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Abstract

The Cayley-Dickson loop Qn is the multiplicative closure of basic elements of the algebra constructed by n applications
of the Cayley-Dickson doubling process (the first few examples of such algebras are real numbers, complex numbers,
quaternions, octonions, and sedenions).We discuss properties of the Cayley-Dickson loops, show that these loops are
Hamiltonian, and describe the structure of their automorphism groups.
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The Cayley-Dickson doubling process

The Cayley-Dickson doubling produces a sequence of power-associative algebras over a eld. The dimension of the
algebra doubles at each step of the construction. We consider the construction on  the eld of real numbers. The
results of the paper hold for any eld of characteristic other than 2.

Let  with conjugation a* = a for all . Let 

, where multiplication, addition, and conjugation are de ned as

follows:

 (1)

 (2)

 (3)

Conjugation de nes a norm  and the multiplicative inverse for nonzero elements 

. Notice that  and .

Dimension of over

 is 2 .

Definition 1. A nontrivial algebra A over a eld is a division algebra if for any nonzero a ∈ A and any b ∈ A there is a
unique x ∈ A such that ax = b and a unique y ∈ A such that ya = b.

*

n
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Definition 2. A normed division algebra A is a division algebra over the real or complex numbers which is a normed

vector space, with norm  satisfying  for all x, y ∈ A.

Theorem 3 (Hurwitz, 1898 [4]). The only normed division algebras over  are  (real numbers), 
 (complex numbers), (quaternions) and  (octonions).

Cayley-Dickson loops and their properties

We will consider multiplicative structures that arise from the Cayley-Dickson doubling process.

Definition 4. A loop is a nonempty set L with binary operation · such that

1. there is a neutral element 1 ∈ L such that 1 · x = x · 1 = x for all x ∈ L,

2. for all x, z ∈ L there is a unique y such that x · y = z,

3. for all y, z ∈ L there is a unique x such that x · y = z.

Define Cayley-Dickson loops  inductively as follows:

In a compact form,

 (4)

Using this approach, multiplication (1) becomes

 (5)

 (6)

 (7)

 (8)

Conjugation (3) modi es to

 (9)

 (10)

All elements of Q  have norm one due to the fact that

however, not all the elements of  of norm one are in Q . The Cayley-Dickson loop is the multiplicative closure of
basic elements of the corresponding Cayley-Dickson algebra. The rst few examples of the Cayley-Dickson loops are the
group of real units  (abelian); the group of complex integral units  (abelian); the group of quaternion

integral units  (not abelian); the octonion loop (Moufang); the sedenion loop  (not

Moufang); the trigintaduonion loop .

n

n
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We write Q  or Q instead of (Q , · ) further in the text.

Denote the loop generated by elements x , … , x  of a loop L by . Denote by i  an element 

 of Q . Such element i  satisfies , thus .

We call i , i , … , i  the canonical generators of Q . Any x ∈ Q  can be written as

For example,

Next, we show some properties of the Cayley-Dickson loops.

Theorem 5 ([3]). Any pair of elements of a Cayley-Dickson loop generates a subgroup of the quaternion group. In
particular, a pair x; y generates a real group when x = ±1 and y = ±1; a complex group when either x = ±1, or y = ±1 (but
not both), or x = ±y ≠ ±1; a quaternion group otherwise.

Lemma 33 extends Theorem 5 and shows that any three elements of a Cayley-Dickson loop generate a subloop of
either the octonion loop, or the quasioctonion loop.

Definition 6. A loop L is diassociative if every pair of elements of L generates a group in L.

Corollary 7. Every Cayley-Dickson loop is diassociative.

Proof. The quaternion group  is associative and the rest follows from Theorem 5.

Definition 8. Commutant of a loop L, denoted by C(L), is the set of elements that commute with every element of L.

More precisely, .

Definition 9. Nucleus of a loop L, denoted by N(L), is the set of elements that associate with all elements of L. More

precisely, .

Definition 10. Center of a loop L, denoted by Z(L), is the set of elements that commute and associate with every
element of L. More precisely, Z(L) = C(L) ∩ N(L).

Definition 11 ([9] p.13). Let S be a subloop of a loop L. Then S is called a normal subloop if for all x∈ y > L

Definition 12. Associator subloop of a loop L, denoted by A(L), is the smallest normal subloop of L such that L~A(L) is a
group.

Definition 13. Derived subloop of a loop L, denoted by L', is the smallest normal subloop of L such that L/L' is an abelian
group.

n n

1 n n

n n

1 2 n n n
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Lemma 14. Let S be a subloop of Q . The following holds

1. Center of S, Z(S) = {1,−1} when |S| > 4 and Z (S) = S otherwise.

2. Associator subloop of S, A(S) = Z(S) when |S| > 8 and A(S) = 1 otherwise.

3. Derived subloop of S, S' = Z(S) when |S| > 4 and S' = 1 otherwise.

Proof. 1. Let S be a subloop of Q . By Theorem 5,  when  is an abelian group,

hence Z (S) = S. Let  By Theorem 5,  and  is abelian and

therefore {1,−1} ∈ C(S). Let , choose an element . Then 

 by Theorem 5, and [x, y] = −1. It follows that C(S) = {1,−1}. Also,  and

, therefore [1, x, y] = 1 and [−1, x, y] = 1 for any x, y ∈ S, and . It

follows that Z (S) = {1,−1}.

2. Let |S| > 8. A group S/Z(S) is abelian, hence A(S) ≤ Z(S). Also, A(S) ≠ 1 since S is not a group, so A(S) = Z(S). Let |S|
≤ 8, then  and  is a group, so A(S) = 1.

3. Let |S| > 4. A group S/Z(S) is abelian, hence . Also,  since S is not an abelian group,

so . Let , then  and  is an abelian group, so .

Proposition 15. Let Q  be a Cayley-Dickson loop. The following holds

1. Conjugates of the elements of Q  are 

2. Orders of the elements of Q  are 

3. Inverses of the elements of Q  are .

4. Size of Q  is 2 .

5. For ≤ n, Q  embeds into Q , .

Proof. 1. By induction on n. In , 1·1 = −1· (−1) = 1. Suppose  holds for ,

then in Q  by definition (x, 0)* = (x*, 0) = (−x, 0) = −(x, 0) and (x, 1)* = (−x, 1) = −(x, 1).

2. By induction on n. In , (1, 0)(1, 0) = (1, 0) and (1, 1)(1, 1) = −(1, 0). Suppose x  = −1 holds for all 

, then in Q  (x, 0)(x, 0) = (xx, 0) = (−1, 0) and (x, 1)(x, 1) = (−x*x, 0) = (xx, 0) = (−1; 0).

3. Follows from 1. and 2. x*x = (−x)x = −(xx) = 1 = −(xx) = x(−x) = xx* when x ≠ ±1 and (±1)  = 1.

4. By de nition.

5. 

Definition 16. A loop L is an inverse property loop if for every x ∈ L there is x  ∈ L such that x (xy) = y = (yx)x  for
every y ∈ L.

Corollary 17. Cayley-Dickson loop is an inverse property loop.

Proof. x  = x* by Proposition 15. x*(xy) = (x*x)y = y = y(xx*) = (yx)x* by Corollary 7.

Definition 18. Let L be a loop. For any x, y ∈ L define commutator [x, y] by xy = (yx)[x, y].

n
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Definition 19. Let L be a loop. For any x, y, z ∈ L de ne associator [x, y, z] by xy · z = (x · yz)[x, y, z].

Theorem 20 (Moufang [6]). Let (M, · ) be a Moufang loop. If [x, y, z] = 1 for some x, y, z ∈ M, then x, y, z generate a
group in (M, · ).

Lemma 21. Let x, y, z be elements of Q . The following holds

1. Commutator [x, y] = −1 when  and [x, y] = 1 when .

2. Associator [x, y, z] = 1 or [x, y, z] = −1. In particular, [x, y, z] = 1 when  and [x, y, z] = −1 when 

.

Proof. 1. By Theorem 5,  when either x = ±1, or y = ±1, or both, or x = ±y, moreover, 

 implies that . The complex group  is abelian, hence [x, y] = 1 when 

. Next, suppose , i.e., x ≠ ±1, y ≠ ±1, x ≠ ±y. The quaternion group  is

not abelian, therefore [x, y] = −1.

2. By induction on n. Holds on elements of . Suppose 

. Then in

mod 2), where 

 and f(x, y, z) is some product of  and possibly −1.

Recall that x* = x or x* = −x for x ∈ Q , therefore f(x, y, z) is in fact the product of x, y, z, each occuring exactly once, and
possibly −1. Similarly, 

, where g(x, y, z) is some product of x, y, z each occuring

exactly once, and possibly −1. In other words, f(x, y, z) and g(x, y, z) only differ by a sign, which shows that either

Finally,  is associative, therefore [x, y, z] = 1 when .

 is a Moufang loop and not a group, therefore by Moufang's Theorem [x, y, z] = −1 when 

.

Let  be a cyclic group of order 2.

Remark 22. A group  is abelian and isomorphic to (multiplicative) .

Proof. Follows from Lemma 14 and construction (4).

Lemma 23. Let B be a subloop of Q . The following holds

1. If B ≠ 1 and , then .

2. If B = 1 and , then .

3. Any n elements of a Cayley-Dickson loop generate a subloop of size 2 , k ≤ n + 1.

4. The size of B is 2  for some m ≤ n.

n

n

n

k

m
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Proof. 1. Let 1 ≠ B ≤ Q  and . By Lemma 14,  and ,

then  and  are subgroups of . It follows

that  because we work in the vector space  and we added

another vector.

2. Let B = 1. If x ≠ −1 then x  = −1 by Proposition 15 and . Also,

.

3. By induction on n. The size of  is 1; 2 or 4. Suppose n elements of a Cayley-Dickson loop generate a

subloop B of size 2  for some k ≤ n + 1. Add an element x to B. If x ∈ B, then 

. If , then

, by 1.

4. Follows from 3.

Cayley-Dickson loops are Hamiltonian

We show that the Cayley-Dickson loops are Hamiltonian. Norton [8] formulated a number of theorems characterizing
diassociative Hamiltonian loops and showed that the octonion loop is Hamiltonian, however, at that time he did not study
the generalized Cayley-Dickson loops. It is showed computationally in [2] that  is Hamiltonian.

Definition 24. A Hamiltonian loop is a loop in which every subloop is normal.

Theorem 25. Cayley-Dickson loop Q  is Hamiltonian.

Proof. Let S be a subloop of Q , s ∈ S, x, y ∈ Q . Using Lemma 21 and Lemma 14,

Theorem 26. (Norton) If A is an abelian group with elements of odd order, T is an abelian group with exponent 2, and K
is a diassociative loop such that

1. elements of K have order 1, 2 or 4,

2. there exist elements x, y in K such that ,

3. every element of K of order 2 is in the center,

4. if x, y, z ∈ K are of order 4, then x  = y  = z ,

xy = d · yx where d = 1 or d = x ,

and xy · z = h(x · yz) where h = 1 or h = x ,

then their direct product A × T ×K is a diassociative Hamiltonian loop.

Theorem 26 with A = T = 1 can alternatively be used to establish the result for all Cayley- Dickson loops.

Automorphism groups of the Cayley-Dickson loops
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In this section we study the automorphism groups of the Cayley-Dickson loops.

Definition 27. Let L be a loop. A map  is an automorphism if it is a bijective homo- morphism.

Definition 28. The set of all automorphisms of a loop L forms a group under composition, called the automorphism
group and denoted by Aut(L).

Definition 29. Define the orbit of a set X under the action of a group G by 
.

Definition 30. Define the (pointwise) stabilizer of a set X in G by .

Theorem 31 (Orbit-Stabilizer Theorem [10] p.67). Let G be a nite group acting on a nite set X, then 

.

We use Theorem 31 to nd an upper bound on the size of . Consider G = 

. Any automorphism on G fixes 1 and −1, therefore it is only possible for an automorphism to map 

(e.g., the identity map), and  (e.g., conjugation). The size of the orbit  is

therefore 2. Notice that , since  is generated by i . It follows that

Next, let . Again, 1 and −1 are xed by any automorphism and are not in ,

therefore the size of  can be at most . When i  is stabilized, 

, moreover, , since  is generated

by {i , i }. The orbit  can have the size at most , because the set {1,−1, i ,−i } is

xed. We have

(11)

It has been shown, in fact, (see, e.g., [11] p.148), that  is isomorphic to the symmetric group S  of size

24.

It has been established in [5] that  has size 1344 and is an extension of the elementary abelian

group  of order 8 by the simple group PSL (7) of order 168. One can use the approach similar to (11) to see

what  looks like.

To get an idea about the general case, we calculated the automorphism groups of  and  using

LOOPS package for GAP [7]. Summarizing, the sizes of the automorphism groups of the rst ve Cayley-Dickson loops
are

1

1

1 2 1 1

4

2
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One may notice that the automorphism groups of  are as big as they possibly can be,
subject to the obvious structural restrictions in , only xing {1, −1} (1 is the only element of order 1,

and −1 is the only element of order 2). On the contrary, the automorphism groups of  and  are only
double the size of the preceeding ones. Theorem 32 below explains such behavior. We denote 

 and use it further in the text.

Theorem 32. Let n ≥ 4. If  is an automorphism and , then

We establish several auxiliary results and use them to prove Theorem 32 at the end of the chapter. The following lemma
shows that all subloops of Q  of size 16 fall into two isomorphism classes. In particular, any such subloop is either
isomorphic to , the octonion loop, or , the quasioctonion loop, described in [1, 3]. The octonion loop

is Moufang, however, the quasioctonion loop is not. We take 

 as a canonical octonion loop, and 

 as a canonical quasioctonion loop

in . We use LOOPS package for GAP [7] in Lemma 33 and further in the text to establish the isomorphisms
between the subloops we construct, and either  or .

Lemma 33. If x, y, z are elements of Q  such that , then either

Proof. Let x, y, z ∈ Q  such that . We want to construct a loop

Fix the associators [x, y, z], [x, z, y], and [x, y, xz]. Using diassociativity and Lemma 21.1,

(12)

n

n

n
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(13)

(14)

(16)

(17)

Multiplying (17) by (xy) on the left,

 (18)

Multiplying (17) by (xz) on the right,

 (19)

Equalities (12)-(19) together with some trivial calculations result in Table 1, i.e., it is su�cient to fix [x, y, z], [x, z, y], and
[x, y, xz] in order to uniquely define . We need to consider the following cases:



Next, we study the associators in Q . We use the result to prove Lemmas 35 and 36.

Lemma 34. Let x, y, z ∈ Q , then in Q

(a) [(x, 0), (y, 0), (z, 1)] = [x, y][z, y, x],

(b) [(x, 0), (y, 1), (z, 0)] = [x, z][y, x, z][y, z, x],

(c) [(x, 0), (y, 1), (z, 1)] = [x, y][x, z][z, x, y][x, z, y],

(d) [(x, 1), (y, 0), (z, 0)] = [y, z][x, y, z],

(e) [(x, 1), (y, 0), (z, 1)] = [y, x][y, z][z, y, x],

(f) [(x, 1), (y, 1), (z, 0)] = [z, x][z, y][y, x, z][y, z, x],

(g) [(x, 1), (y, 1), (z, 1)] = [x, y][x, z][y, z][z, x, y][x, z, y]:

Proof. (a) (x, 0)(y, 0) · (z, 1) = (xy, 0)(z, 1) = (z · xy, 1) = [x, y](z · yx, 1)
 

= [x, y][z, y, x](zy · x, 1) = [x, y][z, y, x]((x, 0)(zy, 1)) = [x, y][z, y, x]((x, 0) · (y, 0)(z, 1)):

(b) (x, 0)(y, 1) · (z, 0) = (yx, 1)(z, 0) = (yx · z*, 1) = [y, x, z](y · xz*, 1) = [x, z][y, x, z](y · z*x, 1)
 

= [x, z][y, x, z][y, z, x](yz* · x, 1) = [x, z][y, x, z][y, z, x]((x, 0)(yz*, 1))
 

= [x, z][y, x, z][y, z, x]((x, 0) · (y, 1)(z, 0)):

(c) (x, 0)(y, 1) · (z, 1) = (yx, 1)(z, 1) = (−z* · yx, 0) = [x, y](−z* · xy, 0)
 

= [x, y][z, x, y](−z*x · y, 0) = [x, y][x, z][z, x, y](x(−z*) · y, 0)
 

= [x, y][x, z][z, x, y][x, z, y](x · (−z*)y, 0) = [x, y][x, z][z, x, y][x, z, y]((x, 0) · (−z*y, 0))
 

= [x, y][x, z][z, x, y][x, z, y]((x, 0) · (y, 1)(z, 1)):

(d) (x, 1)(y, 0) · (z, 0) = (xy*, 1)(z, 0) = (xy* · z*, 1) = [x, y, z](x · y*z*, 1)
 

= [x, y, z]((x, 1)((y*z*)*, 0)) = [x, y, z]((x, 1)(zy, 0)) = [y, z][x, y, z]((x, 1)(yz, 0))
 

= [y, z][x, y, z]((x, 1) · (y, 0)(z, 0)):

(e) (x, 1)(y, 0) · (z, 1) = (xy*, 1)(z, 1) = (−z* · xy*, 0) = [y, x](−z* · y*x, 0)
 

= [y, x][z, y, x](−z*y* · x, 0) = [y, x][z, y, x]((x, 1)(−(−z*y*)*, 1))
 

= [y, x][z, y, x]((x, 1)(yz, 1)) = [y, x][y, z][z, y, x]((x, 1)(zy, 1))
 

= [y, x][y, z][z, y, x]((x, 1) · (y, 0)(z, 1)):

(f) (x, 1)(y, 1) · (z, 0) = (−y*x, 0)(z, 0) = (−y*x · z, 0) = [y, x, z](−y* · xz, 0)
 

= [z, x][y, x, z](−y* · zx, 0) = [z, x][y, x, z][y, z, x](−y*z · x, 0)
 

= [z, x][y, x, z][y, z, x]((x, 1)(−(−y*z)*, 1)) = [z, x][y, x, z][y, z, x]((x, 1)(z*y, 1))
 

= [z, x][z, y][y, x, z][y, z, x]((x, 1)(yz*, 1)) = [z, x][z, y][y, x, z][y, z, x]((x, 1) · (y, 1)(z, 0)):

(g) (x, 1)(y, 1) · (z, 1) = (−y*x, 0)(z, 1) = (z · (−y*)x, 1) = [x, y](z · x(−y*), 1)
 

= [x, y][z, x, y](zx · (−y*), 1) = [x, y][x, z][z, x, y](xz · (−y*), 1)
 

= [x, y][x, z][z, x, y][x, z, y](x · z(−y*), 1) = [x, y][x, z][z, x, y][x, z, y]((x, 1)((z(−y*))*, 0))
 

n

n−1 n



= [x, y][x, z][z, x, y][x, z, y]((x, 1)(−yz*, 0)) = [x, y][x, z][y, z][z, x, y][x, z, y]((x, 1)(−z*y, 0))
 

= [x, y][x, z][y, z][z, x, y][x, z, y]((x, 1) · (y, 1)(z, 1)):

Lemma 35 shows that e ∈ Q  is special; if we consider a subloop  of Q such that 

, then  is always a copy of the octonion loop . Lemma 40 shows that

this, however, is not the case for any element of Q \{±e}. Therefore, an automorphism on Q  cannot map e to an
element x ∈ Q \{±e}. Also, we use Lemma 39 to show that an element (x, 0) of Q  is contained in more copies
of Q  than an element (y, 1), and hence an automorphism on Q  cannot map (x, 0) to (y, 1) for any x, y >Q .

Lemma 35.  for any x, y ∈ Q  such that .

Proof. Let x, y be elements of Q  such that . As follows from the proof of Lemma 33, in order to

prove that , it is su�cient to show that

 (20)

Let  be elements of Q . We use Lemma 34, and consider the following cases:

If , then , and

If , then , and

If , then , and

If , then , and

We conclude that [x, y, e] = [x, e, y] = [x, y, xe] = −1 for any x, y ∈ Q  such that . By Lemma 33, 

by .

n n

n n

n n

n−1 n n−1

n

n

n−1

n



The following lemma helps to distinguish between some copies of  and , and is used to prove

Lemmas 39 and 40.

Lemma 36. Let x, y, z ∈ Q , n ≥ 4 be such that . Then in Q

Proof. Let x, y, z ∈ Q  be such that . By Lemma 21, [x, y, z] = [x, z, y] = [y, x, z] = −1, and

[x, y] = [y, z] = [x, z] = −1. Using Lemma 34,

 (21)

shows that  and hence , while

 (22)

shows that  is not Moufang and therefore .

Similarly, using Lemma 34,

 (23)

 (24)

shows that .

A loop  as a copy of  in Q .

A loop  by .

Definition 37. Let B be a subloop of Q  of index 2 and D be a subloop of Q  of index 2. We call B a subloop of the rst
type when B = Q , a subloop of the second type when , a subloop of the third type when 

.

Figure 1 illustrates all subloops of index 2 of the sedenion loop . Rows in the gure correspond to the subloops,
columns show the elements these subloops contain. One may notice that each of the subloops is of one of three types.
The following lemma shows that this is the case for all Cayley-Dickson loops.

Lemma 38. If B is a subloop of Q  of index 2, then B is a subloop of either the rst, or the second, or the third type.

Proof. By Proposition 15, Q  is a subloop of Q  of index 2, it is of the rst type. Let B be a subloop of Q  of index 2, we
assume B ≠ Q  further in the proof. By Lemma 14, Z(Q ) = {1,−1} ∈ B. Consider B/Z(Q ) and Q /Z(Q ). By Remark 22, 

. Also, there is  such that a  = 1,

because B ≠ Q . Define a map  by

, then φ� maps elements with x  = 1

(x  = 0) to elements with y  = 0 (y  = 1). Hence B/Z(Q ) contains the same number of elements that end in 0 and that

n−1 n

n−1

n

n n−1

n−1

n

n−1 n n

n−1 n n n n

n

n−1

n

n n n n



end in 1, and hence a
group 

 is a subgroup of B/Z(Q ) of index 2. This implies that 

 is a subloop of B of index 2 and hence D is a

subloop of Q  of index 2.

Suppose e ∈ B. Define  by

. ψ fixes

coordinates x ,…,x  and maps x  = 1 (x  = 0) to y = 0 (y  = 1). Therefore when e ∈ B, we see that 
, the subloop of the second type.

Now suppose e ∈ B. Suppose there is an element  such that 

 . By diassociativity,

, contradicts the

assumption that . This means that  implies , the subloop of

the third type.

Next, we show that, starting at , any subloop of Q  of the third type is not a Cayley-Dickson loop.

Lemma 39. Let B ≠ Q  be a subloop of Q  of index 2 and D be a subloop of Q  of index 2, n ≥ 4.

1. For any x > Q  there exist y, z ∈ Q , such that  and

2. If  then for any x ∈ B there exist y, z ∈ B such that .

3. If  then . In particular, any subloop of the third type is not a Cayley-Dickson loop.

Proof. 1. The size of D is . Let e ∈ Q . If x ∈ D, choose , then 

 by Lemma 35. Similarly, if , choose y ∈ D, , then 

 by Lemma 35. If x = e, choose  and , then 

 by Lemma 35.

Figure 1: Subloops of  of index 2
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2. By Lemma 38,  for some subloop D of Q  of index 2. Without loss of generality,

suppose x ∈ D. By 1 there exist y, z ∈ Q  such that  and 

. Again, without loss of generality, suppose y ∈ D and ,

therefore (x, 0) , (y, 0) , (z, 1) ∈ B. Using (21), (22), .

3. By Lemma 35, there is an element e ∈ Q  such that for any  implies

that  . However, by 2, B doesn't contain such an element.

Lemma 40. Let . There exist y, z ∈ Q  such that .

Proof. Without loss of generality, suppose x ∈ Q . By Lemma 39 part 1, there exist y, z∈ Q  such that 

. Using (21), (22), .

On Q , define maps

 (25)

 (26)

where x ∈ Q  and x  ∈ {0, 1}. The map (id, id) is an identity; the map φ� = (id,−id) is an automorphism because

Proof. (of Theorem 32) Let , be an automorphism.

1. By Proposition 15, �φ (1) = 1, φ �(−1) = −1.

2. Let . By Lemma 40, there exist y, z > Q  such that , however, by

Lemma 35,  for any y, z∈Q . Therefore it is only possible that φ� (e) = e, which holds when � is

an identity map, or φ �(e) = −e, which holds when � = φ (id,−id).

3. Consider the subloops of Q  of index 2. By Lemma 39, any such subloop of the third type is not isomorphic to Q . A
subloop of the rst type (there is only one such subloop) is a copy of Q  in Q  of the form 

. Therefore any element (x, 0) is contained in at least one more copy of Q  compared to

an element (y, 1). This shows that for every  for some y ∈ Q  and hence 

.

4. Let x ∈ Q . Using multiplication formula (6), . If φ is an automorphism on Q ,

then .

Finally, we show that, starting at , Aut(Q ) is a direct product of Aut(Q ) and a cyclic group of order 2.

Theorem 41. Let Q  be a Cayley-Dickson loop and let n ∈ 4. Then .

n−1
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n
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n−1 n

n−1

n−1
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Proof. Let G = Aut(Q ), K = Aut(Q ), .

1. A group K is normal in G because [G : K] = 2.

2. Next, show that H is normal in G. Let g ∈ G, h ∈ H. Notice that 

. Let where .

therefore 

3. Both K and H are normal subgroups of G, therefore KH ≤ G. Also, , hence KH = G.

4. Obviously,  and .
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