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Today simulation technologies (based on numerical computation) are definitely vital in
many fields of science and engineering. The accuracy of numerical simulations grows
in importance as simulation technologies develop and prevail, and many researches have
been carried out for establishing numerically stable algorithms. In recent years, combining
computer algebra and other guaranteed accuracy approaches draws much attention as one
of promising directions for developing guaranteed accuracy algorithms for a wider class of
problems. This paper illustrates several typical usages of symbolic and algebraic methods
for guaranteed accuracy computation, highlighting some of the recent applications in
control problems.
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1. Introduction

Since the emergence of modern computers, their computation power has been
exploited by scientists and engineers in pursuit of new discoveries and technological
advances. Drastic increase of computer power over the course of recent decades
allows us to solve a large-scale problem of high complexity which could not be
dealt with some time ago. Computers are now indispensable tools in every field of
science and engineering. Indeed, Monozukuri (innovative design and manufacturing
in which Japanese industry has its strength) in recent years would not hold without
support from computers; simulation, optimization, and analysis of experimentation
results based on high-precision computation in computers are crucial ingredients
for successful Monozukuri in the light of the recent trend accelerating towards the
model-based development.

In order to assist computerization in science and engineering, extensive research
on the. establishment of numerically stable algorithms has been carried out since
the infancy of the computer era. One can now appreciate the glorious history of
a field in computer science called numerical analysis. Numerical properties and
computational complexity of numerous fundamental algorithms such as those for
numerical linear algebra are now well understood [1, 2]. However, there always
remains some subtle issues:
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• Does every fundamental mathematical problem admit an efficient and
numerically stable solution algorithm?

• Does an algorithm that is composed of a series of well-behaved elementary
algorithms always have a desirable property? (Notice that most algorithms for
practical problems are derived by combining basic algorithms from toolboxes.)

Indeed, a thirst for more reliable numerical tools for some control problems is
reported [3]. These issues have become more critical in recent Monozukuri due to
toughened requirements, which impose on us solution of ill-conditioned problems
from time to time. Thus, the development of numerically reliable algorithms even
for such problems has become of great practical interest.

Parallel to the ordinary numerical" analysis, the idea of having computers carry
out rigorous error analysis emerged [4, 5]. That is, increased computer power is
utilized for not only solution of larger problems but also the validation/verification
of computed results. Research in this direction is termed "guaranteed accuracy
computation" or "validated numerical methods" [6], and numerous achievements
have been made [7, 8], ranging from the development of programming languages
supporting directed rounding to that of guaranteed accuracy algorithms for so­
lution of a set of linear equations, matrix inversion, computation of polynomial
zeros. Most of such developments are based on floating-point arithmetic with di­
rected rounding [9, 10], interval methods [9, 10, 11, 12], and, most importantly, the
Krawczyk-Moore method using the Brouwer fixed-point theorem [13, 14]. Now,
there are abundant successful applications of guaranteed accuracy computation for
scientific and engineering problems [15].

Recent years have also seen the increased interest in combining computer alge­
bra and other guaranteed accuracy approaches for developing guaranteed accuracy
algorithms for a wider class of problems, see [16] for example. It is the belief of
the authors that symbolic computation/computer algebra can assist in achieving
guaranteed accuracy for a wide range of problems of practical significance. In this
paper, it is discussed what capacities of computer algebra are useful for realizing
guaranteed accuracy algorithms and how guaranteed accuracy can be achieved with
the help of computer algebra. This paper, in particular, considers the applicability
and practicality of computer algebra for achieving guaranteed accuracy in various
contexts for control problems.

The rest of the paper is organized as follows. The relationship between com­
puter algebra and validated numerical methods are explained in Section 2. In
Section 3, we mention the applicability of some well-known algebraic methods to
stability analysis in control. In Section 4, we briefly discuss the role of computer al­
gebra in a "multi-step" algorithm for achieving guaranteed accuracy computation.
Section 5 is devoted to illustrate the capability of computer algebra to transform the
original problem into a different form which is tractable for a guaranteed accuracy
algorithm. In Section 6, we show how parametric treatment of the problem, which
is another advantage of computer algebra, helps us devise guaranteed accuracy al­
gorithms by taking "polynomial spectral factorization" as an example. Section 7
concludes the paper.
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2. Computer algebra and validated numerical methods

Computer algebra [17], also called algebraic computation or symbolic manipu­
lation, is a field of scientific computation which develops, analyses, implements and
uses algebraic algorithms. Typical features of algebraic computation are computa­
tion with arbitrary precision numbers (i.e., exact and no rounding), computation
with symbols and variables, and manipulation of formulae. Algebraic algorithms in
computer algebra are usually executed based on exact arithmetic over the field of
rationals or an algebraic extension field, which leads to rigour, and moreover allow
us parametric treatment of problems. There are further advantages of computer
algebra in scientific computing, e.g., the capability of obtaining exact global op­
tima for non-convex optimization problems. One may say that computer algebra
methods and validated numerical methods share the common aim of solving various
mathematical problems rigorously with the aid of computers, although computer
algebra approaches attempt to establish effective algorithms based on exact compu­
tation, and validated numerical methods move in the opposite direction and refine
efficient numerical algorithms for achieving guaranteed accuracy.

As a matter of fact, computer algebra and validated numerical methods can
complement each other [18, 19]. Whilst a set of linear equations, for instance,
allows the exact solution to be obtained in a computer algebra system, most
problems of practical significance do not admit exact/closed-form solutions, and
computer algebra does not remove the need for guaranteed accuracy computation
algorithms completely. The capability of computer algebra to execute algebraic
methods exactly is exploited instead and, powered by such tools, some guaranteed
accuracy algorithms were proposed for computing polynomial real/complex roots
by isolation and refinement [20, 21]. (Isolation is the process of finding disjoint
regions such that each region contains exactly one root (ignoring multiplicity)
and every root is contained in some region, while refinement is the process of
making isolating regions as small as desired.) In order to accomplish more ef­
fective and practical implementation of algebraic algorithms, a research direction
towards hybrid methods combining computer algebra with numerical verification
methods have been pursued. The idea behind such hybrid methods is to construct
a method that still provides guaranteed results in spite of a drastic improvement
of computation speed of the corresponding algebraic algorithm by combining the
speed of numerical computation with the exactness of symbolic methods. In fact,
for non-convex constraint solving/optimization methods, several hybrid algorithms
which produce exact global optima have been developed [22, 23, 24]. Typically, val­
idated numeric computation is utilized at crucial parts in hybrid methods; indeed,
the hybrid methods utilize floating-point arithmetic and/or interval arithmetic
in intermediate computation to avoid computation over algebraic extension field.
Viewing such symbolic-numeric methods from another side, one can see that such
approaches provide new validated numerical methods for non-convex optimization
problems which are difficult tasks for ordinary numerical methods, with the help of
symbolic computation.
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A further advantage of employing such hybrid methods is discussed in
Section 4.

3. Algebraic methods in control

Before the emergence and prevalence of modern computers, algebraic methods
had been essential tools in control along with analytic approaches, the reason being
that they admit hand calculation. A well-known algebraic method is the Sturm
test [25], which allows one to count exactly the number of real roots of a given
polynomial in an interval. A tool useful in control is developed based on the Sturm
test. This tool is called the Routh-Hurwitz test [26], which examines whether all
the roots of a polynomial are located in the open left half plane (LHP), that is,
investigates the stability of the polynomial. The approach first constructs a matrix
whose elements consist of coefficients of the polynomial under investigation and 0,
and then checks the signs of the leading principal minors of the matrix. There is no
need to compute/approximate roots of a polynomial, and the approach is amenable
to hand calculation.

In recent years, such approaches regained their relevance in the context of
modern robust control [27, 28], where real (sometimes complex) parameters are
explicitly considered. These tools show conditions with respect to parameters under
which the stability of a system is maintained. It should be mentioned here that
a parametric version of the Sturm test, called the Sturm-Habicht sequence [29],
is also developed, which yields an efficient quantifier elimination (QE) tool for the
sign definite condition of a polynomial [30, 31]. It goes without saying that such
approaches are compatible with computer algebra.

Here, a numerical example is provided to illustrate the applicability of such an
algebraic method. Consider the following polynomial in 8:

1(8; k) := (8 + 1) . (82 + 8 + 1) + k(8 + 3) = 83 + 282 + (k + 2)8 + 3k + 1,

where k is a real parameter. When k = 0, the roots of 1(8; 0) are 8 = -1, -~ ±i1",
where i is the imaginary unit. Namely, 1(8; 0) is stable. Now, if k is increased, some
of the roots move into the right half plane, i.e., 1(8; k) becomes unstable. Thus,
the task is to identify at which value of k, 1 becomes unstable, in other words, 1
has roots on the imaginary axis. Construct the so-called Hurwitz matrix [26]:

Its 3 leading principal minors are:

[2,3 - k, -3k2 + 8k + 3 (= (3k + 1)(3 - k))]. (1)
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The necessary and sufficient condition for f(8; k) to be stable is that the signs of
the leading principal minors are all positive. (Notice that, when k = 0, (1) becomes
[2,3,3], i.e., all the leading principal minors are positive. This agrees with the
observation made earlier for f(8; 0).) Analysis of (1) immediately reveals that,
when k = 3, the last two minors become 0, and that, as k further increase, they
become negative, and k = 3 is just on the boundary of the stable and unstable
regions. This result and similar analysis for negative k show that f(8; k) is stable
for k E (- ~, 3). Indeed, we can see that

( 1) 1 2f 8; -"3 = -"3 8(38 + 68 + 5),

f(8; 3) = (8+ 2)(82 + 5),

and we can confirm that, when k = -~ or k = 3, f(8; k) has roots precisely on the

imaginary axis and that, as k decreases from -~ or increases from 3, the roots on
the imaginary axis move into the right half plane.

4. Symbolic manipulation towards hybrid approaches

One of difficulties in achieving good numerical accuracy or guaranteed accuracy
computation for a practical problem lies in the fact that such a problem is more
often than not solved by a "multi-step" algorithm, i.e., an algorithm consisting of a
number of sub-algorithms which themselves solve concrete problems. For instance,
the solution to a problem is obtained by solving a particular equation using an
algorithm and then computing by another algorithm the solution of another prob­
lem whose input data rely on the first solution. Indeed, it is common that control
synthesis problems require such an approach. It can happen that a normalization,
say, achieves better numerical accuracy in the first part of the entire solution pro­
cess, but that the normalization is not suited for the remaining part, which thus
yields poor numerical accuracy as a whole. Also, if the first part is solved by means
of a guaranteed accuracy algorithm, then input data to the subsequent part will
usually be intervals (guaranteed to contain the true values), which is not a typical
scenario in guaranteed accuracy computation. A conceivable way to proceed may
be to work with such intervals by employing interval arithmetic, but a pitfall in
such an approach is that the resulting answer tends to suffer from the wrapping
effect [5, 32, 33] and will be given as intervals whose widths are too large to be
meaningful in practice.

This section discusses that computer algebra can connect sub-steps in a multi­
step algorithm and help achieve guaranteed accuracy computation. The advantage
is accomplished by the capability of handling symbols. By expressing the solutions
of the sub-steps as symbols, it is possible to relate the input data (to the original
problem) and the final result for a number of practical problems. That is, intro­
duction of intermediate variables allows the final result to be directly related to the
input data. By exploiting the obtained relationship and by way of the Krawczyk­
Moore method [14], intervals of large width can be shrunk to desired width.
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The approach has another advantage in that it allows an efficient "hybrid"
guaranteed accuracy algorithm [4, 19] to be devised. Namely, an ordinary numer­
ical method is combined with a computer algebra-based approach to produce a
numerical method that has guarantee on the correctness of the result. Since a set
of equations the solution has to satisfy is explicitly obtained, one can use it to
examine the fidelity of the solution obtained from an ordinary numerical method.
In case the numerical method fails to deliver a solution that is sufficiently close to
the true solution for yielding a guaranteed accuracy solution, then the guaranteed
accuracy algorithm is to be invoked from the beginning. By doing so, guaranteed
accuracy computation is mainly used to check and improve the result from an ef­
ficient ordinary numerical method ana the average computation time is reduced,
while accuracy of the computed result is always guaranteed.

Such an approach may be employed for computing all the roots of a given
polynomial. First notice that all the roots and the coefficients of the polynomial are
related in an algebraic manner. The approach begins with approximating the roots
of the polynomial by means of an ordinary numerical polynomial root finder, and
error bounds are to be estimated in some way; they are used to form initial intervals.
With those intervals, the Krawczyk-Moore condition [14] is firstly examined, and,
if the condition is satisfied, it is guaranteed that all the roots are contained in
the initial intervals. In order to get tighter guaranteed bounds, the Krawczyk­
Moore method [14] is repeatedly applied until the required accuracy is achieved. In
case the numerical method did not yield a sufficiently accurate result, an infallible
guaranteed accuracy method such as [21] is then employed. In this way, one can
always compute polynomial roots with guaranteed accuracy, and the computation
time required is kept low on average.

5. Problem modification

Another strength of computer algebra is its capability to convert the original
problem into a different form which is more amenable to a guaranteed accuracy
algorithm. The point is that the conversion is exact, and, if one can find a solution
with guaranteed accuracy for the problem in converted form, then the solution also
serves as a guaranteed accuracy solution for the original problem one wants to solve.
A typical example is a problem of computing the solution to a system of polynomial
equations with guaranteed accuracy. By Grabner basis computation with respect
to the pure lexicographical order, we can convert a system of polynomial equations
that has only finitely many complex solutions into a triangular form. We can
then solve the obtained system with ease by recursively finding roots of univariate
polynomials. For example, consider the following set of multivariate polynomials

f := {x - y - z, x + y - z2, x2 + y2 - I},
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which indeed has a finite number of zeros. Then the Grabner basis for the ideal
(.Jf) generated by .Jf with respect to the pure lexicographical order x »- y »- z is
given as follows:

/ := {Z4 + z2 - 2, 2y - Z2+ Z, 2x - Z2 - z}.

Note that / has the same set of common zeros as the original set of polynomials,
.Jf, but that it is in upper triangular form. This obviously implies that one can
find zeros of / more easily than those of the original .Jf. For further details of
Grabner bases and associated ideas such as the ideal and the pure lexicographic
order, readers are referred to standard textbooks such as [34, 35].

Also effective is an algebraic approach called quantifier elimination (QE), where
a given set of first order formulae with quantifiers (for instance, 3, If) is reduced
to another equivalent set of formulae without quantified variables. The resulting
formulae are in general polynomial equations/inequalities. Therefore, QE methods
may help obtain a problem that can be easily tackled. As is stated in Section 2,
guaranteed accuracy algorithms for real/complex root computation are established.
It is therefore desirable if one can convert the original problem into a polynomial
root finding problem. The computation of the 2'oo-norm of a linear dynamical
system is an example that can be dealt with in such a way [36], which is briefly
reviewed in the sequel.

Write as !Jf!2'00 the Lebesgue space of matrix valued functions G, whose
elements are rational functions with real coefficients, that are bounded on the
imaginary axis, with norm defined by

IIGlloo := supa{G(iw)},
wEIR

where a{ . } denotes the largest singular value of a matrix. A typical numeri­
cal approach for computing the 2'oo-norm IIGlloo of a system G(s) E !Jf!2'00 finds
upper/lower bounds for IIGlloo by examining the existence/non-existence of imagi­
nary axis eigenvalues in the associated Hamiltonian matrix [37]. In the context of
floating-point arithmetic, this computation may be prone to numerical difficulties
since it essentially tries to compute nearly multiple eigenvalues near the imaginary
axis. The following result gives a guaranteed accuracy algorithm for computing the
2'oo-norm of a dynamical system.

THEOREM 1 ([36]). Suppose that G(s) E !Jf!2'00, and let I/>I(S) := ,21­
GT ( -s)G(s). Substitute x for s2 in det I/>I(S) and write as 91(X), i.e., 91(S2) =
det I/>I(S). Furthermore, write 91(X)= ~~~:j where nl(x) and dl(x) are polynomials

in x and, which are coprime over JR.[x,,]. Compute h~(x) as

hS ( ) = nl(x)
1 x ( a ) .GeD nl(x), axnl(x)
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Then, IIGlloo is one of the following quantities:
(i) a{G(O)},
(ii) a{G(ioo)},
(iii) a real root of the discriminant of h~(x) with respect to x (which will be a

polynomial in 'Y hZ, in fact)).
Moreover, each of the above quantities is a (real) root of a real univariate

polynomial, and the true IIGlloo can be determined by means of the Sturm test
on h~(x).

Thus, the 2'oo-norm computation is reduced to the computation of polynomial
roots. It is emphasized that guaranteed accuracy computation for polynomial roots
is equivalent to guaranteed accuracy computation of the 2'oo-norm since the conver­
sion is exact. Namely, guaranteed accuracy computation for IIGlloo can be achieved
by the power of computer algebra to modify a problem into a more desirable form,
i.e., eliminating s in 1.P"f(s), or x in h~(x) in this case. It is noted that, in this prob­
lem, the structural property of the problem is fully exploited to give an effective
QE approach. For general QE problems, various computational approaches have
been developed, e.g., [38]. Typically, the more general problem an algorithm aims
at, the more expensive its computation cost is. There is a trade-off between the ap­
plicability and the practicality of the algorithm. Extensive efforts have been made
to achieve more efficient general algorithms, but making as much use of problem
properties as possible is equally important. The Sturm-Habicht sequence men­
tioned in Section 2 is in fact one such example and is suited to perform QE for
deriving conditions of the positivity/negativity of a polynomial with parameters in
its coefficients.

6. Parametric problem

Problems with parameters are abundant in practical engineering applications,
and systematic approaches to such problems are highly desired. Approaches ex­
ploiting interval methods have been developed for various control problems, where
ranges of parameters are regarded as intervals and computation is executed for
those intervals [33]. While such approaches can compute, for instance, guaranteed
upper/lower bounds for the solution, it will be beneficial if one could deal with
parameters in a direct fashion.

It goes without saying that one of strengths of computer algebra is the flexible
symbolic computation capability. This allows one to handle parameters as they
are and to get a solution in the presence of parameters. Analysis of the solution
in terms of parameters would give much deeper insight into the behaviour of the
solution against parameter variations than analysing a set of numerical solutions
for several specific values of parameters. Another advantage is that parametric
optimization can be performed, where the optimal cost is expressed explicitly in
terms of parameters (rather than as the result of numerical optimization). This
is in particular effective in such a scenario in control as the following: one wants
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to design both the plant and the controller simultaneously to achieve the optimal
overall performance, but the optimal controller is in fact a function of the plant in
an abstract sense. In such a situation, the problem can be cast as, for example,

min min J,
Plant Controller

where J is a given cost function. If the first optimization ("minControlier" part)
admits parametric optimization, then the second optimization ("minPlant" part)
will be amenable to various sorts of optimization approaches, resulting in a high
chance of achieving the global optimum. If this is not the case, one would then
have to attempt some heuristic optimization approach.

When the first part requires solution of a set of linear equations, then what is
needed is computer algebra that gives exact solutions containing parameters, and
approaches developed to visualize the parametric solution set exactly, e.g., [39], are
applicable. A more important problem relevant to application areas is a non-linear
one. Given a set of algebraic equations with parameters, it is in general difficult to
find the solution set. The Grabner basis mentioned in Section 5 can be useful to
modify the problem into a simpler form suited to further computation even in the
presence of parameters. Indeed, clever exploitation of the problem structure can
allow one to investigate a parametric non-linear problem efficiently.

Here, a solution approach to a particular non-linear problem is reviewed that
can be employed for the parametric case. The problem under study is called poly­
nomial spectral factorization, an important mathematical tool in signal processing
and control. Consider the following even polynomial of degree 2n in s:

(2)

In the following, it is assumed that a2k E lR for k = 0, 1, ... ,n for the brevity of
the exposition, but the approach can be generalized to the parametric case where
a2k is some polynomial in parameters [40]. Assume without loss of generality that
a2n > O. It can be deduced that the roots of f(s) are located symmetrically with
respect to the imaginary axis. It is supposed that f(s) has no roots on the imaginary
axis. Polynomial spectral factorization is a decomposition of f(s) into two real
polynomials, one that captures all the left half plane roots and its "mirror image":

where

a2nf(s) = (_1)n g(s)g( -s), (3)

has roots in the open left half plane only. The polynomial g(s) is called the spectral
factor of f(s). There always exists such g(8), and it is unique and in lR[s].

There are various numerical algorithms devised for computing g(s) for a given
f(s) [41]. Here, an algebraic algorithm is presented. Note that an algebraic method
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can deal with the parametric case while a numerical method can do little in such
a case. The following fact is the basis of the efficient approach developed.

THEOREM 2 ([40,42]). Given f(s) and g(s) as in (2) and (4), respectively,
consider bi, i = 0, ... ,n -1, as variables. A system of algebraic equations in terms
of bi's is obtained by comparing the coefficients of (3). Then, the set t# of the poly­
nomials obtained from the polynomial parts of the equations, with the coefficient of
br set to 1, forms the reduced Grabner basis of the ideal (t#) generated by itself in
JR.[B] with respect to the graded reverse lexicographic order bn-1 >- ... >- bo, where
B denotes {bo, ... , bn-1 } .

The ideal (t#) of JR.[B] is called the"ideal of spectral factorization. It is straight­
forward to show that the ideal of spectral factorization is O-dimensional and that
the number of its zeros with multiplicities counted is 2n . Furthermore, it can be
shown [40] that bn - 1 is generically a separating element [43]. These facts indicate
that (t#) has a special Grabner basis.

THEOREM 3 ([42]). The ideal of spectral factorization generically has a
Grabner basis of so-called shape basis with respect to any elimination ordering

{bo, ... ,bn-2l >->- bn- 1 :

where S j is a polynomial of degree exactly 2n and hi's are polynomials of degree
strictly less than 2n .

The implication of this result is that polynomial spectral factorization is in
essence reduced to the computation of a root /3 of a univariate polynomial Sj(bn-d;

the rest of the computation is mere evaluation of polynomials h/s at bn - 1 = /3.
Also important is that, of 2n roots of Sj(bn - 1 ) , the largest real root !J yields the
spectral factor g(s) [40, 42] and that no extra effort is required to choose from a
set of possible solutions. In regard to computation efficacy, what is needed is basis
conversion from one Grabner basis to another Grabner basis. Efficient algorithms,
e.g., [43, 44], are available and one does not have to resort to a generally expensive
Grabner basis computation method based on, e.g., Buchberger's algorithm. Lastly,
this approach can be extended to the parametric case [40] due to the fact that all
the manipulation required is algebraic operations.

An example is employed to illustrate the result outlined above. The following
even polynomial in s is decomposed:

where 0:1> 0:2 are real parameters. The degree of f(s) is 6, and thus the spectral
factor is of degree 3 and is written as
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Comparing the coefficients of (3), the following set of algebraic equations is
obtained:

(5)

It is noted that the polynomial parts (i.e., the left hand sides) of the above equations
form a Grabner basis of the ideals generated by themselves with respect to the
graded reverse lexicographic order b2 >- bl >- bo.

Converting them into the Grabner basis with respect to, say, the pure lexico­
graphic order bo >- bl >- b2 , the shape basis is obtained. The set of polynomials is
equivalent to

b~ - 4a~b~ + (6a~ + 48a2 - 8)b~

+ (-4a~ - 96a~ - 64ar + 16a~ - 576)b~

+ a~ + 48a~ - 8a~ + 576a~ - 192a2 + 16 = 0,

2bl - b~ + a~ = 0,

8(a~ + 24a2 - 4)bo+ b~ - 4a~b~ + (5a~ + 24a2 - 4)b~

+ (-2a~ - 48a~ - 64ar + 8a~ - 576)b2 = 0.

(6)

Notice that the left hand side of the first equation of (6) is a polynomial in bz only
(i.e., without bl , bo) with parameters aI, a2 in its coefficients. The left hand sides
of the remaining 2 equations are linear in bl and bo, respectively. Namely, the first
equation relates b2 and the parameters whereas the second (resp., third) equation
gives a description of bl (resp., bo) in terms of bz and the parameters. Since the
first equation contains b2 only and other bi's are related in a linear manner, it is
much easier to analyse the relationship between bi's and the parameters compared
to carrying out analysis based on, e.g., (5).

REMARK. In fact, in the above example, when Q~ + 24a2 - 4 = 0, a shape
basis of different form is obtained; see the third polynomial equation in (6). In that
case, it can be confirmed that the first equation in (6) has a multiple root, and
that, after removing it, we can get a suitable shape basis. Namely, the "singular"
case can be dealt with; see [40J for further detail on how to treat such a case.

This method is called the Sum of Roots (SoR) approach since the focus is on
bn- l , and -bn-l/bn is the "sum of roots" of spectral factor g(s). The virtue of
this approach is that not only the approach is computationally effective but also
the SoR has some essential meaning in control theory [45, 46]. Polynomial spectral
factorization reviewed in this section is the continuous-time one, to be precise.
It is shown [47J that a similar algebraic approach can be devised for discrete-time
polynomial spectral factorization, where the polynomial to be decomposed has roots
symmetric about the unit circle and the spectral factor is to contain all the roots
inside the unit circle.



528 M. KANNO and H. ANAl

Cost functions and optimal controllers for many control problems can be
explicitly expressed in terms of the coefficients of the polynomial spectral fac­
tor [40, 45, 46]. Therefore, once parametric polynomial spectral factorization is
done, quantities to be pursued are expressed in terms of the SoR and parameters,
typically as rational functions. Given the ranges of values that the parameters can
take, one would want to perform optimization of a cost function over parameters.
It is shown [40] that such an optimization problem can be cast as a QE problem and
the (true) exact global optimum may be obtained (as a root of a polynomial). In
this way, computer algebra can help compute with guaranteed accuracy the global
optimum for intrinsically difficult problems.

The point in this approach presented above is that the cost function that is
usually obtained through a multi-step algorithm is related with parameters in the
initial input data by means of effective use of an algebraic method (namely, the
Grabner basis technique) and is further optimized systematically (using the QE
approach), resulting in a guaranteed accuracy solution. Typically, such a problem
is tackled with a rather brute force method, computing the optimal cost for a par­
ticular set of parameter values and heuristically finding a better solution repeatedly.
Algebraic methods help establish a systematic treatment for guaranteed accuracy
computation.

7. Concluding remarks

This paper has discussed how computer algebra can be utilized for achieving
guaranteed accuracy in the solution of some control problems. Hybrid approaches
seem promising in that the power of symbolic manipulation can widen the range of
problems we can tackle and moreover the efficiency of ordinary validated numerical
methods may significantly improve the computation time when compared to pure
algebraic approaches. The authors believe that further research on the development
of effective hybrid methods will lead to the establishment of general schemes for
designing hybrid algorithms for practical problems in science and engineering. It
is hoped that the paper stimulates readers into this important direction and that
new exciting ideas will emerge to resolve numerical issues arising in solving realistic
problems of practical significance.
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