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Finding and Visualizing Graph
Clusters Using PageRank
Optimization
Fan Chung and Alexander Tsiatas

Abstract. We give algorithms for finding graph clusters and drawing graphs, highlight-
ing local community structure within the context of a larger network. For a given graph
G, we use the personalized PageRank vectors to determine a set of clusters, by opti-
mizing the jumping parameter α subject to several cluster variance measures in order
to capture the graph structure according to PageRank. We then give a graph visual-
ization algorithm for the clusters using PageRank-based coordinates. Several drawings
of real-world data are given, illustrating the partition and local community structure.

1. Introduction

Finding smaller local communities within a larger graph is a well-studied prob-
lem with many applications. For example, advertisers can more effectively serve
niche audiences if they can identify their target communities within the larger
social web, and viruses in technological or population networks can be effectively
quarantined by distributing antidote to local clusters around their origins [Chung
et al. 09].
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There are numerous well-known algorithms for finding clusters within a graph,
including k-means [Lloyd 82, MacQueen 67], spectral clustering [Ng et al. 02, Shi
and Malik 00], Markov cluster algorithms [Enright et al. 02], and numerous
others [Harel and Koren 02, Mancoridis et al. 99, Moody 01, Newman and Gir-
van 04, Noack 09]. Many of these algorithms require embedding a graph into low-
dimensional Euclidean space using pairwise distances, but graph distance-based
metrics fail to capture graph structure in real-world networks with small-world
phenomena, since all pairs of nodes are connected within short distances. Page-
Rank provides essential structural relationships between nodes and is particularly
well suited for clustering analysis. Furthermore, PageRank vectors can be com-
puted more efficiently than performing a dimension reduction for a large graph.

In this paper, we give clustering algorithms, PageRank-clustering, that use
PageRank vectors to draw attention to local graph structure within a larger
network. PageRank was first introduced in [Brin and Page 98] for Web search
algorithms. Although the original definition is for the Web graph, PageRank is
well defined for any graph. Here, we will use a modified version of PageRank,
known as personalized PageRank [Jeh and Widom 03], using a prescribed set of
nodes as a seed vector.

PageRank can capture well the quantitative correlations between pairs or sub-
sets of nodes, especially on small-world graphs, where the usual graph distances
are all quite small. We use PageRank vectors to define a notion of PageRank
distance that provides a natural metric space appropriate for graphs.

A key diffusion parameter in deriving PageRank vectors is the jumping con-
stant α. In our clustering algorithms, we will use α to control the scale of the
clustering. In particular, we introduce two variance measures that can be used
to automatically find the optimized values for α. We then use PageRank vectors
determined by α to guide the selection of a set of centers of mass and use them
to find the clusters via PageRank distances. We further apply our clustering
algorithm to derive a visualization algorithm that we call PageRank-display to
effectively display local structure in drawings of large networks.

The paper is organized as follows: The basic definitions for PageRank are
given in Section 2. In Section 3, we describe two cluster variance measures using
PageRank vectors, and we give clustering algorithms in Section 4, with analysis
in Sections 5 and 6. A graph-drawing algorithm is given in the last section and
several examples are included.

2. Preliminaries

We consider general undirected graphs G = (V,E) with vertex set V and edge set
E. For a vertex v, let dv denote the degree of v, which is the number of neighbors
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of v. For a set of nodes T ⊆ V , the volume of T is defined to be vol(T ) =
∑

v∈T dv .
Let D denote the diagonal degree matrix and A the adjacency matrix of G, where

Aij =

{
1 if {vi, vj} ∈ E,

0 otherwise.

We consider a typical random walk on G with the transition probability matrix
defined by P = D−1A, and we denote the lazy walk by W = (I + P )/2. Let
π = �d/vol(G) denote the stationary distribution of the random walk, if it exists.
Personalized PageRank vectors are based on random walks with two governing
parameters: a seed vector �s, representing a probability distribution over V , and a
jumping constant α, controlling the rate of diffusion. The personalized PageRank
vector ρ(α,�s) is defined to be the solution to the following recurrence relation:

ρ(α,�s) = α�s + (1 − α)ρ(α,�s)W.

Here, �s (and all other vectors) will be treated as row vectors. The original def-
inition of PageRank defined in [Brin and Page 98] is the special case in which
the seed vector is the uniform distribution. If �s is simply the distribution that is
1 for a single node v and 0 elsewhere, we write ρ(α, v).

An alternative expression for the personalized PageRank ρ(α,�s) is a geometric
sum of random walks (see [Andersen et al. 06]):

ρ(α,�s) = α

∞∑
t=0

(1 − α)t�sWt.

In general, it can be computationally expensive to compute PageRank exactly;
it requires using the entire graph structure, which can be prohibitive on large
networks. Instead, we use an approximate PageRank algorithm as given in [An-
dersen et al. 06, Chung and Zhao 10]. This approximation algorithm is much
more tractable on large networks, because it can be computed using only the lo-
cal graph structure around the starting seed vector �s. Besides �s and the jumping
constant α, the algorithm requires an approximation parameter ε.

For a subset of nodes H in a graph G, the Cheeger ratio h(H) is a measure of
the cut between H and its complement H̄:

h(H) =
e(H, H̄)

min(vol(H), vol(H̄))
,

where e(H, H̄) denotes the number of edges {u, v} with u ∈ H and v ∈ H̄.
For a set of points S = {s1 , . . . , sn} in Euclidean space, the Voronoi diagram

is a partition of the space into disjoint regions R1 , . . . , Rn such that each Ri

contains si and the region of space containing the set of points that are closer to si

than any other sj . Voronoi diagrams are well studied in the field of computational
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geometry. Here we consider Voronoi diagrams on graphs using PageRank vectors
as a notion of closeness.

For two vertices u, v, we define the PageRank distance with jumping constant
α as

distα (u, v) =
∥∥∥ρ(α, u)D−1/2 − ρ(α, v)D−1/2

∥∥∥ .

Throughout this paper, ‖ · ‖ denotes the L2 norm. This choice of the norm
allows for differentiation in the optimization process later.

We can further generalize this distance to two probability distributions p and q

defined on the vertex set V of G. Namely, the PageRank distance, with jumping
constant α, between p and q is defined by

distα (p, q) =
∑
u,v

p(u)q(v)distα (u, v).

With this definition, for a subset S of vertices, we can generalize the notion of
a center of mass for S to be a probability distribution c. For a given ε > 0, we
say that c is an ε-center or center of mass for S if∑

v∈S

distα (c, v) ≤ ε.

Let C denote a set of k (potential) centers. The goal is for each center c to
be a representative center of mass for some cluster of vertices. We let Rc denote
the set of all vertices x that are closest to c in terms of PageRank, provided the
jumping constant α is given:

Rc = {x ∈ V : distα (c, x) ≤ distα (c′, x) for all c′ ∈ C}.

3. PageRank Variance and Cluster Variance Measures

For a vertex v and a set of centers C, let cv denote the center that is closest to
v, i.e., cv is the center of mass c ∈ C such that v ∈ Rc .

We follow the approach using k-means by defining the following evaluative
measure for a potential set of k centers C, using PageRank instead of Euclidean
distances:

µ(C) =
∑
v∈V

dv‖ρ(α, v)D−1/2 − ρ(α, cv )D−1/2‖2 =
∑
v∈V

dv distα (v, cv )2 .

Selecting a set of representative centers within a graph is a hard problem,
known to be NP-complete [Aloise et al. 09]. There are many approximate and
heuristic algorithms used in practice (see [Schaeffer 07]). Here, we will develop
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algorithms that use personalized PageRank vectors to select the centers. In the
Web graph, links between websites can be interpreted as votes for a website’s
importance, and PageRank vectors are used to determine which pages are intrin-
sically more important in the overall graph. Personalized PageRank vectors are
local information quantifying the importance of every node to the seed. Thus,
the uth component of the personalized PageRank vector ρ(α, v) quantifies how
well suited u is to be a representative cluster center for v.

To evaluate a set of cluster centers in a graph G, we consider two measures
that capture the community structure of G with respect to PageRank:

Φ(α) =
∑
v∈V

dv

∥∥∥ρ(α, v)D−1/2 − ρ(α, ρ(α, v))D−1/2
∥∥∥2

=
∑
v∈V

dv distα (v, ρ(α, v))2 ,

Ψ(α) =
∑
v∈V

dv

∥∥∥ρ(α, ρ(α, v))D−1/2 − πD−1/2
∥∥∥2

=
∑
v∈V

dv distα (ρ(α, v), π)2 .

The α-PageRank variance Φ(α) measures discrepancies between the personalized
PageRank vectors for nodes v and possible centers nearest to v, represented
by the probability distribution ρ(α, v). The α-cluster variance Ψ(α) measures
large discrepancies between personalized PageRank vectors for nodes v and the
overall stationary distribution π. If the PageRank variance Φ(α) is small, then
the “guesses” using PageRank vectors for the centers of mass give a good upper
bound for the k-means evaluation µ using PageRank distance, indicating the
formation of clusters. If the cluster variance Ψ(α) is large, then the centers
of mass using the predictions from PageRank vectors are quite far from the
stationary distribution, capturing a community structure. Thus, our goal is to
find the appropriate α such that Φ(α) is small but Ψ(α) is large.

For a specific set of centers of mass C, we use the following for an evaluative
metric Ψα (C), suggesting the structural separation of the communities repre-
sented by centers in C:

Ψα (C) =
∑
c∈C

vol(Rc)
∥∥∥ρ(α, c)D−1/2 − πD−1/2

∥∥∥2
=
∑
c∈C

vol(Rc) distα (c, π)2 .

We remark that this measure is essentially the analogue of k-means in terms of
PageRank distance, and it has a similar flavor as a heuristic given in [Dyer and
Frieze 85] for the traditional center selection problem. The metrics µ(C) and
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Ψα (C) are designed to evaluate a specific set of clusters C, while the measures
Φ(α) and Ψ(α) are well suited to measure a graph’s inherent clustered structure.

4. The PageRank-Clustering Algorithms

These evaluative measures give us a way to evaluate a set of community centers,
leading to the PageRank-clustering algorithms presented here. The problem of
finding a set of k centers minimizing µ(C) is then reduced to the problem of
minimizing Φ(α) while Ψ(α) is large for appropriate α. In particular, for a spe-
cial class of graphs that consist of k clusters of vertices where each cluster has
a bounded Cheeger ratio, the center selection algorithm is guaranteed to be
successful with high probability.

A natural question is to find the appropriate α for a given graph, if such α

exists and if the graph is clusterable. (The definition for clusterable will be given
later.) A direct method is to compute the variance metrics for a sample of α and
narrow down the range for α using binary search. Here, we give a systematic
method for determining the existence of an appropriate α and finding its value
by differentiating Φ(α) and finding roots α satisfying Φ′(α) = 0. It is not too
difficult to compute that the derivative of Φ satisfies

Φ′(α) =
1 − α

α3

(∑
v

∥∥∥gv (α)D−1/2
∥∥∥2

− 2〈gv (α), ρ(α, gv (α))D−1〉
)

, (4.1)

where gv (α) = ρ(α, ρ(α, v)(I − W )). Here, we give two versions of the cluster-
ing algorithm. For the sake of clarity, the first PageRank clustering algorithm,
Algorithm 1, uses exact PageRank vectors without approximation. The second
PageRank clustering algorithm, Algorithm 2, allows for the use of approximate
PageRank vectors as well as approximate PageRank variance and cluster vari-
ance for faster performance.

We can further reduce the computational complexity by using approximate
PageRank vectors in the algorithm PageRank-clusteringB.

We remark that using the sharp approximate PageRank algorithm in [Chung
and Zhao 10], the error bound δ for PageRank can be set to be quite small,
since the time complexity is proportional to log(1/δ). If we choose δ to be a
negative power of n such as δ = ε/n2 , then approximate PageRank vectors lead
to sharp estimates for Φ and Φ′ within an error bound of ε. Thus for graphs with k

clusters, the PageRank-clusteringB algorithm will terminate after approximating
the roots of Φ′, O(k log n) approximations of µ and Ψα , and O(n) approximate
PageRank computations. With approximation algorithms using sampling, this
can be done quite efficiently.
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Algorithm 1: PageRank-clusteringA
1 Input: G, k, ε
2 Output: A set of centers C and partitions S, or nothing

for all v ∈ G do
compute ρ(α, v)

end for
Find the roots of Φ′(α) (there can be more than one root if G has a layered
clustering structure)
for all roots α do

Compute Φ(α)
if Φ(α) ≤ ε then

Compute Ψ(α)
else

Go to the next α
end if
if k < Ψ(α) − 2 − ε then

Go to the next α
else

Select c log n sets of k potential centers, randomly chosen according to π
end if
for all sets S = {v1 , . . . , vk } do

Let C be the set of centers of mass where ci = ρ(α, vi )
Compute µ(C) and Ψα (C)
if |µ(C) − Φ(α)| ≤ ε and |Ψα (C) − Ψ(α)| ≤ ε then

Determine the k Voronoi regions according to the PageRank distances
using C and return them

end if
end for

end for

We also note that there might be no clustering output if the conditions set
within the algorithms are not satisfied. Indeed, there exist graphs that inherently
do not have a k-clustered structure within the error bound that we set for ε.
Another reason for no output is the probabilistic nature of the above sampling
method. We will provide evidence for the correctness of the above algorithm by
showing that with high probability, a graph with a k-clustered structure will
have outputs that capture its clusters in a feasible manner that we will specify
further.

We say a that graph G is (k, h, β, ε)-clusterable if the vertices of G can be
partitioned into k parts such that:

1. Each part Si has Cheeger ratio at most h.

2. Each Si has volume at least βvol(G)/k for some constant β.
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Algorithm 2: PageRank-clusteringB
1 Input: G, k, ε
2 Output: A set of centers C and partitions S, or nothing

for all v ∈ G do
compute ρ(α, v)

end for
Find the roots of Φ′(α) within an error bound ε/2, by using sampling techniques
from [Rudelson and Vershynin 07] involving O(log n) nodes, log(1/ε) values of α
and δ-approximate PageRank vectors [Andersen et al. 06, Chung and Zhao 10]
where δ = ε/n2 (there can be more than one root if G has a layered clustering
structure)
for all roots α do

Approximate Φ(α)
if Φ(α) ≤ ε then

Compute Ψ(α)
else

Go to the next α
end if
if k < Ψ(α) − 2 − ε then

Go to the next α
else

Select c log n sets of k potential centers, randomly chosen according to π
end if
for all sets S = {v1 , . . . , vk } do

Let C be the set of centers of mass where ci = ρ(α, vi )
Compute µ(C) and Ψα (C).
if |µ(C) − Φ(α)| ≤ ε and |Ψα (C) − Ψ(α)| ≤ ε then

Determine the k Voronoi regions according to the PageRank distances
using C and return them

end if
end for

end for

3. For each Si , any subset S ′
i ⊂ Si with vol(S ′

i) ≤ (1 − ε)vol(Si) has its
Cheeger ratio at least c

√
h log n, where c = 8

√
β/k/ε.

We will provide evidence for the correctness of PageRank-clusteringA by prov-
ing the following theorem:

Theorem 4.1. Suppose a graph G has a (k, h, β, ε)-clustering and α, ε ∈ (0, 1) satisfy
ε ≥ hk/(2αβ). Then with high probability, PageRank-clusteringA returns a set
C of k centers with Φ(α) ≤ ε, Ψ(C) > k − 2 − ε, and the k clusters are near
optimal according to the PageRank k-means measure µ with an additive error
term ε.



54 Internet Mathematics

5. Several Facts about PageRank

Before proceeding to show that the PageRank-clustering algorithms are effective
for treating clusterable graphs, we will first establish some useful tools for analyz-
ing PageRank vectors. These tools concern the diffusion of PageRank vectors in
a subset of nodes with small Cheeger ratio. Before we examine a general mixing
inequality involving PageRank vectors, first we consider a diffusion lower bound
that is a slightly modified version of the results in [Andersen et al. 06].

Lemma 5.1. [Andersen et al. 06] For any set S and any constants α, δ in (0, 1],
there is a subset Sα ⊆ S with volume vol(Sα ) ≥ (1 − δ)vol(S) such that for any
vertex v ∈ Sα , the PageRank vector ρ(α, v) satisfies

[ρ(α, v)](S) ≥ 1 − h(S)
2αδ

.

We use the notation that for a function f : V → R , we have f(S) =
∑

v∈S f(v)
for S ⊆ V . For a positive real value x, we define

f(x) = max

{∑
v

βv

dv
f(v) :

∑
v

βv = x, 0 ≤ βv ≤ dv

}
.

This leads to many nice properties of f including, for example, that f is concave
and that f(vol(S)) ≥ f(S) (see [Andersen et al. 06, Lovász and Simonovits 93]).
We use [f ] for clarity when f is a complex vector expression.

Lemma 5.2. For any set S and any constants α, δ in (0, 1], there is a subset Sα ⊆ S

with volume vol(Sα ) ≥ (1 − δ)vol(S) such that for any vertex v ∈ Sα , the Page-
Rank vector ρ(α, ρ(α, v)) satisfies

[ρ(α, ρ(α, v))](S) ≥ 1 − h(S)
αδ

.

Proof. The proof is quite similar to that in [Andersen et al. 06]. Let χS denote the
function of S that assumes the value χS (x) = dv/vol(S) if x ∈ S and 0 otherwise.
First we wish to show that

[ρ(α, ρ(α, χS ))](S̄) ≤ h(S)
1 − α

α
.
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During a single step from ρ(α, ρ(α, χS )) to ρ(α, ρ(α, χS ))W , the amount of prob-
ability that moves from S to S̄ is bounded from above by

[ρ(α, ρ(α, χS ))W ](S̄) ≤ [ρ(α, ρ(α, χS ))](S̄) +
1
2
[ρ(α, ρ(α, χS ))](|δS|), (5.1)

where δ(S) denotes the edge boundary of S consisting of edges leaving S. Using
the definition of PageRank, we obtain

[ρ(α, ρ(α, χS ))](S̄) ≤ α[ρ(α, χS )](S̄) + (1 − α)[ρ(α, ρ(α, χS ))W ](S̄)

≤ 1 − α

2
h(S) + (1 − α)[ρ(α, ρ(α, χS ))W ](S̄)

using [Andersen et al. 06, Theorem 4, inequality (8)]. From (5.1), we have

[ρ(α, ρ(α, χS ))W ](S̄) ≤ 1 − α

2
h(S) + (1 − α)[ρ(α, ρ(α, χS ))](S̄)

+
1 − α

2
[ρ(α, ρ(α, χS ))](|δS|).

This implies

[ρ(α, ρ(α, χS ))](S̄) =
1 − α

2α
h(S) +

1 − α

2α
[ρ(α, ρ(α, χS ))](|δS|).

Now we use the monotonicity property from [Andersen et al. 06, Lemma 4]; we
have

[ρ(α, ρ(α, χS ))](|δS|) ≤ [ρ(α, χS )](|δ(S)|) ≤ χS (|δ(S)|) =
|δ(S)|
vol(S)

= h(S).

Thus we have

[ρ(α, ρ(α, χS ))](S̄) ≤ 1 − α

α
h(S).

To complete the proof, let Sα denote the set of vertices v in S satisfying

[ρ(α, ρ(α, v))](S̄) ≤ h(S)
αδ

.

Let v be a vertex chosen randomly from the distribution dv/vol(S), and define
the random variable X = [ρ(α, ρ(α, v))](S̄). The linearity property of PageRank
vectors implies that

E(X) = [ρ(α, ρ(α, χS ))](S̄) ≤ 1 − α

α
h(S) ≤ h(S)

α
.

Applying Markov’s inequality, we have

Pr[v 
∈ Sα ] ≤ Pr[X ≥ E[X]/δ] ≤ δ.

This completes the proof of Lemma 5.2.
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We will also need the quantitative estimates for PageRank vectors restricted
to a subset S of vertices. By considering submatrices WS restricted to rows and
columns associated with vertices in S, we can define the Dirichlet PageRank
ρS (α, s) for a seed vector defined on S and 0 ≤ α < 1 satisfying

ρS (α,�s) = α�s + (1 − α)ρS (α,�s)WS .

When α is appropriately chosen, the Dirichlet PageRank is a good estimate of
PageRank vectors. Lemma 5 and Theorem 6 in [Chung 10] can be rewritten as
follows.

Lemma 5.3. [Chung 10] Suppose a subset S of vertices has Cheeger ratio h(S)
satisfying ε ≥ (1−α)h(T )

2α , for positive values α, ε. Then ρS satisfies the following:
For any R ⊆ S, there is a subset T ⊆ S with vol(T ) ≥ (1 − δ)vol(S) such that
for every v in T we have

[ρ(α, v)](R) − [ρS (α, v)](R) ≤
√

ε

δ
.

For a probability distribution f : V → R and a real value x, we define the
Cheeger ratio hf (x) of f up to x as follows: We order the vertices v1 , v2 , . . . , from
highest to lowest probability per degree, so that p(vi)/d(vi) ≥ p(vi+1)/d(vi+1).
This produces a collection of sets, called the segment subsets, with one set T f

j =
{v1 , . . . , vj} for each j ≤ n. For a positive value x ≤ vol(G), we define

hf (x) = max{h(T f
j ) : j satisfies vol(T f

j ) ≤ x}, (5.2)

h∗
f (x) = max{h(T f

j ) : j satisfies vol(T f
j ) ≤ x(1 + hf (x))}.

Lemma 5.4. [Andersen et al. 06] For a vertex in G, any constant α in (0, 1], and
nonnegative integer t, the PageRank vector ρ(α, v) satisfies the following:

[ρ(α, v)](T ) − π(T ) ≤ αt +
√

vol(T )
(

1 − φ2

8

)t

,

where φ is the Cheeger ratio h∗
f (vol(T )) with f = ρ(α, v).

Lemma 5.5. For subsets S, T of vertices in G with vol(S), vol(T ) ≤ vol(G)/2, any
constant α in (0, 1], and nonnegative integer t, the Dirichlet PageRank vector
ρS (α, v) for any vertex v in S satisfies the following:
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(i)

[ρS (α, v)](T ) − [ρS (α, ρS (α, v))](T ) ≤ αt +
√

vol(T )
(

1 − φ2

8

)t

,

where φ is the Cheeger ratio h∗
f (vol(T )) with f = ρS (α, v) − ρS (α, ρS (α, v)).

(ii)

[ρS (α, ρS (α, v))](T ) − [ρS (α, v)](T ) ≤ αt +
√

vol(T )
(

1 − φ′2

8

)t

,

where φ′ is the Cheeger ratio h′∗
f (vol(T )) with f ′ = ρS (α, ρS (α, v)) −

ρS (α, v).

(iii) For two vertices u and v,

[ρS (α, u)](T ) − [ρS (α, v)](T ) ≤ αt +
√

vol(T )
(

1 − φ′′2

8

)t

,

where φ′′ is the Cheeger ratio h′′∗
f (vol(T )) with f ′′ = ρS (α, u) − ρS (α, v).

Proof. We prove (i) by induction on t. For t = 0, the assertion clearly holds. Sup-
pose the inequality holds for some t ≥ 0. Let x denote vol(T ). We use [Andersen
et al. 06, Lemma 3] and apply the same method using the concavity of f to
obtain

[ρS (α, v)](T ) − [ρS (α, ρS (α, v))](T ) = f(T )

and

f(T ) ≤ α + (1 − α)[fW ](T ) ≤ α + (1 − α)
(

1
2
f(x − φx) +

1
2
f(x + φx)

)

≤ α +
(

1
2
f(x − φx) +

1
2
f(x + φx)

)
.

Using the induction assumption, we have

f(T ) ≤ α(t + 1) +
1
2

(√
x − φx +

√
x + φx

)(
1 − φ2

8

)t

≤ α(t + 1) +
√

x

(
1 − φ2

8

)t+1

.

This proves (i). We omit the proofs for (ii) and (iii), which can be done in a
similar way. The proof of Lemma 5.5 is complete.
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Figure 1. Φ(α) for the dumbbell graph U (color figure available online).

6. Analyzing PageRank Clustering Algorithms

In this section, we consider an (h, k, β, ε)-clusterable graph G, with the following
condition:

ε ≥ hk

2αβ
.

Lemma 5.1 implies that in a cluster R of G, most of the vertices u in R

have ρ(α, u)(S) ≥ 1 − ε/(2k). This fact is essential in the subsequent proof that
Ψ(α) ≥ k − 2 − ε.

We proceed with a series of lemmas that show that if G is (h, k, β, ε)-
clusterable, then there is an α for which Φ(α) is small and Ψ(α) is large corre-
sponding to a set of centers chosen from the core of the partitions.

Lemma 6.1. If a graph G can be partitioned into k clusters having Cheeger ratio at
most h and ε ≥ hk/(2αβ), then Ψ(α) ≥ k − 2 − ε.
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Figure 2. Φ′(α) for the dumbbell graph U , with the line y = 0 for reference (color
figure available online).

Proof. Let S1 , . . . , Sk be a partition of G into k clusters satisfying the conditions
of the theorem. Then by definition of Ψ,

Ψ(α) =
∑
v∈V

dv

∥∥∥ρ(α, ρ(α, v))D−1/2 − πD−1/2
∥∥∥2

=
k∑

i=1

∑
v∈Si

dv

∥∥∥ρ(α, ρ(α, v))D−1/2 − πD−1/2
∥∥∥2

=
k∑

i=1

∑
v∈Si

dv
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(
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dv

∑
x∈Si
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1
dx

(ρ(α, ρ(α, v))(x) − π(x))2
∑
x∈Si

dx

vol(Si)
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.
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Figure 3. Ψ(α) for the dumbbell graph U (color figure available online).

Using the Cauchy–Schwarz inequality and then Lemma 5.2, we have

Ψ(α) ≥
k∑

i=1

∑
v∈Si

dv

vol(Si)

(∑
x∈Si

(ρ(α, ρ(α, v))(x) − π(x))

)2

≥
k∑

i=1

∑
v∈Si

dv

vol(Si)

(
1 − ε

2
− vol(Si)

vol(G)

)2

=
k∑

i=1

(
1 − ε

2
− vol(Si)

vol(G)

)2

≥ 1
k

(
k∑

i=1

(
1 − ε

2
− vol(Si)

vol(G)

))2

=
1
k

(
k − 1 − ε

2

)2
≥ k − 2 − ε.

We have shown that if G has a clustered structure, then there is an α for which
Ψ(α) is large. We will also show that our algorithm will also yield Φ(α) ≤ ε.

Lemma 6.2. If G is (k, h, β, ε)-clusterable, then we have Φ(α) ≤ ε.

Proof. The proof follows from preceding lemmas. Within each cluster S of G,
we first use Lemma 5.2, which implies there is a subset S ′ of S such that
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Figure 4. Ψ′(α) for the dumbbell graph U (color figure available online).

[ρ(α, v)](S) ≥ 1 − ε/k and vol(S ′) ≥ (1 − δ)vol(S), since S has Cheeger ratio at
most h.

We can apply Lemma 5.3 to approximate PageRank vectors ρ(α, v) by the
Dirichlet PageRank vectors ρS (α, v).

Figure 5. Results of PageRank-Display (α = 0.03) on the dolphin social network
[Lusseau et al. 03], separating the dolphins into two communities (color figure
available online).
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Figure 6. Results of PageRank-Display (α = 0.3) on the dolphin social network
[Lusseau et al. 03], separating the dolphins into two communities (color figure
available online).

From the definition of a (k, h, β, ε)-clusterable graph, each subset T of S has
Cheeger ratio at least c

√
h log n. This allows us to use Lemma 5.5 for any segment

subset T f
j , as defined in (5.2), with volume at most (1 − ε/2)vol(S) defined by

the function f as in Lemma 5.5. Altogether, we have that for any subset R ⊂ S

with vol(R) ≤ (1 − ε/2)vol(S),

|[ρ(α, v)](R) − [ρ(α, ρ(α, v)](R)| ≤ αt +
√

ne−(c2 th log n)/8 ≤ ε

4

by the assumption that c = 8
√

β/k/ε, and choosing t = 1/(hc2). This implies
that for any subset R ⊂ S and any vertex v, we have

|[ρ(α, v)](R) − [ρ(α, ρ(α, v)](R)| ≤ ε

2
.

Thus the total variation distance between the two PageRank vectors is

∆T V (α) = max
v

max
R⊆S

[ρ(α, v) − ρ(α, ρ(α, v))](R) ≤ ε

2
.

Note that
√

Φ(α) is just the so-called χ-square distance ∆χ . Using the same
technique as in [Aldous and Fill 12], we have

∆T V ≤ ∆χ ≤
√

1 − (1 − 2∆T V )2 .

Thus, we conclude that Φ(α) ≤ ε, as desired.

We will also show that the sampling methods in PageRank-clusteringA will
ensure that with high probability, the cluster centers {c1 , . . . , ck} will include
one from the core of each of k partitions in a clusterable graph:
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Figure 7. Results of PageRank-Display (α = 0.1) on the football game network
[Girvan and Newman 02], highlighting eight of the major collegiate conferences
(color figure available online).

Lemma 6.3. Suppose G is (h, k, β, ε)-clusterable, and c log n sets of k potential
centers are chosen from G according to the stationary distribution π, where c is
some absolute constant. With probability 1 − o(1), at least one set will contain
one vertex from the core of each of the k clusters.

Proof. Let S1 , . . . , Sk be a partition of (h, k, β, ε)-clusterable G, and let S ′
i be the

core of Si . Suppose vertices C = {c1 , . . . , ck} are chosen randomly according to
π, and let E(C) be the event that each ci ∈ S ′

i . Then we have

Pr[E(C)] ≥
k∏

i=1

Pr[ci ∈ S ′
i ] =

k∏
i=1

vol(S ′
i)

vol(G)
≥

k∏
i=1

(1 − ε)vol(S ′
i)

vol(G)

≥
k∏

i=1

(1 − ε)βvol(G)
kvol(G)

=
(

β(1 − ε)
k

)k

.
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Figure 8. Results of PageRank-Display (α = 0.3) on the football game network
[Girvan and Newman 02], highlighting eight of the major collegiate conferences
(color figure available online).

If c log n sets C1 , . . . , Cc log n of k centers are sampled independently, the proba-
bility that at least one contains each ci ∈ S ′

i is

Pr[E(C1) ∨ · · · ∨ E(Cc log n )] ≥ 1 −
c log n∏
i=1

Pr[¬E(Ci)]

= 1 −
c log n∏
i=1

(1 − Pr[E(Ci)]) ≥ 1 −
(

1 −
(

β(1 − ε)
k

)k
)c log n

= 1 − o(1).

This series of lemmas then leads to the proof of Theorem 4.1, showing the
correctness of PageRank-clusteringA.

Proof of Theorem 4.1. We note that ρ(0, s) = π and ρ(1, s) = s for any distribution
s. This implies that Φ(0) = Φ(1) = Ψ(0) = 0 and Ψ(1) = n − 1. It is not hard to
check that Ψ is an increasing function, since Ψ′(α) > 0 for α ∈ (0, 1]. The function
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Figure 9. Results of PageRank-Display on Zachary’s karate network [Zachary 77]
(color figure available online).

of particular interest is Φ. Since we wish to find α such that Φ is small, it suffices
to check the roots of Φ′ for an α such that Φ(α) < ε, which our algorithm does.
Such an α exists due to Lemma 6.2.

Suppose α is a root of Φ′. To find k clusters, we can further restrict ourselves
to the case of Ψ(α) ≥ k − 2 − ε by Lemma 6.1.

We note that by sampling c log n sets of k vertices from π, for sufficiently
large c, the values µ(C) and Ψ(C) for one such random set of k centers are close
to Φ(α) and Ψ(α), respectively, with high probability (exponentially decreasing
depending on c and β) by probabilistic concentration arguments. In this context,
the upper bound ε for µ(C) implies that the set consisting of distributions ρ(α, c)
for c ∈ C serves well as the set of centers of mass. Thus, the resulting Voronoi
regions using C give the desired clusters. This proves the correctness of our
clustering algorithm with high probability for (k, h, β, ε)-clusterable graphs.
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Figure 10. Results of PageRank-Display on a network of political books about
the 2004 US presidential election [Krebs 11]. Edges are present between two books
if they were frequently purchased together (color figure available online).

To illustrate PageRank-clusteringB, we consider a dumbbell graph U as an
example. This graph U has two complete graphs K20 connected by a single
edge, yielding a Cheeger ratio of h ≈ 0.0026. Plotting Φ(α) (Figure 1) and its
derivative (Figure 2) shows that there is a local minimum near α ≈ 0.018. When
Ψ is large, many individual nodes have personalized PageRank vectors that differ
greatly from the overall distribution. This indicates that there are many nodes
that are more representative of a small cluster than the entire graph. By plotting
Ψ(α) (Figure 3) and its derivative (Figure 4), we can see that there is a distinct
inflection point in the plot of Ψ for the dumbbell graph U as well.

7. A Graph-Drawing Algorithm Using PageRank

The visualization of complex graphs provides many computational challenges.
Graphs such as the World Wide Web and social networks are known to exhibit
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ubiquitous structure, including power-law distributions, small-world phenomena,
and a community structure [Albert et al. 99, Broder et al. 00, Faloutsos et al. 99].
With large graphs, it is easy for such intricate structures to be lost in the sheer
quantity of nodes and edges, which can result in drawings that reflect a network’s
size but not necessarily its structure.

Given a set of nodes S, we can extract communities around each node and de-
termine the layout of the graph using personalized PageRank. The arrangement
can be done using a force-based graph layout algorithm such as the Kamada–
Kawai algorithm [Kamada and Kawai 89]. The goal is to capture local commu-
nities; we can do this by assigning edges {s, v} for each s ∈ S and v ∈ V \ S

with weight inversely proportional to the personalized PageRank. In this way,
unrelated nodes with low PageRank will be forced to be distant, and close com-
munities will remain close together. We also add edges {s, s′} for s, s′ ∈ S with
large weight to encourage separation of the individual communities. We use an
implementation from Graphviz [Gansner and North 00].

We note that because force-based algorithms are simulations, they do not guar-
antee the exact cluster structure, but we will illustrate that it works well in prac-
tice. Additionally, there are algorithms specifically designed for clustered graph
visualization [Eades and Feng 96, Parker et al. 98] and highlighting high-ranking
nodes [Brandes and Cornelsen 01], but they impose a considerable amount of
artificial hierarchical structure on the drawing and often require precomputing
the clusters. Once we have a layout for all the nodes in the graph, we can parti-
tion them using a Voronoi diagram. We compute the Voronoi diagram efficiently
using Fortune’s algorithm [Fortune 86].

We tie together personalized PageRank and Voronoi diagrams in the algorithm
PageRank-display, Algorithm 3.

The jumping constant α is associated with the scale of the clustering. We can
determine α either by trial and error or by optimizing Φ and Ψ as in Section 4.
As long as G is connected, the PageRank vector will be nonzero on every
vertex. Using the algorithms from [Andersen et al. 06, Chung and Zhao 10],
the approximation factor ε acts as a cutoff, and any node v with PageRank less
than εdv will be assigned zero. This is advantageous because the support of the
approximate PageRank vector will be limited to the local community containing
its seed. In PageRank-display, we give weights to the edges equal to 1/ps(v), but
this is problematic if ps(v) = 0. In that case, we omit the edge from G′ entirely.

We remark that the selection of ε will influence the size of the local commu-
nities: the subset of nodes with nonzero approximate PageRank has volume at
most 2

(1−α)ε (see [Andersen et al. 06]). This implies that a good selection of ε is

O( |S |
(1−α)vol(G) ).
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Algorithm 3: PageRank-display
1 Input: G = (V, E), S, α, ε
2 Output: A graph drawing

for all s ∈ S do
Compute an approximate PageRank vector ps = ρ(α, s)

end for
Let G′ be a graph with vertex set V
for all s ∈ S and v ∈ V \ S do

Add an edge {s, v} to G′ with weight 1/ps (v), as long as ps (v) > 0
end for
for all s, s′ ∈ S do

Add an edge {s, s′} to G′ with weight 10 × maxs ,v 1/ps (v)
end for
Use a force-based display algorithm on G′ to determine coordinates cv for each
v ∈ V
Compute the Voronoi diagram on S
Draw G using the coordinates cv , highlighting S with a different color, and
overlaying the Voronoi diagram

We also remark that the selection of S is important. If S contains vertices that
are not part of communities or two nodes in the same community, then there will
be no structure to display. In general, the selection of S is similar to the geometric
problem of finding a set of points with minimum covering radius, which can be
intractable (see [Guruswami et al. 05]). There are several algorithms that can
automatically choose S, including PageRank-clustering as presented here.

We used our algorithm to demonstrate and highlight the existence of local
structure in two real-world data sets. The first data set is a social network among
62 dolphins [Lusseau et al. 03]. While the graph exhibits traditional network
structure such as small-world phenomena, one can see in Figures 5 and 6 that
the dolphins can be divided into two communities, with just a few connected to
both sides. Note that with larger α, the far-flung nodes become more isolated,
making the communities appear denser.

A more interesting example is shown in Figures 7 and 8. The vertices represent
114 NCAA Division I American collegiate football teams, with edges connecting
two teams if they played against each other during the year 2000 football season.
The league is divided into many smaller conferences of up to 12 teams; for each
team, about half of its games are played against conference opponents, and the
rest are played against nonconference teams. An appropriate selection of the
eight highlighted teams in Figures 7 and 8 reveal a partition that separates
their eight respective conferences, and teams from the remaining conferences are
placed on the periphery of the drawing. Here, the larger α is more effective, since
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Figure 11. Results of PageRank-Display on a network of US Air Force flying
teams [de Nooy et al. 04, Chapter 4] (color figure available online).

the PageRank is more concentrated near the community centers. Several more
graph-drawing examples are shown in Figures 9 through 11.
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