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The main goal of this article is to review some recent applications of operator-splitting
methods. We will show that these methods are well-suited to the numerical solution of
outstanding problems from various areas in Mechanics, Physics and Differential Geometry,
such as the direct numerical simulation of particulate flow, free boundary problems with
surface tension for incompressible viscous fluids, and the elliptic real Monge–Ampère
equation. The results of numerical experiments will illustrate the capabilities of these
methods.
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1. Introduction

During the year 2005, the Scientific Community celebrated “50 Years of Al-
ternating Directions,” a tribute to the well-known article by D. Peaceman and
H. Rachford (ref. [56]) and many contributions on related topics which followed its
publication (ref. [23], in particular). Actually, Alternating Direction Methods are
particular and important cases of a more general class of methods, namely those
based on the concept of Operator-Splitting. To the best of our knowledge, the most
complete text on operator-splitting methods (including alternating direction ones)
is the review article by G.I. Marchuk (ref. [43]); it provides a thorough discus-
sion of these methods and describes many applications (our main regret concerning
ref. [43] is that it never appeared as a single book). Our main goal with this article
is, in some sense, to go beyond [43] by discussing the operator-splitting solution of
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a variety of problems that the authors have investigated together these past years,
the idea being here to convey the versatility and flexibility of operator-splitting
methods. Indeed, it has been known for decades that operator-splitting methods
provide efficient tools for the numerical solution of complicated problems from var-
ious areas in Science and Engineering. New applications appear almost daily and
we know of many instances where the only available practical solution methods are
of the operator-splitting type. Our goal, here, is to show that operator-splitting
makes relatively simple the numerical solution of outstanding problems such as:
(i) The simulation of particulate flow when the number of particles exceeds 100.
(ii) Free boundary problems with surface tension for incompressible viscous fluids.
(iii) Fully nonlinear elliptic equations of the real Monge–Ampère type.
The content of this article is as follows: In Section 2 we will discuss briefly the
time-discretization of initial value problems by various operator-splitting methods
and show that well-known iterative methods are indeed disguised operator-splitting
schemes. In Section 3 we will address the direct numerical simulation of particulate
flow via a methodology combining operator-splitting and fictitious domain meth-
ods. Then, in Section 4 we will address the solution of free boundary problems
with surface tension for incompressible viscous fluids. Finally, in Section 5, we
will discuss the numerical solution of the two-dimensional Dirichlet problem for
the elliptic Monge–Ampère equation. The results of numerical experiments will be
given in Sections 3, 4 and 5; they will confirm the capabilities of operator-splitting
methods concerning the solution of problems still considered complicated by today
standards.

Operator-splitting methods have generated a huge literature; let us mention,
among many others, refs. [43], [13], [31], [28, Chapters 2 and 6], and [68] (see also
the references therein).

2. Operator-splitting schemes for the time-discretization of initial value
problems

2.1. Generalities
Let us consider the following autonomous initial value problem:⎧⎪⎨

⎪⎩
dφ

dt
+A(φ) = 0 on (0, T ) (with 0 < T ≤ +∞),

φ(0) = φ0.

(IVP)

Operator A maps the vector space V into itself and we suppose that φ0 ∈ V .
We suppose also that A has a non-trivial decomposition such as

A =
J∑
j=1

Aj , (2.1)

with J ≥ 2 (by non-trivial we mean that the operators Aj are individually simpler
than A).
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A question which arises naturally is clearly:
Can we take advantage of decomposition (2.1) for the solution of (IVP)?

It has been known for a long time that the answer to the above question is
definitely yes.

Many schemes have been designed to take advantage of the decomposition (2.1)
when solving (IVP); two of them will be briefly discussed in the following para-
graphs, namely the Lie’s scheme and the Strang’s scheme.

2.2. Time-discretization of (IVP) by the Lie’s scheme
Let τ (> 0) be a time-discretization step (we suppose τ uniform, for simplicity);

we denote nτ by tn. With φn denoting an approximation of φ(tn), the Lie’s scheme
reads as follows (for its derivation see, e.g., [28, Chapter 6]):

φ0 = φ0; (2.2)

then, for n ≥ 0, assuming that φn is known, compute φn+1 via

⎧⎪⎨
⎪⎩
dφj
dt

+Aj(φj) = 0 on (tn, tn+1),

φj(tn) = φn+(j−1)/J ; φn+j/J = φj(tn+1),
(2.3)

for j = 1, . . . , J .
If (IVP) is taking place in a finite dimensional space and if the operators Aj are

smooth enough, then ‖φ(tn)− φn‖ = O(τ), function φ being the solution of (IVP).

Remark 2.1. The above scheme applies also for multivalued operators (such
as the sub-gradient of proper l.s.c. convex functionals) but in such a case first
order accuracy is not guaranteed anymore. A related application will be given in
Section 2.4.

Remark 2.2. The above scheme is easy to generalize to non-autonomous
problems by observing that

⎧⎨
⎩
dφ

dt
+A(φ, t) = 0,

φ(0) = φ0

⇐⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dφ

dt
+A(φ, θ) = 0,

dθ

dt
− 1 = 0,

φ(0) = φ0, θ(0) = 0.

Remark 2.3. Scheme (2.2), (2.3) is semi-constructive in the sense that we
still have to solve the sub-initial value problems in (2.3) for each j. Suppose that
we discretize these sub-problems using just one step of the backward Euler scheme.
The resulting scheme reads as follows:

φ0 = φ0; (2.4)
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then, for n ≥ 0, assuming that φn+(j−1)/J is known, compute φn+j/J via

φn+j/J − φn+(j−1)/J

τ
+Aj(φn+j/J) = 0, (2.5)

for j = 1, . . . , J .
Scheme (2.4), (2.5) is known as the Marchuk–Yanenko scheme (see, e.g.,

refs. [43] and [28, Chapter 6] for more details).

2.3. Time-discretization of (IVP) by the Strang’s scheme
In order to improve the accuracy of the Lie’s scheme, G. Strang suggested

a symmetrized variant of scheme (2.2), (2.3) (ref. [68]). When applied to non-
autonomous problems, in the case where J = 2, we obtain (with tn+1/2 =
(n+ 1/2)τ):

φ0 = φ0; (2.6)

then, for n ≥ 0, assuming that φn is known, compute φn+1 via

⎧⎪⎨
⎪⎩
dφ1

dt
+A1(φ1, t) = 0 on (tn, tn+1/2),

φ1(tn) = φn; φn+1/2 = φ1(tn+1/2),
(2.7)

⎧⎪⎨
⎪⎩
dφ2

dt
+A2(φ2, t

n+1/2) = 0 on (0, τ),

φ2(0) = φn+1/2; φ̂n+1/2 = φ2(τ),
(2.8)

⎧⎪⎨
⎪⎩
dφ1

dt
+A1(φ1, t) = 0 on (tn+1/2, tn+1),

φ1(tn+1/2) = φ̂n+1/2; φn+1 = φ1(tn+1).
(2.9)

If (IVP) is taking place in a finite dimensional space and if operators A1 and A2 are
smooth enough, then ‖φ(tn)−φn‖ = O(τ2), function φ being the solution of (IVP).

Remark 2.4. In order to preserve the second order accuracy of scheme
(2.6)–(2.9) (assuming that such a property holds) we still have to discretize the
initial value problems in (2.7), (2.8) and (2.9) by schemes which are themselves
second order accurate (at least); examples of such schemes can be found in, e.g.,
[28, Chapter 6] (which contains also a discussion of the case J > 2).

2.4. Application
It is not an exaggeration to say that applications of operator-splitting are

everywhere; indeed, some well-known methods or algorithms are disguised operator-
splitting schemes. Our favorite example in that direction is the following:
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Suppose that A is a real d×dmatrix, symmetric and positive definite. Ordering
the eigenvalues of A as follows: 0 < λ1 ≤ λ2 ≤ · · · ≤ λd, our goal is to compute λ1.
We have (with obvious notation)

λ1 = min
v∈S

vtAv, with S = {v | v ∈ R
d, ‖v‖ = 1}, (2.10)

the norm in (2.10) being the canonical Euclidean one. The minimization problem
in (2.10) is equivalent to

min
v∈Rd

{
1
2
vtAv + IS(v)

}
, (2.11)

where, in (2.11), the functional IS : R
d → R ∪ {+∞} is defined as follows

IS(v) =

{
0 if v ∈ S,

+∞ otherwise,

implying that IS is the indicator functional of the sphere S. Suppose that u is a
solution of problem (2.11); we have then

Au + ∂IS(u) � 0, (2.12)

∂IS(u) being in (2.12) a (kind of) generalized gradient of functional IS at u (in-
deed, ∂IS( · ) is a multivalued operator). Next, we associate with the (necessary)
optimality system (2.12) the following initial value problem (flow in the Dynamical
System terminology):

⎧⎪⎨
⎪⎩
du
dt

+ Au + ∂IS(u) � 0 on (0,+∞),

u(0) = u0.

(2.13)

If we apply the Marchuk–Yanenko scheme (2.4), (2.5) to the solution of prob-
lem (2.13) we obtain

u0 = u0, (2.14)

and for n ≥ 0, un being known,

un+1/2 − un

τ
+ Aun+1/2 = 0, (2.15)

un+1 − un+1/2

τ
+ ∂IS(un+1) � 0. (2.16)

Relation (2.15) implies

un+1/2 = (I + τA)−1un. (2.17)
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On the other hand, relation (2.16) can be interpreted as a necessary optimality
condition for the following minimization problem

min
v∈S

{
1
2
‖v‖2 − vtun+1/2

}
. (2.18)

Since ‖v‖ = 1 over S, the solution of problem (2.18) is given by

un+1 =
un+1/2

‖un+1/2‖ . (2.19)

Algorithm (2.14)–(2.16) reduces then to (2.14), (2.17), (2.19) which is nothing
but the inverse power method with shift, a well-known algorithm from Numerical
Linear Algebra. Clearly, numerical analysts have not been waiting for operator-
splitting to compute matrix eigenvalues and eigenvectors; on the other hand,
operator-splitting has provided efficient algorithms for the solution of complicated
problems from Differential Geometry, Mechanics, Physics, Physico-Chemistry, etc.,
including some nonlinear eigenvalue problems (as shown in, e.g., [25]). Some of
these applications will be discussed in Sections 3, 4 and 5.

3. Operator-splitting methods for the direct numerical simulation of
particulate flow

3.1. Generalities: Problem formulation
It is the (very likely biased) opinion of these authors that the direct numeri-

cal simulation of particulate flow has been one of the success stories of operator-
splitting methods. Albeit this “story” has been told in several publications (see,
e.g., [28, Chapters 8 and 9] and [33], and the references therein), owing to its im-
portance we decided to return to it again. For simplicity, we consider only the
one-particle case (see the two above references for the multi-particle case).

Let Ω be a bounded, connected and open region of R
d (d = 2 or 3 in applica-

tions); the boundary of Ω is denoted by Γ . We suppose that Ω contains:
(i) A Newtonian incompressible viscous fluid of density ρf and viscosity μf ;

ρf and μf are both positive constants.
(ii) A rigid body B of boundary ∂B, mass M , center of mass G, and inertia I at

the center of mass (see Fig. 3.1, for additional details).
The fluid occupies the region Ω \B̄ and we suppose that distance (∂B(0),Γ ) >

0. From now on, x = {xi}di=1 will denote the generic point of R
d, dx = dx1 · · · dxd,

while φ(t) will denote the function x → φ(x, t). Assuming that the only external
force is gravity, the fluid flow-rigid body motion coupling is modeled by

ρf

(
∂u
∂t

+ (u · ∇)u
)
− μfΔu + ∇p = ρfg in Ω \ B̄(t), ∀t ∈ (0, T ), (3.1)

∇ · u(t) = 0 in Ω \ B̄(t), ∀t ∈ (0, T ), (3.2)
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Fig. 3.1. Visualization of the flow region and of the rigid body.

u(t) = uΓ (t) on Γ , ∀t ∈ (0, T ), with
∫
Γ

uΓ (t) · n dΓ = 0, (3.3)

u(0) = u0 in Ω \ B̄(0) with ∇ · u0 = 0, (3.4)

and

dG

dt
= V, (3.5)

M
dV
dt

= Mg + RH , (3.6)

d(Iω)
dt

= TH , (3.7)

G(0) = G0, V(0) = V0, ω(0) = ω0, B(0) = B0. (3.8)

In relations (3.1)–(3.8):
• Vector u = {ui}di=1 is the fluid (flow) velocity and p is the pressure.
• u0 and uΓ are given functions.
• V is the velocity of the center of mass of body B, while ω is the angular

velocity.
• RH and TH denote, respectively, the resultant and the torque of the hydro-

dynamical forces, namely the forces that the fluid exerts on B; we have,
actually,

RH =
∫
∂B

σn dγ and TH =
∫
∂B

−→
Gx × σn dγ. (3.9)

In (3.9) the stress-tensor σ is defined by σ = 2μfD(u)−pId, with D(v) = 1
2 (∇v+

(∇v)t), while n is a unit normal vector at ∂B and Id is the identity tensor.
Concerning the compatibility conditions on ∂B we have: (i) the forces exerted

by the fluid on the solid body balance those exerted by the solid body on the fluid,
and we shall assume that: (ii) on ∂B the no-slip boundary condition holds, namely

u(x, t) = V(t) + ω(t) ×
−−−→
G(t)x, ∀x ∈ ∂B(t). (3.10)
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Remark 3.1. System (3.1)–(3.4) (resp., (3.5)–(3.8)) is of the incompressible
Navier–Stokes (resp., Euler–Newton) type. Also, the above model can be general-
ized to multiple-particles situations and/or non-Newtonian incompressible viscous
fluids.

The (local in time) existence of weak solutions for problems such as (3.1)–(3.8)
has been proved in ref. [21], assuming that, at t = 0, the particles do not touch each
other and do not touch Γ (see also [34], [64]). Concerning the numerical solution
of (3.1)–(3.4) and (3.5)–(3.8) completed by the above interface conditions we can
divide them, roughly, in two classes, namely: (i) The Arbitrary Lagrange–Euler
(ALE ) methods; these methods, which rely on moving meshes, are discussed in,
e.g., refs. [37], [48], [35]. (ii) The non-boundary fitted fictitious domain methods;
these methods rely on fixed meshes and are discussed in, e.g., [28, Chapter 8]
and [33] (see also the references therein). These methods seem to enjoy a growing
popularity, justifying thus the (brief) discussion hereafter.

Remark 3.2. Even if theory suggests that collisions may never take place
in finite time (if we assume that the flow is still modeled by the Navier–Stokes
equations as long as the particles do not touch each others, or the boundary), near-
collisions take place, and, after discretization, “real” collisions may occur. These
phenomena can be avoided by introducing well-chosen short range repulsion poten-
tials reminiscent of those encountered in Molecular Dynamics (see [28, Chapter 8]
and [33] for details). For more information on the numerical treatment of particle
collisions in flow, see, e.g., [66] (and the references therein).

3.2. A fictitious domain formulation
Considering the fluid-rigid body mixture as a unique medium we are going

to derive a fictitious domain based variational formulation. The principle of this
derivation is pretty simple; it relies on the following steps (see, e.g., [28] and [33]
for details):
a. Start from the following global weak formulation (of the virtual power type):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf

∫
Ω\B̄(t)

[
∂u
∂t

+ (u · ∇)u
]
· v dx + 2μf

∫
Ω\B̄(t)

D(u) : D(v) dx

−
∫
Ω\B̄(t)

p∇ · v dx +M
dV
dt

· Y +
d(Iω)
dt

· θ

= ρf

∫
Ω\B̄(t)

g · v dx +Mg · Y,

∀{v,Y,θ} ∈ (H1(Ω \ B̄(t)))d × R
d × Θ and verifying

v = 0 on Γ , v(x) = Y + θ ×
−−−→
G(t)x, ∀x ∈ ∂B(t), t ∈ (0, T ),

with Θ = R
3 if d = 3, Θ = {(0, 0, θ) | θ ∈ R} if d = 2,

(3.11)

∫
Ω\B̄(t)

q∇ · u(t) dx = 0, ∀q ∈ L2(Ω \ B̄(t)), t ∈ (0, T ), (3.12)

u(t) = uΓ (t) on Γ , t ∈ (0, T ), (3.13)
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u(x, t) = V(t) + ω(t) ×
−−−→
G(t)x, ∀x ∈ ∂B(t), t ∈ (0, T ), (3.14)

dG

dt
= V, (3.15)

u(x, 0) = u0(x), ∀x ∈ Ω \ B̄(0), (3.16)

G(0) = G0, V(0) = V0, ω(0) = ω0, B(0) = B0. (3.17)

b. Fill B with the surrounding fluid.
c. Impose a rigid body motion to the fluid inside B.
d. Modify the global weak formulation (3.11)–(3.17) accordingly, taking advan-

tage of the fact that if v is a rigid body motion velocity field, then ∇ · v = 0
and D(v) = 0.

e. Use a Lagrange multiplier defined over B to force the rigid body motion
inside B.

Assuming that B is made of a homogeneous material of density ρs, the above
“program” leads to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρf

∫
Ω

[
∂u
∂t

+ (u · ∇)u
]
· v dx + 2μf

∫
Ω

D(u) : D(v) dx −
∫
Ω

p∇ · v dx

+ (1 − ρf/ρs)
[
M
dV
dt

· Y +
d(Iω)
dt

· θ
]

+
〈
λ,v − Y − θ ×

−−−→
G(t)x

〉
B(t)

= ρf

∫
Ω

g · v dx + (1 − ρf/ρs)Mg · Y,

∀{v,Y,θ} ∈ (H1(Ω))d × R
d × Θ, t ∈ (0, T ),

with Θ = R
3 if d = 3, Θ = {(0, 0, θ) | θ ∈ R} if d = 2,

(3.18)

∫
Ω

q∇ · u(t) dx = 0, ∀q ∈ L2(Ω), t ∈ (0, T ), (3.19)

u(t) = uΓ (t) on Γ , t ∈ (0, T ), (3.20)⎧⎨
⎩
〈
μ,u(x, t) − V(t) − ω(t) ×

−−−→
G(t)x

〉
B(t)

= 0,

∀μ ∈ Λ(t) (= (H1(B(t)))d), t ∈ (0, T ),
(3.21)

dG

dt
= V, (3.22)

u(x, 0) = u0(x), ∀x ∈ Ω \ B̄0, (3.23){
G(0) = G0, V(0) = V0, ω(0) = ω0, B(0) = B0,

u(x, 0) = u0(x), ∀x ∈ Ω \ B̄0, u(x, 0) = V0 + ω0 ×
−−→
G0x, ∀x ∈ B̄0.

(3.24)

From a theoretical point of view, a natural choice for 〈 · , · 〉B(t) is provided by, e.g.,

〈μ,v〉B(t) =
∫
B(t)

[μ · v + l2D(μ) : D(v)] dx; (3.25)



10 R. Glowinski, E.J. Dean, G. Guidoboni, L.H. Juárez and T.-W. Pan

in (3.25), l is a characteristic length, the diameter of B, for example. From a
practical point of view, when it come to space discretization, a simple and efficient
strategy is the following one (cf. [28, Chapter 8] and [33]): “approximate” Λ(t) by

Λh(t) =

{
μ

∣∣∣∣∣ μ =
N∑
j=1

μjδ(x − xj), with μj ∈ R
d, ∀j = 1, . . . , N

}
, (3.26)

and the above pairing by

〈μ,v〉(B(t),h) =
N∑
j=1

μj · v(xj). (3.27)

In (3.26), (3.27), x → δ(x−xj) is the Dirac measure at xj , and the set {xj}Nj=1 is the
union of two subsets, namely: (i) The set of the points of the velocity grid contained
in B(t) and whose distance at ∂B(t) is ≥ ch, h being a space discretization step
and c a constant ≈ 1. (ii) A set of control points located on ∂B(t) and forming a
mesh whose step size is of the order of h. It is clear that, using the approach above,
one forces the rigid body motion inside the particle by collocation.

3.3. Solving problem (3.18)–(3.24) by operator-splitting
We do not consider collisions; after (formal) elimination of p and λ, prob-

lem (3.18)–(3.24) reduces to a dynamical system of the following form

dX
dt

+
J∑
j=1

Aj(X, t) = 0 on (0, T ), X(0) = X0, (3.28)

where X = {u,V,ω, G} (or {u,V, Iω, G}). A typical situation will be the one
where, with J = 4, operator A1 will be associated to incompressibility, A2 to
advection, A3 to diffusion, A4 to fictitious domain and body motion; other de-
compositions are possible as shown in, e.g., [28, Chapter 8] and [33]. The Lie’s
scheme (2.2), (2.3) applies “beautifully” to the solution of the formulation (3.28)
of problem (3.18)–(3.24). The resulting method is quite modular implying that
different space and time approximations can be used to treat the various steps; the
only constraint is that two successive steps have to communicate (by projection
in general).

3.4. Numerical experiments
3.4.1. Generalities

The methods described (quite briefly) in the above paragraphs have been val-
idated by numerous experiments (see, e.g., [28, Chapters 8 and 9], [33], and [55]).
In this article, we will consider four test problems, the first, second and third ones
involving one, two and three particles, respectively, while the fourth test prob-
lem concerns a channel flow with 300 particles. “Our” fictitious domain/operator-
splitting approach has made the solution of these problems (almost) routine, but no
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latter than the mid-nineties, solving such problems was considered a Grand Chal-
lenge (actually, our first systematic attack of such problems was part of a National
Science Foundation supported Grand Challenge project). All the flow computa-
tions have been done using the Bercovier–Pironneau finite element approximation;
namely (see [28, Chapters 5, 8 and 9] for details) we used a globally continuous
piecewise affine approximation of the velocity (resp., the pressure) associated to a
triangulation (in 2-D) or tetrahedral partition (in 3-D) Th (resp., T2h) of Ω , h being
a space discretization step. The pressure mesh is thus twice coarser than the veloc-
ity one. All our calculations have been done using uniform partitions Th and T2h.

3.4.2. First test problem: Lifting of a ball by a pressure driven flow
Let us denote by Ω a truncated circular cylinder of length L and diameter D;

we denote by Γ the boundary of Ω and we suppose that: (a) The axis of the cylinder
is parallel to the horizontal axis Ox2. (b) The cylinder has been truncated by the
vertical planes x2 = 0 and x2 = L; we denote by Γ1 and Γ2 the two vertical disks
limiting Ω . (c) The cylinder is filled with an incompressible Newtonian viscous
fluid of density ρf and viscosity μf ; it contains also a solid ball B of diameter d
and density ρs. (d) The only external force is gravity. (e) At t = 0, the fluid and
the solid are at rest, the ball lying on the bottom of the cylinder. (f) There exists
a pressure drop �P between Γ1 and Γ2. (g) The following boundary conditions
prevail on Γ : u = 0 on Γ \ (Γ1 ∪Γ2), and u(x, t) = u(x+Le2, t), ∀x ∈ Γ1, e2 being
the unit vector of axis Ox2 (space-periodicity in the Ox2 direction). We suppose
also that when the ball exits the cylinder on the right (i.e., through Γ2), an identical
ball enters the cylinder through Γ1 with identical translation and angular velocities,
the centers of mass of the two balls being located on a same line parallel to the
axis Ox2.

If �P is large enough, the lift acting on B will be sufficient for the ball to take
off and possibly reach an equilibrium height. This is indeed the phenomenon we
intend to simulate. In order to do so we are going to apply the fictitious domain
methodology discussed in Sections 3.2 and 3.3. Actually the above methodology is
used twice: (1) To treat the fluid-rigid ball coupling as done in Section 3.2. (2) To
solve all the partial differential equations in a “box” Ω̃ containing Ω ; we impose
u = 0 in Ω̃ \ Ω̄ via a distributed Lagrange multiplier method very close to the one
discussed in [28, Section 41].

For the particular problem that we are considering: L = 2, D = 1, d = 0.2,
ρf = 1, μf = 1, ρs = 1.001, Ω̃ = (0, 1) × (0, 2) × (0, 1) is approximated by Ω̃h =
(0, 1 + 4h) × (0, 2) × (0, 1 + 4h) (h being a uniform space-discretization step), the
cylinder axis is on the line x1 = 1/2 + 2h, x3 = 1/2 + 2h, and �P = 160, so that,
without the ball, the maximal steady flow speed would have been 10. At t =0, the
ball mass center is located right under the cylinder axis at a distance of 0.375D
(the height of the ball center is 0.125 from the bottom of the cylinder).

The mesh size used to compute the velocity field (resp., the pressure) is hv =
h = 1/96 (resp., hp = 2h = 1/48), while we took 1/1000 for the time-discretization
step; with these values the velocity mesh contains approximately 2×106 grid-points.
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The lifting phenomenon has been simulated for t ∈ [0, 40], leading to the following
results:
• The translational speed of the ball averaged during the last five time units

is 6.126.
• The particle Reynolds number averaged during the last five time units

is 1.2252.
• The distance of the ball center to the cylinder axis, also averaged during the

last five time units, is 0.30129.
The followings have been visualized on Figs. 3.2 and 3.3, respectively:
(i) The position of the ball at time t = 0.
(ii) The position of the ball at t = 40; at that time it has, essentially, reached its

equilibrium height (the height of the ball center is about 0.2 from the bottom
of the cylinder). Here we follow the mass center of the ball to plot the position
related to the cylinder, so it seems the ball does not move.

(iii) The variation versus time of the ratio of the distance of the ball center to the
cylinder axis and the radius of the cylinder; the equilibrium height has been
reached around t = 27.5.

Fig. 3.2. Position of the ball at t = 0 (left) and t = 40 (right).

Fig. 3.3. Time variation of the ratio of the distance of the ball center to the cylinder axis

and the radius of the cylinder.
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3.4.3. Settling of two balls and three balls in a vertical narrow tube
The main goal of this paragraph is to discuss the interaction of two balls and

then three balls settling in a narrow tube of rectangular cross section and contain-
ing an incompressible Newtonian viscous fluid. Theoretically, the tube should be
infinitely long, but for practicality we first consider the settling of the balls in a
truncated cylinder of length 4 whose cross-section is the rectangle (0, 1) × (0, 1/4)
for the interaction of two balls; this cylinder is moving with the balls in such a
way that the center of the lower ball is in the horizontal symmetry plane (a pos-
sible alternative would have been to specify periodicity in the vertical direction).
At time t = 0, we suppose that the truncated cylinder coincides with the “box”
Ω = (0, 1) × (0, 1/4) × (0, 4) and that the centers of the balls are on the vertical
axis of the cylinder at the points x1 = 1/2, x2 = 1/8, x3 = 0.9 and 1.25. The
parameters chosen in this case are d = 0.2, ρs = 1.1, ρf = 1, μf = 0.01. The mesh
size used to compute the velocity field (resp., the pressure) is hv = h = 1/96 (resp.,
hp = 2h = 1/48), while we took 1/1000 for the time-discretization step; the initial
velocity of the flow is also zero while the two balls are released from rest. The
velocity on the cylinder wall is always zero. Over 10 time units, we have observed
drafting, kissing, and tumbling twice and then the two balls settle in a stable con-
figuration as shown in Figs. 3.4 to 3.6. The averaged speed of the two balls for the
last two time units is 2.4362 and the averaged particle Reynolds number for the
last two time units is 48.724.

Fig. 3.4. Related position of the two balls at t = 0.4, 0.65, 0.85, 1, 1.2, 2, 2.2, 2.5, 3

and 10 (from left to right and from top to bottom).
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Fig. 3.5. Projection of the velocity field to the plane passing through the mass center of

the left ball and parallel to the plane x2 = 1/8 at t = 1, 2 and 10 (from left

to right).

For the case of three ball interaction, the truncated cylinder coincides with the
“box” Ω = (0, 1.5)× (0, 1/4)× (0, 6) and the centers of the balls are on the vertical
axis of the cylinder at the points x1 = 3/4, x2 = 1/8, x3 = 1, 1.3 and 1.6. The
other parameters chosen in this case are the same as in the above two ball case. The
three balls are released from rest. Over 15 time units, we have observed drafting,
kissing, and tumbling several times and then a stable configuration is taking place
as shown in Figs. 3.6, 3.7 and 3.8. The averaged speed of the three balls for the
last two time units is 2.4653 and the averaged particle Reynolds number for the
last two time units is 49.304. Further study and analysis of the interaction between
balls will be reported in a forthcoming paper.
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Fig. 3.6. The trajectories of the mass centers of the two balls (left) and three balls (right)

projected on the x1x3-plane.

3.4.4. Motion of 300 neutrally buoyant disks in a two-dimensional hor-
izontal channel

The fourth test problem involving 300 particles and a solid volume/fluid volume
ratio of the order of 0.3786, collisions (or near-collisions) have to be accounted for in
the simulations; to do so we have used the methods discussed in, e.g., refs. [28, Chap-
ter 8] and [33]. Another peculiarity of this fourth test problem is that ρs = ρf for
all particles (a neutrally buoyant situation). Indeed, neutrally buoyant models are
more delicate to handle than those in the general case, since 1−ρf/ρs = 0 in (3.18);
however, this difficulty can be overcome, as shown in ref. [55]. For this test prob-
lem, we have: (a) Ω = (0, 42)× (0, 12). (b) Ω contains the mixture of a Newtonian
incompressible viscous fluid of density 1 and viscosity 1 with 300 rigid solid disks of
density 1 and radius 0.45. (c) At time t = 0, fluid and particles are at rest, the par-
ticle centers being located at the points of a regular lattice. (d) The mixture is put
into motion by a uniform pressure drop of 20/18 per unit length (without the parti-
cles the steady flow would have been of the Poiseuille’s type with 20 as maximal flow
speed). (e) The boundary conditions are given by u(x1, x2, t) = 0 if 0 ≤ x1 ≤ 42,
x2 = 0 and 12, and 0 ≤ t ≤ 400 (no-slip boundary condition on the horizontal parts
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Fig. 3.7. Related position of the three balls at t = 0, 0.4, 0.6, 0.65, 0.7, 0.8, 0.9, 1, 1.5,

2, 6, 6.25, 6.4, 6.6, 6.7, 8, 9, 10, 12 and 15 (from left to right and from top to

bottom).

of the boundary), and then u(0, x2, t) = u(42, x2, t), 0 < x2 < 12, 0 ≤ t ≤ 400
(space-periodic boundary conditions in the Ox1 direction). (f) hv = h = 1/10,
hp = 2h = 1/5, the time-discretization step being 1/1000.

The particle distribution at t = 100, 107.8, 114, 200 and 400 has been visual-
ized on Fig. 3.9. These figures show that, initially, we have the sliding motion of
horizontal particle layers, then after some time a chaotic flow-motion takes place
in very few time-units, the higher particle concentration being along the axis of
the channel (actually, a careful inspection of the results shows that the transition
to chaos takes place just after t = 107.8). The maximal speed at t = 400 is 7.9,
implying that the corresponding particle Reynolds number is very close to 7.1.

For more details, and further comments and results on pressure driven neutrally
buoyant particulate flow in two-dimensional channels (including simulations with
much larger numbers of particles, the largest one being 1,200), see [28, Chapter 9]
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Fig. 3.8. Projection of the velocity field to a plane passing through the mass center of

one of the three balls and parallel to the plane x2 = 1/8 at t = 1.1, 6.6 and 15

(from left to right).

and [55]; among these results, we chose to report the following two: (i) Fig. 3.10
shows the averaged solid fraction as a function of the coordinate x2, the averaging
set being {(x1, t) | 0 ≤ x1 < 42, 380 ≤ t ≤ 400}. We observe that particles tend to
aggregate along the axis of the channel, since the solid fraction is close to 0.58 there,
while the global solid fraction is 0.3786 (vertical line in the figure). (ii) Fig. 3.11
shows the x1-averaged horizontal component of the mixture velocity at t = 400,
as a function of x2. The dashed line corresponds to the horizontal velocity distri-
bution of the flow of the same fluid, with no particle in the channel, for the same
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Fig. 3.9. The 300 particle positions t = 100, 107.8, 114, 200 and 400 (from top to

bottom).

pressure drop; the corresponding velocity profile is (of course) of the Poiseuille’s
type and shows that the mixture behaves like a viscous fluid whose viscosity is
(approximately) 2.5 larger than μf . Actually, a closer inspection (see ref. [55] for
details) shows that the mixture behaves like a non-Newtonian incompressible vis-
cous fluid of the power law type, for an exponent s = 1.7093 (s = 2 corresponding
to a Newtonian fluid and s = 1 to a visco-plastic material). The two above figures
show also that, as well known, some order is often found in chaos.
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Fig. 3.10. Averaged solid fraction distribution.

Fig. 3.11. Horizontal velocity distribution at t = 400.

4. Operator-splitting and finite element methods for a time-dependent
incompressible viscous free-surface flow

4.1. Generalities
Many flow problems in physics and applied sciences lead to the incompressible

Navier–Stokes equations with a free capillary surface. These flows have many im-
portant industrial applications. Among these applications let us mention the so
called “coating flows” (refs. [41], [58], [38], and [63]), flow in semi-conductor melts
(refs. [3], [49], and [65]), and flow of melted aluminum ([7] and references therein).
On a capillary free surface the normal stress of the flow field is balanced by sur-
face tension, the basic assumption being that surface tension is proportional to the
mean curvature of the free surface, implying in turn that surface tension plays a
significant role in determining the shape of the free surface. Not surprisingly, this
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type of flow with free surface has been studied extensively: experimentally ([59]),
analytically ([1], [4], [53], [61], and [67]), asymptotically ([40]), and, of course,
numerically ([63], [7], [2], [15], [39], [45], [46], [6], [72], [69], [70], [36], and [47],
among many other references). In particular, a thorough discussion of a flow down
an inclined perturbed plane can be found in ref. [60]; it includes a detailed com-
parison between experimental measurements, lubrication approximations, and the
results of numerical simulation. Some numerical methods widely used today rely on
space approximation by Galerkin/finite element methods themselves associated to
a variational formulation of the flow problem; among the reasons for such a choice,
let us mention the following one: formulated this way, the free surface problem
takes an elegant and concise form with some of the boundary conditions integrated
within the variational formulation in a straightforward manner; these methods are
particularly well-suited to coping with the highly deformed free boundaries and
complex shape flow regions occurring in these problems. Indeed, compared to flow
problems in fixed regions, the discretization of the free-surface flow problems dis-
cussed here encounters additional difficulties due to the free boundary curvature
related terms. Thus, many authors prefer to treat these terms in an implicit way,
and, in general, a kind of iterative procedure is applied in order to locate the free
surface which shifts from trial to trial and rarely coincides with any convenient
co-ordinate surface. In addition, isoparametric quadratic finite element approxima-
tions are commonly used, combined with quadratic or cubic parametrization of the
free-boundary, all this leading to further complications. The analysis of the stabil-
ity and/or convergence properties of some computational methods can be found in
e.g., refs. [2], and [50], [62].

The numerical solution of free-boundary problems is still an active field of
research and novel efficient computational methods are needed in order to solve
this kind of problems. Following A. Chorin (ref. [12]), most “modern” Navier–
Stokes solvers are based on operator-splitting (see, e.g., [43], [28], [71], [44]). In
this article (which follows very closely [30]), we consider the numerical solution of
a time-dependent two-dimensional viscous free-surface flow with applications to lu-
brication and coating technology; the formulation of the above problem is given in
Section 4.2. In Section 4.3, we take advantage of operator-splitting methods in order
to avoid iterative procedures to locate the free-boundary; these iterative localization
procedures are costly, in general. In Section 4.4, we introduce an isoparametric vari-
ant of the Bercovier–Pironneau finite element method ([28], [5], [26], [57]) to achieve
space discretization, leading to the full (space-time) discretization described in Sec-
tion 4.5. The resulting discrete equations have the same structure as in usual (i.e.,
with fixed boundaries) problems modeled by the Navier–Stokes equations, with,
however, an additional step “taking care” of the relocation of the free-boundary.
The results of two series of numerical experiments are presented in Section 4.6.
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4.2. Formulation of the free-boundary problem
Let Ω(t) be a 2-D space region, periodic in the Ox1 (i.e., horizontal) direction.

We suppose that Ω(t) contains an incompressible Newtonian viscous fluid of den-
sity ρ and viscosity μ and that its top boundary is a free capillary surface γ(t), as
shown in Fig. 4.1. We shall assume that the free boundary γ(t) has the following
representation:

γ(t) = {x | x = {x1, x2}, 0 ≤ x1 ≤ L, x2 = η(x1, t)}, (4.1)

the function η in (4.1) being x1-periodic of period L.

Fig. 4.1. Flow region with a free boundary.

Assuming that t ∈ [0, T ], and that the only external force acting on the fluid is
gravity, to be denoted by g, the fluid flow is modeled by the Navier–Stokes equations
completed by appropriate boundary and initial conditions, namely:

ρ

[
∂u
∂t

+ (u · ∇u)
]

= ρg + ∇ · σ in Ω(t), 0 < t ≤ T, (4.2)

∇ · u = 0 in Ω(t), 0 < t ≤ T, (4.3)

u(x, 0) = u0(x), x ∈ Ω(0), (4.4)

u(x1, 0, t) = 0, ∀{x1, t} ∈ (0, L) × (0, T ), (4.5)

u(0, x2, t) = u(L, x2, t), if t ∈ (0, T ) and x2 ∈ (0, η(0, t)) = (0, η(L, t)), (4.6)

σn = sH(η)n on γ(t), (with s ∈ R), (4.7)
∂η

∂t
n2 = u · n on γ(t), with η(0, t) = η(L, t), t ∈ (0, T ). (4.8)

In system (4.2)–(4.8): u (= {u1, u2}) denotes the fluid velocity ; σ = μ[∇u +
(∇u)t] − pI is the stress-tensor, p being the pressure; n (= {n1, n2}) is the unit
outward normal vector at the boundary of Ω(t); the initial velocity u0(x) is periodic
of period L in the Ox1 direction, and verifies ∇ · u0 = 0 in Ω(0); s is the surface
tension coefficient ; H(η) is the curvature of the free boundary γ(t) and is given by

H(η) =
∂2η

∂x2
1

/(
1 +

∣∣∣∣ ∂η∂x1

∣∣∣∣
2)3/2

. (4.9)
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Assuming that the “volume” of fluid in the region Ω(t) is HL, we have

∫ L

0

η(x1, t) dx1 = HL, ∀t ∈ (0, T ), (4.10)

which is consistent with

d

dt

∫ L

0

η dx1 =
∫ L

0

∂η

∂t
dx1 =

∫
γ(t)

∂η

∂t
n2 dγ(t) =

∫
γ(t)

u · n dγ(t) = 0,

(from (4.3), (4.5), (4.8) and the divergence theorem). On the free boundary γ(t)
we have

n(x) = {−∂η/∂x1, 1}/(1 + |∂η/∂x1|2)1/2, (4.11)

implying that equation (4.8) is equivalent to the (transport) equation

∂η

∂t
+ u1

∂η

∂x1
= u2 in (0, L) × (0, T ), with η(0, t) = η(L, t), (4.12)

and

η(x1, 0) = η0(x1), x1 ∈ (0, L). (4.13)

In (4.12), ui denotes, ∀i = 1, 2, the function {x1, t} → ui(x1, η(x1, t), t).
In order to obtain a variational formulation of problem (4.2)–(4.8) we introduce

the following functional spaces:

V0(t) = {v | v ∈ (H1(Ω(t)))2, v(x1, 0) = 0, ∀x1 ∈ (0, L),

v is periodic of period L in the Ox1 direction}, (4.14)

L2
0(Ω(t)) =

{
q

∣∣∣∣ q ∈ L2(Ω(t)),
∫
Ω(t)

q dx = 0
}
, (4.15)

S = {φ | φ ∈ H1(0, L), φ is periodic of period L}. (4.16)

Multiplying equations (4.2), (4.3) and (4.8) by the test functions v ∈ V0(t), q ∈
L2(Ω(t)) and φ ∈ S, respectively, we obtain, after integration by parts over Ω(t)
and (0, L), the following variational formulation of (4.2)–(4.8):

For a.e. t ∈ (0, T ), find u(t) ∈ V0(t), p(t) ∈ L2
0(Ω(t)) and η(t) ∈ S, such that

ρ

∫
Ω(t)

[
∂u
∂t

+ (u · ∇u)
]
· v dx

+ 2μ
∫
Ω(t)

D(u) : D(v) dx −
∫
Ω(t)

p∇ · v dx

= ρ

∫
Ω(t)

g · v dx + s

∫
γ(t)

H(η)n · v dγ(t), ∀v ∈ V0(t), (4.17)
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Ω(t)

∇ · u(t)q dx = 0, ∀q ∈ L2(Ω(t)), (4.18)

∫ L

0

∂η

∂t
φ dx1 +

∫ L

0

[
u1|γ(t)

∂η

∂x1
− u2|γ(t)

]
φdx1 = 0, ∀φ ∈ S, (4.19)

u(x, 0) = u0(x), ∀x ∈ Ω(0), with ∇ · u0 = 0, (4.20)

η(x1, 0) = η0(x1), ∀x1 ∈ (0, L), with
∫ L

0

η0(x1) dx1 = HL; (4.21)

in (4.17), D(v) denotes the deformation tensor 1
2 [∇v + (∇v)t].

Problems (4.2)–(4.8), (4.17)–(4.21) is defined over Ω(t), a domain which
changes with time and is not known a priori. We are going therefore to reformulate
(4.2)–(4.8), (4.17)–(4.21) into a fixed reference domain.

Let (At)t∈(0,T ) be a family of mappings which for each t ∈ (0, T ) map the
current domain Ω(t) onto the reference domain Ω̂ = (0, L) × (0,H) defined by

At : Ω(t) → Ω̂ ,

x = {x1, x2} → ξ = {ξ1, ξ2} = At(x) =

⎧⎪⎨
⎪⎩
ξ1 = x1,

ξ2 =
H

η(x1, t)
x2,

(4.22)

as sketched in Fig. 4.2. We observe that the free surface γ(t) is mapped onto

γ̂ = {ξ ∈ R
2 | ξ1 ∈ (0, L), ξ2 = H}. (4.23)

The Jacobian matrix J of the above transformation, and its determinant J are
given by

J = J(η) =

⎡
⎢⎣

1 0

− ξ2
η(ξ1, t)

∂η

∂ξ1
(ξ1, t)

H

η(ξ1, t)

⎤
⎥⎦, J = J(η) =

H

η(ξ1, t)
. (4.24)

It is clear that the above transformation is well defined as long as η(ξ1, t) > 0 or, in
other words, as long as the free surface does not touch the bottom of the flow region.
Let f = f(x, t) be a function defined on Ω(t) and f̂ = f̂(ξ, t) = f(A−1

t (ξ), t) be the
corresponding function defined on Ω̂ . Due to the change of variables, we have

∫
Ω(t)

f(x, t) dx =
∫
Ω̂

f̂(ξ, t)J dξ. (4.25)

Moreover, it follows from the chain rule that

∂f

∂t
=
∂f̂

∂t
− w · ∇̂f̂ , (4.26)
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Fig. 4.2. At maps the current domain Ω(t) onto the reference domain Ω̂ .

where ∇̂ = J−t∇ and where w is the domain velocity ; w is given by

w(ξ, t) = −∂ξ

∂t
=
ξ2
η

∂η

∂t
(ξ1, t)e2

=
ξ2
η

[
u2(ξ1, η(ξ1, t), t) − u1(ξ1, η(ξ1, t), t)

∂η

∂x1
(ξ1, t)

]
e2. (4.27)

The last term is a consequence of the kinematic condition (4.12) while e2 = {0, 1}.
Using (4.25) and (4.26), system (4.17)–(4.21) becomes (with obvious notation).

For a.e. t ∈ (0, T ), find û(t) ∈ V0(Ω̂), p̂(t) ∈ L2
0(Ω̂) and η(t) ∈ S, such that

ρ

∫
Ω̂

∂û
∂t

· v̂J(η) dξ

− ρ

∫
Ω̂

(w · ∇̂û) · v̂J(η) dξ + ρ

∫
Ω̂

(û · ∇̂û) · v̂J(η) dξ

+ 2μ
∫
Ω̂

D̂(û) : D̂(v̂)J(η) dξ −
∫
Ω̂

p̂∇̂ · v̂J(η) dξ

= ρ

∫
Ω̂

ĝ · v̂J(η) dξ

+ s

∫ L

0

H(η)
[
v̂2(ξ1,H) − v̂1(ξ1,H)

∂η

∂ξ1

]
dξ1, ∀v̂ ∈ V0(Ω̂), (4.28)∫

Ω̂

q̂∇̂ · ûJ(η) dξ = 0, ∀q̂ ∈ L2(Ω̂), (4.29)

∫ L

0

∂η

∂t
φ dξ1 +

∫ L

0

[
û1(ξ1,H, t)

∂η

∂ξ1
− û2(ξ1,H, t)

]
φdξ1 = 0, ∀φ ∈ S, (4.30)

û(0) = û0, with ∇̂ · û0 = 0, and

η(ξ1, 0) = η0(ξ1), with
∫ L

0

η0(ξ1) dξ1 = HL. (4.31)

The notation D̂(v̂) = 1
2 [∇̂v̂ + (∇̂v̂)t] has been used in (4.28).
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4.3. Time-discretization by operator-splitting
We encountered in Section 3 particulate flows, which are also flows with moving

boundaries. To simulate these flows, we employed a fractional-step approach, one
of the steps being dedicated to the motion of the particles, i.e., to updating the
location of the moving boundaries. A similar approach can be used here, the
particle motion dedicated step being replaced by a step dedicated to the relocation
of the free-surface, i.e., from a practical point of view, to the approximate solution
of the system (4.12), (4.13), assuming that u is already known (approximately, of
course), from a previous fractional step. Indeed, the numerical solution of problem
(4.28)–(4.31) contains three main difficulties: (a) the incompressibility condition
and the related unknown pressure, (b) an advection term associated to the velocity
of the fluid, (c) an advection term associated to the velocity of the physical domain.
The difficulty associated with the unknown location of the free boundary has been
removed through the transformation defined by (4.22). As in Section 3, a time-
discretization by operator-splitting will allow to decouple the difficulties of the
problem and to treat each of them with an appropriate method. As mentioned
in Section 4.1, this approach makes possible to update the location of the free
boundary as a sub-step, avoiding thus costly sub-iterations between the location of
the free surface and the solution of the Navier–Stokes equations. Among the many
possible operator-splitting schemes, the one we advocate is (partially) a Marchuk–
Yanenko implementation of the Lie’s scheme (see Section 2.2) and is first order
accurate at best. Its low order of accuracy is compensated by its simplicity, making
it (relatively) easy to implement, and by its robustness. The scheme reads as follows
(with �t (> 0) a time discretization step, tn = n�t, ûn = û(tn), p̂n = p̂(tn), and
ηn = η(tn)):

û0 = û0, and η0 = η(0); (4.32)

then, for n ≥ 0, ûn and ηn being known, solve the following sub-problems:

(i) Find ûn+1/5 ∈ V0(Ω̂) and p̂n+1/5 ∈ L2
0(Ω̂) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

∫
Ω̂

ûn+1/5 − ûn

�t · v̂J(ηn) dξ

+ μ

∫
Ω̂

D̂(ûn+1/5) : D̂(v̂)J(ηn) dξ −
∫
Ω̂

p̂n+1/5∇̂ · v̂J(ηn) dξ

= ρ

∫
Ω̂

ĝ · v̂J(ηn) dξ

+ s

∫ L

0

H(ηn)
[
v̂2(ξ1,H) − v̂1(ξ1,H)

∂ηn

∂ξ1

]
dξ1, ∀v̂ ∈ V0(Ω̂),∫

Ω̂

q̂∇̂ · ûn+1/5J(ηn) dξ = 0, ∀q̂ ∈ L2(Ω̂).

(4.33)



26 R. Glowinski, E.J. Dean, G. Guidoboni, L.H. Juárez and T.-W. Pan

(ii) Find ûn+2/5 ∈ V(Ω̂) via the solution of the following pure advection problem
on Ω̂ × (tn, tn+1):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω̂

∂û
∂t

· v̂J(ηn) dξ +
∫
Ω̂

(ûn+1/5 · ∇̂)û · v̂J(ηn) dξ = 0, ∀v̂ ∈ v̂n+1/5
− ,

û(tn) = ûn+1/5,

û(t) = ûn+1/5 on Γ̂n+1/5
− × (tn, tn+1),

(4.34)

and then setting ûn+2/5 = û(tn+1). The functional spaces and set introduced
just above are defined as follows:

V(Ω̂) =
{
v
∣∣ v ∈ (H1(Ω̂))2,

v is periodic of period L in the Oξ1 direction
}
,

v̂n+1/5
− =

{
v
∣∣ v ∈ V(Ω̂), v = 0 on Γ̂n+1/5

−
}
,

Γ̂n+1/5
− =

{
ξ
∣∣ ξ ∈ γ̂, ûn+1/5(ξ) · e2 < 0

}
.

(iii) Find ûn+3/5 ∈ V0(Ω̂) and p̂n+3/5 ∈ L2
0(Ω̂) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

∫
Ω̂

ûn+3/5 − ûn+2/5

�t · v̂J(ηn) dξ

+ μ

∫
Ω̂

D̂(ûn+3/5) : D̂(v̂)J(ηn) dξ

−
∫
Ω̂

p̂n+3/5∇̂ · v̂J(ηn) dξ = 0, ∀v̂ ∈ V0(Ω̂),∫
Ω̂

q̂∇̂ · ûn+3/5J(ηn) dξ = 0, ∀q̂ ∈ L2(Ω̂).

(4.35)

(iv) Find ûn+4/5 ∈ V(Ω̂) via the solution of the following pure advection problem
on Ω̂ × (tn, tn+1):⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω̂

∂û
∂t

· v̂J(ηn) dξ −
∫
Ω̂

(ŵn+3/5 · ∇̂)û · v̂J(ηn) dξ = 0, ∀v̂ ∈ Ŵn+3/5
+ ,

û(tn) = ûn+3/5,

û(t) = ûn+3/5 on Γ̂n+3/5
+ × (tn, tn+1).

(4.36)

Set then ûn+4/5 = û(tn+1) and p̂n+4/5 = p̂n+1/5 + p̂n+3/5. Here

wn+3/5(ξ) =
ξ2
η

[
û
n+3/5
2 (ξ1,H) − û

n+3/5
1 (ξ1,H)

∂ηn

∂ξ1
(ξ1)

]
e2, (4.37)

and

Wn+3/5
+ =

{
v
∣∣ v ∈ V(Ω̂), v = 0 on Γ̂n+3/5

+

}
,

Γ̂n+3/5
+ =

{
ξ
∣∣ ξ ∈ γ̂, wn+3/5(ξ) · e2 > 0

}
.
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(v) Find the new position of the free surface ηn+1 ∈ S by solving the following
problem in (0, L) × (tn, tn+1):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ L

0

∂η

∂t
φ dξ1 +

∫ L

0

[
û
n+4/5
1 (ξ1,H)

∂η

∂ξ1
− û

n+4/5
2 (ξ1,H)

]
φdξ1 = 0,

∀φ ∈ S,

η(tn) = ηn;

(4.38)

set then ηn+1 = η(tn+1).
(vi) The new physical domain Ωn+1 is obtained from the reference domain through

the mapping A−1
tn+1 defined as

A−1
tn+1 : Ω̂ ⊂ R

2 → Ωn+1 ⊂ R
2,

ξ = {ξ1, ξ2} → x = {x1, x2} =

⎧⎪⎨
⎪⎩
x1 = ξ1,

x2 =
ηn+1(ξ1)

H
ξ2.

(4.39)

The velocity un+1 and the pressure pn+1 defined on the new domain Ωn+1

are obtained as follows:

un+1(x1, x2) = ûn+4/5(x1,Hx2/η
n+1(x1)),

pn+1(x1, x2) = p̂n+4/5(x1,Hx2/η
n+1(x1)), (4.40)

with {x1, x2} ∈ Ωn+1.

We observe that ∇̂ = J−t(ηn)∇ in (4.33)–(4.36) and that, indeed, it is much
easier to solve the sub-problems (4.33)–(4.35) using their equivalent formulation
in the physical domain, whose fixed “value” is Ωn on the time interval (tn, tn+1)
(this is an important consequence from the way the free surface problem was split).
Moreover, problems (4.33) and (4.35) can be significantly simplified by noticing that

∫
Ω(t)

D(u) : D(v) dx =
1
2

∫
Ω(t)

∇u : ∇v dx +
1
2

∫
Ω(t)

(∇u)t : ∇v dx. (4.41)

Taking (4.41) and the above observation into account leads us to replace
(4.33)–(4.35) by, respectively:
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(i) Find un+1/5 ∈ V0(Ωn) and pn+1/5 ∈ L2
0(Ω

n) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

∫
Ωn

un+1/5 − un

�t · v dx

+
μ

2

∫
Ωn

∇un+1/5 : ∇v dx −
∫
Ωn

pn+1/5∇ · v dx

= ρ

∫
Ωn

g · v dx + s

∫
γn

H(ηn)n · v dγn

− μ

2

∫
Ωn

(∇un)t : ∇v dx, ∀v ∈ V0(Ωn),∫
Ωn

q∇ · un+1/5 dx = 0, ∀q ∈ L2(Ωn).

(4.42)

(ii) Find un+2/5 ∈ V0(Ωn) via the solution of the following pure advection prob-
lem on Ωn × (tn, tn+1):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ωn

∂u
∂t

· v dx +
∫
Ωn

(un+1/5 · ∇)u · v dx = 0, ∀v ∈ Vn+1/5
− ,

u(tn) = un+1/5,

u(t) = un+1/5 on Γn+1/5
− × (tn, tn+1),

(4.43)

and then setting un+2/5 = u(tn+1). The functional spaces and set used just
above are defined by

V(Ωn) =
{
v
∣∣ v ∈ (H1(Ωn))2,

v is periodic of period L in the Ox1 direction
}
,

Vn+1/5
− =

{
v
∣∣ v ∈ V(Ωn), v = 0 on Γn+1/5

−
}
,

Γn+1/5
− =

{
x
∣∣ x ∈ γn, un+1/5(x) · n(x) < 0

}
,

respectively.
(iii) Find un+3/5 ∈ V0(Ωn) and pn+3/5 ∈ L2

0(Ω
n) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

∫
Ωn

un+3/5 − un+2/5

�t · v dx

+
μ

2

∫
Ωn

∇un+3/5 : ∇v dx −
∫
Ωn

pn+3/5∇ · v dx

= −μ
2

∫
Ωn

(∇un+2/5)t : ∇v dx, ∀v ∈ V0(Ωn),∫
Ωn

q∇ · un+3/5 dx = 0, ∀q ∈ L2(Ωn).

(4.44)
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4.4. Space discretization
At each time step, the sub-problems (4.42)–(4.44) have to be solved in the

domain Ωn which is clearly non-polygonal because of the curved part γn of the
boundary. To approximate velocity and pressure we use here an iso-parametric
version (discussed in, e.g., [28, Chapter 5]) of the Bercovier–Pironneau finite ele-
ment approximation of the Stokes equation. This approximation was introduced
in [5] and is further discussed in [57]; it is a variant of the celebrated Hood–Taylor
approximation of the Stokes equation and it relies on a globally continuous ap-
proximation of the velocity, piecewise linear on a triangular or tetrahedral finite
element mesh, and on a globally continuous approximation of the pressure, piece-
wise linear on a mesh twice coarser. To describe the iso-parametric finite element
approximation of the free-boundary problem under consideration, let us consider
a generic bounded domain Ω ⊂ R

2, with a curved boundary ∂Ω (like Ω(t), in
Fig. 4.1, for example). We introduce a triangulation Th of Ω and we decompose it
as Th = T0h ∪ TRh, where

T0h = {K | K ∈ Th, K has two vertices on ∂Ω and

the related edge of K is curved}, (4.45)

TRh = {K | K ∈ Th, the three edges of K are rectilinear}. (4.46)

Every rectilinear triangle K ∈ TRh is divided into four sub-triangles KiK , i =
1, 2, 3, 4, by joining the mid-points of its edges. On the other hand, every curved
triangle K ∈ T0h is approximated by the quadrilateral K̃ defined by a1K , a2K ,
a23K , a3K , with a23K the mid-point of the arc a2Ka3K , or an approximation of this
mid-point, as shown in Fig. 4.3. The quadrilateral K̃ is then decomposed in four
sub-triangles KiK , i = 1, 2, 3, 4 and we define the following six-dimensional spaces

P̃2(K̃) = {ϕ | ϕ ∈ C0(K̃), ϕ|KiK
∈ P1, ∀i = 1, 2, 3, 4}, ∀K ∈ T0h. (4.47)

Similarly, if K ∈ TRh we associate to it

P̃2(K) = {ϕ | ϕ ∈ C0(K), ϕ|KiK
∈ P1, ∀i = 1, 2, 3, 4} (4.48)

(as usual, P1 denotes, in (4.47) and (4.48) the space of two variable polynomials of
degree ≤ 1); the spaces defined by (4.47) and (4.48) will be used below to construct
the velocity spaces. Similarly, to construct the discrete pressure spaces, we will
use the following three-dimensional subspace of P̃2(K̃) if K ∈ T0h (resp., of P̃2(K)
if K ∈ TRh)

P̃1(K̃) = {ϕ | ϕ ∈ P̃2(K̃), ϕ(aijK) = 1/2[ϕ(aiK) + ϕ(ajK)],

∀i, j, 1 ≤ i, j ≤ 3, i �= j}, (4.49)
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Fig. 4.3. Approximation of a curved triangle K by K̃ =
S4

i=1KiK .

where aijK = ajiK , ∀i, j, 1 ≤ i, j ≤ 3, i �= j (resp., P̃1(K) = P1). Collecting the
above pieces of information, we “approximate” T0h by T̃0h = {K̃}K∈T0h

and define
T̃h by T̃h = T̃0h∪TRh, and Ωh as the interior of

⋃
K∈T̃h

K. Assuming that Ω = Ω(t)
with Ω(t) as in Fig. 4.1, we approximate then the pressure and velocity spaces
associated to the domain Ω(t) by, respectively,

Ph(Ω(t)) = {q | q ∈ C0(Ω̄h(t)), q|K ∈ P1, ∀K ∈ TRh,
q|K̃ ∈ P̃1(K̃), ∀K̃ ∈ T0h}, (4.50)

Vh(Ω(t)) = {v | v ∈ (C0(Ω̄h(t)))2, v|K ∈ (P̃2(K))2, ∀K ∈ TRh,
v|K̃ ∈ (P̃2(K̃))2, ∀K̃ ∈ T0h}. (4.51)

In order to define the space containing the function describing the shape of the
free boundary, we need to go into the details of how the triangulations of the
flow region are obtained. Let us take a uniform structured triangulation of the
reference rectangular domain, Ω̂ , as shown in Fig. 4.2. The triangulation T̂h of the
current domain is obtained through the mapping A−1

t which corresponds (locally)
to a dilation (resp., a compression) in the vertical direction if η((x1, t)/H < 1
(resp., > 1). The discretization in the Ox1 direction remains thus the same for
0 < t < T . Moreover, since the triangulation of Ω̂ is structured and uniform, the
number of vertices on the free boundary γ(t) is equal to the number of vertices on
the rigid bottom boundary Σ ; the coordinates of the top and bottom vertices differ
only by their x2 component. As a consequence, Σ is divided in intervals of equal
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size, and a most natural approximation of the space S is the finite dimensional
space Sh defined by

Sh = {η | η ∈ C0[0, L], η|I ∈ P1, ∀I ∈ Ih, η|x1=0 = η|x1=L},

where Ih is the set of the edges of the velocity triangulation contained in Σ .

4.5. Full discretization
Let us introduce the following sets and spaces:

V0h(Ωn
h ) = {v | v ∈ Vh(Ωn

h ), v = 0 on Σ , v|x1=0 = v|x1=L},

P0h(Ωn
h ) =

{
q

∣∣∣∣ q ∈ Ph(Ωn
h ),

∫
Ωn

h

q dx = 0, q|x1=0 = q|x1=L

}
,

Vn+1/5
h,− =

{
v
∣∣∣ v ∈ Vh(Ωn

h ), v = 0 on Γn+1/5
h,− , v|x1=0 = v|x1=L

}
,

Γn+1/5
h,− =

{
x
∣∣∣ x ∈ γnh , un+1/5

h (x) · n(x) < 0
}
,

Ŵn+3/5
h,+ =

{
v
∣∣∣ v ∈ Vh(Ω̂), v = 0 on Γ̂n+3/5

h,+ , v|ξ1=0 = v|ξ1=L
}
,

Γ̂n+3/5
h,+ =

{
x
∣∣∣ x ∈ γ̂, wn+3/5

h (x) · e2 > 0
}
.

Then, the fully discrete free-boundary problem reads as follows (taking advantage
of (4.41)–(4.44)):

u0
h = u0h, Ω0

h = Ωh(0), η0
h = ηh(0); (4.52)

then for n ≥ 0, unh, Ωn
h , ηnh being known, solve the following sub-problems:

(i) Find un+1/5
h ∈ V0h(Ωn

h ) and pn+1/5
h ∈ P0h(Ωn

h ) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

∫
Ωn

h

un+1/5
h − unh

�t · v dx

+
μ

2

∫
Ωn

h

∇un+1/5
h : ∇v dx −

∫
Ωn

h

p
n+1/5
h ∇ · v dx

= −s
∫ L

0

(
1 +

∣∣∣∣∂ηnh∂x1

∣∣∣∣
2)−1/2

∂v1
∂x1

dx1

− s

∫ L

0

∂ηnh
∂x1

(
1 +

∣∣∣∣∂ηnh∂x1

∣∣∣∣
2)−1/2

∂v2
∂x1

dx1

+ ρ

∫
Ωn

h

g · v dx − μ

2

∫
Ωn

h

(∇unh)
t : ∇v dx, ∀v ∈ V0h(Ωn

h ),∫
Ωn

h

∇ · un+1/5
h q dx = 0, ∀q ∈ Ph(Ωn

h ).

(4.53)
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(ii) Find un+2/5
h ∈ Vh(Ωn

h ) via the solution of the following pure advection prob-
lem in Ωn

h × (tn, tn+1):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ωn

h

∂uh
∂t

· v dx +
∫
Ωn

h

(
un+1/5
h · ∇)

uh · v dx = 0, ∀v ∈ Vn+1/5
h,− ,

uh(tn) = un+1/5
h ,

uh(t) = un+1/5
h on Γn+1/5

h,− × (tn, tn+1),

(4.54)

and by setting un+2/5
h = uh(tn+1).

(iii) Find un+3/5
h ∈ V0h(Ωn

h ) and pn+3/5
h ∈ P0h(Ωn

h ) such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ

∫
Ωn

h

un+3/5
h − un+2/5

h

�t · v dx

+
μ

2

∫
Ωn

h

∇un+3/5
h : ∇vh dx −

∫
Ωn

h

p
n+3/5
h ∇ · v dx

= −μ
2

∫
Ωn

h

(∇un+2/5
h

)t : ∇v dx, ∀v ∈ V0h(Ωn
h ),∫

Ωn

∇ · un+3/5
h q dx = 0, ∀q ∈ Ph(Ωn

h ).

(4.55)

(iv) Find ûn+4/5
h ∈ Vh(Ω̂) by solving first the following pure advection problem

in Ω̂ × (tn, tn+1):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫
Ω̂

∂ûh
∂t

· v̂J(ηnh) dξ−
∫
Ω̂

(
ŵn+3/5
h ·∇̂)

ûh · v̂J(ηnh) dξ = 0, ∀v̂ ∈ Ŵn+3/5
h,+ ,

ûh(tn) = ûn+3/5
h ,

ûh(t) = ûn+3/5
h on Γ̂n+3/5

h,+ ×(tn, tn+1).

(4.56)

Set then ûn+4/5
h = ûh(tn+1) and pn+4/5

h = p
n+1/5
h + p

n+3/5
h .

(v) Find the new position of the free surface ηn+1
h ∈ Sh by solving the following

problem in (0, L) × (tn, tn+1):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ L

0

∂ηh
∂t

φ dξ1

+
∫ L

0

[
û
n+4/5
1h (ξ1,H)

∂ηh
∂ξ1

− û
n+4/5
2h (ξ1,H)

]
φdξ1 = 0, ∀φ ∈ Sh,

ηh(tn) = ηnh ;

(4.57)

and then by setting

ηn+1 = η(tn+1). (4.58)
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(vi) The new physical domain Ωn+1
h is obtained from the reference domain through

the mapping A−1
tn+1,h defined as

A−1
tn+1,h : Ω̂ ⊂ R

2 → Ωn+1
h ⊂ R

2,

ξ = {ξ1, ξ2} → x = {x1, x2} =

⎧⎪⎨
⎪⎩
x1 = ξ1,

x2 =
ηn+1
h (ξ1)
H

ξ2.
(4.59)

The velocity un+1
h and the pressure pn+1

h defined on the new domain Ωn+1
h

are obtained as follows:

un+1
h (x1, x2) = ûn+4/5

h

(
x1,Hx2

/
ηn+1
h (x1)

)
,

pn+1
h (x1, x2) = p

n+4/5
h

(
x1, η

n
h(x1)x2

/
ηn+1
h (x1)

)
,

(4.60)

with {x1, x2} ∈ Ωn+1
h .

Several remarks are in order, the main ones being (from our point of view) the
following

Remark 4.1. The boundary integrals in (4.42) are of the following form

s

∫
γ

H(η)n · v dγ;

we evaluated them using the following relations

∫
γ

H(η)nivi dγ =
∫
γ

∂ti
∂γ

vi dγ = −
∫
γ

ti
∂vi
∂γ

dγ, i = 1, 2,

where t = {t1, t2} is the unit tangent vector at γ, and where, here, v denotes the
function x1 → v(x1, η(x1)) which is periodic of period L. Thus,

∫
γ

H(η)n1v1 dγ = −
∫ L

0

(
1 +

∣∣∣∣ ∂η∂x1

∣∣∣∣
2)−1/2

∂v1
∂x1

dx1, (4.61)

and ∫
γ

H(η)n2v2 dγ = −
∫ L

0

∂η

∂x1

(
1 +

∣∣∣∣ ∂η∂x1

∣∣∣∣
2)−1/2

∂v2
∂x1

dx1. (4.62)

These integrals contain only first order derivatives, then low-order basis functions
(1st order in the present case) can be used for their approximation leading to the
approximation of surface tension contribution encountered in (4.53). The use of
integration by parts to reduce the order of differentiation is quite natural and well
in the spirit of the variational approach used here.
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Remark 4.2. To solve problems like (4.57) we have used a Taylor–Galerkin
approximation (inspired by the celebrated Lax–Wendroff scheme) on (0, L) ×
(tn, tn+1), namely∫ L

0

(ηn+1 − ηn)φdx1

=�t
∫ L

0

(
u
n+4/5
2 −u

n+4/5
1

dηn

dx1

)
φdx1 −

1
2
|τ |2

∫ L

0

u
n+4/5
1

du
n+4/5
2

dx1
φdx1

− 1
2
|τ |2

∫ L

0

u
n+4/5
1

dηn

dx1

(
u
n+4/5
1

dφ

dx1
+
du

n+4/5
1

dx1
φ

)
dx1, ∀φ∈ Sh, (4.63)

The integrals in (4.63) are approximated using piecewise linear polynomial func-
tions associated to the discrete velocity finite element space, i.e., defined from the
vertices, located on the (approximate) free surface γnh , of the triangulation used to
approximate velocity at time tn.

Remark 4.3. Problems such as (4.53) and (4.55) are discrete Stokes prob-
lems. Their iterative solution by Uzawa/conjugate gradient algorithms is discussed,
with many details, in, e.g., [28] (see also references therein). The pure advection
problems (4.43) and (4.54) can be solved by the method of characteristics as shown
in, e.g., [28] and [57] (see also the many related references therein). An easier to
implement alternative to the method of characteristics is provided by a wave-like
equation method discussed in, e.g., [28, Chapter 6] and [19], [20], [54]. Indeed, the
particulate flow related numerical results shown in Section 3.4 have been obtained
using the wave-like equation method mentioned just above, a similar comment ap-
plying to the numerical results shown in Section 4.6. Owing to the importance of
the wave-like equation approach concerning this article, we are going to discuss it
right now:

The components of the solution u of problem (4.43) are solution of a pure
advection problem of the following form

∂ϕ

∂t
+ V · ∇ϕ = 0 in Ω × (t0, tf ), (4.64)

ϕ = g on Γ− × (t0, tf ), ϕ(t) is x1-periodic of period L, (4.65)

ϕ(t0) = ϕ0, (4.66)

where: (i) The functions g and ϕ0 are given, with ∂g/∂t = 0. (ii) ∇ ·V = 0 (in the
sense of distributions) with ∂V/∂t = 0. (iii) The domain Ω is like the one shown
in Fig. 4.1, namely

Ω = {x | x = {x1, x2}, x2 ∈ (0, η(x1)) with x1 ∈ (0, L)}, (4.67)

the function η in (4.67) being Lipschitz continuous on [0, L] and x1-periodic of
period L; we shall denote by γ the subset of the boundary ∂Ω of Ω defined by

γ = {x | x = {x1, x2}, x2 = η(x1), x1 ∈ (0, L)}.
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(iv) The subset Γ− of ∂Ω is defined by

Γ− = {x | x ∈ γ, V(x) · n(x) < 0},

n being the outward unit normal vector at γ.
We can easily show that (4.64)–(4.66) implies (formally, at least) that for

a.e. t ∈ (t0, tf ) we have

∫
Ω

∂2ϕ

∂t2
v dx +

∫
Ω

(V · ∇ϕ)(V · ∇v) dx +
∫
γ\Γ−

V · n∂ϕ
∂t
v dγ = 0, ∀v ∈ H1

−(Ω),

(4.68)
to be completed by

ϕ = g on Γ− × (t0, tf ), ϕ(t) is x1-periodic of period L, (4.69)

ϕ(t0) = ϕ0,
∂ϕ

∂t
(t0) = −V · ∇ϕ0, (4.70)

with, in (4.68), H1
−(Ω) = {v | v ∈ H1(Ω), v = 0 on Γ−}. Actually, relation (4.68)

implies that

V · n
(
∂ϕ

∂t
+ V · ∇ϕ

)
= 0 on (γ \ Γ−) × (t0, tf ),

which is, clearly, a kind of generalized Neumann boundary condition (perfectly ab-
sorbing for the pure advection problem under consideration). As shown in, e.g., [28,
Chapter 6], the formulation (4.68)–(4.70) of problem (4.64)–(4.66) is well-suited to
solution methods via standard finite element approximations like the globally con-
tinuous and piecewise affine ones used to obtain the results presented in Section 4.6
(and 3.4).

Remark 4.4. To solve the transport problem (4.56) we use again a wave
equation approach. We observe that (4.56) does not contain ∂ûh

∂ξ1
(since wn+3/5

h is
parallel to e2), implying that the above problem reduces to a family (infinite for
the continuous problem, finite for the discrete one) of transport problems in one
space dimension along the Ôξ2 direction. Then for ξ1 ∈ [0, L), each component of
û is solution of a transport problem of the following form

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂φ

∂t
− aξ2

∂φ

∂ξ2
= 0 on (0,H) × (tn, tn+1),

φ(tn) = φ0,

φ(H, t) = b if a > 0, t ∈ (tn, tn+1),

(4.71)
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with a and b constant with respect to ξ2 and t. We observe that any smooth solution
of (4.71) verifies:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2φ

∂t2
− a2ξ2

∂

∂ξ2

(
ξ2
∂φ

∂ξ2

)
= 0 on (0,H) × (tn, tn+1),

φ(tn) = φ0,

∂φ

∂t
(tn) = aξ2

∂φ0

∂ξ2
,

φ(H, t) = b if a > 0, t ∈ (tn, tn+1),[
aξ2

(
∂φ

∂t
− aξ2

∂φ

∂ξ2

)]
ξ2=H

= 0, if a ≤ 0, t ∈ (tn, tn+1).

(4.72)

From a practical point of view we take advantage of the following variational for-
mulation of (4.72), better suited for finite element treatment.
1. Case a > 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ H

0

∂2φ

∂t2
v

ξ2
dξ2 + a2

∫ H

0

ξ2
∂φ

∂ξ2

∂v

∂ξ2
dξ2

= 0, ∀v ∈ D(0,H), a.e. on (tn, tn+1),

φ(tn) = φ0,

∂φ

∂t
(tn) = aξ2

∂φ0

∂ξ2
,

φ(H, t) = b, t ∈ (tn, tn+1),

(4.73)

with D(0,H) = {v | v ∈ C∞[0,H], v has a compact support in (0,H)}.
2. Case a ≤ 0.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ H

0

∂2φ

∂t2
v

ξ2
dξ2 + a2

∫ H

0

ξ2
∂φ

∂ξ2

∂v

∂ξ2
dξ2 − a

∂φ

∂t
(H, t)v(H) = 0,

∀v ∈ V0, a.e. on (tn, tn+1),

φ(tn) = φ0,

∂φ

∂t
(tn) = aξ2

∂φ0

∂ξ2
,

(4.74)

with V0 = {v | v ∈ C∞[0,H], v has a compact support in (0,H]}.

Remark 4.5. The methodology discussed in Sections 4.3 to 4.5 has been
applied in [29] to investigate numerically the Hopf bifurcation phenomenon for
incompressible viscous flow down inclined planes, discussed by Nishida et al. in [51].
For a general approach concerning the approximation of free surface problems for
incompressible viscous fluid with surface tension see, e.g., [72] and [8].
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4.6. Numerical experiments
In this section we present the results of numerical experiments where the

methodology discussed in Sections 4.3 to 4.5 has been applied to the solution of
some test problems.

4.6.1. First test problem: Perturbed flow in an horizontal periodical
plane

As a first example, we consider the situation where a liquid of viscosity μ =
1/13 and density ρ = 1 occupies a periodic region in a half-plane resting above
a horizontal line. The liquid is initially at rest but the free-surface on top is not
in equilibrium. We assume that the surface tension coefficient is s = 1, and that
H = 0.15 and L = 1. The initial non-equilibrium position of the free-surface is
shown in Fig. 4.5 and it is given by

η0(x1) =
1
4
e−20(x1−0.5)2 +H − 1

4

∫ L

0

e−20(x−0.5)2dx.

(a) (b)

Fig. 4.4. First test problem: the streamlines (left) and isobars (right) at times t = 0.05,

0.15, 0.5, 0.75, 1.5, and 2.5 (from top tp bottom).
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Fig. 4.5. First test problem: evolution of the free surface.

The space-discretization parameters are, in the reference domain Ω̂ (= (0, L) ×
(0,H)), hp = 1/100, and hv = 1/200 for approximating the pressure and the
velocity, respectively. The time-discretization step is �t = 10−4. For t > 0, the
coupled action of gravity and surface tension puts the fluid into an oscillatory
motion leading, as t → +∞, to an equilibrium state where η = H = 0.15 and
u = 0. Figs. 4.4 (a) and 4.4 (b) show the streamlines and the isobars at different
instants of time. Fig. 4.5 shows the evolution of the free-surface. The flow and
the shape of the free boundary have a behavior very close, qualitatively, to the one
shown in [2] where the simulation of a fluid flow in a three-dimensional annular
container is considered.
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4.6.2. Second test problem: Perturbed flow in an inclined periodical
plane

In the second example we consider the flow of a liquid of viscosity μ = 1/13,
density ρ = 1, and surface tension coefficient s = 1. We suppose that the fluid is
above a periodic plane whose inclination with respect to the horizontal is 45 degrees.
To simplify the geometry and still employ the methodology used in Section 4.6.1,
for the solution of the first test problem, we still keep Ω above an horizontal plane
but give gravity a 45 degree inclination with respect to the vertical. In this frame,
we chose H = 0.15, L = 1, and the same initial shape of the free-surface as the
one in the first problem (see Fig. 4.7); we still assume that u = 0 at time t = 0.
We take hp = 1/100 and hv = 1/200 in the reference domain Ω̂ , and �t = 10−4.
The streamlines and isobars have been visualized in Figs. 4.6 (a) and 4.6 (b), while
the evolution of the free surface is shown in Fig. 4.7. This time, the equilibrium
position corresponds to η = H = 0.15 and for u to a velocity distribution of the
Poiseuille type (i.e., parabolic) with u = 0 on the bottom of the flow region and
maximum velocity on the free-surface. Depending on the Reynolds number, i.e., the
viscosity of the fluid or the inclination of the plane, Hopf bifurcation occurs. This
phenomenon has been investigated theoretically in [51], and numerically in [29],
using the method discussed in this article.

(a) (b)

Fig. 4.6. Second test problem: the streamlines (left) and isobars (right) at times t = 0.05,

0.4, 0.75, 1.5, 2, and 2.5 (from top tp bottom).
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Fig. 4.7. Second test problem: evolution of the free-surface. From top to bottom: t = 0,

0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.15, 0.19, 0.23, 0.5.

5. Operator-splitting methods for elliptic Monge–Ampère equations in
dimension two

5.1. Generalities
These last years have been witnessing a surge of interest in Monge–Ampère

equations and their numerical solution. Indeed, beside the important role they
play in Differential Geometry, these equations occur in the modeling of various
phenomena in Mechanics, Physics, etc. (see [10], [52]) and their “full nonlinearity”
(in the sense of, e.g., Caffarelli and Cabré; see ref. [9]) presents an interesting
challenge to Numerical Analysts. Our goal, here, is to show that via operator-
splitting based methods, and an appropriate reformulation, these equations can
be reduced to the solutions of a sequence of classical problem (at least for two-
dimensional Dirichlet problems in the elliptic case). In this article, following [16],
[18], we will discuss first an augmented Lagrangian approach to the solution of the
elliptic Dirichlet–Monge–Ampère problem and then a least-squares based method.



Applications of Operator-Splitting 41

5.2. Formulation of the problem
Let Ω be a bounded domain of R

2; we denote by Γ the boundary of Ω . The
two-dimensional Dirichlet problem for the Monge–Ampère equation reads as follows:

detD2ψ = f in Ω , ψ = g on Γ , (5.1)

where, in (5.1), D2ψ is the Hessian of ψ, i.e., D2ψ =
(

∂2ψ
∂xi∂xj

)
1≤i,j≤2

and where f
and g are two given functions, with f > 0. Unlike the (closely related) Dirichlet
problem for the Laplace operator, (5.1) may have multiple solutions (actually, two
at most; cf., e.g., [14, Chapter 4]), and the smoothness of the data does not imply
the existence of a smooth solution. Concerning the last property, suppose that
Ω = (0, 1) × (0, 1) and consider the special case where (5.1) is defined by

∂2ψ

∂x2
1

∂2ψ

∂x2
2

−
∣∣∣∣ ∂2ψ

∂x1∂x2

∣∣∣∣
2

= 1 in Ω , ψ = 0 on Γ . (5.2)

Problem (5.2) can not have smooth solutions since, for those solutions, the bound-
ary condition ψ = 0 on Γ implies that the product ∂2ψ

∂x2
1

∂2ψ
∂x2

2
and the cross-derivative

∂2ψ
∂x1∂x2

vanish at the boundary, implying in turn that detD2ψ is strictly less than
one in some neighborhood of Γ . The above (non-existence) result is not a conse-
quence of the non-smoothness of Γ , since a similar non-existence property holds if
in (5.2) one replaces the above Ω by the ovöıd-shaped domain whose C∞-boundary
is defined by Γ =

⋃4
i=1 Γi, with Γ1 = {x | x = {x1, x2}, x2 = 0, 0 ≤ x1 ≤ 1},

Γ3 = {x | x = {x1, x2}, x2 = 1, 0 ≤ x1 ≤ 1}, Γ2 = {x | x = {x1, x2}, x1 =
1 − ln 4/(lnx2(1 − x2)), 0 < x2 < 1}, Γ4 = {x | x = {x1, x2}, x1 = ln 4/(lnx2(1 −
x2)), 0 < x2 < 1}. Actually, for the above two Ωs the non-existence of solutions
for problem (5.2) follows from the non-strict convexity of these domains.

Remark 5.1. Suppose that Ω is simply connected; let us define a vector-
valued function u by u =

{
∂ψ
∂x2

,− ∂ψ
∂x1

}
(= {u1, u2}); problem (5.1) takes then the

equivalent formulation⎧⎨
⎩

det∇u = f in Ω , ∇ · u = 0 in Ω ,

u · n =
dg

ds
on Γ ,

(5.3)

where, in (5.3), n denotes the outward unit vector normal at Γ , and s is a counter-
clockwise curvilinear abscissa. Once u is known, one obtains ψ via the solution of
the following Poisson–Dirichlet problem

−�ψ =
∂u2

∂x1
− ∂u1

∂x2
in Ω , ψ = g on Γ .

Problem (5.3) has clearly an incompressible fluid flow flavor, ψ playing here the
role of a stream function. Relations (5.3) can be used to solve problem (5.1) but
this approach will not be further investigated here.
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5.3. An augmented Lagrangian approach for the solution of prob-
lem (5.1)

Suppose that in (5.1) f ∈ L1(Ω) and g ∈ H3/2(Γ ); it makes sense then to
attempt solving problem (5.1) in H2(Ω) by considering it as a nonlinear biharmonic
problem (albeit not a typical one since only one boundary condition is prescribed).
A way to do so is to consider the following problem from Calculus of Variations:

min
ϕ∈Efg

1
2

∫
Ω

|�ϕ|2 dx (5.4)

with Efg = {ϕ | ϕ ∈ Vg, detD2ϕ = f} and Vg = {ϕ | ϕ ∈ H2(Ω), ϕ = g on Γ}.
Problem (5.4) is in turn equivalent to

min
{ϕ,q}∈Efg

1
2

∫
Ω

|�ϕ|2 dx (5.5)

with

Efg = {{ϕ,q} | ϕ ∈ Vg, q ∈ Q, q = D2ϕ, detq = f},

and

Q = {q | q = (qij)1≤i,j≤2, q21 = q12, qij ∈ L2(Ω)}.

Following, e.g., refs. [31], [18], we associate to problem (5.5):
(i) The augmented Lagrangian functional Lr : (H2(Ω) × Q) × Q → R defined,

with r > 0, by

Lr(ϕ,q;μ) =
1
2

∫
Ω

|�ϕ|2 dx+
r

2

∫
Ω

|D2ϕ−q|2 dx+
∫
Ω

μ : (D2ϕ−q) dx, (5.6)

with S : T =
∑

1≤i,j≤2 sijtij if S = (sij) and T = (tij).
(ii) The saddle-point problem

⎧⎪⎪⎨
⎪⎪⎩

Find {{ψ,p},λ} ∈ (Vg × Qf ) × Q such that

Lr(ψ,p;μ) ≤ Lr(ψ,p;λ) ≤ Lr(ϕ,q;λ),

∀{{ϕ,q},μ} ∈ (Vg × Qf ) × Q,

(5.7)

with Qf = {q | q ∈ Q, detq = f}. One can easily show that if {{ψ,p},λ} is
a solution of the saddle-point problem (5.7), then ψ is solution of the Monge–
Ampère problem (5.1), p = D2ψ, and λ is a Lagrange multiplier associated
to the relation p −D2ψ = 0.
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Concerning the solution of problem (5.7) we advocate (following, e.g., refs. [31],
[16]) the (relatively simple) Douglas–Rachford–Uzawa algorithm below:

{ψ−1,λ0} is given in Vg × Q; (5.8)

then, for n ≥ 0, {ψn−1,λn} being known in Vg × Q, solve{
pn ∈ Qf ,

Lr(ψn−1,pn;λn) ≤ Lr(ψn−1,q;λn), ∀q ∈ Qf ,
(5.9)

{
ψn ∈ Vg,

Lr(ψn,pn;λn) ≤ Lr(ϕ,pn;λn), ∀ϕ ∈ Vg,
(5.10)

and update λn by

λn+1 = λn + r(D2ψn − pn). (5.11)

Algorithm (5.8)–(5.11) deserves many comments, among them:
• Concerning the initialization of algorithm (5.8)–(5.11), we advocate λ0 = 0

and ψ−1 is the solution of the Poisson–Dirichlet problem

−�ψ−1 = f1/2 in Ω , ψ−1 = g on Γ , (5.12)

the rationale for such a choice being given in ref. [18].
• Problem (5.9) can be solved point-wise (in practice at the grid points of a

finite element or finite difference mesh). Indeed, (5.9) reduces, a.e. on Ω , to
the solution of a finite dimensional problem of the following type:

min
z

{r
2
(
z2
1 + z2

2 + 2z2
3

)
− bn(x) · z

}
(5.13)

with z = {zi}3
i=1 ∈ {z | z ∈ R

3, z1z2 − z2
3 = f(x)}. The solution of prob-

lem (5.13) (a generalized eigenvalue problem) is discussed in [18]).
• Problem (5.10) reduces to a linear variational problem of the following type:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ψn ∈ Vg,∫
Ω

�ψn�ϕdx+ r

∫
Ω

D2ψn : D2ϕdx = Ln(ϕ),

∀ϕ ∈ V0 (= H2(Ω) ∩H1
0 (Ω)),

(5.14)

functional Ln( · ) being linear and continuous over V0. The unique solution of
problem (5.14) can be computed by a conjugate gradient algorithm operating
in Vg and V0 equipped with the scalar product {v, w} →

∫
Ω
�v�w dx and

the corresponding norm. Such an algorithm is described in [18]; its most
important feature is that for well chosen finite element approximations, its
discrete variants require no more than the solution of two discrete Poisson–
Dirichlet problems at each iteration (see [18] for details).
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• Suppose that problem (5.1) has no solution in H2(Ω) while Vg and Qf are
both nonempty (as it is the case for problem (5.2)). In that case, we expect
the arithmetic divergence of sequence {λn}n and the geometric convergence
of sequence {{ψn,pn}}n to a pair {ψ,p} ∈ Vg × Qf such that

⎧⎨
⎩
{ψ,p} minimizes (locally or globally) the functional

{ϕ,q} →
∥∥D2ϕ− q

∥∥
(L2(Ω))4

over the set Vg × Qf .
(5.15)

The rationale for this prediction is discussed at length in [18], and, indeed,
when applying algorithm (5.8)–(5.11) to the solution of problem (5.2), the
numerical results show that the above algorithm behaves as expected; these
numerical results are reported in Section 5.4 (see also [16], [18]). On the
basis of these results it seems that for parameter r well chosen, algorithm
(5.8)–(5.11) produces either a solution of problem (5.1) if such a solution
exists in H2(Ω), or a generalized solution in the sense of (5.15), i.e., a least
squares solution, if (5.1) is without solution in H2(Ω), while Vg and Qf

are nonempty. This result justifies the least squares methodology discussed in
Section 5.5 (see also [17]). From a geometrical point of view problem (5.1) has
solutions in H2(Ω) if D2Vg and Qf (both subsets of space Q) intersect; such
a situation has been visualized on Fig. 5.1. Fig. 5.2 corresponds to a situation
where problem (5.1) has no solution in H2(Ω); a generalized solution, in the
sense of (5.15) has been visualized on this figure.

Fig. 5.1. Problem (5.1) has a solution in H2(Ω).

Fig. 5.2. Problem (5.1) has no solution in H2(Ω).
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• The saddle-point formulation (5.7) of problem (5.1) is a mixed variational
formulation where the “nonlinearity burden” has been transferred from ψ

to p, making it purely algebraic. Actually, this approach (this is even more
true for the discrete analogues of problems (5.1) and (5.7); see [18] for details)
provides a solution method where instead of solving (5.1) directly (i.e., without
introducing additional functions, like p), we solve it via its associated Pfaff
system (see, e.g., [22, Chapter A, V]), namely:

dψ − u1dx1 − u2dx2 = 0 in Ω , (5.16)

du1 − p11dx1 − p12dx2 = 0 in Ω , (5.17)

du2 − p12dx1 − p22dx2 = 0 in Ω , (5.18)

p11p22 − p2
12 = f, (5.19)

completed by the boundary condition

ψ = g on Γ . (5.20)

System (5.16)–(5.20) provides clearly a mixed formulation of (5.1).
• Let us return to problem (IVP) of Section 2.1 and suppose that A = A1 +A2.

An alternative to the Lie’s and Strang’s schemes is provided by the following
(first order) Douglas–Rachford scheme:

ϕ0 = ϕ0; (5.21)

then, for n ≥ 0, ϕn being known, solve

(ϕn+1/2 − ϕn)/τ +A1(ϕn+1/2) +A2(ϕn) = 0, (5.22)

(ϕn+1 − ϕn)/τ +A1(ϕn+1/2) +A2(ϕn+1) = 0. (5.23)

The basic properties of scheme (5.21)–(5.23), can be found in, e.g., [28,
Chapter 2] (see also the references therein). It is shown in, e.g., ref. [31]
(see also [24]) that algorithms such as (5.8)–(5.11) are in fact “disguised”
Douglas–Rachford algorithms, with parameter r the reciprocal of a time step
(see the two above references for details). We will return on this issue in
Remark 5.2, below.

• The finite element implementation of algorithm (5.8)–(5.11) is discussed in
ref. [18]; it relies on a mixed finite element approximation of problems (5.1)
and (5.7) where ψ and the four components of the tensor-valued functions
p and λ are approximated by functions belonging to the finite dimensional
space Vh defined by

Vh = {v | v ∈ C0(Ω̄), v|T ∈ P1, ∀T ∈ Th}, (5.24)

where in (5.24): P1 is the space of the two-variable polynomials of degree ≤ 1,
Th is a triangulation of Ω , and h is a space-discretization step. The nu-
merical results shown in Section 5.4 have been obtained using the above
approximation.
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Remark 5.2. Since the link between augmented Lagrangian methods and
operator-splitting ones has been mentioned a few times already, we are feeling
obliged to show it. To reach that goal we consider the following problem:

A(ϕ) = 0, (5.25)

where A is an operator mapping a real Hilbert space H into itself; we denote by
( · , · ) the scalar product of H and by ‖ · ‖ the corresponding norm. We suppose
that A is the differential of a convex functional J : H → R (i.e., J ′ = A) implying
that if ϕ is a solution of problem (5.25) it is also a solution of the equivalent
minimization problem ⎧⎨

⎩
ϕ ∈ H,

J(ϕ) ≤ J(θ), ∀θ ∈ H.
(5.26)

Suppose now that J = J1 + J2, the functionals J1 and J2 being both convex and
differentiable; if we denote J ′

1 and J ′
2 by A1 and A2, respectively, problem (5.25)

can also be written as

A1(ϕ) +A2(ϕ) = 0, (5.27)

Observe now that problem (5.26) is equivalent to

⎧⎨
⎩
{ϕ, p} ∈ H,

j(ϕ, p) ≤ j(θ, q), ∀{θ, q} ∈ H
(5.28)

where j(θ, q) = J1(θ) + J2(q) and H = {{θ, q} | {θ, q} ∈ H ×H, θ − q = 0}. Let
r be a positive parameter; we associate to j( · , · ) and H the following augmented
Lagrangian and saddle-point problem:

Lr(θ, q;μ) = j(θ, q) +
r

2
‖θ − q‖2 + (μ, θ − q), (5.29)⎧⎨

⎩
{{θ, q}, λ} ∈ (H ×H) ×H,

Lr(ϕ, p;μ) ≤ Lr(ϕ, p;λ) ≤ Lr(θ, q;λ), ∀{{θ, q}, μ} ∈ (H ×H) ×H.
(5.30)

It is a simple exercise to show that if {{ϕ, p}, λ} is a saddle-point of Lr over (H ×
H) ×H, it is also a solution of the following system:

r(ϕ− p) +A1(ϕ) + λ = 0, (5.31)

r(p− ϕ) +A2(p) − λ = 0, (5.32)

ϕ− p = 0. (5.33)
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The relations (5.31)–(5.33) imply in turn that ϕ is solution of (5.27), i.e., (since
A = A1 +A2), of (5.25). Following, e.g., refs. [31] and [24], we apply the following
variant of algorithm (5.8)–(5.11) to the solution of the saddle-point problem (5.30):

{ϕ−1, λ0} is given in H ×H; (5.34)

for n ≥ 0, assuming that {ϕn−1, λn} is known, solve

pn ∈ H; Lr(ϕn−1, pn;λn) ≤ Lr(ϕn−1, q;λn), ∀q ∈ H, (5.35)

ϕn ∈ H; Lr(ϕn, pn;λn) ≤ Lr(θ, pn;λn), ∀θ ∈ H, (5.36)

λn+1 = λn + r(ϕn − pn). (5.37)

Taking advantage of the differentiability of the functional Lr with respect to θ

and q, we can replace (5.35) and (5.36) by

r(pn − ϕn−1) +A2(pn) − λn = 0 (5.38)

and

r(ϕn − pn) +A1(ϕn) + λn = 0, (5.39)

respectively. Comparing relations (5.37) and (5.39) shows that λn+1 = −A1(ϕn),
which implies in turn that

λn = −A1(ϕn−1). (5.40)

It follows then from relations (5.38), (5.39) and (5.40) that

r(pn − ϕn−1) +A1(ϕn−1) +A2(pn) = 0, (5.41)

r(ϕn − ϕn−1) +A1(ϕn) +A2(pn) = 0. (5.42)

Define τ by τ = 1/r and denote pn by ϕn−1/2; replacing n by n + 1 in the two
above relations we obtain then

(ϕn+1/2 − ϕn)/τ +A1(ϕn) +A2(ϕn+1/2) = 0, (5.43)

(ϕn+1 − ϕn)/τ +A1(ϕn+1) +A2(ϕn+1/2) = 0 (5.44)

i.e., an obvious variant of the Douglas–Rachford scheme (5.22), (5.23), jus-
tifying thus the terminology Douglas–Rachford–Uzawa that we used for algo-
rithm (5.8)–(5.11) (to the best of our knowledge, those links between augmented
Lagrangian algorithms and alternating direction schemes were reported for the first
time in [11]).

5.4. Numerical results obtained via the augmented Lagrangian method-
ology

We are going to apply the methodology (briefly) discussed in Section 5.3 to the
solution of three test problems. For all these test problems, we shall assume that
Ω = (0, 1) × (0, 1) and that Th is a uniform triangulation like the one in Fig. 5.3,
with h the length of the edges of Th adjacent to the right angles.
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Fig. 5.3. A uniform triangulation of Ω (h = 1/8).

The first test problem is defined as follows:

(i) f(x) = R2

(R2−|x|2)2 , ∀x ∈ Ω , with R ≥
√

2 and |x| = (x2
1 + x2

2)
1/2.

(ii) g(x) =
√
R2 − |x|2, ∀x ∈ Γ (= ∂Ω).

If the above data hold, function ψ given by

ψ(x) =
√
R2 − |x|2, ∀x ∈ Ω , (5.45)

is solution to the corresponding Monge–Ampère problem (5.1). The graph of func-
tion ψ is clearly a piece of the sphere of radius R centered at {0, 0, 0}. If R >

√
2

we have ψ = C∞(Ω̄); on the other hand, if R =
√

2 we have no better than
ψ ∈ W 1,p(Ω) with p ∈ [1, 4), implying that in that particular case ψ does not
have the H2-regularity. When applying the computational methods discussed in
Section 5.3 to the solution of the above problem (with r = 1 in algorithm (5.8)–
(5.11)), we obtain if R = 2, and after 78 iterations of the discrete variant of the
above algorithm, the results displayed in Table 5.1:

Table 5.1. Results for the 1st test problem (R = 2).

h ‖ψch − ψ‖0,Ω ‖D2
hψ

c
h − pch‖0,Ω

1/32 4.45 × 10−6 9.48 × 10−7

1/64 1.14 × 10−6 1.35 × 10−6

1/128 2.97 × 10−7 1.58 × 10−6

In the Table 5.1, ψch is the computed approximate solution, D2
hψ

c
h is the cor-

responding discrete Hessian, and pch is the computed approximation of tensor p.
The above results strongly suggest second order accuracy (a textbook one, indeed),
which is in some sense optimal considering the type of finite element approxima-
tions we are using. If we take R =

√
2, our methodology which has been designed to

solve the Monge–Ampère equation (5.1) in H2(Ω) is unable to capture any solution
of the above problem, the corresponding algorithm (5.8)–(5.11) being divergent for
any value of r. The same troubles persist if one takes R =

√
2 + 10−2; on the

other hand, if one takes R =
√

2 + 10−1, things are back to normal since, using
again r = 1, we obtain after 117 iterations of algorithm (5.8)–(5.11) the results
summarized in Table 5.2.
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Table 5.2. Results for the 1st test problem (R =
√

2 + 10−1).

h ‖ψch − ψ‖0,Ω ‖D2
hψ

c
h − pch‖0,Ω

1/32 2.20 × 10−5 9.68 × 10−7

1/64 5.51 × 10−6 1.54 × 10−6

1/128 1.37 × 10−6 2.04 × 10−6

The above results show that second order accuracy holds again. However, the
second order derivatives of ψ being larger for R =

√
2 + 10−1 than for R = 2, the

corresponding approximations errors are also larger. On Figs. 5.4 to 5.7 we have
visualized, respectively:
(i) The graph of ψ when R =

√
2; the singularity of ∇ψ at {1, 1} appears clearly

on Fig. 5.4.
(ii) The graph of ψch corresponding to h = 1/128 and R = 2.
(iii) The graph of ψch corresponding to h = 1/128 and R =

√
2 + 10−1.

(iv) The graph of f when R =
√

2 + 10−1.

Fig. 5.4. First test problem: graph of ψ when R =
√

2.

Fig. 5.5. First test problem: graph of ψc
h when R = 2 and h = 1/128.
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Fig. 5.6. First test problem: graph of ψc
h when R =

√
2 + 10−1 and h = 1/128.

Fig. 5.7. First test problem: graph of f when R =
√

2 + 10−1.

Remark 5.3. When computing the approximate solutions for h = 1/32, we
stopped the iterations of algorithm (5.8)–(5.11) as soon as

‖D2
hψ

n
h − pnh‖0,Ω ≤ 10−6. (5.46)

The corresponding number of iterations is 78 for R = 2, and 117 for R =
√

2+10−1

(we did not try to find the optimal value of r, or to use a variable r strategy). Next,
when computing the approximate solutions for h = 1/64 and 1/128, we stopped
iterating once the iteration numbers associated to h = 1/32 were reached (actually,
using (5.46) as stopping criteria for h = 1/64 and 1/128 did not change much the
approximation errors shown in Tables 5.1 and 5.2).

The second test problem is defined as follows:
(i) f(x) = 1/|x|, ∀x ∈ Ω .

(ii) g(x) = (2|x|)
3
2

3 , ∀x ∈ Γ .
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With these data, a solution to the Monge–Ampère problem (5.1) is the function
ψ defined by

ψ(x) =
(2|x|) 3

2

3
, ∀x ∈ Ω . (5.47)

One can easily check that ψ /∈ C2(Ω̄); however, since ψ ∈W 2,p(Ω), ∀p ∈ [1, 4),
it has, in principle, enough regularity so that we can apply algorithm (5.8)–(5.11)
to the solution of the corresponding problem (5.1). Indeed, despite the singularity
of function f at {0, 0} (see Fig. 5.8), algorithm (5.8)–(5.11), with r = 1, provides
after 160 iterations the results summarized in the following Table 5.3:

Table 5.3. Results for the 2nd test problem.

h ‖ψch − ψ‖0,Ω ‖D2
hψ

c
h − pch‖0,Ω

1/32 5.56 × 10−5 9.91 × 10−7

1/64 1.50 × 10−5 1.60 × 10−6

1/128 3.94 × 10−6 2.02 × 10−6

Fig. 5.8. Second test problem: graph of f .

From the above results we can infer that second order accuracy still holds. On
Fig. 5.8 (resp., 5.9) we have visualized function f (resp., the computed approximate
solution obtained with h = 1/128).

The third test problem is—by far—the more interesting since we consider
this time the solution of problem (5.2), namely:

∂2ψ

∂x2
1

∂2ψ

∂x2
2

−
∣∣∣∣ ∂2ψ

∂x1∂x2

∣∣∣∣
2

= 1 in Ω , ψ = 0 on Γ .

Despite the smoothness of its data, the above problem has no smooth solution,
the troubles coming from the non-strict convexity of Ω = (0, 1) × (0, 1). When
applying algorithm (5.8)–(5.11) (in fact a discrete variant of it) to the solution of
problem (5.2) we observe the following phenomena:



52 R. Glowinski, E.J. Dean, G. Guidoboni, L.H. Juárez and T.-W. Pan

Fig. 5.9. Second test problem: graph of ψc
h (h = 1/128).

(i) For r sufficiently small (here, r ≤ 2 is fine) the sequence {{ψnh ,pnh}}n≥0 con-
verges geometrically (albeit slowly (approximately 1,000 iterations if r = 2))
to a limit {ψch,pch} while sequence {λnh}n≥0 diverges arithmetically.

(ii) A close inspection of the numerical results shows that the curvature of the
graph of ψch becomes negative close to the corners, in violation of the Monge–
Ampère equation; actually, as expected, it is violated also along the boundary,
since ‖D2

hψ
c
h − pch‖0,Ω = 1.8 × 10−2 if h = 1/32, 3.3 × 10−2 if h = 1/64,

4.2 × 10−2 if h = 1/128, while ‖D2
hψ

c
h − pch‖0,Ω1 = 2.7 × 10−4 if h = 1/32,

4.1 × 10−4 if h = 1/64, 4.9 × 10−4 if h = 1/128, and ‖D2
hψ

c
h − pch‖0,Ω2 =

4.4 × 10−5 if h = 1/32, 4.9 × 10−5 if h = 1/64, 5.1 × 10−5 if h = 1/128,
where Ω1 = (1/8, 7/8)2 and Ω2 = (1/4, 3/4)2. These results suggest that
detD2ψ = 1 is “almost” verified in Ω2.

The graph of ψch obtained with h = 1/64 has been shown on Fig. 5.10, while
the intersections of this graph with the planes x1 = 1/2 and x1 = x2 have been
shown on Figs. 5.11 and 5.12, respectively, for h = 1/32, 1/64, and 1/128. Since ψch
does not vary very much with h, we suspect that, according to Section 5.3, what
we have here is a (good) approximation of one of those functions of H2(Ω)∩H1

0 (Ω)
whose Hessian is at a minimal L2-distance (global or local) from the set Qf defined
in Section 5.3. Assuming that the above is true we can claim that the solution-
less problem (5.2) has been solved in a least squares sense in the functional space
H2(Ω), leading to a (not so novel in general, but possibly new in the Monge–Ampère
“environment”) concept of generalized solution. Actually, our intuition concerning
the least squares interpretation of the solutions obtained, via algorithm (5.8)–(5.11),
when Vg and Qf are both nonempty, seems to be right as we shall see in Sec-
tion 5.5, below, where the least-squares solution of problem (5.1) will be discussed.
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Fig. 5.10. Third test problem: graph of the computed solution ψc
h (h = 1/64).

Fig. 5.11. Third test problem: graphs of the computed solutions ψc
h restricted to the

plane x1 = 1/2.

Fig. 5.12. Third test problem: graphs of the computed solutions ψc
h restricted to the

plane x1 = x2.
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Remark 5.4. When applying algorithm (5.8)–(5.11) to the solution of prob-
lem (5.1) we have to solve at each iteration a discrete analogue of the linear vari-
ational problem (5.14); to solve this finite dimensional problem, we have used the
preconditioned conjugate gradient algorithm, converging typically 5 to 7 iterations,
the preconditioning requiring the solution of two discrete Poisson–Dirichlet prob-
lems per conjugate gradient iteration. The mesh being uniform we have used Fast
Poisson Solvers to achieve preconditioning.

5.5. A least-squares approach for the solution of problem (5.1)
5.5.1. Two least-squares formulation of problem (5.1)

The above mentioned behavior of algorithm (5.8)–(5.11) strongly suggests to
look at least-squares methods for the solution of (5.1). Such a method has been
investigated in [18]; it relies on the following (brute force) least-squares formula-
tion of (5.1):

min
ϕ∈Vg

j1(ϕ), (LSQ1)

with

j1(ϕ) =

⎧⎨
⎩

1
2

∫
Ω

|detD2ϕ− f |2 dx, if (detD2ϕ− f) ∈ L2(Ω),

+∞, otherwise.
(5.48)

The solution of (5.1) via the nonlinear least-squares formulation (LSQ1) is
discussed in [18]; it relies on iterative methods whose convergence, however, is not
as clear cut as the convergence of the discrete variants of algorithm (5.8)–(5.11).
Actually, Section 5.3 suggests an alternative (and more natural) least squares for-
mulation, namely

min
{ϕ,q}∈Vg×Qf

j2(ϕ,q), (LSQ2)

with

j2(ϕ,q) =
1
2

∫
Ω

|D2ϕ− q|2 dx. (5.49)

5.5.2. On the iterative solution of problem (LSQ2) and related issues
Let us define the (non-convex) functional IQf

: Q → R ∪ {+∞} by

IQf
=

{
0, if q ∈ Qf ;

+∞, otherwise,
(5.50)

in other words, IQf
( · ) is the indicator functional of the set Qf in Q. Prob-

lem (LSQ2) is thus clearly equivalent to the following minimization problem
in Vg × Q:

min
{ϕ,q}∈Vg×Q

[j2(ϕ,q) + IQf
(q)], (5.51)
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whose (formal) Euler–Lagrange equation reads as follows at a solution {ψ,p} of
problem (LSQ2):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{ψ,p} ∈ Vg × Q,∫
Ω

(D2ψ − p) : (D2ϕ− q) dx+ 〈∂IQf
(p),q〉 = 0,

∀{ϕ,q} ∈ V0 × Q,

(5.52)

with V0 = H2(Ω) ∩ H1
0 (Ω) and ∂IQf

(p) a (kind of) generalized differential of
functional IQf

( · ) at p. Classically, we associate to (5.52) the following initial value
problem (flow in the terminology of Dynamical Systems) since its steady state
solutions solve problem (5.52):

{ψ(0),p(0)} = {ψ0,p0} (∈ Vg × Q), (5.53)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{ψ(t),p(t)} ∈ Vg × Q, ∀t ∈ (0,+∞),∫
Ω

�(∂ψ/∂t)�ϕdx+
∫
Ω

(D2ψ − p) : D2ϕdx = 0, ∀ϕ ∈ V0,∫
Ω

(∂p/∂t) : q dx+
∫
Ω

(p −D2ψ) : q dx+ 〈∂IQf
(p),q〉 = 0, ∀q ∈ Q,

(5.54)

the idea being to capture the steady state solutions of (5.54) via the integration of
(5.53), (5.54) from t = 0 to t = +∞. Concerning the initialization of (5.53), (5.54),
following Section 5.3 we advocate for ψ0 the unique solution in Vg of the Dirichlet
problem −�ψ0 =

√
f in Ω , ψ0 = g on ∂Ω and p0 = D2ψ0. Let τ (> 0) be a

time-discretization step; applying to (5.53), (5.54) an operator-splitting scheme à
la Marchuk–Yanenko (see, e.g., Section 2 and the references therein) we obtain the
following iterative method:

{ψ0,p0} = {ψ0,p0}; (5.55)

for n ≥ 0, {ψn,pn} being known, compute {ψn+1,pn+1} as follows:

pn+1 − pn

τ
+ pn+1 + ∂IQf

(pn+1) = D2ψn, (5.56)⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ψn+1 ∈ Vg,∫
Ω

�[(ψn+1 − ψn)/τ ]�ϕdx+
∫
Ω

D2ψn+1 : D2ϕdx

=
∫
Ω

pn+1 : D2ϕdx, ∀ϕ ∈ V0.

(5.57)
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Relation (5.56) is a necessary optimality condition for the following minimiza-
tion problem:

min
q∈Qf

[
1
2
(1 + τ)

∫
Ω

|q|2 dx−
∫
Ω

(pn + τD2ψn) : q dx
]
, (NLP)

while (5.57) characterizes ψn+1 as the solution of

min
ϕ∈Vg

[
1
2

∫
Ω

(|�ϕ|2 + τ |D2ϕ|2) dx−
∫
Ω

(�ψn�ϕ+ τpn+1 : D2ϕ) dx
]
. (LQP)

Each problem (NLP) being a variant of problem (5.9) (see Section 5.3) can be
solved point-wise (in practice at the vertices of a finite element or finite difference
mesh); to obtain pn+1 from pn and ψn we have to solve point-wise a minimiza-
tion problem similar to (5.13), an issue already addressed in Section 5.3. Each
problem (LQP) is equivalent to (5.57), a well-posed linear variational problem.
Problem (5.57) can be solved by a conjugate gradient algorithm operating in Vg
and V0 equipped with the scalar product {v, w} →

∫
Ω
�v�w dx. It follows from,

e.g., [28, Chapter 3] that such an algorithm reads as follows (the subscript k num-
bers the conjugate gradient iterations):

Take

ψn+1
0 = ψn; (5.58)

solve⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

gn+1
0 ∈ V0,∫
Ω

�gn+1
0 �ϕdx =

∫
Ω

(�ψn�ϕ+ τD2ψn : D2ϕ) dx

−
∫
Ω

(�ψn�ϕ+ τpn+1 : D2ϕ) dx, ∀ϕ ∈ V0.

(5.59)

If gn+1
0 = 0 (in practice if

∫
Ω
|�gn+1

0 |2 dx/
∫
Ω
|�ψn|2 dx ≤ ε) take ψn+1 = ψn;

otherwise, set

wn+1
0 = gn+1

0 . (5.60)

For k ≥ 0 assuming that ψn+1
k , gn+1

k , and wn+1
k are known with the last two different

from 0, solve

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ḡn+1
k ∈ V0,∫
Ω

�ḡn+1
k �ϕdx =

∫
Ω

(
�wn+1

k �ϕ+ τD2wn+1
k : D2ϕ

)
dx,

∀ϕ ∈ V0,

(5.61)
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and compute

ρn+1
k =

∫
Ω

∣∣�gn+1
k

∣∣2 dx/∫
Ω

�ḡn+1
k �wn+1

k dx, (5.62)

and set

ψn+1
k+1 = ψn+1

k − ρn+1
k wn+1

k , (5.63)

gn+1
k+1 = gn+1

k − ρn+1
k ḡn+1

k . (5.64)

If
∫
Ω

∣∣�gn+1
k+1

∣∣2 dx/∫
Ω

∣∣�gn+1
0

∣∣2 dx ≤ ε take ψn+1 = ψn+1
k+1 ; else, compute

γn+1
k =

∫
Ω

∣∣�gn+1
k+1

∣∣2 dx/∫
Ω

∣∣�gn+1
k

∣∣2 dx, (5.65)

and then

wn+1
k+1 = gn+1

k+1 + γn+1
k wn+1

k . (5.66)

Do k = k + 1 and go to (5.61). �
From a practical point of view algorithm (5.58)–(5.66) is not particularly diffi-

cult to implement; indeed, after an appropriate space discretization, each iteration
will require the solution of two discrete Poisson–Dirichlet problems in order to solve
the discrete analogues of the biharmonic problems (5.59) and (5.61) (see ref. [18] for
details concerning the solution of a closely related problem, namely problem (5.10)
of Section 5.3). Concerning precisely the space approximation of problem (LSQ2),
we have used a mixed finite element discretization closely related to the one briefly
discussed in Section 5.3, which is itself directly inspired from those approximations
employed in [31], [24], [32] for the numerical simulation of two-dimensional Bingham
visco-plastic flow using the stream function formulation. With this approach ϕ, q,
ψ, p are approximated by continuous piecewise linear approximations associated
to a finite element triangulation of Ω . The condition detq = f is imposed at the
vertices of this triangulation.

Remark 5.5. Algorithm (5.58)–(5.66) is clearly of the relaxation type.
Actually, when τ → +∞, we recover at the limit an algorithm very close to the
nonlinear block Gauss–Seidel one discussed in, e.g., [32], [27].

5.5.3. Numerical experiments
The least-squares method discussed in Sections 5.5.1 and 5.5.2 has been ap-

plied to the solution of three type (5.1) problems, with Ω = (0, 1)2; these test
problems have been already encountered in Section 5.4. The first test problem can
be formulated as follows

(
with |x| = (x2

1 + x2
2)

1
2 and R ≥

√
2
)
:

detD2ψ =
R2

(R2 − |x|2)2 in Ω , ψ = (R2 − |x|2) 1
2 on ∂Ω . (5.67)
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The function ψ defined by ψ(x) = (R2 − |x|2) 1
2 is a solution of problem (5.67); as

already mentioned (in Section 5.4) its graph is a piece of the sphere of center 0
and radius R. We have discretized problem (5.67) relying, as in Section 5.4, on a
mixed variational formulation associated to uniform triangulations of Ω (like the
one shown on Fig. 5.3, but finer); the uniformity of the mesh allows us to solve
the various elliptic problems encountered at each iteration of (5.58)–(5.66) by fast
Poisson and Helmholtz solvers taking advantage of the decomposition properties of
the discrete analogues of the biharmonic problems (5.59) and (5.61) (see [18] for
details). The finite element analogue of algorithm (5.55)–(5.57) diverges if R =

√
2

(which is not surprising since the corresponding ψ /∈ H2(Ω); on the other hand,
for R = 2 we have a quite fast convergence as long as τ is large enough, the
corresponding results being reported on Table 5.4, (we stopped iterating as soon as
‖D2

hψ
n
h −pnh‖ ≤ 10−6ψnh and pnh being the computed approximations of ψn and pn,

respectively).

Table 5.4. First test problem.

h τ nit ‖D2
hψ

c
h − pch‖Q ‖ψch − ψ‖L2(Ω)

1/32 0.1 517 0.9813 × 10−6 0.450 × 10−5

1/32 1 73 0.9618 × 10−6 0.449 × 10−5

1/32 10 28 0.7045 × 10−6 0.450 × 10−5

1/32 100 21 0.6773 × 10−6 0.449 × 10−5

1/32 1,000 22 0.8508 × 10−6 0.449 × 10−5

1/32 10,000 22 0.8301 × 10−6 0.449 × 10−5

1/64 1 76 0.9624 × 10−6 0.113 × 10−5

1/64 10 29 0.8547 × 10−6 0.113 × 10−5

1/64 100 24 0.8094 × 10−6 0.113 × 10−5

Above, {ψch,pch} is the computed approximate solution, h the space dis-
cretization step and nit the number of iterations necessary to achieve convergence.
Table 5.4 clearly suggests that: (i) For τ large enough the speed of convergence
is essentially independent of τ . (ii) The speed of convergence is essentially in-
dependent of h. (iii) The L2(Ω)-approximation error is O(h2). By comparing the
above results to those reported in [18] (and Section 5.4), concerning the solution of
problem (5.67) by the augmented Lagrangian algorithm (5.8)–(5.11), we can add to
(i)–(iii), above, that the new approach is easier to implement, is more robust, and
provides the same approximate solutions, but faster (for τ large enough); it avoids
also the adjustment of parameter r, a delicate issue, particularly if one looks for an
optimal value. Similarly, the new methodology is easier to implement and leads to
faster algorithms than those derived from (LSQ1), another least-squares approach.

The second test problem is defined by

detD2ψ =
1
|x| in Ω , ψ =

(2|x|) 3
2

3
on ∂Ω . (5.68)
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With these data, the function ψ defined by ψ(x) = (2|x|)
3
2

3 is solution of
(5.68). As previously mentioned, ψ ∈ W 2,p(Ω), ∀p ∈ [1, 4), but does not have
the C2(Ω̄)-regularity. Using the same approximation and algorithm as the first
test problem, we obtain then the results reported in Table 5.5.

Table 5.5. Second test problem.

h τ nit ‖D2
hψ

c
h − pch‖Q ‖ψch − ψ‖L2(Ω)

1/32 1 145 0.9381 × 10−6 0.556 × 10−4

1/32 10 56 0.9290 × 10−6 0.556 × 10−4

1/32 100 46 0.9285 × 10−6 0.556 × 10−4

1/32 1,000 45 0.9405 × 10−6 0.556 × 10−4

1/64 1 151 0.9500 × 10−6 0.145 × 10−4

1/64 10 58 0.9974 × 10−6 0.145 × 10−4

1/64 100 49 0.9531 × 10−6 0.145 × 10−4

1/64 1,000 48 0.9884 × 10−6 0.145 × 10−4

The various comments we have done concerning the solution of the first test
problem still apply here.

The third test problem, namely

detD2ψ = 1 in Ω , ψ = 0 on ∂Ω , (5.69)

has no solution in H2(Ω), despite the smoothness of the data. Its augmented
Lagrangian solution was addressed in Section 5.4, and, indeed, one of our goals
here is to use algorithm (5.55)–(5.57) to check the convergence properties of the
augmented Lagrangian algorithm (5.8)–(5.11), discussed in Section 5.3, when prob-
lem (5.1) has no solution in H2(Ω), despite the fact that neither Vg nor Qf are
empty (which is clearly the case for problem (5.69)). In Sections 5.3 and 5.4 we
conjectured that if the above situation prevails, then the sequence {{ψn,pn}}n gen-
erated by algorithm (5.8)–(5.11) converges to a pair {ψ,p} minimizing precisely the
functional {ϕ,q} →

∫
Ω
|D2ϕ − q|2 dx over the set Vg × Qf . We have reported in

Table 5.6 the results produced by algorithm (5.55)–(5.57) (indeed a discrete ana-
logue of it) using ‖ψn+1

h − ψnh‖L2(Ω) ≤ 10−7 as the stopping criterion.
It is clear from Table 5.6 that the convergence is clearly slower than for the two

first test problems, however some important features remain such as: the number of
iterations necessary to achieve convergence is essentially independent of τ , as long as
this last parameter is large enough, and increases slowly with h (actually like

√
h).

Most importantly (from a conceptual point of view), the solutions computed via
formulation (LSQ2) and algorithm (5.55)–(5.57) coincide, essentially, with those
obtained via the augmented Lagrangian algorithm (5.8)–(5.11); this is a result
we were looking for, in order to clarify the convergence properties of algorithm
(5.8)–(5.11) when problem (5.1) has no solution in H2(Ω) while Vg and Qf are
both nonempty.



60 R. Glowinski, E.J. Dean, G. Guidoboni, L.H. Juárez and T.-W. Pan

Table 5.6. Third test problem.

h τ nit ‖D2
hψ

c
h − pch‖Q

1/32 1 4,977 0.1054 × 10−1

1/32 100 3,297 0.4980 × 10−2

1/32 1,000 3,275 0.4904 × 10−2

1/32 10,000 3,273 0.4896 × 10−2

1/64 1 6,575 0.1993 × 10−1

1/64 100 4,555 0.1321 × 10−1

1/64 1,000 4,527 0.1312 × 10−1

1/128 100 5,402 0.1841 × 10−1

1/128 1,000 5,372 0.1830 × 10−1

Remark 5.6. An evidence that the augmented Lagrangian and least squares
approaches produce, essentially, the same results for the third test problem is the
fact that ‖ψLSh −ψALh ‖L2(Ω) is of the order of 10−5 (the superscript LS (resp., AL)
being associated to the least-squares (resp., augmented Lagrangian) solution).
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