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ON CERTAIN SYMPLECTIC CIRCLE ACTIONS
LEONOR GODINHO

In this work we use localization formulas in equivariant cohomol-
ogy to show that some symplectic actions on 6-dimensional manifolds
with a finite fixed point set must be Hamiltonian. Moreover, we show
that their fixed point data (number of fixed points and their isotropy
weights) is the same as in 2 x 8% x S2 equipped with a diagonal
circle action, and we compute their cohomology rings.

1. Introduction

A circle action on a compact symplectic manifold M is symplectic if it
preserves the symplectic form. In addition, it is Hamiltonian if its generating
vector field X is Hamiltonian that is, if it satisfies txw = dH where H €
C*°(M) is the Hamiltonian function.

An obvious necessary condition for a circle action to be Hamiltonian is to
have fixed points, which correspond to the critical points of H. For Kéhler
manifolds and more generally for manifolds of Lefschetz type, this condition
is also sufficient (cf. [MD-S]). Moreover, McDuff proved in [MD)] that this
result holds for all four-dimensional manifolds. However, this is not true for
higher dimensions. In fact, McDuff constructed in [MD], a six-dimensional
manifold equipped with a non-Hamiltonian symplectic circle action with
fixed points. Hence, for higher dimensions, we need more conditions, either
on the manifold or on the action, to make sure it is Hamiltonian.

One possible conjecture is that a symplectic action with isolated fixed
points must be Hamiltonian. This result has already been proved in [T-W1]
by Tolman and Weitsman, in the case of a semi-free action that is, free
outside the fixed point set. Moreover, there are no known counterexamples
(the fixed point sets in McDuff’s six-dimensional example are tori). The
argument used by Tolman and Weitsman uses integration in equivariant
cohomology. Nevertheless, even though it generalizes to the case of non-
semifree circle actions, it fails to eliminate all non-Hamiltonian examples
with a non-empty fixed point set.
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358 L. GODINHO

Trying to obtain more information on this problem, we use equivariant
cohomology localization theorems as well as some topological conditions,
to obtain additional information in the six-dimensional case of circle actions
with isolated fixed points. Indeed, we prove the following theorems for circle
actions for which the isotropy weights on the normal bundles of each fixed
point are always (+n,+m, +k) for positive integers n > m > k > 1 such
that n £ m + k:

Theorem 1.1. Let S' act on a siz-dimensional symplectic, compact con-
nected manifold. If all fized points are isolated and satisfy the condition that
on their normal bundles the isotropy weights are always n > m > k, where
n # m + k, then if the fixed point set Fixg1 (M) is non-empty, the action
must be Hamiltonian.

Theorem 1.2. If the conditions of Theorem 1.1 hold, then the number of
fized points with a given set of isotropy weights (£n, tm, £k) is the same as
in a product of spheres S% x S? x 8? equipped with a diagonal circle action
which rotates each sphere at speed n,m and k.

Finally, using the above theorems, we show that any such space for which
n > m > k > 2 are pairwise relatively prime, has the same cohomology
and Chern classes of either the product of spheres equipped with a diagonal
action rotating each sphere at speed n,m and k, or the S'-space E (also
an S% x S2-bundle over S?) described in Section 4. Indeed, we have the
following theorem:

Theorem 1.3. If the conditions of Theorems 1.1 and 1.2 hold and, in
addition, n > m > k > 2 are pairwise relatively prime then, there either
exists a map from Fixgi (M) to Fixg: ((52)3) (the fixed point set of a diag-
onal circle action on the product of three spheres rotating each one at speeds
n,m, k) or a map from Fixg1 (M) to Fixgi (E) (the fized point set of the S*-
space E described in Section 4) which respectively identifies the restrictions

i* and §* or i* and j*, of the equivariant cohomology classes to the fized
point sets, where

i*: H§H(M,Z) — H& (Fixgi (M), Z)
i HR(5),2) — B (Fixe ((57)°),2)
j* Hu(E,Z) — H (Fixgi(E),Z)
are induced by the inclusions i: Fixgi (M) — M, j: Fixg: ((5’2)3> — (5’2)3

and j: Fixg: (E) — E. Moreover, these maps send the images of equivariant
Chern classes of M to those of S? x S? x S? or E.

Then, since by a Theorem of Kirwan [Ki], the maps ¢* and j* above are
injections, Theorem 1.3 implies that there is either an isomorphism between
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H% (M, Z) and H%,((5%)%,Z), in which case the equivariant cohomology
ring is

Z[ab a2, as, y]

(wiaiy —a7) ’
or between H,(M,Z) and Hg,(FE,Z), in which case the equivariant coho-
mology ring is

H% (M, Z) =

Zlai, a2, a3,y|
(a1(wry + eaz — a1), ag(way — eaz — az), ag(wsy — az))’
where the w;’s are the negative isotropy weights of the fixed points of index
2 corresponding to the generating classes a; (cf. Section 5), and e € Z is

such that wy = w1 + ews. In the first case, the equivariant Chern series
ct(M) =3, t'c;(M) is given by

(M) =TI (1 4 t(2a; — wiy))

(M, Z) =

and, in the second one, it is given by
(M) = (1+1t(2a1 — w1y — ea3))(1 + t(2a2 — woy + eaz))(1 + t(2az — wsy)).

Moreover, in the first case there is an isomorphism between H*(M,Z)
and H*((S?)3,Z) taking Chern classes to Chern classes and so the ordinary
cohomology ring is given by

Z[al; arg, CL3]
(a?)

and the Chern series is ¢;(M) = II_; (1 + #2a;). On the second case, there
is an isomorphism between H*(M,Z) and H*(E,Z), and so the ordinary
cohomology ring is

H*(M,Z) =

Zlay, a1, a3]
(a1(eas — a),az(eas + ag), a%)

and the Chern series is ¢;(M) = (14+t(2a1 —ea3))(1+t(2a2+eaz))(1+12a3).

H*(M,Z) =

Remark 1.4. When the isotropy weights q,r,p € {n,m,k} satisfy q #
r (mod p) only the first case is possible and so, like in the semifree case
(IT-W1]), a Theorem of Wall [W] shows that M (being simply-connected)
is diffeomorphic to S? x S§% x S2.

2. Equivariant cohomology

Let E be an S'-equivariant line bundle over a fixed point F. The action
of ' on E is conjugate to some circle action on C, z — e*™%2z and the
first equivariant Chern class is given by ¢f ' (E) = Bu. Moreover, the normal
bundle to F' in M decomposes equivariantly into complex line bundles vp =
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L1 & - @ Ly on which the circle acts with weights 31, ..., . Hence, the
first two equivariant Chern classes of vp are given by

o (vp) = (i B u and ' (vp) = (S05cy i Bi65) o

and the equivariant Euler class by e*lgl(yp) = (IT%, Bi) u™, where u is the
generator of ng (F,Z). The projection M x g1 ES' — BS!, where ES! is
a contractible space on which S! acts freely and BS! = ES'/S!, induces a
push-forward map p,: Hg, (M, Z) — H*(BS*,Z) which is usually denoted
by [ )y (integration over the fiber), and given by the following localization
theorem,

Theorem 2.1. ([B-G-V], [A-B]) Let M?" be a compact manifold equipped
with an action of S*. Let « € Hi (M, Z). Then, as elements of Q(u),

o S

ST,
FeFixg (M) ©1 (vr)

where vg is the normal bundle to the fized point F' and efl(up) 15 its equi-
variant Fuler class.

Moreover, Kirwan’s injectivity theorem [Ki] relating the equivariant inte-
gral cohomology of the manifold M with the equivariant integral cohomology
of its fixed point set still holds for circle actions with isolated fixed points
(since the cohomology of the fixed point set has no torsion) and states the
following:

Theorem 2.2. ([Ki|, [T-W2]) Let (M,w) be a compact symplectic manifold
equipped with a Hamiltonian circle action with isolated fixed points and let
Fixgi1 (M) be its fized point set. Then the inclusion map i : Fixgi (M) — M
induces an injection i*: Hi, (M,Z) — H, (Fixg1 (M), Z).

With this theorem one can prove the following proposition (see [Kil,
[T-W1], [T-W2] and [G] for details):

Proposition 2.3. Let M be a symplectic manifold with a Hamiltonian circle
action with isolated fixed points. For any F € Fixgi (M) of index 2d there
is a class ap € Hg,‘li that,

(i) restricted to F, is equal to the equivariant Euler class of the negative
normal bundle of F, that is, ap|p = (H?:l ﬁi> u?, where B1,. .., B4

are the megative isotropy weights of the circle action on the normal
bundle of F';

(i) vanishes when restricted to any other fized point F' which cannot be
joined to F along a sequence of integral lines of the negative gradient
field =NV H (where H is the Hamiltonian function of the action).
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Moreover, taken together over all fixed points, these classes are a basis for
the cohomology H% (M,Z) as a H*(BS',Z)-module. We will call them
generating classes.

3. Isolated fixed points on 6-manifolds

In this section we extend the results of Tolman and Weitsman in [T-W1]
to certain non-semifree circle actions with isolated fixed points. For this we
first need to consider some facts about isotropy spheres.

3.1. Isotropy spheres. Let M be a compact symplectic six-dimensional
manifold equipped with an effective circle action with only isolated fixed
points. Let FF € M be one fixed point with at least one isotropy weight on
its normal bundle different from +1. Let k be the absolute value of this
weight, and let M}, be the connected component of Fixgz, (M) containing F'.
If none of the other isotropy weights of F'is a multiple of k, the tangent space
to M}, at F' is the two-dimensional subspace of T}, M on which the circle acts
with weight +k. Consequently, M is also two-dimensional. Moreover, the
circle S1/Z;, acts effectively on this manifold with at least one fixed point F.
Hence, we have a Hamiltonian action on the compact manifold M} and the
image H (Mjy) of the corresponding Hamiltonian function is a closed interval.
Therefore, there is one additional fixed point on the pre-image of the other
endpoint of this interval and so, the local normal forms for circle actions on
surfaces, allow us to construct an equivariant symplectomorphism between
M}, and a sphere with the standard circle action (cf. [K] for details). We
conclude that, under the above assumptions, the connected component of
Fixgz, (M) through F is a sphere containing only one additional fixed point.

If there is one weight which is a multiple of k, then the connected
component of Fixg, (M) through F, My, is four-dimensional. Nevertheless,
there is still an embedded sphere through F' which contains only one addi-
tional fixed point. In fact, we have a semifree action of S'/Zj;, on M;, with
only isolated fixed points which extends to an action of the multiplicative
group C* on M. The fixed points of this new action are the same as the
fixed points of the circle action and the gradient flow on M} is the flow
generated by the vector field —JX (where X is the vector field generating
the circle action and J is an almost complex structure on My, preserved by
the circle action). This gradient flow coincides with the gradient flow of the
Hamiltonian function with respect to a compatible metric. We can there-
fore consider gradient spheres inside M}, (defined in [A] and [A-H]) as the
closure of a non-trivial C*-orbit. The poles of these spheres are the limits at
times oo and —oo of the gradient flow inside this orbit which are, of course,
fixed points of the circle action on Mj. Again, the circle acts on each of
these spheres by standard rotation. We conclude then that there is a sphere
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fixed by Zj through the fixed point F’ which passes through an additional
fixed point in M. We will call these spheres isotropy spheres.

3.2. Hamiltonian circle actions. Besides the above considerations on
isotropy spheres we will also need the following lemma due to Ahara and
Hattori on disc bundles over S? (cf. [A-H] for details):

Lemma 3.1. Let the circle act on the two-sphere by rotating it k times while
fizing the north and south poles. Let E — S? be a complex line bundle to
which the action lifts. The fiber over the north pole is acted upon by A :
z = ANz and the fibre over the south pole is acted upon by A : z — NSz,
Then, my — mg = —ek, where e is the Euler number of the bundle E.

With this lemma we can prove the following theorem:

Theorem 3.2. Let the circle act on a siz-dimensional symplectic, compact
connected manifold. If all fized points are isolated and their isotropy weights
are always (£n,+m,+k) for fized integers n > m > k > 1, such that
n #m+ k, then if Fixg1 (M) # 0, the action must be Hamiltonian.

Proof. In this proof we will denote by N,, (p = n,m, k) the number of fixed
points of index 4 with positive isotropy weight equal to p, and by N_, the
number of fixed points of index 2 and negative isotropy weight equal to —p.

If the action is semifree this result is proved by Tolman and Weitsman in
[T-W1], so we will only consider here the existence of non-trivial isotropy
subgroups Z. We can assume, without loss of generality, that w is rational.
Then, if the action is not Hamiltonian, we have that [¢(X)w] # 0 and so
a multiple of w admits a generalized moment map pu : M — S', with
t(X)w = p*(d). This map cannot have any local extremum. Consequently,
the index of any of its critical points can only be two or four.

Case 1 Let us first consider the case where n > m = k. The four possible
kinds of fixed points are listed in Figure 1 below: The points of type (a)
and (d) cannot be paired to any other fixed point along the Z,-sphere. In
fact by Lemma 3.1, this would imply 2k = 0 (mod n) (that is n = 2k, as
n > k) but, by assumption, n # m + k = 2k . Therefore, the fixed point
set has to be formed uniquely by points of type (b) and (¢). Moreover, by

Theorem 2.1,
- %
S1
MO PeFia () I (vr)

n k k n k k
—k —k —n —k —k —-n

(a) (b) () (@)

Figure 1. Possible kinds of fixed points.
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for any o € Hg,. If we take a = Cfl (TM) then, for F a fixed point

of type (b), efl(up) = k*nu? and « |p= —nu. Similarly, for F' of type (c),
e (vp) = —k*nu® and o | p= nu. Since, by dimensional reasons, Jye @ =0,
we have | .
R
Z efl (VF) k24,2 ( k k)

FeFixg1 (M)
and so N = N_; = 0, contradicting the fact that Fixgi (M) # 0. We
conclude that there must be at least one point of index zero or six and so
the action must be Hamiltonian in this case.

Case 2 Let us now assume that n > m > k = 1. Let = be a fixed point of
index 4, with isotropy weights (p, —¢, —1), where (p,q) € {(n,m),(m,n)}.
For this point to be paired with another fixed point along a Z,-sphere
(Figure 2) we need at least one of the following three conditions:

(1) p=2
(2) g= -1 (mod p)
(3) 2¢=0 (mod p).

Let us first consider the case p # 2 and suppose that N, # 0. Then, either
¢ =—1 (mod p) or 2¢ =0 (mod p). If, in addition, N, # 0, to pair a fixed
point w’ with index 4 and positive weight ¢ along the Z,-sphere, one of the
following conditions has to be satisfied:

(4) q=2
(5) p=-1 (mod q)
(6) 2p=0 (mod q).

If ¢ = 2, (implying that m = 2), then by (2) and (3), we either have
n =p = 2,3 or 4 which are impossible since p # ¢+ 1 and, by Lemma 3.3

below, p # q and p # 2gq.
Ifp=—1 (mod ¢) and ¢ = —1 (mod p) thenp = —1+sqgand ¢ = —1+tp
for some integers s,t > 2 (asn# m+k=m+1) and so, (st —1)p=1+s.

() (L1) (I11)

Figure 2. Pairings of = along the Z,-sphere.
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Asst—1>2s—1> s+ 1 and p > 1, conditions (5) and (2) cannot be
simultaneously satisfied.

If p=—1 (mod ¢q) and 2¢ = 0 (mod p) then p = —1 + sq and 2q = tp
for integers s > 2 and ¢ > 1. Hence (st — 2)p = 2, which is impossible as
st—2>1and p > 2 ie. conditions (5) and (3) cannot be simultaneously
satisfied.

Similarly, 2p = 0 (mod ¢) and ¢ = —1 (mod p) ((6) and (2)) cannot be
simultaneously satisfied and so 2p =0 (mod ¢) and 2¢ = 0 (mod p) (condi-
tions (6) and (3)) are the only possibly compatible conditions, implying that
2p = q, 2g = p or p = q. However, by Lemma 3.3 below this is impossible
and so, either N1, =0 or N1, = 0.

Let us assume that Ny, = 0 (the case where Ni, = 0 is similar). By
Theorem 2.1, taking o = cfl (T'M), we have

(7)

a 1
0=> & ___ o ((pFa=1)(N1+N-1)+(1+p=a)(Ng +N—g))-
FeFixg (M) €1 (vr) bq

If N+4 # 0, one of conditions (4), (5) or (6) must hold, that is, either ¢ = 2,
p=—1+tq (t > 2)or2p=sq (withs>3asq#p,2p). In all cases
(1+p—q) > 0, contradicting the fact that N, # (.

If Nr;, = 0, then by (7), Ni1 = 0, contradicting the fact that
FiXsl (M) # @

Suppose now that p = 2 and consider a fixed point w of index 4 and
positive weight ¢g. To pair w along the Z,-sphere, we would need conditions
similar to (1), (2) and (3) now interchanging p with ¢ (that is, ¢ = 1,2,3 or
4). However, these are all impossible as ¢ > 1, ¢ # p+ 1 and ¢ # 2,4 by
Lemma 3.3. We conclude then that a point such as w cannot exist and so
Ny = 0. Similarly, we can conclude that N_;, = 0 and so, by Theorem 2.1,

taking o = ¢ (T'M), we have

« 1
0= Y ol L (- )0+ Noa) + (14 (N V),
FeFixg (M) ©1 (vr) q

contradicting the fact that Fixgi (M) # 0.
Hence, to finish the proof of this case, we just need to prove Lemma 3.3
which was used above.

Lemma 3.3. If, as above, (n,m,k) = (t,t,1) or (2t,t,1) for some integer
t> 1, then Fixg (M) # 0.
Proof.

1) If n = m = t and the action is not Hamiltonian, the only kinds of
fixed points allowed are the ones described in Figure 3. Then, by
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1 t 1 t ¢ t
—t -t -1 —t —t -1

(a) (b) (©) (@)

Figure 3. Possible kinds of fixed points.

Theorem 2.1 taking o = ¢ (T'M), we have

Sl

alp 1
0= > - (‘V = (2 DOV N+ (Nt o)),
FeFixg (M) 1 \7F

and so Ny; = Ny; = 0, implying that Fixg (M) = 0.
2) Let us assume now (n,m) = (2t,t). As all fixed points have to be
paired along the Zj;-isotropy spheres for j = n, m, we need:

N1+ N+ N_g9g=Noyy+N_1+N_y
Ny +N_1+ N9 =Ny +N_4+ Ny
and so Ny = N_; and Ny+ N_ot = Noy+ N_;. Moreover, since pairings
(I) and (II) in Figure 4 are impossible (2 # 0 (mod 2t)), every fixed
point of index 2 and negative weight —2¢ has to be paired along the

Z;-sphere to a fixed point of index 2 and negative weight —¢, implying
that N,Qt S N,t.

Hence, taking again a = cfl (T'M) in Theorem 2.1, we have

FeFixg (M) vF)
1
8) = m((t — 1)(Not + Nogg) — (£ + 1)(Ng + N—y) — 2(3t — 1) INq)
1
= 53 (2Nt = Noay) + 2(No + Ny) +2(3¢ = 1)),
N\ w 1 1IN\ w 't tN w1
—9t —9t —2t
2 2t ¢ 2 1
—t -1 -1 -t
(1) (ID) (I11)

Figure 4. Pairings of w along the Zg;-sphere.
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and so, since N_g; < N_;, we have N; = 0 for j = £1, ¢, £2¢, and again
Fixg1 (M) = 0. O

Case 3 Let us assume now that n > m > k > 1 and consider a fixed
point z of index 4 and positive isotropy weight equal to k. The possible
pairings of x with another fixed point, along the Z,-sphere, are described in
Figure 5.

For (a) and (c) to be possible we would need m = k (mod n) or 2k =
2m =0 (mod n). The first condition is impossible since n > m > k and, if
the second were true, k would divide both m and n and the action would not
be effective. Hence, (a) cannot occur. For (b) to be possible we would need
2k = 0 (mod n), that is, 2k = sn for some integer s > 1. However, since
k < n, we would have 2k = n. Finally (d) is always possible. However, if
such a pairing of x to a point w occurs, this new point would, in turn, have
to be paired to a third fixed point z along the Z,,-sphere. These possible
pairings are listed in Figure 6.

For one of these to be possible we need one of the following:

9) n=—k (mod m)
(10) m = 2k
(11) 2n =0 (mod m).

On the other hand, the pairings of x along the Z,,-sphere are similar to the
ones in Figure 5 (we just have to interchange n with m). Hence, they can
now be of type (a) if n = k (mod m), of type (b) if 2k = m and of type
(d). If z is paired along the Z,,-sphere to a fixed point w’ of index 2 by a
pairing of type (d), this point has in turn to be paired to another fixed point
z! along the Z,-sphere. The possible pairings are listed in Figure 7. For one
of these to be possible we need one of the following:

(12) n =2k
(13) 2m =0 (mod n).
k k k k
—m/ T\ _—n -m /T -n -m/ T -n -m/X -n

Figure 5. Pairings of x along the Z,-sphere.
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(IT) (IIT)

Figure 6. Pairings of w along the Z,,-sphere.

Note that (I) is impossible since (12) and (13) are not simultaneously sat-
isfiled and we cannot have m = —k (mod n), asn > m > k > 1 and
n#m+k.

Let us assume for now that n # 2k and m # 2k. Then, the only possible
pairing of x along the Z,-sphere is of type (d) and for that we need (9)

r (11). On the other hand, the only possible pairings of = along the Z,,-
sphere are of type (a) or (d) and for that we need n = k (mod m) or 2m = 0
(mod n).

If n = —k (mod m) and n = k (mod m), or if 2n = 0 (mod m) and
n =k (mod m), the action would not be effective (n, m and k would have
a common divisor).

Ifn = —k (mod m) and 2m = 0 (mod n), then 2m = snand n = —k+tm
for some integers 2 > s > 1 and t > 2 (as n > m). Hence, (st — 2)n = 2k
implying that st —2 < 2 and so 2 < st < 4 (that is, s =1 and t = 2 or
t = 3), which is impossible since n > m > k. Finally, if 2n = 0 (mod m)
and 2m = 0 (mod n), we would have 2m = sn and 2n = tm for some
integers 1 < s < 2 and ¢t > 2. Therefore we would have 4m = stm and so
st = 4, implying either n = 2m or n = m. We conclude then that one of
these conditions must hold and that the pairings of w and w’ along the Z,,

k wl/ m k wl/ m k wl,/ m
-n -n -n
n n zZV m n zZV k
-m/ 2N —k —k —m
(1) (1) (L11)

Figure 7. Pairings of w’ along the Z,-sphere.
g g g
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e
3
3
x>

Figure 8. Pairings of w and w along the Z,, and the Z,,-spheres.

and the Z,-spheres respectively, are of the type described in Figures 6 and
7 (I1I) (cf. Figure 8).

Consequently, N must be equal to zero. Indeed, if there were a fixed point
of index 4 with positive weight k, then there would be an infinite number
of fixed points of index 2 which is impossible. Hence, if m,n # 2k, then
N = 0. Similarly, we can conclude that, under these conditions, N_; = 0.
Take now a fixed point z’ of index 4 and positive weight n. As N_, = 0,
the only possible pairings of x’ along the Z,,-sphere to a fixed point ¢ are
described in Figure 9. For (a) to be possible we need n = k (mod m).
However, if that is the case, y/ has to be paired along the Z,-sphere by a
pairing of type (III) in Figure 7, implying that 2m = 0 (mod n). Hence,
n =k + sm and 2m = tn for some integers s > 2 and 2 > t > 1 and so,
(2 — st)n = 2k, which is impossible since st > 2. Consequently, the pairing
of type (a) in Figure 9 is impossible and the existence of a fixed point like
x/ implies the existence of a fixed point of index 4 and positive weight m
(Figure 9(b)) and so N,, < N,,.

Interchanging n with m we can also conclude that N, < N, and so
N,, = N,,. Indeed, if we take a fixed point x” of index 4 and positive weight

Figure 9. Pairings of 2’ along the Z,,-sphere.
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m, then, as Nj, = 0, the only possible pairings of ” along the Z,-sphere are
described in Figure 10. Since we are assuming m # k, (b) is in fact the only
possible pairing and so N, < N,. As in addition, all fixed points have to
be paired along their isotropy spheres, we have

N_p+ N, =N_,+ Ny,
N_p+N_p, = Ny + Ny,

implying N,, = N_,, = N,,, = N_,;,. By Theorem 2.1, taking o = Cfl (TM),
we have

alr 2 N,
= Z et (vr) ~ kmnu? (No(n—k—=m)+Np(m—k—n)) = _4W’
FeFixgy (M) 1 F

and so N,, = 0 contradicting the fact that Fixgi (M) # 0.
Finally, we will assume that n = 2k (the case where m = 2k is similar).
As all fixed points have to be paired along the isotropy spheres, we have:

N_p + Nog + N = N_op + N + Ny
N_op + Ny + N, = N_,,, + N_j. + Ny,
N_g+ N+ Nogp = Ny + N_og + Ng

and so N = N_g, Np, = N_,,, and Nop = N_op.

Moreover, if we take a fixed point z of index 4 and positive weight m, the
possible pairings along the Zyg-sphere are described in Figure 11. For (a) and
(b) to be possible, we would need 2m = 0 (mod 2k) and so k would divide
both n and m and the action would not be effective. Hence, the existence
of a fixed point of index 4 and positive weight m implies the existence of a
fixed point of index 2 and negative weight —k (the pairing in (c) is the only
one possible) and so N,,, < N_j = Ni. By Theorem 2.1 using o = cfl (TM),

Figure 10. Pairings of z// along the Z,-sphere.
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m m
-2 —2k/ x \—k —2k/ T —k
k 2k 2k m 2%
-m —k -m -k

we have

alp
0= Z 51
FGFiXSl(M)
1
1

_k‘2mu2(

(14) = Nop(m — k) + k(N + 3Np,) + m(Ng — Np))
and so, as N,, < N, we have that N, = Ngp = N,, = 0, contradicting
the fact that Fixgi (M) # 0. We conclude then that the action must be
Hamiltonian. O
Now that we know that such an action is Hamiltonian, we will show that
the number of fixed points is the same as the number of fixed points of the
Sl-space formed by the product of three spheres equipped with a diagonal
circle action which rotates each sphere at speed n, m and k. Moreover, for
every fixed point in M there is a fixed point in S$? x S? x S? with the same
isotropy weights.

Theorem 3.4. Consider a Hamiltonian circle action as in Theorem 3.2.
Let N; denote the number of fixed points of index 4 and positive weight j.
Similarly, let N_; be the number of fived points of index 2 and negative
weight —j. Then,

Nip =2Ny, =2 if n>m=Fk;
Ni=N_;=1, (j =nmk) if n>m>k;
Nipyy = 2Ny =2 if n=m>k.

Proof. As the action is Hamiltonian and M is connected, there is only one
fixed point of index six and one fixed point of index zero. On the other hand,
as all fixed points have to be paired along the non-free isotropy spheres, we
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have, when n > m > k,

Nn+N—m+N—k:Nm+Nk+N—n
Nm“‘N—n“‘ka:Nn"i‘Nk"i'N—m?

implying that N, = N_; and N, + N_,, = N,, + N_,,. Moreover, by
Theorem 2.1, this time taking o = 1, we have

« ‘F 1
0= = N, — N_ N, — N_ N — N_
Z efl(VF) nmkuQ( n n+ Nm m T Vg k)a
FeFixgy (M)
and so we have N; = N_; for j = n,m, k.
If n =m > k, we still have N, + N_,, + 2N_;, = N,, + N_,, + 2N}, and so
again Ny = N_g. Then, by Theorem 2.1, taking o = 1, we have

alp 1
0= - (Np — N_py + Ny — N_y)
Sl 2 2 n n Y
FeFixg (M) ©1 (ve)  n7ku

implying that N; = N_; for j =n, k.
If n >m > k, we have N, + N_,,, = N,, + N_,, and so, by Theorem 2.1
with a = 1, we have

[0 ’F 1
0= - (Ny — N + Ny — N_om)
FEF;Sl(M) e (vp)  nmPu?
2
=—— (N, — N_
nm2u2( " n);

implying that N; = N_; for j = n,m. We conclude that, in all cases, we
have N; = N_; for j = n,m, k.

Consider now a fixed point of index 4 and positive weight n. If n #
m, 2k, 2m, the only possible pairing of this point along the Z,-sphere is to
the fixed point of index 6 and so IV,, < 1. Moreover, the only possible pairing
of the fixed point of index 6 along the corresponding Z,-sphere is to a fixed
point of index 4 and positive weight n, and so N,, = 1.

Case 1 First let us consider the case where n > m = k. Here
n # 2m, 2k, m and so, as we have seen above, N,, = 1. Moreover, using
Theorem 2.1 with a = cfl (T'M), we have

0= Z scf -

FeFixg (M) ©1 (vr)

(15) = m((n —9m) (N 4 N_) =N+ N ) 2(n + 2m)),

and so, as Nj = N_; for j = n,m and N,, = 1, we have n(2 — Np,) = 0,
implying that N,, = 2 and the result follows.
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Case 2 If n > m > k and n # 2m, 2k, we have again N, = 1 and
N; = N_j for j = n,m, k. Hence, by Theorem 2.1 using o = cfl (TM), we

have
« ‘F
0= >
Sl
FeFixg (M) €1 (vr)
2
(16) :m@n—k(m—n—k)]\%—k(k—n—m)Nk).

Consider now a fixed point of index 4 and positive weight k. As n #
2k, m,2m, the only possible way of pairing this fixed point along the Z,-
sphere is to a fixed point of index 2 and negative weight —m, implying that
Nj < N,,. Similarly, the only way of pairing a fixed point of index 4 and
positive weight m along the Z,-sphere is to a fixed point of index 2 and
negative weight —k, and so N,;, = Ni. Thus by (16), we have N = 1 and
the result follows.

Case 3 If n =2k > m > k > 3 then, necessarily 2n # 0 (mod m), n # 0
(mod m), k # 0 (mod m) and 3k # 0 (mod m). Hence, the only possible
pairing of a fixed point of index 4 and positive weight m along the Z,,-sphere
is to the fixed point of index 6 and so N,, < 1. Similarly, the only possible
pairing of the fixed point of index 6 along the Z,,-sphere is to a fixed point
of index 4 and positive weight m, and so N,;, = 1. As, in addition, N; = N_;
for every j, applying Theorem 2.1 to a = cfl (TM) gives

0= Z solé =

FeFixg (M) ©1 (vr)

1
= 55 (k= m)Nog + (m — k)N — (m + k)N, + 3k +m)
1
and so,
(18) 2m = (m + k)Ng + (m — k) Ny,

If N, and Ny were both different from zero, then Ny + Noi > 2 and so
k(Ngk — Nk) = m(Nk + Noj, — 2) > k(Nk + Noj, — 2)

which is impossible unless N, = Ng, = 1. Moreover, as 2m # 0 (mod 2k)
and m # —k (mod 2k), the only possible pairings of a fixed point of index
4 and positive weight 2k along the Zoy-sphere, are either to the fixed point
of index 6 or to a fixed point of index 4 and positive weight k. Hence,
Ny, < Ni+1 and so, if Nj, = 0, then necessarily Noi, = 1 and so by (18), we
would have m = —k which is impossible. If, on the other hand, No; = 0 then
by (18) we would have (2 — Ni)m = kN and so Ny, = 1 and m = k and the
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action would not be effective. We conclude that necessarily Ny = Nop = 1
and the result follows.

Case 4 If n = 2k > m > k = 2 then necessarily n = 4 and m = 3. As
in the preceding case we still have Ny < Ny 4 1. Moreover, as a fixed point
of index 4 and positive weight 3 can only be paired along the Zg4-isotropy
sphere to the fixed point of index 0 or to a fixed point of index 2 and negative
weight —2, we also have N3 < Ny + 1. On the other hand, by Theorem 2.1
using a = ¢§" (T'M), we have

(% |F 1
0= E = — (N4—|—3N3+5N2—9)
S1 9 )
FeFixg (M) €1 (vr) 12u

implying that Ny < 1. Moreover, as N3 < No+ 1 and Ny < Ny + 1, we
have 9N, — 5 > 0 and so No = 1, Ny < 2, N3 <1 and N4+ 3N3 = 4.
Consequently all the N;’s must be greater than zero (therefore equal to 1).
Case 5 If n = 2k > m > k = 3 then necessarily n = 6 and m = 4
or m = 5. If m = 4, the pairing of a fixed point of index 4 and positive
weight 6 along the Zs-isotropy sphere can only be made to a fixed point of
index 4 and positive weight 3, or to a fixed point of index 2 and negative
weight —4, implying that Ng < N3 + N4. Moreover, by Theorem 2.1 using
Sl
a=c] (TM), we have

alp 1
0= E = — (Ng + 5Ny + 7TN3 — 13).
St 2
FeFixg (M) ©1 (vr) 36u

Then, N3 <1 and so, as Ng < N3 + Ny, all the N;’s must be different from
zero, implying that they must all be equal to 1 and the result follows.

If m = 5, the only possible pairing of a fixed point of index 4 and positive
weight 6 along the Zs-isotropy sphere is to a fixed point of index 2 and
negative weight —3. Similarly, the only possible pairing of one fixed point
of index 2 and negative weight —3 along the Zs-sphere is to a fixed point of
index 4 and positive weight 6, and we conclude that Ng = N3. On the other
hand, by the Theorem 2.1 using @ = ¢ (T M), we have

o= Y alr

Sl
FeFixg (M) €1 (vr)

(19) = —é(N6+2N5+4N3—7) =
and so Ng = N3 = N5 = 1.

Case 6 If n = 2m > m > k we have 2k # 0 (mod 2m) and so, the only
possible pairings of a fixed point of index 2 and negative weight —2m along
the Zo,,-isotropy sphere are to a fixed point of index 2 and negative weight
—m, or to the fixed point of index 0. Hence, No,,, < N, + 1.

—457(5]\[6 + 2N5 - 7),
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On the other hand, by Theorem 2.1, using o = cfl (T'M), we have

0= Z s?‘F

FeFixg (M) €1 (vr)

(20) ((m — k) Nam — (m + k) Ny — (3m — k)Nj, + 3m + k)

m2ku?
and so, as Nay, < N, + 1, we have 4m — 2kN,,, — (3m — k) Ny, > 0, implying
that Ny <1 (because 2(3m — k) > 4m).

If N, = 0, the only possible pairing of a fixed point of index 2 and
negative weight —m along the Zo,,-isotropy sphere is to a fixed point of
index 2, implying that N,,, < Ny, and so 0 < No,,, — Ny, < 1. If Nop, = Npp,
then by (20), we have N, = 32 and so 3m + k = 0 (mod 2k), implying

that m = w for some integer s > 2, and then k = 3 (the action would
not be effective otherwise). However, if that was the case, the only possible
pairings of fixed points of index 2 and negative weight —m along their Zo,-
isotropy spheres would be to fixed points of index 2, and the only possible
pairing of fixed points of index 2 and negative weight —2m along their Z,,-
isotropy spheres would be to fixed points of index 2. Hence, this case is
impossible since we only have a finite number of fixed points. If, on the
other hand, Ny, = 1 + N,,, then by (20), we have N,, = 277” and so k = 2
and m is odd (again the action would not be effective otherwise). However,
if that was the case, again the only possible pairings of fixed points of index
2 and negative weight —m along their Zo,,-isotropy spheres would be to
fixed points of index 2, and the only possible pairings of fixed point of index
2 and negative weight —2m along their Z,,-isotropy spheres would be to a
fixed point of index 2. Hence, this case is also impossible.
We conclude that N = 1. Then, by (20), we have
m—k 2k

and so N,,, < Na,, +1, implying that 0 < Ny, — N,,, < 1. If Ng,,, — N, = 1,
we have, by (21), that N, = mZ—J]gk, implying that m + k = 0 (mod 2k),
that is, m = (2s — 1)k for some integer s > 1 and then & = 1 (the action
would not be effective otherwise), N,, = mT“ and Ny, = mTJr?’ However,
since N, = 1, we have three possibilities: if a fixed point of index 2 and
negative weight —2m is connected to the fixed point of index 0 along the
2m-sphere and there is a fixed point of index 2 and negative weight —2m
(possibly the same) connected to the fixed point of index 4 and positive
weight k, along the m-sphere, we have 2(Na,, — 1) < N,, (since any other
such point will have to be connected to two fixed points of index 2 and
negative weight —m); if a fixed point of index 2 and negative weight —2m is
connected to the fixed point of index 0 along the 2m-sphere and no other of
these points is connected to the fixed point of index 4 and positive weight k,
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then 2(Ng,, — 1) < N, — 1; if no fixed point of index 2 and negative weight
—2m is connected to the fixed point of index 0 along the Zs,,-isotropy sphere
nor to the fixed point of index 4 and positive weight k, then 2Ny, < N,,.
In all cases we have 2(Ng,, — 1) < N,,,, contradicting the assumption that
Noy, =1+ Ny,

Consequently, Ny, = 1 and N,, = Ny, and so, by (20), we conclude that
N = Noy, = Np, = 1.

Case 7T If n =m > k > 2, we still have N; = N_; for every j. Moreover,
as in this case 2n # 0 (mod k) (the action would not be effective otherwise),
the only possible pairing of a fixed point of index 4 and positive weight k
along the Zg-sphere is to the fixed point of index 6, implying that N < 1.
Similarly, the only possible pairing of the fixed point of index 6 along the
Z-sphere is to a fixed point of index 4 and positive weight k, implying that
Ni. = 1. By Theorem 2.1, using o = cfl (TM), we have

0= Z 501[ -

FeFixg (M) €1 (vr)

2
and so N,, = 2 and the result follows.
Case 8 If n = m > k = 1 and n # 2 then, by Theorem 2.1, using

Oz:cfl(TM),

2
22 o= Y P _ S (=No + (1= 20)N; + (1 4 2n)),
FeFixg (M) €1 (vp) nou

and so N7 < 1. Moreover, if N1 = 0, a fixed point of index 4 and positive
weight n would have to be paired along the Z,-isotropy sphere to another
fixed point of index 4 and positive weight n and this is impossible as N,
would either be infinite or zero. We conclude that N; = 1 and then, by (22),
N, =2.

Case 9 If n =m =2 > k =1, then from (22) we still have Ny < 1. If
N1 =0, let P be the fixed point of index 2 with no other fixed point of index 2
on its flow up. Moreover, let ap be a 2-form from Proposition 2.3 associated
to P and let @ be the fixed point of index 6. Then, by Theorem 2.1 we have

1
Oz/Map:4u3 (—ap |p+2ap |F —Qap |Q>

reF

1

FeF
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0= [ &'(TM _ 5
= Mcl ( )'Ckp—m —uap]p—uZozphv—i— uap |g

FeF
1

FreF

where F is the set of fixed points of index 4 in the flow up of P, and
so ap |[g= —u and ) p.rap |[p= —3u. On the other hand, using again
Theorem 2.1 now with 042P, we have

0= /M o = ﬁ <—(ap 1P?+ > (ap|p)? - (ap !Q)2>

FeF

1 2 2 _ 2
:4u3<—4u —i—Z(ap\F) —u),

FeF

and so Y per(ap |p)? = 5u®. Hence, we either have all of the ap |¢’s equal
to zero except two which are equal to —u and —2u, or one of the ap |p’s is
equal to u while all the other four are equal to —u (note that by (22) F has
at most five points).

Moreover, if we use Theorem 2.1 now with of;’;, we have

Z> /M b = 4—11;, (-(ap PP+ > (ap [p)* = (ap |Q)3>

FeF

- (9u3 + 3 (ap |F)3>

FeF

and s0 Y per(ap |F)® + u? € 4u® - Z. Consequently, the second hypothesis
above cannot hold and we are left with the first: one of the ap |p’s is equal
to —2u, another one is equal to —u and all the others are equal to zero.
Let P; be the fixed point where ap |p= —2u, let P, be the one where
ap |p,= —u and let ap, and ap, be 2-forms from Proposition 2.3 associated
to P; and P, respectively. Let us assume first that there is at least one fixed
point Ps of index 4 different from P, on the flow up of P;. If P3 were directly
connected to @ (the fixed point of index 6) then, using Theorem 2.1 with
ap, (a 2-form from Proposition 2.3 associated to P3), we would have

1

1 2
0= rug(aPs ’P3 —Opy ’Q) = 47u3(2u —Qpy ’Q)?

implying that ap, |g= ap, |p,= 2u®. However, taking again Theorem 2.1,

aplg-arslq

3 = % € Z which is impossible.

now with ap - ap,, we would have
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Moreover, if P; were directly connected to @), we would have,

1 1

Z> /M ap-op = m (—2’&@]31 ‘P1 +uap1 ’Q) = _5

which is impossible. We conclude then that Ps is in the flow up of P; and
that it is directly connected to Q). (Note that, in this case, we have

/M ap-ap, = m(—uozp2 |p, +uap, @) = m(—2u +2u’)=0€Z).
Let now P3 denote the fixed point different from P, (if it exists) in the flow

up of P, and such that P» and ) are the only fixed points on its flow up.
Then, using Theorem 2.1, we have

0 / P: ! ( | | ’Q) ! (2 2 | |Q)
= ap, = ap, |p. +ap. |p, —ap = w“+ap, |p, —ap

M 3 4”3 3 3 3 2 3 4u3 3 2 3
and so, since ap |p,= 0,

1 1 1
Z> | apap = pg(-uap, P, tuap, Q) = 5 (—an |p, +ar Q) = 5

which is impossible.
We conclude that there is no fixed point on the flow up of P, other than
P5. Thus, using Theorem 2.1 with ap,, we have

1 1
0= —(ap |p +or |p —ap o) = 5 (2u" +ap [p, —ap lo),
and so, using ap - ap,, we have
1 1
/M ap - ap; 4u3 ( U U py |P2 +’I.LO(P1 ‘Q) 2

which is impossible. We conclude then that this case is also impossible and
so N1 = 1, implying Ny = 2, and the result follows.

Case 10 If n = m > k = 2, we have, by Theorem 2.1, using o = cfl (TM),

2

-~ 2n2u?
implying that NV,, + (n — 1) Ny = n+ 1. As n > 3, Ny must be smaller than
3. If N =0, then N, = n + 1. However, if that was the case, the fixed
points of index 4 and positive weight n could only be paired along their
“negative” Z,-isotropy spheres, to other fixed points of index 4 and positive
weight n (note that n # 4 as the action would not be effective otherwise).
As the number of fixed points is finite, IV, would also have to be zero which
is impossible. If Ny = 2, then n must be equal to 3 and N,, = 0. However,
in this case, the fixed points of index 4 and positive weight 2, can only be
paired along the Z,-isotropy spheres to the fixed point of index 0 which
makes this case impossible. We conclude that No = 1 and, consequently,
N, =2. O

0

(—2N,y+ (2— 20) Ny + (24 2n)) = n22u2 (= N+ (1—=n) No+(14n)),
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4. Constructing an example

An obvious example of an S'-action on a compact symplectic connected 6-
dimensional manifold with isolated fixed points satisfying the condition that
on their normal bundles, the isotropy weights are always n > m > k, is a
diagonal action on the product of three spheres which rotates each sphere at
speed n, m and k. We will now construct another example which may occur
when the isotropy weights satisfy ¢ = r (mod p) for some p,q,r € {n,m, k},
(p#q#1)

Let us assume that ¢ = r + ep for some integer e. Decompose the sphere
S? in two hemispheres S? = S% U 5%, where S2 = {z € C: |z| < 1} and
S? ={z€CUoo: |z| >} 2 {2 C: |2|] <1}. Consider S? x S? x §? with
the circle action given by

A ([z0 : z1], [uo = ur],v) = ([N20 @ z1], [N "uo = u1], APv)
and 52 x §? x S_% with the circle action
A ([z0 0 21], Juo : wi], w) = ([A"20 = 21], [ATug : ur], A7Pw),
where w = 1/v. Then construct the S? x S%-bundle, E, over S?, gluing
S? x 8?2 x 82 and S?% x §? x Si along their common boundary, S% x §% x S*,
by the gluing map
o([z0 : z1], [uo = u1],v) = ([v™%20 @ 21], [v%up @ w1, w).
Note that F is equipped with a global circle action. Indeed,
(X ([z0 : 21], [uo = u1],v)) = @([A20 : 2z1], [N ug = ui], APv)
= ([N Pv~2q 1 21], N TP : ug], A Pw)
= ([N"v ™%z : 21], [N vuq : ug], \"Pw)
=X ([v"%0 : z1], [v%u0 : ur],w) = X - (20 @ 21], [uo = w1, v).
We will see in the next section that, when the isotropy weights are pairwise

relatively prime, all S'-spaces satisfying the above condition on the isotropy
weights have the same cohomology as one of these two examples.

5. Cohomology

Now that we have shown that our circle actions must have the same fixed
point data, (that is, the number of fixed points and their isotropy weights)
as the examples in Section 4, we prove that, when the isotropy weights are
pairwise relatively prime, they even have the same equivariant cohomology
and Chern classes of the above examples, and that, if in addition all the
isotropy weights ¢, r,p € {n,m, k} satisfy ¢ # r (mod p), the manifold has
to be diffeomorphic to the product of three spheres.

Theorem 5.1. Let (M,w) be a compact, connected, symplectic 6-manifold
equipped with a Hamiltonian circle action with isolated fixed points. Let all
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fixed points satisfy the condition that, on their normal bundles, the isotropy
weights are always n > m > k > 2 pairwise relatively prime, and n # m+k.
Then, there either exists a map from Fixgi (M) to Fixgi((S?)3) (the fived
point set of a diagonal circle action on the product of three spheres rotating
each one at speeds n,m, k) or a map from Fixgi (M) to Fixgi (FE) (the fized
point set of the S'-space E described in Section 4) which respectively iden-
tifies the restrictions i* and j* or i* and j*, of the equivariant cohomology
classes to the fized point sets, where

i*: Hi(M,Z) — Hii (Fixg1 (M), Z)
it Hu((8%).2) — H (Fixg: ((5%)%), Z)
' H(B,Z) — Hy (Fixg (E), Z)

are induced by the inclusions i : Fixgi (M) — M, j : Fixg1((S?)3) — (92)3
and j : Fixgi1 (E) — E. Moreover, this map sends the images of equivariant
Chern classes of M to those of S? x S? x S? or E.

Proof. Since the isotropy weights are pairwise relatively prime and greater
than 2, the fixed point of index 0 can only be paired to fixed points of index
2. Indeed, if it were paired along a Z,-sphere to a fixed point of index
4 with positive weight ¢ and negative weights —p, —r (p,q,r € {n,m,k}
and p # q # r) then we would need 2r = 0 mod p which is impossible by
assumption. By a similar argument, we can see that it cannot be paired
to the fixed point of index 6 and that this last point can only be paired to
fixed points of index 4. Let us now see how we can pair the remaining fixed
points (cf. Figure 12). We can divide all possibilities in four different cases:

I. All remaining pairings of fixed points are like the ones in S? x S? x 2
(Figure 12.1);

II. All remaining pairings are like the ones in the product of spheres except
the pairings along the isotropy spheres of one order (Figure 12.1I);

III. Only the pairings along the isotropy spheres of one order are like the
ones in the product of spheres (Figure 12.11I);

Figure 12. Possible pairings of fixed points.
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IV. None of the remaining pairings is like the ones in S? x S? x S? (Fig-
ure 12.1V).

We will use Proposition 2.3 to prove this theorem. Indeed, we will use it to
show that only the first two cases are possible and to show that the behavior
of the corresponding generating equivariant cohomology classes is the same
as their counterparts in S% x S2 x S? or in E. Let us first label the fixed points
of index 4 and positive weights p, ¢ and r (p,q,r € {n, m, k}) respectively by
a, b, ¢, the fixed point of index 6 by d, and consider generating equivariant
2-classes «, 3, corresponding to the fixed points of index 2 which have

negative weights —r, —q, —p respectively. Then, we obtain the following sets
of equations for the four possible cases:

L ()r+alet+aly—ala=0  (i0)r? —a®|s —a®|p +0° [a=0  (vii) o Bla= alq Bla
(@) g+ Bla +Blc —Bla=0  (v)¢® — B la =B |c +87a=0

(viid) alp v o= ala v]a

(@) p+vl +vle =vla=0 () p° = |p =% |c +771a=0 (iz) Ble ¥e=Bla 7 la

(@)r(g+p—r)t+ala(p—g—r)+alp (g—p—r)+ala(p+qg+r)=0
(zi)g(r+p—a@)+Bla(P—qg—7)+Blc (r—p—q)+Bla(p+q+7)=0
(zit)p(g+r—p)+vlb (@—p—7)+vlc (r—p—a)+vla(P+qg+7)=0

1I. (i)r+0‘|a +a|c _O“d:() (iv)rz_azla _azlc +042|d:0 (U'Li)o“a ﬂla:ald ﬂld
(#@6) g+ Bla +Bls —Bla=0 ()" =Bl =B s +8%1a=0  (viid) alc v]e= ela 7la

@@ p+ly +vle —vla=0 (i) p° =7y =77 |c +77|a= 0 () By vlv=Bla ¥la

(@)r(g+p—r)+alap—g—r)+alc(r—p—q)+ala(p+qg+7)=0
(z))q(r+p—q@) +Bla p—q—7)+Blb (g—p—7)+Bla (p+q+7)=0
(zit)p(g+r—p)+vlb (a—pP—71)+7lc (r—pP—@) +vla(P+qg+7r)=0

I (i)r+ ale +ale —ala=0  (iv)r? —a®|, —a?|. +a?|a=0  (vii)a|qBla=0
(i) g+ Bl —=Bla= 0 (W) ¢* = By +8%a=0 (viid) alayla +ealcy|c= alav|a

@) p+vla +vle —vla=0 (@) p° =% la =¥’ le +9°1a=0 (i) Blav]a=0

(@)r(@+p—r)+ala p—g-—r)+alc(r—p—qg)+ala(p+q+r)=0
(zi)g(r+p—a)+Bls (¢—p—r)+Blalp+qg+7)=0
(zi)p(g+r—p)+vla P—g—7)+vlc(r—P—@) +vla(P+qg+7)=0

Iv. ()7 + ale —alg=0 (iv)r? —a?|. +a? 4= 0 (vii) alqg Bla=0
(i) g+ By —Bla=0 () ¢® = B%p +8%|a=0 (viii) alg v]a= 0
(#6)p + o —7]a= 0 W) p* =4 la +771a= 0 (iz) Bla vla= 0

()r(g+p—r)+ale(r—p—qg +ala(p+qg+r)=0
(zi)q(r+p—q) +Blb (g—p—7)+Bla(p+qg+7)=0
(zii)p(g+r—p)+vla P—qg—7)+vla (P+q+7)=0
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corresponding to the equations

(i>o=/Ma; (ii)0=/Mﬁ; (iii)0=/Mv;
()0= [ o o= [ s wiyo= [ 4%
(vii)OZ/Mwﬁ; <mn>o:/Ma-v; o= [ 8-

(x)O:/M SHTM) - o (m)o:/M ST - s (m‘z’)O:/M STy .

Let us begin with Cases III and IV. Here, we consider equations (i7)
and (v) and get #|4= 0 and §|,= —q, contradicting (xi). Consequently, the
only possible cases are the first two.

In case I, equations (i) through (xii) completely determine the values of
the non-zero restrictions of a, § and ~:

aly=alp=alq= —ru; B la= B le= 0 la= —qu;
Yo =71e=7la= —pu.

Moreover, if @, 3,7 € Hgl(M ,Z) are generating 4-classes (defined in
Proposition 2.3) associated to the fixed points of index 4 and positive weight
P, q, T respectively, we get:

2 — 2 ya)
ru‘ — o — ru’ —
0:/ S ’d; 0:/ P 5\51;
M pgru’ M pqru’

2 =
(23) o:/ WZIL;”{
M pqru

implying that the non-zero restrictions of @, 3,7 to the fixed points are:
Alo=ale=qruv*;  Bl=Bla=pru*;  F|e=7|s= pqu’.

As these classes form a basis for the cohomology HY,(M,Z), and equa-
tions (i) through (zii) and (23) also have to be satisfied by the generating
classes of H%,((S%)%,Z), the result follows. Moreover, the restrictions of
the equivariant Chern classes of the two spaces are also the same since the
isotropy weights are the same.

For case II. to be possible we need ¢ = r (mod p) in order to have the
corresponding pairings along Z,-spheres. If this is the case, equations (%)
through (zii) above, completely determine the values of the non-zero restric-
tions of «, (B and ~:

ale=—ru,al=ale=—qu  Bla=—qu, B [p= B la= —Tu;

Yo =7 le=7 la= —pu.
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Moreover, like in Case I, if @, 3,7 € Hgl(M ,Z) are generating 4-classes
associated to the fixed points of index 4 and positive weight p, q,r respec-
tively, their non-zero restrictions to the fixed points are:

@ o= a 4= gru®; B b= B |a= pru*; 7 =7 la= pgu®.
Again, as these classes form a basis for the cohomology HY,(M,Z), and
equations (i) through (xii) and (23) also have to be satisfied by the
generating classes of Hg,(E,Z) (note that ¢ = r (mod p)), the result
follows. Moreover, the restrictions of the equivariant Chern classes of

the two spaces are also the same since the isotropy weights are the
same. g

Remark 5.2. To prove the above result we didn’t really need the isotropy
weights to be pairwise relatively prime. Indeed, it still holds if 2¢ # 0
(mod ) for every q,r € {n,m,k}. However, in this case, we can show
that the only additional cases are P(O(e) © 1)-bundles over S2.

We conclude that there exists either an isomorphism between H, (M, Z)
and HY, ((5%)?,Z), in which case the equivariant cohomology ring is

Zlay, az,a3,y]

(wiaiy — a7) ’

or between H,(M,Z) and Hg,(FE,Z), in which case the equivariant coho-
mology ring is

;1(M,Z) =

Zlay, az, a3,y
(a1(w1y + eaz — a1), az(way — eas — az), az(wsy — as))’
where the a;’s correspond to «, (3,7, the w;’s are the negative isotropy
weights of the corresponding fixed points of index 2, and e is such that
w9 = w1 + ews.

Note that,when the isotropy weights ¢,7,p € {n,m,k} satisfy ¢ # r
(mod p) only the first case is possible and then, like in the semifree case
([T-W1]), a Theorem of Wall shows that M (being simply-connected) is
diffeomorphic to S? x S? x S2.

s1(M,Z) =

References

[A] M. Audin, The topology of torus actions on symplectic manifolds, Prog. Math.
93, Birkh&user, Basel, 1991.

[A-B] M. Atiyah and R. Bott, The moment map and equivariant cohomology, Topology
23 (1984), 1-28.

[A-H] K. Ahara and A. Hattori, 4-dimensional symplectic S*-manifolds admitting
moment map, J. Fac. Sci. Univ. Tokyo Sect. IA, Math. 38
(1991).

[B-G-V] N. Berline, E. Getzler and M. Vergne, Heat kernels and Dirac operators,
Springer-Verlag, Berlin, 1992.



ON CERTAIN SYMPLECTIC CIRCLE ACTIONS 383

[G] R. F. Goldin, An effective algorithm for the cohomology ring of symplectic
reductions, Geom. Anal. Funct. Anal. 12 (2002), 567-583.

K] Y. Karshon, Periodic Hamiltonian flows on four dimensional manifolds.
Mem. Amer. Math. Soc. 141 (1999), no. 672.

[Ki] F. C. Kirwan, The cohomology of quotients in symplectic and algebraic geometry,

Princeton University Press, 1984.

[MD-S] D. McDuff and D.A. Salamon, Introduction to symplectic topology, Oxford
University Press, 1995.

[MD] D. McDuff, The moment map for circle actions on symplectic manifolds,
J. Geom. Phys., 5 (1988), 149-60.

[T-W1] S. Tolman and J. Weitsman, On semifree symplectic circle actions with isolated
fized points, Topology, 39 (2000), 299-309.

[T-W2] S. Tolman and J. Weitsman, The cohomology rings of Abelian symplectic
quotients, Comm. Anal. Geom. 11 (2003), no. 4.

[W] C. Wall, Classification problems in differential topology V: On certain
6-manifolds, Invent. Math., 1 (1966), 355-374.

DEPARTAMENTO DE MATEMATICA
INSTITUTO SUPERIOR TECNICO

Av. Rovisco PaAIls

1049-001 LisBoA

PORTUGAL

E-mail address: 1godin@math.ist.utl.pt

I would like to express my most sincere gratitude to Dusa McDuff and Michele Audin
for encouragement and support as well as for all the careful explanations and com-
ments during the preparation of this work. I am also grateful to Susan Tolman for
her many helpful conversations from which this work has greatly benefited. Par-
tially supported by FCT through program POCTI/FEDER and grants POCTI/1999/
MAT/33081 and POCTI/MAT/57888/2004, and by Fundagéo Calouste Gulbenkian.






