let Σ(ν), Σ(ν+1) be the components adjacent to ∆i. Then
we need to show that for each ρ > 0, there exists a δ > 0 such that the
following statements hold:
(1)

∫
[−δ,δ]×S1 F ∗ωφ < ρ;

(2)
∫
[−δ,δ]×S1(fk ◦ φ−1

k )∗ωφk
< ρ for all sufficiently large k.

Statement (1) follows as in the proof of Lemma 2.6: Let N i ⊂ M be a
neighborhood of the asymptotic Reeb orbit γi at ∆i on which ωM is exact,
say ωM = dαi. Arguing by Stokes’ theorem as in the proof of Lemma 2.6,
we find

(5.1)
∫

[−δ,δ]×S1
F ∗ωφ =

∫

{δ}×S1
F ∗(αi + φλ) −

∫

{−δ}×S1
F ∗(αi + φλ).

Now by the asymptotic behavior, for δ small, the M -component of F |{±δ}×S1

is C1-close to γi and φ◦F |{±δ}×S1 is close to a constant ci, so the right-hand
side becomes < ρ.

For statement (2), first note that due to uniform convergence (Corol-
lary 5.16), for small δ, the M -projection of fk ◦φ−1

k ([−δ, δ]×S1) is contained
in N i for all sufficiently large k. Thus Stokes’ theorem yields

∫

[−δ,δ]×S1
(fk ◦ φ−1

k )∗ωφk
=

∫

{δ}×S1

(
F

(ν+1)
k

)∗(
αi + φ

(ν+1)
k λ

)

−
∫

{−δ}×S1

(
F

(ν)
k

)∗(
αi + φ

(ν)
k λ

)
.

In view of the C∞-convergence F
(ν)
k → F (ν) on compact subsets of Σ∗ noted

above, the right-hand side of this equation converges to the right-hand side
of equation (5.1) as k → ∞ (with δ small but fixed) and is therefore < ρ for
k sufficiently large.
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This proves property (e) of Theorem 2.9 and hence concludes the proof
of the Gromov–Hofer compactness theorem.

5.13. The contact case. Finally, we discuss convergence of area in the
case that M ⊂ X is a hypersurface of contact type which separates X into
X̄0 = X̄+

0 	X̄−
0 . Recall from Section 2 the definition of the symplectic forms

ωk :=

⎧
⎪⎨

⎪⎩

ω on X̄+
0 ,

d(erλ) on [−k, 0] × M,

e−kω on X̄−
0 .

The following lemma estimates the ωk-areas from above.

Lemma 5.17. Let f : Σ → Xk be a Jk-holomorphic curve. Then
∫

f−1(X̄+
0 )

f∗ωk ≤ E(f),
∫

f−1(X̄−
0 )

f∗ωk ≤ e−kE(f).

Moreover, for any regular levels −k ≤ R < S ≤ 0, we have
∫

f−1([R,S]×M)
f∗ωk ≤ eSE(f)

2ε
.

Proof. The first two inequalities follow immediately from non-negativity of
f∗ω:

∫

f−1(X̄+
0 )

f∗ωk =
∫

f−1(X̄+
0 )

f∗ω ≤ E(f),

∫

f−1(X̄−
0 )

f∗ωk = e−k

∫

f−1(X̄+
0 )

f∗ω ≤ e−kE(f).

The last inequality follows from positivity of
∫
f−1({R}×M) f∗λ (Lemma 4.1

(a)) and Lemma 5.3:
∫

f−1([R,S]×M)
f∗ωk =

∫

f−1({S}×M)
eSf∗λ −

∫

f−1({R}×M)
eRf∗λ

≤ eS

∫

f−1({S}×M)
f∗λ ≤ eSE(f)

2ε
.

�

Proof of Corollary 2.11. Let ρ > 0 be given. Lemma 5.17 provides for any
k ∈ N and S ∈ [−k, 0] the estimates

∫

f−1
k (X̄−

0 )
f∗

kωk ≤ e−kE(f),
∫

f−1
k ([−k,S]×M)

f∗
kωk ≤ eSE(f)

2ε
.



PUNCTURED HOLOMORPHIC CURVES 653

Since the integrand f∗
kωk is non-negative, this shows the existence of K ∈ N

and S < 0 such that
∫

Σk

f∗
kωk − ρ ≤

∫

f−1
k ([S,0]×M∪X̄+

0 )
f∗

kωk ≤
∫

Σk

f∗
kωk

for all k ≥ K. Now by construction, we have f−1
k ([S, 0] × M ∪ X̄+

0 ) ⊂ Σ(0)
+

for k sufficiently large. Thus the middle integral equals
∫

f−1
k ([S,0]×M∪X̄+

0 )
f∗

kωk =
∫

(F (0)
k )−1([S,0]×M∪X̄+

0 )

(
F

(0)
k

)∗
ω+

−→
k→∞

∫

(F (0)
+ )−1([S,0]×M∪X̄+

0 )

(
F

(0)
+

)∗
ω+

by the C∞
loc-convergence F

(0)
k → F

(0)
+ on Σ(0)

+ and the properness of F
(0)
+ .

This implies the existence of the limit of areas together with the estimate

lim
k→∞

∫

Σk

f∗
kωk − ρ ≤

∫

(F (0)
+ )−1([S,0]×M∪X̄+

0 )

(
F

(0)
+

)∗
ω+ ≤ lim

k→∞

∫

Σk

f∗
kωk

for any ρ > 0. Moreover, the asymptotics of F
(0)
+ imply

∫

Σ(0)
+

(
F

(0)
+

)∗
ω+ − ρ ≤

∫

(F (0)
+ )−1([S,0]×M∪X̄+

0 )

(
F

(0)
+

)∗
ω+ ≤

∫

Σ(0)
+

(
F

(+)
+

)∗
ω+

for S sufficiently negative. Together the inequalities imply

lim
k→∞

∫

Σk

f∗
kωk − ρ ≤

∫

Σ(0)
+

(
F

(0)
+

)∗
ω+ ≤ lim

k→∞

∫

Σk

f∗
kωk + ρ

for arbitrary ρ > 0. This concludes the proof of Corollary 2.11. �
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[13] J. Jenkins, On the existence of certain general extremal metrics, Ann. Math. 66
(1957), 440–453.

[14] J. Jost, Compact Riemann surfaces, Springer 2002.

We thank S. Kerckhoff for explaining the theory of extremal length to us, and the referee
and editor for valuable comments.

Kai Cieliebak

Mathematisches Institut

Ludwig-Maximilians-Universität

Theresienstrasse 39

80333 München, Germany

Klaus Mohnke

Institut für Mathematik

Humboldt–Universität zu Berlin

10099 Berlin, Germany

E-mail address: kai@mathematik.uni-muenchen.de, mohnke@mathematik.hu-berlin.de

Received 02/09/2005, revised 04/19/2006.


