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ON CERTAIN SYMPLECTIC CIRCLE ACTIONS

Leonor Godinho

In this work we use localization formulas in equivariant cohomol-
ogy to show that some symplectic actions on 6-dimensional manifolds
with a finite fixed point set must be Hamiltonian. Moreover, we show
that their fixed point data (number of fixed points and their isotropy
weights) is the same as in S2 × S2 × S2 equipped with a diagonal
circle action, and we compute their cohomology rings.

1. Introduction

A circle action on a compact symplectic manifold M is symplectic if it
preserves the symplectic form. In addition, it is Hamiltonian if its generating
vector field X is Hamiltonian that is, if it satisfies ιXω = dH where H ∈
C∞(M) is the Hamiltonian function.

An obvious necessary condition for a circle action to be Hamiltonian is to
have fixed points, which correspond to the critical points of H. For Kähler
manifolds and more generally for manifolds of Lefschetz type, this condition
is also sufficient (cf. [MD-S]). Moreover, McDuff proved in [MD] that this
result holds for all four-dimensional manifolds. However, this is not true for
higher dimensions. In fact, McDuff constructed in [MD], a six-dimensional
manifold equipped with a non-Hamiltonian symplectic circle action with
fixed points. Hence, for higher dimensions, we need more conditions, either
on the manifold or on the action, to make sure it is Hamiltonian.

One possible conjecture is that a symplectic action with isolated fixed
points must be Hamiltonian. This result has already been proved in [T-W1]
by Tolman and Weitsman, in the case of a semi-free action that is, free
outside the fixed point set. Moreover, there are no known counterexamples
(the fixed point sets in McDuff’s six-dimensional example are tori). The
argument used by Tolman and Weitsman uses integration in equivariant
cohomology. Nevertheless, even though it generalizes to the case of non-
semifree circle actions, it fails to eliminate all non-Hamiltonian examples
with a non-empty fixed point set.
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358 L. GODINHO

Trying to obtain more information on this problem, we use equivariant
cohomology localization theorems as well as some topological conditions,
to obtain additional information in the six-dimensional case of circle actions
with isolated fixed points. Indeed, we prove the following theorems for circle
actions for which the isotropy weights on the normal bundles of each fixed
point are always (±n, ±m,±k) for positive integers n ≥ m ≥ k ≥ 1 such
that n �= m + k:

Theorem 1.1. Let S1 act on a six-dimensional symplectic, compact con-
nected manifold. If all fixed points are isolated and satisfy the condition that
on their normal bundles the isotropy weights are always n ≥ m ≥ k, where
n �= m + k, then if the fixed point set FixS1(M) is non-empty, the action
must be Hamiltonian.

Theorem 1.2. If the conditions of Theorem 1.1 hold, then the number of
fixed points with a given set of isotropy weights (±n, ±m,±k) is the same as
in a product of spheres S2 × S2 × S2 equipped with a diagonal circle action
which rotates each sphere at speed n, m and k.

Finally, using the above theorems, we show that any such space for which
n > m > k > 2 are pairwise relatively prime, has the same cohomology
and Chern classes of either the product of spheres equipped with a diagonal
action rotating each sphere at speed n, m and k, or the S1-space E (also
an S2 × S2-bundle over S2) described in Section 4. Indeed, we have the
following theorem:

Theorem 1.3. If the conditions of Theorems 1.1 and 1.2 hold and, in
addition, n > m > k > 2 are pairwise relatively prime then, there either
exists a map from FixS1(M) to FixS1

((
S2

)3
)

(the fixed point set of a diag-
onal circle action on the product of three spheres rotating each one at speeds
n, m, k) or a map from FixS1(M) to FixS1(E) (the fixed point set of the S1-
space E described in Section 4) which respectively identifies the restrictions
i∗ and j∗ or i∗ and j̃∗, of the equivariant cohomology classes to the fixed
point sets, where

i∗: H∗
S1(M,Z) −→ H∗

S1(FixS1(M),Z)

j∗: H∗
S1(

(
S2)3

,Z) −→ H∗
S1

(
FixS1

((
S2)3

)
,Z

)

j̃∗: H∗
S1(E,Z) −→ H∗

S1 (FixS1(E),Z)

are induced by the inclusions i: FixS1(M) → M , j: FixS1

((
S2

)3
)

→
(
S2

)3

and j̃: FixS1(E) → E. Moreover, these maps send the images of equivariant
Chern classes of M to those of S2 × S2 × S2 or E.

Then, since by a Theorem of Kirwan [Ki], the maps i∗ and j∗ above are
injections, Theorem 1.3 implies that there is either an isomorphism between
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H∗
S1(M,Z) and H∗

S1((S2)3,Z), in which case the equivariant cohomology
ring is

H∗
S1(M,Z) =

Z[a1, a2, a3, y]
(wiaiy − a2

i )
,

or between H∗
S1(M,Z) and H∗

S1(E,Z), in which case the equivariant coho-
mology ring is

H∗
S1(M,Z) =

Z[a1, a2, a3, y]
(a1(w1y + ea3 − a1), a2(w2y − ea3 − a2), a3(w3y − a3))

,

where the wi’s are the negative isotropy weights of the fixed points of index
2 corresponding to the generating classes ai (cf. Section 5), and e ∈ Z is
such that ω2 = ω1 + eω3. In the first case, the equivariant Chern series
ct(M) =

∑
i t

ici(M) is given by

ct(M) = Π3
i=1 (1 + t(2ai − wiy))

and, in the second one, it is given by

ct(M) = (1 + t(2a1 − ω1y − ea3))(1 + t(2a2 − ω2y + ea3))(1 + t(2a3 − ω3y)).

Moreover, in the first case there is an isomorphism between H∗(M,Z)
and H∗((S2)3,Z) taking Chern classes to Chern classes and so the ordinary
cohomology ring is given by

H∗(M,Z) =
Z[a1, a1, a3]

(a2
i )

and the Chern series is ct(M) = Π3
i=1(1 + t2ai). On the second case, there

is an isomorphism between H∗(M,Z) and H∗(E,Z), and so the ordinary
cohomology ring is

H∗(M,Z) =
Z[a1, a1, a3]

(a1(ea3 − a1), a2(ea3 + a2), a2
3)

and the Chern series is ct(M) = (1+t(2a1−ea3))(1+t(2a2+ea3))(1+t2a3).

Remark 1.4. When the isotropy weights q, r, p ∈ {n, m, k} satisfy q �=
r (mod p) only the first case is possible and so, like in the semifree case
([T-W1]), a Theorem of Wall [W] shows that M (being simply-connected)
is diffeomorphic to S2 × S2 × S2.

2. Equivariant cohomology

Let E be an S1-equivariant line bundle over a fixed point F . The action
of S1 on E is conjugate to some circle action on C, z �→ e2πiβuz and the
first equivariant Chern class is given by cS1

1 (E) = βu. Moreover, the normal
bundle to F in M decomposes equivariantly into complex line bundles νP =
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L1 ⊕ · · · ⊕ Lm on which the circle acts with weights β1, . . . , βm. Hence, the
first two equivariant Chern classes of νP are given by

cS1

1 (νP ) = (
∑m

i=1 βi) u and cS1

2 (νP ) =
(∑m

i,j=1,i�=j βiβj

)
u2,

and the equivariant Euler class by eS1

1 (νF ) = (
∏m

i=1 βi) um, where u is the
generator of H2

S1(F,Z). The projection M ×S1 ES1 −→ BS1, where ES1 is
a contractible space on which S1 acts freely and BS1 = ES1/S1, induces a
push-forward map p∗: H∗

S1(M,Z) −→ H∗(BS1,Z) which is usually denoted
by

∫
M (integration over the fiber), and given by the following localization

theorem,

Theorem 2.1. ([B-G-V], [A-B]) Let M2n be a compact manifold equipped
with an action of S1. Let α ∈ H∗

S1(M,Z). Then, as elements of Q(u),
∫

M
α =

∑
F∈FixS1 (M)

α |F
eS1

1 (νF )
,

where νF is the normal bundle to the fixed point F and eS1

1 (νF ) is its equi-
variant Euler class.

Moreover, Kirwan’s injectivity theorem [Ki] relating the equivariant inte-
gral cohomology of the manifold M with the equivariant integral cohomology
of its fixed point set still holds for circle actions with isolated fixed points
(since the cohomology of the fixed point set has no torsion) and states the
following:

Theorem 2.2. ([Ki], [T-W2]) Let (M, ω) be a compact symplectic manifold
equipped with a Hamiltonian circle action with isolated fixed points and let
FixS1(M) be its fixed point set. Then the inclusion map i : FixS1(M) → M
induces an injection i∗: H∗

S1(M,Z) → H∗
S1(FixS1(M),Z).

With this theorem one can prove the following proposition (see [Ki],
[T-W1], [T-W2] and [G] for details):

Proposition 2.3. Let M be a symplectic manifold with a Hamiltonian circle
action with isolated fixed points. For any F ∈ FixS1(M) of index 2d there
is a class αF ∈ H2d

S1 that,
(i) restricted to F , is equal to the equivariant Euler class of the negative

normal bundle of F , that is, αF |F =
(∏d

i=1 βi

)
ud, where β1, . . . , βd

are the negative isotropy weights of the circle action on the normal
bundle of F ;

(ii) vanishes when restricted to any other fixed point F ′ which cannot be
joined to F along a sequence of integral lines of the negative gradient
field −∇H (where H is the Hamiltonian function of the action).
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Moreover, taken together over all fixed points, these classes are a basis for
the cohomology H∗

S1(M,Z) as a H∗(BS1,Z)-module. We will call them
generating classes.

3. Isolated fixed points on 6-manifolds

In this section we extend the results of Tolman and Weitsman in [T-W1]
to certain non-semifree circle actions with isolated fixed points. For this we
first need to consider some facts about isotropy spheres.

3.1. Isotropy spheres. Let M be a compact symplectic six-dimensional
manifold equipped with an effective circle action with only isolated fixed
points. Let F ∈ M be one fixed point with at least one isotropy weight on
its normal bundle different from ±1. Let k be the absolute value of this
weight, and let Mk be the connected component of FixZk

(M) containing F .
If none of the other isotropy weights of F is a multiple of k, the tangent space
to Mk at F is the two-dimensional subspace of TpM on which the circle acts
with weight ±k. Consequently, Mk is also two-dimensional. Moreover, the
circle S1/Zk acts effectively on this manifold with at least one fixed point F .
Hence, we have a Hamiltonian action on the compact manifold Mk and the
image H(Mk) of the corresponding Hamiltonian function is a closed interval.
Therefore, there is one additional fixed point on the pre-image of the other
endpoint of this interval and so, the local normal forms for circle actions on
surfaces, allow us to construct an equivariant symplectomorphism between
Mk and a sphere with the standard circle action (cf. [K] for details). We
conclude that, under the above assumptions, the connected component of
FixZk

(M) through F is a sphere containing only one additional fixed point.
If there is one weight which is a multiple of k, then the connected

component of FixZk
(M) through F , Mk, is four-dimensional. Nevertheless,

there is still an embedded sphere through F which contains only one addi-
tional fixed point. In fact, we have a semifree action of S1/Zk on Mk with
only isolated fixed points which extends to an action of the multiplicative
group C∗ on Mk. The fixed points of this new action are the same as the
fixed points of the circle action and the gradient flow on Mk is the flow
generated by the vector field −JX (where X is the vector field generating
the circle action and J is an almost complex structure on Mk preserved by
the circle action). This gradient flow coincides with the gradient flow of the
Hamiltonian function with respect to a compatible metric. We can there-
fore consider gradient spheres inside Mk (defined in [A] and [A-H]) as the
closure of a non-trivial C∗-orbit. The poles of these spheres are the limits at
times ∞ and −∞ of the gradient flow inside this orbit which are, of course,
fixed points of the circle action on Mk. Again, the circle acts on each of
these spheres by standard rotation. We conclude then that there is a sphere
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fixed by Zk through the fixed point F which passes through an additional
fixed point in M . We will call these spheres isotropy spheres.

3.2. Hamiltonian circle actions. Besides the above considerations on
isotropy spheres we will also need the following lemma due to Ahara and
Hattori on disc bundles over S2 (cf. [A-H] for details):

Lemma 3.1. Let the circle act on the two-sphere by rotating it k times while
fixing the north and south poles. Let E −→ S2 be a complex line bundle to
which the action lifts. The fiber over the north pole is acted upon by λ :
z �→ λmN z and the fibre over the south pole is acted upon by λ : z �→ λmSz.
Then, mN − mS = −ek, where e is the Euler number of the bundle E.

With this lemma we can prove the following theorem:

Theorem 3.2. Let the circle act on a six-dimensional symplectic, compact
connected manifold. If all fixed points are isolated and their isotropy weights
are always (±n, ±m, ±k) for fixed integers n ≥ m ≥ k ≥ 1, such that
n �= m + k, then if FixS1(M) �= ∅, the action must be Hamiltonian.

Proof. In this proof we will denote by Np, (p = n, m, k) the number of fixed
points of index 4 with positive isotropy weight equal to p, and by N−p the
number of fixed points of index 2 and negative isotropy weight equal to −p.

If the action is semifree this result is proved by Tolman and Weitsman in
[T-W1], so we will only consider here the existence of non-trivial isotropy
subgroups Zk. We can assume, without loss of generality, that ω is rational.
Then, if the action is not Hamiltonian, we have that [ι(X)ω] �= 0 and so
a multiple of ω admits a generalized moment map µ : M −→ S1, with
ι(X)ω = µ∗(dθ). This map cannot have any local extremum. Consequently,
the index of any of its critical points can only be two or four.

Case 1 Let us first consider the case where n > m = k. The four possible
kinds of fixed points are listed in Figure 1 below: The points of type (a)
and (d) cannot be paired to any other fixed point along the Zn-sphere. In
fact by Lemma 3.1, this would imply 2k ≡ 0 (mod n) (that is n = 2k, as
n > k) but, by assumption, n �= m + k = 2k . Therefore, the fixed point
set has to be formed uniquely by points of type (b) and (c). Moreover, by
Theorem 2.1, ∫

M6
α =

∑
F∈FixS1 (M)

α |F
eS1

1 (νF )

Figure 1. Possible kinds of fixed points.
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for any α ∈ H∗
S1 . If we take α = cS1

1 (TM) then, for F a fixed point
of type (b), eS1

1 (νF ) = k2nu3 and α |F = −nu. Similarly, for F of type (c),
eS1

1 (νF ) = −k2nu3 and α |F = nu. Since, by dimensional reasons,
∫
M6 α = 0,

we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )
= − 1

k2u2 (Nk + N−k)

and so Nk = N−k = 0, contradicting the fact that FixS1(M) �= ∅. We
conclude that there must be at least one point of index zero or six and so
the action must be Hamiltonian in this case.

Case 2 Let us now assume that n ≥ m > k = 1. Let x be a fixed point of
index 4, with isotropy weights (p, −q, −1), where (p, q) ∈ {(n, m), (m, n)}.
For this point to be paired with another fixed point along a Zp-sphere
(Figure 2) we need at least one of the following three conditions:

p = 2(1)

q ≡ −1 (mod p)(2)

2q ≡ 0 (mod p).(3)

Let us first consider the case p �= 2 and suppose that Np �= 0. Then, either
q ≡ −1 (mod p) or 2q ≡ 0 (mod p). If, in addition, Nq �= 0, to pair a fixed
point w, with index 4 and positive weight q along the Zq-sphere, one of the
following conditions has to be satisfied:

q = 2(4)

p ≡ −1 (mod q)(5)

2p ≡ 0 (mod q).(6)

If q = 2, (implying that m = 2), then by (2) and (3), we either have
n = p = 2, 3 or 4 which are impossible since p �= q + 1 and, by Lemma 3.3
below, p �= q and p �= 2q.

If p ≡ −1 (mod q) and q ≡ −1 (mod p) then p = −1+sq and q = −1+tp
for some integers s, t ≥ 2 (as n �= m + k = m + 1) and so, (st − 1)p = 1 + s.

Figure 2. Pairings of x along the Zp-sphere.
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As st − 1 ≥ 2s − 1 ≥ s + 1 and p > 1, conditions (5) and (2) cannot be
simultaneously satisfied.

If p ≡ −1 (mod q) and 2q ≡ 0 (mod p) then p = −1 + sq and 2q = tp
for integers s ≥ 2 and t ≥ 1. Hence (st − 2)p = 2, which is impossible as
st − 2 ≥ 1 and p > 2 i.e. conditions (5) and (3) cannot be simultaneously
satisfied.

Similarly, 2p ≡ 0 (mod q) and q ≡ −1 (mod p) ((6) and (2)) cannot be
simultaneously satisfied and so 2p ≡ 0 (mod q) and 2q ≡ 0 (mod p) (condi-
tions (6) and (3)) are the only possibly compatible conditions, implying that
2p = q, 2q = p or p = q. However, by Lemma 3.3 below this is impossible
and so, either N±p = 0 or N±q = 0.

Let us assume that N±p = 0 (the case where N±q = 0 is similar). By
Theorem 2.1, taking α = cS1

1 (TM), we have
(7)

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )
= − 1

pqu2 ((p+q−1)(N1+N−1)+(1+p−q)(Nq +N−q)).

If N±q �= 0, one of conditions (4), (5) or (6) must hold, that is, either q = 2,
p = −1 + tq (t ≥ 2) or 2p = sq (with s ≥ 3 as q �= p, 2p). In all cases
(1 + p − q) > 0, contradicting the fact that Nq �= ∅.

If N±q = 0, then by (7), N±1 = 0, contradicting the fact that
FixS1(M) �= ∅.

Suppose now that p = 2 and consider a fixed point w of index 4 and
positive weight q. To pair w along the Zq-sphere, we would need conditions
similar to (1), (2) and (3) now interchanging p with q (that is, q = 1, 2, 3 or
4). However, these are all impossible as q > 1, q �= p + 1 and q �= 2, 4 by
Lemma 3.3. We conclude then that a point such as w cannot exist and so
Nq = 0. Similarly, we can conclude that N−q = 0 and so, by Theorem 2.1,
taking α = cS1

1 (TM), we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )
= − 1

2qu2 ((q − 1)(N2 + N−2) + (1 + q)(N1 + N−1)),

contradicting the fact that FixS1(M) �= ∅.
Hence, to finish the proof of this case, we just need to prove Lemma 3.3

which was used above.

Lemma 3.3. If, as above, (n, m, k) = (t, t, 1) or (2t, t, 1) for some integer
t > 1, then FixS1(M) �= ∅.

Proof.

1) If n = m = t and the action is not Hamiltonian, the only kinds of
fixed points allowed are the ones described in Figure 3. Then, by
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Figure 3. Possible kinds of fixed points.

Theorem 2.1 taking α = cS1

1 (TM), we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )
= − 1

t2u2 ((2t − 1)(N1 + N−1) + (Nt + N−t)),

and so N±t = N±1 = 0, implying that FixS1(M) = ∅.
2) Let us assume now (n, m) = (2t, t). As all fixed points have to be

paired along the Zj-isotropy spheres for j = n, m, we need:

N1 + Nt + N−2t = N2t + N−1 + N−t

Nt + N−1 + N−2t = N2t + N−t + N1

and so N1 = N−1 and Nt+N−2t = N2t+N−t. Moreover, since pairings
(I) and (II) in Figure 4 are impossible (2 �= 0 (mod 2t)), every fixed
point of index 2 and negative weight −2t has to be paired along the
Z2t-sphere to a fixed point of index 2 and negative weight −t, implying
that N−2t ≤ N−t.

Hence, taking again α = cS1

1 (TM) in Theorem 2.1, we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )

=
1

2t2u2 ((t − 1)(N2t + N−2t) − (t + 1)(Nt + N−t) − 2(3t − 1)N1)(8)

= − 1
2t2u2 (2t(N−t − N−2t) + 2(N2t + N−t) + 2(3t − 1)N1),

Figure 4. Pairings of w along the Z2t-sphere.
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and so, since N−2t ≤ N−t, we have Nj = 0 for j = ±1,±t, ±2t, and again
FixS1(M) = ∅. �

Case 3 Let us assume now that n ≥ m > k > 1 and consider a fixed
point x of index 4 and positive isotropy weight equal to k. The possible
pairings of x with another fixed point, along the Zn-sphere, are described in
Figure 5.

For (a) and (c) to be possible we would need m ≡ k (mod n) or 2k ≡
2m ≡ 0 (mod n). The first condition is impossible since n ≥ m > k and, if
the second were true, k would divide both m and n and the action would not
be effective. Hence, (a) cannot occur. For (b) to be possible we would need
2k ≡ 0 (mod n), that is, 2k = sn for some integer s ≥ 1. However, since
k < n, we would have 2k = n. Finally (d) is always possible. However, if
such a pairing of x to a point w occurs, this new point would, in turn, have
to be paired to a third fixed point z along the Zm-sphere. These possible
pairings are listed in Figure 6.

For one of these to be possible we need one of the following:

n ≡ −k (mod m)(9)

m = 2k(10)

2n ≡ 0 (mod m).(11)

On the other hand, the pairings of x along the Zm-sphere are similar to the
ones in Figure 5 (we just have to interchange n with m). Hence, they can
now be of type (a) if n ≡ k (mod m), of type (b) if 2k = m and of type
(d). If x is paired along the Zm-sphere to a fixed point w′ of index 2 by a
pairing of type (d), this point has in turn to be paired to another fixed point
z′ along the Zn-sphere. The possible pairings are listed in Figure 7. For one
of these to be possible we need one of the following:

n = 2k(12)

2m ≡ 0 (mod n).(13)

Figure 5. Pairings of x along the Zn-sphere.
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Figure 6. Pairings of w along the Zm-sphere.

Note that (I) is impossible since (12) and (13) are not simultaneously sat-
isfied and we cannot have m ≡ −k (mod n), as n ≥ m > k > 1 and
n �= m + k.

Let us assume for now that n �= 2k and m �= 2k. Then, the only possible
pairing of x along the Zn-sphere is of type (d) and for that we need (9)
or (11). On the other hand, the only possible pairings of x along the Zm-
sphere are of type (a) or (d) and for that we need n ≡ k (mod m) or 2m ≡ 0
(mod n).

If n ≡ −k (mod m) and n ≡ k (mod m), or if 2n ≡ 0 (mod m) and
n ≡ k (mod m), the action would not be effective (n, m and k would have
a common divisor).

If n ≡ −k (mod m) and 2m ≡ 0 (mod n), then 2m = sn and n = −k+tm
for some integers 2 ≥ s ≥ 1 and t ≥ 2 (as n ≥ m). Hence, (st − 2)n = 2k
implying that st − 2 < 2 and so 2 ≤ st < 4 (that is, s = 1 and t = 2 or
t = 3), which is impossible since n ≥ m > k. Finally, if 2n ≡ 0 (mod m)
and 2m ≡ 0 (mod n), we would have 2m = sn and 2n = tm for some
integers 1 ≤ s ≤ 2 and t ≥ 2. Therefore we would have 4m = stm and so
st = 4, implying either n = 2m or n = m. We conclude then that one of
these conditions must hold and that the pairings of w and w, along the Zm

Figure 7. Pairings of w′ along the Zn-sphere.
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Figure 8. Pairings of w and w, along the Zn and the Zm-spheres.

and the Zn-spheres respectively, are of the type described in Figures 6 and
7 (III) (cf. Figure 8).

Consequently, Nk must be equal to zero. Indeed, if there were a fixed point
of index 4 with positive weight k, then there would be an infinite number
of fixed points of index 2 which is impossible. Hence, if m, n �= 2k, then
Nk = 0. Similarly, we can conclude that, under these conditions, N−k = 0.
Take now a fixed point x′ of index 4 and positive weight n. As N−k = 0,
the only possible pairings of x′ along the Zm-sphere to a fixed point y′ are
described in Figure 9. For (a) to be possible we need n ≡ k (mod m).
However, if that is the case, y′ has to be paired along the Zn-sphere by a
pairing of type (III) in Figure 7, implying that 2m ≡ 0 (mod n). Hence,
n = k + sm and 2m = tn for some integers s ≥ 2 and 2 ≥ t ≥ 1 and so,
(2 − st)n = 2k, which is impossible since st ≥ 2. Consequently, the pairing
of type (a) in Figure 9 is impossible and the existence of a fixed point like
x′ implies the existence of a fixed point of index 4 and positive weight m
(Figure 9(b)) and so Nn ≤ Nm.

Interchanging n with m we can also conclude that Nm ≤ Nn and so
Nm = Nn. Indeed, if we take a fixed point x′′ of index 4 and positive weight

Figure 9. Pairings of x′ along the Zm-sphere.
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m, then, as Nk = 0, the only possible pairings of x′′ along the Zn-sphere are
described in Figure 10. Since we are assuming m �= k, (b) is in fact the only
possible pairing and so Nm ≤ Nn. As in addition, all fixed points have to
be paired along their isotropy spheres, we have

N−m + Nn = N−n + Nm

N−m + N−n = Nn + Nm

implying Nn = N−n = Nm = N−m. By Theorem 2.1, taking α = cS1

1 (TM),
we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )
=

2
kmnu2 (Nn(n−k−m)+Nm(m−k−n)) = −4

Nn

mnu2 ,

and so Nn = 0 contradicting the fact that FixS1(M) �= ∅.
Finally, we will assume that n = 2k (the case where m = 2k is similar).

As all fixed points have to be paired along the isotropy spheres, we have:

N−m + N2k + Nk = N−2k + N−k + Nm

N−2k + Nm + Nk = N−m + N−k + N2k

N−k + Nm + N2k = N−m + N−2k + Nk

and so Nk = N−k, Nm = N−m and N2k = N−2k.
Moreover, if we take a fixed point x of index 4 and positive weight m, the

possible pairings along the Z2k-sphere are described in Figure 11. For (a) and
(b) to be possible, we would need 2m ≡ 0 (mod 2k) and so k would divide
both n and m and the action would not be effective. Hence, the existence
of a fixed point of index 4 and positive weight m implies the existence of a
fixed point of index 2 and negative weight −k (the pairing in (c) is the only
one possible) and so Nm ≤ N−k = Nk. By Theorem 2.1 using α = cS1

1 (TM),

Figure 10. Pairings of x′′ along the Zn-sphere.
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Figure 11. Pairings of x along the Z2k-sphere.

we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )

= − 1
k2mu2 (N2k(m − k) + Nk(k + m) + Nm(3k − m))

= − 1
k2mu2 (N2k(m − k) + k(Nk + 3Nm) + m(Nk − Nm))(14)

and so, as Nm ≤ Nk, we have that Nk = N2k = Nm = 0, contradicting
the fact that FixS1(M) �= ∅. We conclude then that the action must be
Hamiltonian. �

Now that we know that such an action is Hamiltonian, we will show that
the number of fixed points is the same as the number of fixed points of the
S1-space formed by the product of three spheres equipped with a diagonal
circle action which rotates each sphere at speed n, m and k. Moreover, for
every fixed point in M there is a fixed point in S2 × S2 × S2 with the same
isotropy weights.

Theorem 3.4. Consider a Hamiltonian circle action as in Theorem 3.2.
Let Nj denote the number of fixed points of index 4 and positive weight j.
Similarly, let N−j be the number of fixed points of index 2 and negative
weight −j. Then,

N±m = 2N±n = 2 if n > m = k;
Nj = N−j = 1, (j = n, m, k) if n > m > k;
N±m = 2N±k = 2 if n = m > k.

Proof. As the action is Hamiltonian and M is connected, there is only one
fixed point of index six and one fixed point of index zero. On the other hand,
as all fixed points have to be paired along the non-free isotropy spheres, we
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have, when n > m > k,

Nn + N−m + N−k = Nm + Nk + N−n

Nm + N−n + N−k = Nn + Nk + N−m,

implying that Nk = N−k and Nn + N−m = Nm + N−n. Moreover, by
Theorem 2.1, this time taking α = 1, we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )
=

1
nmku2 (Nn − N−n + Nm − N−m + Nk − N−k),

and so we have Nj = N−j for j = n, m, k.
If n = m > k, we still have Nn + N−n + 2N−k = Nn + N−n + 2Nk and so

again Nk = N−k. Then, by Theorem 2.1, taking α = 1, we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )
=

1
n2ku2 (Nn − N−n + Nk − N−k),

implying that Nj = N−j for j = n, k.
If n > m ≥ k, we have Nn + N−m = Nm + N−n and so, by Theorem 2.1

with α = 1, we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )
=

1
nm2u2 (Nn − N−n + Nm − N−m)

=
2

nm2u2 (Nn − N−n),

implying that Nj = N−j for j = n, m. We conclude that, in all cases, we
have Nj = N−j for j = n, m, k.

Consider now a fixed point of index 4 and positive weight n. If n �=
m, 2k, 2m, the only possible pairing of this point along the Zn-sphere is to
the fixed point of index 6 and so Nn ≤ 1. Moreover, the only possible pairing
of the fixed point of index 6 along the corresponding Zn-sphere is to a fixed
point of index 4 and positive weight n, and so Nn = 1.

Case 1 First let us consider the case where n > m = k. Here
n �= 2m, 2k, m and so, as we have seen above, Nn = 1. Moreover, using
Theorem 2.1 with α = cS1

1 (TM), we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )

=
1

m2nu2 ((n − 2m)(Nn + N−n)−n(Nm + N−m)+2(n + 2m)),(15)

and so, as Nj = N−j for j = n, m and Nn = 1, we have n(2 − Nm) = 0,
implying that Nm = 2 and the result follows.



372 L. GODINHO

Case 2 If n > m > k and n �= 2m, 2k, we have again Nn = 1 and
Nj = N−j for j = n, m, k. Hence, by Theorem 2.1 using α = cS1

1 (TM), we
have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )

=
2

nmku2 (2n + (m − n − k)Nm + (k − n − m)Nk).(16)

Consider now a fixed point of index 4 and positive weight k. As n �=
2k, m, 2m, the only possible way of pairing this fixed point along the Zn-
sphere is to a fixed point of index 2 and negative weight −m, implying that
Nk ≤ Nm. Similarly, the only way of pairing a fixed point of index 4 and
positive weight m along the Zn-sphere is to a fixed point of index 2 and
negative weight −k, and so Nm = Nk. Thus by (16), we have Nk = 1 and
the result follows.

Case 3 If n = 2k > m > k > 3 then, necessarily 2n �= 0 (mod m), n �= 0
(mod m), k �= 0 (mod m) and 3k �= 0 (mod m). Hence, the only possible
pairing of a fixed point of index 4 and positive weight m along the Zm-sphere
is to the fixed point of index 6 and so Nm ≤ 1. Similarly, the only possible
pairing of the fixed point of index 6 along the Zm-sphere is to a fixed point
of index 4 and positive weight m, and so Nm = 1. As, in addition, Nj = N−j

for every j, applying Theorem 2.1 to α = cS1

1 (TM) gives

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )

=
1

k2mu2 ((k − m)N2k + (m − 3k)Nm − (m + k)Nk + 3k + m)

=
1

k2mu2 (2m − (m − k)N2k − (m + k)Nk),(17)

and so,

(18) 2m = (m + k)Nk + (m − k)N2k.

If Nk and N2k were both different from zero, then Nk + N2k ≥ 2 and so

k(N2k − Nk) = m(Nk + N2k − 2) ≥ k(Nk + N2k − 2)

which is impossible unless Nk = N2k = 1. Moreover, as 2m �= 0 (mod 2k)
and m �= −k (mod 2k), the only possible pairings of a fixed point of index
4 and positive weight 2k along the Z2k-sphere, are either to the fixed point
of index 6 or to a fixed point of index 4 and positive weight k. Hence,
N2k ≤ Nk +1 and so, if Nk = 0, then necessarily N2k = 1 and so by (18), we
would have m = −k which is impossible. If, on the other hand, N2k = 0 then
by (18) we would have (2−Nk)m = kNk and so Nk = 1 and m = k and the
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action would not be effective. We conclude that necessarily Nk = N2k = 1
and the result follows.

Case 4 If n = 2k > m > k = 2 then necessarily n = 4 and m = 3. As
in the preceding case we still have N4 ≤ N2 + 1. Moreover, as a fixed point
of index 4 and positive weight 3 can only be paired along the Z4-isotropy
sphere to the fixed point of index 0 or to a fixed point of index 2 and negative
weight −2, we also have N3 ≤ N2 + 1. On the other hand, by Theorem 2.1
using α = cS1

1 (TM), we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )
= − 1

12u2 (N4 + 3N3 + 5N2 − 9),

implying that N2 ≤ 1. Moreover, as N3 ≤ N2 + 1 and N4 ≤ N2 + 1, we
have 9N2 − 5 ≥ 0 and so N2 = 1, N4 ≤ 2, N3 ≤ 1 and N4 + 3N3 = 4.
Consequently all the Nj ’s must be greater than zero (therefore equal to 1).

Case 5 If n = 2k > m > k = 3 then necessarily n = 6 and m = 4
or m = 5. If m = 4, the pairing of a fixed point of index 4 and positive
weight 6 along the Z3-isotropy sphere can only be made to a fixed point of
index 4 and positive weight 3, or to a fixed point of index 2 and negative
weight −4, implying that N6 ≤ N3 + N4. Moreover, by Theorem 2.1 using
α = cS1

1 (TM), we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )
= − 1

36u2 (N6 + 5N4 + 7N3 − 13).

Then, N3 ≤ 1 and so, as N6 ≤ N3 + N4, all the Nj ’s must be different from
zero, implying that they must all be equal to 1 and the result follows.

If m = 5, the only possible pairing of a fixed point of index 4 and positive
weight 6 along the Z5-isotropy sphere is to a fixed point of index 2 and
negative weight −3. Similarly, the only possible pairing of one fixed point
of index 2 and negative weight −3 along the Z5-sphere is to a fixed point of
index 4 and positive weight 6, and we conclude that N6 = N3. On the other
hand, by the Theorem 2.1 using α = cS1

1 (TM), we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )

= − 2
45u2 (N6 + 2N5 + 4N3 − 7) = − 2

45u2 (5N6 + 2N5 − 7),(19)

and so N6 = N3 = N5 = 1.
Case 6 If n = 2m > m > k we have 2k �= 0 (mod 2m) and so, the only

possible pairings of a fixed point of index 2 and negative weight −2m along
the Z2m-isotropy sphere are to a fixed point of index 2 and negative weight
−m, or to the fixed point of index 0. Hence, N2m ≤ Nm + 1.
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On the other hand, by Theorem 2.1, using α = cS1

1 (TM), we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )

=
1

m2ku2 ((m − k)N2m − (m + k)Nm − (3m − k)Nk + 3m + k)(20)

and so, as N2m ≤ Nm + 1, we have 4m − 2kNm − (3m − k)Nk ≥ 0, implying
that Nk ≤ 1 (because 2(3m − k) > 4m).

If Nk = 0, the only possible pairing of a fixed point of index 2 and
negative weight −m along the Z2m-isotropy sphere is to a fixed point of
index 2, implying that Nm ≤ N2m and so 0 ≤ N2m −Nm ≤ 1. If N2m = Nm,
then by (20), we have Nm = 3m+k

2k and so 3m + k ≡ 0 (mod 2k), implying
that m = (2s−1)k

3 for some integer s ≥ 2, and then k = 3 (the action would
not be effective otherwise). However, if that was the case, the only possible
pairings of fixed points of index 2 and negative weight −m along their Z2m-
isotropy spheres would be to fixed points of index 2, and the only possible
pairing of fixed points of index 2 and negative weight −2m along their Zm-
isotropy spheres would be to fixed points of index 2. Hence, this case is
impossible since we only have a finite number of fixed points. If, on the
other hand, N2m = 1 + Nm, then by (20), we have Nm = 2m

k and so k = 2
and m is odd (again the action would not be effective otherwise). However,
if that was the case, again the only possible pairings of fixed points of index
2 and negative weight −m along their Z2m-isotropy spheres would be to
fixed points of index 2, and the only possible pairings of fixed point of index
2 and negative weight −2m along their Zm-isotropy spheres would be to a
fixed point of index 2. Hence, this case is also impossible.

We conclude that Nk = 1. Then, by (20), we have

(21) Nm =
m − k

m + k
N2m +

2k

m + k
,

and so Nm < N2m +1, implying that 0 ≤ N2m −Nm ≤ 1. If N2m −Nm = 1,
we have, by (21), that Nm = m+k

2k , implying that m + k ≡ 0 (mod 2k),
that is, m = (2s − 1)k for some integer s ≥ 1 and then k = 1 (the action
would not be effective otherwise), Nm = m+1

2 and N2m = m+3
2 . However,

since Nk = 1, we have three possibilities: if a fixed point of index 2 and
negative weight −2m is connected to the fixed point of index 0 along the
2m-sphere and there is a fixed point of index 2 and negative weight −2m
(possibly the same) connected to the fixed point of index 4 and positive
weight k, along the m-sphere, we have 2(N2m − 1) ≤ Nm (since any other
such point will have to be connected to two fixed points of index 2 and
negative weight −m); if a fixed point of index 2 and negative weight −2m is
connected to the fixed point of index 0 along the 2m-sphere and no other of
these points is connected to the fixed point of index 4 and positive weight k,
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then 2(N2m − 1) ≤ Nm − 1; if no fixed point of index 2 and negative weight
−2m is connected to the fixed point of index 0 along the Z2m-isotropy sphere
nor to the fixed point of index 4 and positive weight k, then 2N2m ≤ Nm.
In all cases we have 2(N2m − 1) ≤ Nm, contradicting the assumption that
N2m = 1 + Nm.

Consequently, Nk = 1 and Nm = N2m and so, by (20), we conclude that
Nk = N2m = Nm = 1.

Case 7 If n = m > k > 2, we still have Nj = N−j for every j. Moreover,
as in this case 2n �= 0 (mod k) (the action would not be effective otherwise),
the only possible pairing of a fixed point of index 4 and positive weight k
along the Zk-sphere is to the fixed point of index 6, implying that Nk ≤ 1.
Similarly, the only possible pairing of the fixed point of index 6 along the
Zk-sphere is to a fixed point of index 4 and positive weight k, implying that
Nk = 1. By Theorem 2.1, using α = cS1

1 (TM), we have

0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )

=
2

n2ku2 (−kNn + (k − 2n)Nk + (k + 2n)) =
2

n2u2 (2 − Nn),

and so Nn = 2 and the result follows.
Case 8 If n = m > k = 1 and n �= 2 then, by Theorem 2.1, using

α = cS1

1 (TM),

(22) 0 =
∑

F∈FixS1 (M)

α |F
eS1

1 (νF )
=

2
n2u2 (−Nn + (1 − 2n)N1 + (1 + 2n)),

and so N1 ≤ 1. Moreover, if N1 = 0, a fixed point of index 4 and positive
weight n would have to be paired along the Zn-isotropy sphere to another
fixed point of index 4 and positive weight n and this is impossible as Nn

would either be infinite or zero. We conclude that N1 = 1 and then, by (22),
Nn = 2.

Case 9 If n = m = 2 > k = 1, then from (22) we still have N1 ≤ 1. If
N1 = 0, let P be the fixed point of index 2 with no other fixed point of index 2
on its flow up. Moreover, let αP be a 2-form from Proposition 2.3 associated
to P and let Q be the fixed point of index 6. Then, by Theorem 2.1 we have

0 =
∫

M
αP =

1
4u3

(
−αP |P +

∑
F∈F

αP |F −αP |Q

)

=
1

4u3

(
2u +

∑
F∈F

αP |F −αP |Q

)
,
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0 =
∫

M
cS1

1 (TM) · αP =
1

4u3

(
−uαP |P −u

∑
F∈F

αP |F +5uαP |Q

)

=
1

4u2

(
2u −

∑
F∈F

αP |F +5αP |Q

)
,

where F is the set of fixed points of index 4 in the flow up of P , and
so αP |Q= −u and

∑
F∈F αP |F = −3u. On the other hand, using again

Theorem 2.1 now with α2
P , we have

0 =
∫

M
α2

P =
1

4u3

(
−(αP |P)2 +

∑
F∈F

(αP |F )2 − (αP |Q)2
)

=
1

4u3

(
−4u2 +

∑
F∈F

(αP |F )2 − u2

)
,

and so
∑

F∈F (αP |F )2 = 5u2. Hence, we either have all of the αP |F ’s equal
to zero except two which are equal to −u and −2u, or one of the αP |F ’s is
equal to u while all the other four are equal to −u (note that by (22) F has
at most five points).

Moreover, if we use Theorem 2.1 now with α3
P , we have

Z 

∫

M
α3

P =
1

4u3

(
−(αP |P )3 +

∑
F∈F

(αP |F )3 − (αP |Q)3
)

=
1

4u3

(
9u3 +

∑
F∈F

(αP |F )3
)

and so
∑

F∈F (αP |F )3 + u3 ∈ 4u3 · Z. Consequently, the second hypothesis
above cannot hold and we are left with the first: one of the αP |F ’s is equal
to −2u, another one is equal to −u and all the others are equal to zero.
Let P1 be the fixed point where αP |P1= −2u, let P2 be the one where
αP |P2= −u and let αP1 and αP1 be 2-forms from Proposition 2.3 associated
to P1 and P2 respectively. Let us assume first that there is at least one fixed
point P3 of index 4 different from P2 on the flow up of P1. If P3 were directly
connected to Q (the fixed point of index 6) then, using Theorem 2.1 with
αP3 (a 2-form from Proposition 2.3 associated to P3), we would have

0 =
1

4u3 (αP3 |P3 −αP3 |Q) =
1

4u3 (2u2 − αP3 |Q),

implying that αP3 |Q= αP3 |P3= 2u2. However, taking again Theorem 2.1,

now with αP · αP3 , we would have αP |Q·αP3 |Q
4u3 = 1

2 ∈ Z which is impossible.
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Moreover, if P1 were directly connected to Q, we would have,

Z 

∫

M
αP · αP1 =

1
4u3 (−2uαP1 |P1 +uαP1 |Q) = −1

2
which is impossible. We conclude then that P2 is in the flow up of P1 and
that it is directly connected to Q. (Note that, in this case, we have∫

M
αP · αP2 =

1
4u3 (−uαP2 |P2 +uαP2 |Q) =

1
4u3 (−2u3 + 2u3) = 0 ∈ Z).

Let now P3 denote the fixed point different from P2 (if it exists) in the flow
up of P1 and such that P2 and Q are the only fixed points on its flow up.
Then, using Theorem 2.1, we have

0 =
∫

M
αP3 =

1
4u3 (αP3 |P3 +αP3 |P2 −αP3 |Q) =

1
4u3 (2u2+αP3 |P2 −αP3 |Q)

and so, since αP |P3= 0,

Z 

∫

M
αP ·αP3 =

1
4u3 (−uαP3 |P2 +uαP3 |Q) =

1
4u2 (−αP3 |P2 +αP3 |Q) =

1
2

which is impossible.
We conclude that there is no fixed point on the flow up of P1 other than

P2. Thus, using Theorem 2.1 with αP1 , we have

0 =
1

4u3 (αP1 |P1 +αP1 |P2 −αP1 |Q) =
1

4u3 (2u2 + αP1 |P2 −αP1 |Q),

and so, using αP · αP1 , we have

Z 

∫

M
αP · αP1 =

1
4u3

(
−4u3 − uαP1 |P2 +uαP1 |Q

)
= −1

2
which is impossible. We conclude then that this case is also impossible and
so N1 = 1, implying N2 = 2, and the result follows.

Case 10 If n = m > k = 2, we have, by Theorem 2.1, using α = cS1

1 (TM),

0=
2

2n2u2 (−2Nn+(2−2n)N2+(2+2n)) =
2

n2u2 (−Nn+(1−n)N2+(1+n)),

implying that Nn + (n − 1) N2 = n + 1. As n ≥ 3, N2 must be smaller than
3. If N2 = 0, then Nn = n + 1. However, if that was the case, the fixed
points of index 4 and positive weight n could only be paired along their
“negative” Zn-isotropy spheres, to other fixed points of index 4 and positive
weight n (note that n �= 4 as the action would not be effective otherwise).
As the number of fixed points is finite, Nn would also have to be zero which
is impossible. If N2 = 2, then n must be equal to 3 and Nn = 0. However,
in this case, the fixed points of index 4 and positive weight 2, can only be
paired along the Zn-isotropy spheres to the fixed point of index 0 which
makes this case impossible. We conclude that N2 = 1 and, consequently,
Nn = 2. �
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4. Constructing an example

An obvious example of an S1-action on a compact symplectic connected 6-
dimensional manifold with isolated fixed points satisfying the condition that
on their normal bundles, the isotropy weights are always n ≥ m ≥ k, is a
diagonal action on the product of three spheres which rotates each sphere at
speed n, m and k. We will now construct another example which may occur
when the isotropy weights satisfy q ∼= r (mod p) for some p, q, r ∈ {n, m, k},
(p �= q �= r).

Let us assume that q = r + ep for some integer e. Decompose the sphere
S2 in two hemispheres S2 = S2

+ ∪ S2
−, where S2

+ = {z ∈ C : |z| ≤ 1} and
S2

− = {z ∈ C∪ ∞ : |z| ≥} ∼= {z ∈ C : |z| ≤ 1}. Consider S2 × S2 × S2
− with

the circle action given by

λ · ([z0 : z1], [u0 : u1], v) = ([λqz0 : z1], [λru0 : u1], λpv)

and S2 × S2 × S2
+ with the circle action

λ · ([z0 : z1], [u0 : u1], w) = ([λrz0 : z1], [λqu0 : u1], λ−pw),

where w = 1/v. Then construct the S2 × S2-bundle, E, over S2, gluing
S2 ×S2 ×S2

− and S2 ×S2 ×S2
+ along their common boundary, S2 ×S2 ×S1,

by the gluing map

ϕ([z0 : z1], [u0 : u1], v) = ([v−ez0 : z1], [veu0 : u1], w).

Note that E is equipped with a global circle action. Indeed,

ϕ(λ · ([z0 : z1], [u0 : u1], v)) = ϕ([λqz0 : z1], [λru0 : u1], λpv)

= ([λq−epv−ez0 : z1], [λr+epveu0 : u1], λ−pw)

= ([λrv−ez0 : z1], [λqveu0 : u1], λ−pw)

= λ · ([v−ez0 : z1], [veu0 : u1], w) = λ · ϕ([z0 : z1], [u0 : u1], v).

We will see in the next section that, when the isotropy weights are pairwise
relatively prime, all S1-spaces satisfying the above condition on the isotropy
weights have the same cohomology as one of these two examples.

5. Cohomology

Now that we have shown that our circle actions must have the same fixed
point data, (that is, the number of fixed points and their isotropy weights)
as the examples in Section 4, we prove that, when the isotropy weights are
pairwise relatively prime, they even have the same equivariant cohomology
and Chern classes of the above examples, and that, if in addition all the
isotropy weights q, r, p ∈ {n, m, k} satisfy q �= r (mod p), the manifold has
to be diffeomorphic to the product of three spheres.

Theorem 5.1. Let (M, ω) be a compact, connected, symplectic 6-manifold
equipped with a Hamiltonian circle action with isolated fixed points. Let all
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fixed points satisfy the condition that, on their normal bundles, the isotropy
weights are always n > m > k > 2 pairwise relatively prime, and n �= m+k.
Then, there either exists a map from FixS1(M) to FixS1((S2)3) (the fixed
point set of a diagonal circle action on the product of three spheres rotating
each one at speeds n, m, k) or a map from FixS1(M) to FixS1(E) (the fixed
point set of the S1-space E described in Section 4) which respectively iden-
tifies the restrictions i∗ and j∗ or i∗ and j̃∗, of the equivariant cohomology
classes to the fixed point sets, where

i∗ : H∗
S1(M,Z) −→ H∗

S1(FixS1(M),Z)

j∗ : H∗
S1(

(
S2)3

,Z) −→ H∗
S1

(
FixS1((S2)3),Z

)

j̃∗ : H∗
S1(E,Z) −→ H∗

S1 (FixS1(E),Z)

are induced by the inclusions i : FixS1(M) → M , j : FixS1((S2)3) → (S2)3

and j̃ : FixS1(E) → E. Moreover, this map sends the images of equivariant
Chern classes of M to those of S2 × S2 × S2 or E.

Proof. Since the isotropy weights are pairwise relatively prime and greater
than 2, the fixed point of index 0 can only be paired to fixed points of index
2. Indeed, if it were paired along a Zp-sphere to a fixed point of index
4 with positive weight q and negative weights −p, −r (p, q, r ∈ {n, m, k}
and p �= q �= r) then we would need 2r ≡ 0 mod p which is impossible by
assumption. By a similar argument, we can see that it cannot be paired
to the fixed point of index 6 and that this last point can only be paired to
fixed points of index 4. Let us now see how we can pair the remaining fixed
points (cf. Figure 12). We can divide all possibilities in four different cases:

I. All remaining pairings of fixed points are like the ones in S2 × S2 × S2

(Figure 12.I);
II. All remaining pairings are like the ones in the product of spheres except
the pairings along the isotropy spheres of one order (Figure 12.II);
III. Only the pairings along the isotropy spheres of one order are like the
ones in the product of spheres (Figure 12.III);

Figure 12. Possible pairings of fixed points.
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IV. None of the remaining pairings is like the ones in S2 × S2 × S2 (Fig-
ure 12.IV).

We will use Proposition 2.3 to prove this theorem. Indeed, we will use it to
show that only the first two cases are possible and to show that the behavior
of the corresponding generating equivariant cohomology classes is the same
as their counterparts in S2×S2×S2 or in E. Let us first label the fixed points
of index 4 and positive weights p, q and r (p, q, r ∈ {n, m, k}) respectively by
a, b, c, the fixed point of index 6 by d, and consider generating equivariant
2-classes α, β, γ corresponding to the fixed points of index 2 which have
negative weights −r, −q, −p respectively. Then, we obtain the following sets
of equations for the four possible cases:

I. (i) r + α |a +α |b −α |d= 0 (iv) r
2 − α

2 |a −α
2 |b +α

2 |d= 0 (vii) α |a β |a= α |d β |d

(ii) q + β |a +β |c −β |d= 0 (v) q
2 − β

2 |a −β
2 |c +β

2 |d= 0 (viii) α |b γ |b= α |d γ |d

(iii) p + γ |b +γ |c −γ |d= 0 (vi) p
2 − γ

2 |b −γ
2 |c +γ

2 |d= 0 (ix) β |c γ |c= β |d γ |d

(x) r(q + p − r) + α |a (p − q − r) + α |b (q − p − r) + α |d (p + q + r) = 0

(xi) q(r + p − q) + β |a (p − q − r) + β |c (r − p − q) + β |d (p + q + r) = 0

(xii) p(q + r − p) + γ |b (q − p − r) + γ |c (r − p − q) + γ |d (p + q + r) = 0

II. (i) r + α |a +α |c −α |d= 0 (iv) r
2 − α

2 |a −α
2 |c +α

2 |d= 0 (vii) α |a β |a= α |d β |d

(ii) q + β |a +β |b −β |d= 0 (v) q
2 − β

2 |a −β
2 |b +β

2 |d= 0 (viii) α |c γ |c= α |d γ |d

(iii) p + γ |b +γ |c −γ |d= 0 (vi) p
2 − γ

2 |b −γ
2 |c +γ

2 |d= 0 (ix) β |b γ |b= β |d γ |d

(x) r(q + p − r) + α |a (p − q − r) + α |c (r − p − q) + α |d (p + q + r) = 0

(xi) q(r + p − q) + β |a (p − q − r) + β |b (q − p − r) + β |d (p + q + r) = 0

(xii) p(q + r − p) + γ |b (q − p − r) + γ |c (r − p − q) + γ |d (p + q + r) = 0

III. (i) r + α |a +α |c −α |d= 0 (iv) r
2 − α

2 |a −α
2 |c +α

2 |d= 0 (vii) α |d β |d= 0

(ii) q + β |b −β |d= 0 (v) q
2 − β

2 |b +β
2 |d= 0 (viii) α |a γ |a +α |c γ |c= α |d γ |d

(iii) p + γ |a +γ |c −γ |d= 0 (vi) p
2 − γ

2 |a −γ
2 |c +γ

2 |d= 0 (ix) β |d γ |d= 0

(x) r(q + p − r) + α |a (p − q − r) + α |c (r − p − q) + α |d (p + q + r) = 0

(xi) q(r + p − q) + β |b (q − p − r) + β |d (p + q + r) = 0

(xii) p(q + r − p) + γ |a (p − q − r) + γ |c (r − p − q) + γ |d (p + q + r) = 0

IV. (i) r + α |c −α |d= 0 (iv) r
2 − α

2 |c +α
2 |d= 0 (vii) α |d β |d= 0

(ii) q + β |b −β |d= 0 (v) q
2 − β

2 |b +β
2 |d= 0 (viii) α |d γ |d= 0

(iii) p + γ |a −γ |d= 0 (vi) p
2 − γ

2 |a +γ
2 |d= 0 (ix) β |d γ |d= 0

(x) r(q + p − r) + α |c (r − p − q) + α |d (p + q + r) = 0

(xi) q(r + p − q) + β |b (q − p − r) + β |d (p + q + r) = 0

(xii) p(q + r − p) + γ |a (p − q − r) + γ |d (p + q + r) = 0
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corresponding to the equations

(i) 0 =
∫

M

α; (ii) 0 =
∫

M

β; (iii) 0 =
∫

M

γ;

(iv) 0 =
∫

α
2; (v) 0 =

∫
M

β
2; (vi) 0 =

∫
M

γ
2;

(vii) 0 =
∫

M

α · β; (viii) 0 =
∫

M

α · γ; (ix) 0 =
∫

M

β · γ;

(x) 0 =
∫

M

c
S1
1 (TM) · α; (xi) 0 =

∫
M

c
S1
1 (TM) · β; (xii) 0 =

∫
M

c
S1
1 (TM) · γ.

Let us begin with Cases III and IV. Here, we consider equations (ii)
and (v) and get β |d= 0 and β |b= −q, contradicting (xi). Consequently, the
only possible cases are the first two.

In case I, equations (i) through (xii) completely determine the values of
the non-zero restrictions of α, β and γ:

α |a = α |b= α |d= −ru; β |a= β |c= β |d= −qu;

γ |b = γ |c= γ |d= −pu.

Moreover, if α, β, γ ∈ H2
S1(M,Z) are generating 4-classes (defined in

Proposition 2.3) associated to the fixed points of index 4 and positive weight
p, q, r respectively, we get:

0 =
∫

M
α =

qru2 − α |d
pqru3 ; 0 =

∫

M
β =

pru2 − β |d
pqru3 ;

0 =
∫

M
γ =

pqu2 − γ |d
pqru3 ,(23)

implying that the non-zero restrictions of α, β, γ to the fixed points are:

α |a= α |d= qru2; β |b= β |d= pru2; γ |c= γ |d= pqu2.

As these classes form a basis for the cohomology H∗
S1(M,Z), and equa-

tions (i) through (xii) and (23) also have to be satisfied by the generating
classes of H∗

S1((S2)3,Z), the result follows. Moreover, the restrictions of
the equivariant Chern classes of the two spaces are also the same since the
isotropy weights are the same.

For case II. to be possible we need q ≡ r (mod p) in order to have the
corresponding pairings along Zp-spheres. If this is the case, equations (i)
through (xii) above, completely determine the values of the non-zero restric-
tions of α, β and γ:

α |a = −ru, α |c= α |d= −qu; β |a= −qu, β |b= β |d= −ru;

γ |b = γ |c= γ |d= −pu.
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Moreover, like in Case I, if α, β, γ ∈ H2
S1(M,Z) are generating 4-classes

associated to the fixed points of index 4 and positive weight p, q, r respec-
tively, their non-zero restrictions to the fixed points are:

α |a= α |d= qru2; β |b= β |d= pru2; γ |c= γ |d= pqu2.

Again, as these classes form a basis for the cohomology H∗
S1(M,Z), and

equations (i) through (xii) and (23) also have to be satisfied by the
generating classes of H∗

S1(E,Z) (note that q ≡ r (mod p)), the result
follows. Moreover, the restrictions of the equivariant Chern classes of
the two spaces are also the same since the isotropy weights are the
same. �
Remark 5.2. To prove the above result we didn’t really need the isotropy
weights to be pairwise relatively prime. Indeed, it still holds if 2q �= 0
(mod r) for every q, r ∈ {n, m, k}. However, in this case, we can show
that the only additional cases are P(O(e) ⊕ 1)-bundles over S2.

We conclude that there exists either an isomorphism between H∗
S1(M,Z)

and H∗
S1((S2)3,Z), in which case the equivariant cohomology ring is

H∗
S1(M,Z) =

Z[a1, a2, a3, y]
(wiaiy − a2

i )
,

or between H∗
S1(M,Z) and H∗

S1(E,Z), in which case the equivariant coho-
mology ring is

H∗
S1(M,Z) =

Z[a1, a2, a3, y]
(a1(w1y + ea3 − a1), a2(w2y − ea3 − a2), a3(w3y − a3))

,

where the ai’s correspond to α, β, γ, the wi’s are the negative isotropy
weights of the corresponding fixed points of index 2, and e is such that
ω2 = ω1 + eω3.

Note that,when the isotropy weights q, r, p ∈ {n, m, k} satisfy q �= r
(mod p) only the first case is possible and then, like in the semifree case
([T-W1]), a Theorem of Wall shows that M (being simply-connected) is
diffeomorphic to S2 × S2 × S2.
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