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Algorithm 1: PageRank-clusteringA
1 Input: G, k, �
2 Output: A set of centers C and partitions S, or nothing

for all v ∈ G do
compute ρ(α, v)

end for
Find the roots of Φ�(α) (there can be more than one root if G has a layered
clustering structure)
for all roots α do

Compute Φ(α)
if Φ(α) ≤ � then

Compute Ψ(α)
else

Go to the next α
end if
if k < Ψ(α) − 2 − � then

Go to the next α
else

Select c log n sets of k potential centers, randomly chosen according to π
end if
for all sets S = {v1 , . . . , vk } do

Let C be the set of centers of mass where ci = ρ(α, vi )
Compute µ(C) and Ψα (C)
if |µ(C) − Φ(α)| ≤ � and |Ψα (C) − Ψ(α)| ≤ � then

Determine the k Voronoi regions according to the PageRank distances
using C and return them

end if
end for

end for

We also note that there might be no clustering output if the conditions set
within the algorithms are not satisfied. Indeed, there exist graphs that inherently
do not have a k-clustered structure within the error bound that we set for �.
Another reason for no output is the probabilistic nature of the above sampling
method. We will provide evidence for the correctness of the above algorithm by
showing that with high probability, a graph with a k-clustered structure will
have outputs that capture its clusters in a feasible manner that we will specify
further.

We say a that graph G is (k, h, β, �)-clusterable if the vertices of G can be
partitioned into k parts such that:

1. Each part Si has Cheeger ratio at most h.

2. Each Si has volume at least βvol(G)/k for some constant β.
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Algorithm 2: PageRank-clusteringB
1 Input: G, k, �
2 Output: A set of centers C and partitions S, or nothing

for all v ∈ G do
compute ρ(α, v)

end for
Find the roots of Φ�(α) within an error bound �/2, by using sampling techniques
from [Rudelson and Vershynin 07] involving O(log n) nodes, log(1/�) values of α
and δ-approximate PageRank vectors [Andersen et al. 06, Chung and Zhao 10]
where δ = �/n2 (there can be more than one root if G has a layered clustering
structure)
for all roots α do

Approximate Φ(α)
if Φ(α) ≤ � then

Compute Ψ(α)
else

Go to the next α
end if
if k < Ψ(α) − 2 − � then

Go to the next α
else

Select c log n sets of k potential centers, randomly chosen according to π
end if
for all sets S = {v1 , . . . , vk } do

Let C be the set of centers of mass where ci = ρ(α, vi )
Compute µ(C) and Ψα (C).
if |µ(C) − Φ(α)| ≤ � and |Ψα (C) − Ψ(α)| ≤ � then

Determine the k Voronoi regions according to the PageRank distances
using C and return them

end if
end for

end for

3. For each Si , any subset S �
i ⊂ Si with vol(S �

i) ≤ (1 − �)vol(Si) has its
Cheeger ratio at least c

√
h log n, where c = 8

√
β/k/�.

We will provide evidence for the correctness of PageRank-clusteringAby prov-
ing the following theorem:

Theorem 4.1.Suppose a graphG has a(k, h, β, �)-clustering and α, � ∈ (0, 1) satisfy
� ≥ hk/(2αβ). Then with high probability, PageRank-clusteringA returns a set
C of k centers with Φ(α) ≤ �, Ψ(C) > k − 2 − �, and the k clusters are near
optimal according to the PageRankk-means measureµ with an additive error
term �.
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Figure 10. Results of PageRank-Display on a network of political books about
the 2004 US presidential election [Krebs 11]. Edges are present between two books
if they were frequently purchased together (color figure available online).

To illustrate PageRank-clusteringB, we consider a dumbbell graph U as an
example. This graph U has two complete graphs K20 connected by a single
edge, yielding a Cheeger ratio of h ≈ 0.0026. Plotting Φ(α) (Figure 1) and its
derivative (Figure 2) shows that there is a local minimum near α ≈ 0.018. When
Ψ is large, many individual nodes have personalized PageRank vectors that differ
greatly from the overall distribution. This indicates that there are many nodes
that are more representative of a small cluster than the entire graph. By plotting
Ψ(α) (Figure 3) and its derivative (Figure 4), we can see that there is a distinct
inflection point in the plot of Ψ for the dumbbell graph U as well.

7. A Graph-Drawing Algorithm Using PageRank

The visualization of complex graphs provides many computational challenges.
Graphs such as the World Wide Web and social networks are known to exhibit
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ubiquitous structure, including power-law distributions, small-world phenomena,
and a community structure [Albert et al. 99, Broder et al. 00, Faloutsos et al. 99].
With large graphs, it is easy for such intricate structures to be lost in the sheer
quantity of nodes and edges, which can result in drawings that re”ect a network•s
size but not necessarily its structure.

Given a set of nodesS, we can extract communities around each node and de-
termine the layout of the graph using personalized PageRank. The arrangement
can be done using a force-based graph layout algorithm such as the Kamada…
Kawai algorithm [Kamada and Kawai 89]. The goal is to capture local commu-
nities; we can do this by assigning edges{ s, v} for each s � S and v � V \ S
with weight inversely proportional to the personalized PageRank. In this way,
unrelated nodes with low PageRank will be forced to be distant, and close com-
munities will remain close together. We also add edges{ s, s�} for s, s� � S with
large weight to encourage separation of the individual communities. We use an
implementation from Graphviz [Gansner and North 00].

We note that because force-based algorithms are simulations, they do not guar-
antee the exact cluster structure, but we will illustrate that it works well in prac-
tice. Additionally, there are algorithms speci“cally designed for clustered graph
visualization [Eades and Feng 96, Parker et al. 98] and highlighting high-ranking
nodes [Brandes and Cornelsen 01], but they impose a considerable amount of
arti“cial hierarchical structure on the drawing and often require precomputing
the clusters. Once we have a layout for all the nodes in the graph, we can parti-
tion them using a Voronoi diagram. We compute the Voronoi diagram e�ciently
using Fortune•s algorithm [Fortune 86].

We tie together personalized PageRank and Voronoi diagrams in the algorithm
PageRank-display, Algorithm 3.

The jumping constant � is associated with the scale of the clustering. We can
determine � either by trial and error or by optimizing � and � as in Section 4.
As long as G is connected, the PageRank vector will be nonzero on every
vertex. Using the algorithms from [Andersen et al. 06, Chung and Zhao 10],
the approximation factor � acts as a cuto�, and any nodev with PageRank less
than �d v will be assigned zero. This is advantageous because the support of the
approximate PageRank vector will be limited to the local community containing
its seed. InPageRank-display, we give weights to the edges equal to 1/p s(v), but
this is problematic if ps(v) = 0. In that case, we omit the edge from G� entirely.

We remark that the selection of � will in”uence the size of the local commu-
nities: the subset of nodes with nonzero approximate PageRank has volume at
most 2

(1Š� ) � (see [Andersen et al. 06]). This implies that a good selection of� is

O( |S|
(1Š� )vol( G) ).
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Algorithm 3: PageRank-display
1 Input: G = (V, E), S, α, �
2 Output: A graph drawing

for all s ∈ S do
Compute an approximate PageRank vector ps = ρ(α, s)

end for
Let G� be a graph with vertex set V
for all s ∈ S and v ∈ V \ S do

Add an edge {s, v} to G� with weight 1/ps (v), as long as ps (v) > 0
end for
for all s, s� ∈ S do

Add an edge {s, s�} to G� with weight 10 × maxs ,v 1/ps (v)
end for
Use a force-based display algorithm on G� to determine coordinates cv for each
v ∈ V
Compute the Voronoi diagram on S
Draw G using the coordinates cv , highlighting S with a different color, and
overlaying the Voronoi diagram

We also remark that the selection of S is important. If S contains vertices that
are not part of communities or two nodes in the same community, then there will
be no structure to display. In general, the selection of S is similar to the geometric
problem of finding a set of points with minimum covering radius, which can be
intractable (see [Guruswami et al. 05]). There are several algorithms that can
automatically choose S, including PageRank-clusteringas presented here.

We used our algorithm to demonstrate and highlight the existence of local
structure in two real-world data sets. The first data set is a social network among
62 dolphins [Lusseau et al. 03]. While the graph exhibits traditional network
structure such as small-world phenomena, one can see in Figures 5 and 6 that
the dolphins can be divided into two communities, with just a few connected to
both sides. Note that with larger α, the far-flung nodes become more isolated,
making the communities appear denser.

A more interesting example is shown in Figures 7 and 8. The vertices represent
114 NCAA Division I American collegiate football teams, with edges connecting
two teams if they played against each other during the year 2000 football season.
The league is divided into many smaller conferences of up to 12 teams; for each
team, about half of its games are played against conference opponents, and the
rest are played against nonconference teams. An appropriate selection of the
eight highlighted teams in Figures 7 and 8 reveal a partition that separates
their eight respective conferences, and teams from the remaining conferences are
placed on the periphery of the drawing. Here, the larger α is more effective, since
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Figure 11. Results of PageRank-Display on a network of US Air Force ”ying
teams [de Nooy et al. 04, Chapter 4] (color “gure available online).

the PageRank is more concentrated near the community centers. Several more
graph-drawing examples are shown in Figures 9 through 11.
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