Internet Mathematics Vol. 7, No. 4: 274-298

Using Biological Networks in
Protein Function Prediction and
Gene Expression Analysis

Limsoon Wong

Abstract.  While sequence homology search has been the main workhorse in protein
function prediction, it is not applicable to a significant portion of novel proteins that
do not have informative homologues in sequence databases. Similarly, while statistical
tests and learning algorithms based purely on gene expression profiles have been popular
for analyzing disease samples, critical issues remain in the understanding of diseases
based on the differentially expressed genes suggested by these methods. In the past
decade, a large number of databases providing information on various types of biological
networks have become available. These databases make it possible to tackle these and
other biological problems in novel ways. This paper presents a review of biological
network databases and approaches to protein function prediction and gene expression
profile analysis that are based on biological networks.

[. Introduction

Present-day biomedical researchers are confronted by vast amounts of data from
genome sequencing; microscopy; high-throughput analytical techniques for DNA,
RNA, and proteins; and a host of other new experimental technologies. Coupled
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with advances in computing power, this flow of information should enable scien-
tists to model and understand biological systems in novel ways. The appearance
of many databases containing information on biological networks that are critical
to understanding the function of genes and proteins in a more holistic way is par-
ticularly exciting. Indeed, many different types of biological network information
have been used for analyzing biological data over the past decade.

These networks can be roughly categorized into the following three types:

¢ Databases of natural biological pathways, e.g., metabolic networks and gene
regulation networks.

¢ Databases of unorganized individual interactions, e.g., protein interaction
networks.

e Artificial networks derived from relationships of biological entities, e.g., co-
expression networks and Medline abstract co-occurrence networks.

Physical protein interactions constitute a major aspect of all cellular processes.
Consequently, analysis of protein interaction networks is expected to produce sev-
eral types of useful information such as protein function [Wu and Lonardi 08, Sha-
ran et al. 07], protein complexes [Chua et al. 08, King et al. 04, Yu 10], and func-
tional modules [Gao et al. 09, Enright et al. 02, Ulitsky and Shamir 07]. In partic-
ular, there are three main groups of approaches for prediction of protein function
using protein interaction networks. The first group [Schwikowski 00, Hishigaki
et al. 01, Deng 03, Chua et al. 07b] predicts the function of an unknown pro-
tein based on what functions are overrepresented among its direct and indi-
rect interaction partners. The second group [Milenkovic and Przulj 08, Chen et
al. 07, Kirac and Ozsoyoglu 08, Bogdanov and Singh 10] predicts the function of
an unknown protein by assigning to it the function of a protein whose neighbors
in the protein interactome have functions that are most similar to the neighbors
of this unknown protein. The third group of approaches [Brun et al. 03, Samanta
and Liang 03, Milenkovic and Przulj 08] clusters proteins based on the similar-
ity of their neighborhoods in the protein interaction network and assume that
proteins in the same cluster should have similar functions. All three groups of
approaches have their basis in the fact that proteins interact to perform their re-
spective functions, and therefore, the function of a protein should correlate with
the functions of neighboring proteins in the protein interaction network [Pandey
et al. 10, Yook et al. 04].

The possibility of using gene expression profiling by microarrays for diagnostic
and prognostic purposes has also generated much excitement and research in the
last ten years. Nevertheless, a number of issues persist such as how to rectify
batch effects (i.e., nonbiological variations) [Leek et al. 10], how to handle missing
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values [Tsiporkova and Boeva 07], and most importantly, how to identify genes
that are meaningful in explaining differences in disease phenotypes [Soh et al. 07].
There are three main groups of approaches that make use of biological pathways
(e.g., enzymatic pathways, gene regulatory pathways, and protein interaction
networks), for improving gene selection, and for transitioning from the selected
genes to the understanding of the sequences of causative molecular events.

The first group consists of the overlap analysis methods [Doniger et al. 03, Zee-
berg et al. 03, Khatri and Draghici 05], which test the significance of the inter-
section of differentially expressed genes with a biological pathway. The second
group consists of the direct group analysis methods [Goeman et al. 04, Kim
and Volsky 05, Subramanian et al. 05], which test whether a biological pathway
is differentially expressed as a whole. The third group consists of the network-
based analysis methods [Sohler et al. 04, Sivachenko et al. 07, Chuang et al. 07],
which zoom into a subnetwork of a biological pathway and test whether the
subnetwork is differentially expressed. All of these approaches have their basis
in the fact that every disease phenotype has some underlying biological causes.
Therefore, it is reasonable to analyze the gene expression profiles of disease phe-
notype with respect to the biological contexts provided by biological pathways
and protein interaction networks.

This paper is organized as follows. Representative databases [Kanehisa et
al. 10, Karp et al. 05, Pico et al. 08, Joshi-Tope et al. 05, Soh et al. 10] of the first
type of biological networks—i.e., natural biological pathways—are presented in
Section 2. Their consistency and comprehensiveness, as well as their unification
for more effective use, are discussed. Representative databases [Chatraryamontri
et al. 07, Breitkreutz et al. 08, Salwinski et al. 04, Prasad et al. 09, Jensen 09] of
the second type of (unorganized) networks—i.e., protein interaction networks—
are presented in Section 3. The noise that is present in them and approaches
for dealing with this noise are discussed. The third type of networks are used in
many types of analysis, e.g., protein function prediction [Chua et al. 07a] and
disease—gene association studies [Ideker and Sharan 08, Matsunaga et al. 10].
However, these are diverse, and there are few major databases capturing them.
Hence we do not describe them further. Then, in Section 4, the three groups
of approaches [Schwikowski 00, Hishigaki et al. 01, Brun et al. 03, Samanta
and Liang 03, Deng 03, Chua et al. 07b, Chen et al. 07, Kirac and Ozsoyo-
glu 08, Bogdanov and Singh 10, Milenkovic and Przulj 08] for prediction of pro-
tein function using biological networks are presented. After that, in Section 5,
the three groups of approaches [Doniger et al. 03, Zeeberg et al. 03, Khatri and
Draghici 05, Goeman et al. 04, Kim and Volsky 05, Subramanian et al. 05, Sohler
et al. 04, Sivachenko et al. 07, Chuang et al. 07] for improving the reliability
of gene selection using biological networks are described. Finally, in Section 6,
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we briefly discuss some other uses to which biological network data have been
put.

1. Biological Pathway Databases

The major biological pathway databases include those that are curated by a
single lab (e.g., KEGG, BIOCYC), by a community of collaborating labs (e.g.,
WikiPathways, Reactome), and by commercial companies (e.g., Ingenuity, Molec-
ular Connections), as well as those that are derived by an integration of these
databases (e.g., Pathway Commons, PathwayAPI):

e KEGG PATHWAY [Kanehisa et al. 10], accessible at http://www.genome.
jp/kegg, contains about 380 pathway maps for metabolism, genetic infor-
mation processing, environmental information processing, and other cellular
processes that are curated manually from over 120,000 published articles.!
The content of the database can be downloaded in XML format, as well as
accessed using an API (application programming interface).

e BIOCYC [Karp et al. 05], accessible at http://biocyc.org, is a set of more
than 1,000 databases. Each database in this collection describes the genome
and metabolic pathways of a single organism. The databases are categorized
into tiers. Those in tier 1 are curated manually. Tier 2 databases are gener-
ated on the basis of reviewed predictions by the Pathologic software [Paley
and Karp 02]. Tier 3 databases are generated on the basis of unreviewed
predictions by the Pathologic software. The content of BIOCYC can be
downloaded in BioPAX, SBML, and other formats, as well as accessed us-
ing an APL.

e WikiPathways [Pico et al. 08], accessible at http://www.wikipathways.org,
is curated by a community of collaborating labs in a Wikipedia-like setting.
It has information on about 360 human pathways consisting of about 4,400
genes. Each pathway in WikiPathways is a wiki page that presents the
pathway diagram, the component gene, protein, and metabolite lists. The
main content of the database can be downloaded in the form of GPML, as
well as accessed through a web service API.

* Reactome [Joshi-Tope et al. 05], accessible at http://www.reactome.org, is
also curated manually by a community of collaborating labs. It contains a

LAll statistics given on KEGG and other databases, unless mentioned otherwise, are based
on information available on their respective websites on 13 February 2011.
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total of 13,197 pathways from 21 organisms, including 1,112 human path-
ways. The main content of the database can be downloaded in BioPax,
SBML, and other formats.

e Ingenuity Systems offers the Ingenuity Knowledge Base and the associated
IPA analysis software on a commercial basis. The knowledge base is a repos-
itory of biological interactions and other information. The content of the
knowledge base can be accessed only using proprietary tools such as IPA
and is typically returned to the user in the form of an image file. More
information can be obtained at www.ingenuity.com.

e Molecular Connections offers NetPro on a commercial basis. This is a
comprehensive database covering more than 320,000 protein—protein and
protein—small molecule interactions in the biological pathways of 20 organ-
isms. These interactions and other information are curated manually. Direct
access by SQL queries and XML-format downloads are supported. More in-
formation can be obtained at www.molecularconnections.com.

e Pathway Commons, accessible at www.pathwaycommons.org, provides con-
venient access to a collection of publicly available pathways from multiple
sources. The data from these multiple sources are made available by Path-
way Commons in a common format. Pathway Commons does not perform
any unification of the underlying pathways. That is, if the information of
a pathway is contained in n source databases, Pathway Commons presents
them as n separate pathways.

e PathwayAPI [Soh et al. 10], accessible at http://www.pathwayapi.com, is
a database of over 450 unified human pathways consisting of over 60,000
interactions derived from an integration of KEGG, WikiPathways, and In-
genuity. In contrast to Pathway Commons, if the information of a pathway
is contained in n source databases, Pathway API merges them into a single
consistent unified pathway. The main content of PathwayAPI can be down-
loaded as a MySQL dump or as a CSV file; it can also be accessed in JSON
format via an API.

Since these biological pathway databases are generally curated manually, their
content can be regarded as reliable. However, it is important that one be aware
of the following two issues before using these databases. Firstly, many biological
pathways are curated only in some databases and not in others. That is, none
of the databases is sufficiently comprehensive in terms of the number of bio-
logical pathways that they curate. Secondly, even when a biological pathway is
curated in two databases, there is usually some disagreement between these two
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databases regarding that pathway. For example, a recent study [Soh et al. 10]
shows that for a pathway that is as pervasive as that for human apoptosis, the
agreement between KEGG, Ingenuity, and WikiPathways is a mere 32%-46% in
terms of gene overlap and an alarming 11%-16% in terms of interaction overlap.
The same study also shows that the agreement on many other pathways is no
better. This lack of agreement can be partially attributed to the fact that the
boundaries of many biological pathways are not clearly defined [Green 06]. How-
ever, it also strongly suggests that the manual curation effort of these databases
is not sufficiently comprehensive even at the individual pathway level.

The obvious solution to these two issues is to integrate these biological pathway
databases. Despite impressive progress in broad-scale general data integration
technologies in the past two decades [Wong 02], there are significant challenges
that have to be overcome to achieve such a unified database, including incom-
patibility of access methods, incompatibility of data formats, incompatibility of
molecular representations, and incompatibility in naming of pathways.

There is a variety of approaches to deal with these four incompatibility prob-
lems. For example, Pathway Commons and PathCase [Elliott et al. 08] can be
considered as taking the “aggregator” approach. In this approach, a common
access method and data format are adopted or developed for a set of pathways
imported from a collection of source databases. The aggregator approach does
not perform any unification of the underlying pathways. That is, if n source
databases each contain information on a particular pathway, that pathway is
presented by the aggregator as n separate pathways.

On the other hand, GenMapp [Salomonis et al. 07], Cytoscape [Shannon et
al. 03], and PathVisio [van Iersel et al. 08] can be considered as taking the
“converter” approach. Basically, these tools support the import and export of
biological pathways in a variety of formats, even though these tools are designed
mainly for exploring, visualizing, and editing biological pathways.

Lastly, PathwayAPI [Soh et al. 10] can be considered as taking the “full unifi-
cation” approach. In this approach, pathways in different source databases that
are meant to represent the same pathway are merged, and molecular objects
mentioned in the different source pathways that are meant to represent the same
objects are matched. This approach is technically more difficult than other ap-
proaches, but it has the advantage of presenting a more coherent comprehensive
view of the pathways.

Among the four types of incompatibilities that are encountered when unified
pathways are constructed, the resolution of the incompatibility in the naming
of pathways offers an interesting lesson. There are three basic ways to detect
whether two pathways in two databases are meant to represent the same bi-
ological pathway: match by large overlap of genes, match by large overlap of
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interactions, and match by similarity of pathway names. We consulted a number
of experts in computer science and biology as to which choice to adopt when
we were developing PathwayAPI. Almost without exception, it was thought that
matching by largest overlap of interactions would give the best result, since it
was feared that different databases would give very different names to the same
pathway.

Unfortunately, matching pathways by largest overlap of interactions requires
a threshold on the overlap. With too small a threshold, we get a large number of
false-positive matches, while too large a threshold leads to a large number of false
negatives. In fact, we tried a whole continuum of thresholds and did not find a
good compromise. Fortunately, it turns out that different databases actually do
not give very different names to the same pathways. Thus a strategy based on
approximate longest substring match of pathway names works well in practice
[Soh et al. 10].

3. Protein Interaction Databases

Although many interactions of genes and proteins have been organized into natu-
ral biological pathways, not all known interactions can yet be put into the context
of a natural biological pathway. This gives rise to protein interaction databases,
which focus on capturing pairwise interaction information but generally do not
seek to organize these pairwise interactions into functional groups or pathways.
Nevertheless, such protein interaction databases are useful in many applications
because they cover far more interactions than those found in natural biological
pathway databases.

The major protein interaction databases include MINT, BioGRID, DIP,
HPRD, and STRING:

e MINT [Chatraryamontri et al. 07], accessible at http://mint.bio.uniroma2.
it/mint, contains 90,695 physical protein interactions curated from the lit-
erature.

e BioGRID [Breitkreutz et al. 08], accessible at http://www.thebiogrid.org,
contains 193,484 physical protein interactions and 177,348 genetic interac-
tions curated from the literature. It is especially complete for yeast protein
interaction data.

e DIP [Salwinski et al. 04], accessible at http://dip.doe-mbi.ucla.edu, contains
71,276 protein interactions curated from the literature. It focuses on model
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organisms (e.g., yeast, fruit fly, E. coli, C. elegans) and has less data on
other organisms.

e HPRD [Prasad et al. 09], accessible at http://www.hprd.org, contains about
40,000 protein interactions curated from the literature. It focuses on human
protein interactions.

e STRING [Jensen 09], accessible at http://string-db.org, is a database of
known (by copying from MINT, BioGRID, DIP, HPRD, etc.) and predicted
protein interactions. It covers the interactions of about 2.59 million proteins
from 630 organisms. There is an important caveat: A large fraction of protein
interactions in STRING are predicted ones; these predicted interactions may
not be reliable.

Protein interactions are often viewed as a form of binary relationships, i.e.,
interaction or no interaction. Nonetheless, it is important to be aware of the
following two issues before using them.

Firstly, protein interactions in these databases vary in reliability. Protein in-
teraction data are generated by experiments such as co-immunoprecipitation,
synthetic lethal screening, tandem affinity purification, and two-hybrids [Ng and
Tan 04]. Some of these experimental methods, e.g., two-hybrids, are highly
susceptible to noise and may have high false-positive rates [von Mering et
al. 02, Sprinzak et al. 03].

Secondly, some of these experimental methods, e.g., tandem affinity purifica-
tion, identify groups of proteins that interact together to form a complex, though
the proteins within each group may not be directly interacting [Gavin et al. 06].
Nevertheless, treating proteins captured by a bait protein as interacting with
the bait protein does not seem to have a negative effect on important applica-
tions such as inferring protein function [Chua et al. 07b] and identifying protein
complexes [Liu et al. 09].

For some analysis, it is crucial to use a subset of protein interaction data that
are more reliable. Consequently, much effort has been invested in developing
solutions to this problem [Chua and Wong 08]. An obvious idea for ranking the
reliability of protein interactions is based on the sharing of a common cellular
localization or a common cellular role, since a pair of interacting proteins are
generally expected to be localized to the same cellular component or to have a
common cellular role [Sprinzak et al. 03, Nabieva et al. 05]. The main shortcoming
of this approach is that protein functional annotations and cellular localization
information are often incomplete. Moreover, even if two proteins share a common
cellular localization or a common functional role, there is still a chance that they
do not interact in real life.
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Another early idea is based on the reproducibility and nonrandomness of the
observation of an interaction [Chua et al. 06, Hart et al. 07]. Obviously, an
interaction that is observed in two or more separate experiments is more reliable
than one that is observed in just one experiment. The main shortcoming of this
approach is that it requires multiple independent interaction experiments to be
performed on the proteins to confirm the reliability of their interactions. As such,
if the additional experimental data are not available, which is often the case, this
method cannot be used.

Since the additional information required by these approaches is often unavail-
able, a new class of reliability indices that are based solely on the topology of
the neighborhood of an interacting pair of proteins in the interactome has been
developed [Chen et al. 06, Chua and Wong 08]. One of the most important early
examples of this idea is the Czekanowski-Dice distance [Brun et al. 03], defined
as CDy , = 2|Ny |/ (|Ny| + |Ny]), where N, , is the set of interaction partners
shared by proteins u and v, and N, and N, are respectively the sets of inter-
action partners of v and v. Two proteins that have many interaction partners
in common must share some physical or biochemical characteristics that allow
them to bind to these common interaction partners. Consequently, they are also
more likely to share a common cellular role or a common cellular function or to
belong to the same protein complex. This makes them more likely to interact.
Therefore, a reliability index for a pair of reported interacting proteins can be
formulated in terms of the proportion of interaction partners that two proteins
have in common, as in CD,, ,.

It is possible to combine all three approaches. Suppose there is some addi-
tional information—such as functional annotations or multiple experiments—to
estimate the reliability r, , of an interaction between protein v and v according
to the first two approaches. Assuming independence, the probability of u and
v having a common interaction partner w is 7y 4,7y . Then the value of CD, ,
incorporating this information is

2 ZwGN“ = Tu,wTw,v
ZweNu Tu,w + Z:’wEN,U Tw v

Another refinement is to add a damping term A to the denominator, because

CDum =

CD,,, has large fluctuations when v and v have too few neighbors. A third
refinement is to use an iteration process similar to an expectation maximization;
to wit, let CDj, , be the CD,, , value computed in the ith iteration. Then

2 Zu;eNu_u CDZ,w CDQJ,U

o ZweN,, CD;,w + ZweNU CD:L‘,U +>‘

0
and CD,, , = 7y -
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The rationale for this iteration process is an intuitive one. Assuming that we
accept the Czekanowski-Dice distance as a good model of the reliability of a
protein interaction, then CD}W is a more accurate estimate than CD?MJ =Tyy-
So substituting it for r, , in the formula should give us a more accurate CDZ‘U,
and so on. '

These refinements have been shown to improve CD,, ,, and other related topo-
logy-based reliability indices for protein interactions significantly. In particular, a
recent study [Liu et al. 08] used the DIP yeast data set for assessment and showed
that 54.7% of the interacting protein pairs reported in DIP are co-localized. Since
proteins in general can interact only when they are co-localized, this suggests a
level of noise in the data set of up to 45.3%. After these pairs were ranked using
the iterated version of CD,, ,, about 90% of the top 30% of interacting pairs were
determined to be co-localized.

Nevertheless, the performance of CD,, ,, and related indices deteriorates when
the input interaction network is sparse, due to the lower number of direct and in-
direct interactions in such networks [Chua and Wong 08]. A recent idea [Kuchaiev
et al. 09, You et al. 10] to overcome this problem is to use a larger interaction
neighborhood via a manifold embedding. Here, a protein—protein similarity ma-
trix is first computed based on the shortest distance—in terms of number of
hops in the initial protein interaction network—between each pair of proteins.
Then multidimensional scaling is applied to this similarity matrix to embed each
protein into a low-dimensional space. After that, a graph is defined by connect-
ing proteins that are close to each other in this low-dimensional space. Finally,
an index such as CD, , is applied to this graph to estimate the likelihood that
proteins u and v interact. Experiments have confirmed that for sparse protein
interaction networks, this additional step of manifold-embedding has led to much
better performance [You et al. 10].

Besides noise dealt with by the approaches mentioned above, protein inter-
action assays are also plagued by false negatives. The detection of false neg-
atives is considerably more difficult because new protein interactions have to
be predicted. A variety of approaches have been reviewed in earlier papers
[Chua and Wong 08], including gene-fusion events [Marcotte et al. 99], inter-
acting domains [Han et al. 04], interacting motifs [Li et al. 06], co-evolution
of proteins or residues [Juan et al. 08], topology of protein—protein interaction
networks [Pei and Zhang 05|, and machine learning from multiple information
types [Qiu and Noble 08]. Incidentally, it is possible to use topology-based in-
dices such as CD,,,, for predicting new interactions [Wong and Liu 10]—one can
predict that two proteins v and v interact if the value of CD,, , is sufficiently
high.
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4. Protein Function Prediction Using Biological Networks

Proteins are important building blocks that contribute to key processes within
cells. The elucidation of mechanisms underlying protein functionality is an impor-
tant pursuit and remains a challenging task in computational biology [Hawkins
and Kihara 07, Koh et al. 09]. Sequence similarity search methods such as BLAST
[Altschul et al. 90] are the primary tools for this problem. However, a nonnegli-
gible proportion of protein sequences do not have identifiable informative homo-
logues in current databases. Therefore, a variety of new bioinformatics methods
have been developed for inferring protein function using “guilt by association” of
other functional properties to complement sequence similarity search [Hawkins
and Kihara 07].

In particular, many approaches have been proposed to use protein interaction
networks for protein function prediction [Sharan et al. 07]. These approaches can
be roughly divided into three groups.

The first group [Schwikowski 00, Hishigaki et al. 01, Deng 03, Chua et al. 07b]
is based on the hypothesis that proteins having similar functions are topologically
close in the protein interaction network. This is a reasonable hypothesis because
a pair of proteins that participate in the same cellular processes or localize to
the same cellular compartment are many times more likely to interact than a
random pair of proteins [Liu et al. 08].

The second group [Chen et al. 07, Kirac and Ozsoyoglu 08, Bogdanov and
Singh 10] is based on the hypothesis that proteins with similar function have
interaction neighborhoods that are similar. This is also a reasonable hypothesis,
because when the proteins in the neighborhood of a protein have similar functions
to those of the proteins in the neighborhood of another protein, the two proteins
are likely to operate in similar environments and have similar properties.

The third group [Samanta and Liang 03, Milenkovic and Przulj 08, Brun
et al. 03] clusters proteins based on similarity of certain features—in partic-
ular their neighborhood in the protein interaction network—and hypothesizes
that such groups of proteins are functionally coherent. This is also a reasonable
hypothesis and, as we shall see later, corresponds to the “if and only if” form of
the other two hypotheses.

An early example of the first group is the “majority-vote” method, which as-
signs a protein a function that is overrepresented among its interaction partners
[Schwikowski 00, Hishigaki et al. 01]. Another example is to apply global opti-
mization techniques—e.g., Markov random fields—to transfer the function of a
protein from its neighbor and also to propagate predictions so that the function
of proteins without characterized neighbors can be predicted [Deng 03].
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A shortcoming of these methods is that the function predicted for a protein
is generally taken from proteins that directly interact with it. Even those global
optimization methods that propagate a function from a protein u that is several
hops away to a protein v essentially force the whole chain of proteins connecting
u and v to have that function. Yet it has been observed that while 48% of
yeast proteins share some function with their immediate interaction partners in
BioGrid, 69% share some function with their indirect interaction partners [Chua
et al. 06]. Hence, at least with respect to yeast proteins, these methods’ sensitivity
is limited to 48%. Another shortcoming of these methods is that they generally
do not take into account the reliability of the protein interaction network used.
For example, the majority-vote method gives all the interaction partners of the
unknown protein an equal vote, regardless of the reliability of those interactions.
This affects the precision of these methods.

A more recent example of the first group—the FSweight method [Chua et
al. 06]—overcomes these shortcomings by weighted voting of both direct and
indirect neighbors. This method defines the functional similarity weight Sgg(u, v)
between two proteins u and v based on the size of the intersection of their
interaction neighborhoods. The weight Spg(u, v) is a variation of CD,, ,, in which
the size of the intersection is defined with the reliability of individual interactions
taken into account and with equal weight given to the interaction neighborhoods
of u and v.

Then a direct neighbor v of a protein v having function a votes for function
a with weight Spg(u,v). Similarly, an indirect neighbor v’ of a protein v having
function a votes for function a with weight Spg (u, v’). The function a that receives
a total number of votes exceeding a threshold is assigned as a function of protein
u. Experiments have shown that this FSweight method has good recall and
precision. For example, in a study [Chua et al. 07b] based on the BioGrid yeast
protein interaction network, out of about 100 biological processes considered,
FSweight achieved an ROC score of 0.8 for about 80 of these biological processes
and 0.9 for about 60 of these biological processes. Cross-validation experiments
have also shown that this method can provide a substantial number of high-
quality predictions that cannot be inferred from sequence homology [Chua et
al. 07b].

An early example of the second group is LaMoFinder [Chen et al. 07]. It
first discovers network motifs [Alon 07] from a protein interaction network. A
“network motif” is a frequently occurring connection pattern in the network. For
example, the “triangle” motif represents the topology of “A interacts with B, B
interacts with C, C interacts with A,” where A, B, C are placeholders for proteins
to be mapped. After that, the placeholders in these network motifs are labeled
with functions of proteins in subnetworks that are mapped to them, thereby
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determining the various biological contexts in which such a network motif occurs.
When the subnetwork of a protein of unknown function and its functionally
labeled neighborhood are aligned to such a network motif, its function can be
inferred from the vertex to which this protein is mapped in the network motif.

A limitation of LaMoFinder is that it works only for proteins in subnetworks
that can be mapped to such network motifs. A generalization that avoids this
limitation is to find the best pairwise graph alignment of the functionally labeled
subgraph rooted at the unknown protein to functionally labeled subgraphs rooted
at other nodes in the protein interaction network [Kirac and Ozsoyoglu 08].

Both LaMoFinder and this refinement rely on a topological matching of sub-
networks. Thus their performance is affected in less-reliable protein interaction
networks that have more false interactions and missing interactions. A recent
idea [Bogdanov and Singh 10] to overcome this shortcoming uses a probabilistic
technique to define and match network patterns as follows. First, the “affin-
ity” of a protein u to another protein v in the interaction network is defined
as the steady-state probability p, ., of random walks from the first protein to
the second protein. The affinity of a protein v to a function a is defined as
S¢(a) =3, Pu,v, where u # v ranges over proteins having function a. The vector
S} is then normalized to give the functional profile of the protein v. The func-
tion of an unknown protein is predicted by a weighted voting of the k£ proteins
that are its nearest neighbors in terms of functional profile. It has been shown
[Bogdanov and Singh 10] that this method has very good recall and precision,
and outperforms the FSweight method when the protein interaction network is
sparse.

Some early examples of the third group are PRODISTIN [Brun et al. 03]
and a closely related method [Samanta and Liang 03]. These methods clus-
ter several proteins into the same group if these proteins have a significantly
larger number of common interaction partners than what is expected from a
random network. Then, by assuming that proteins in the same group are func-
tionally coherent, an unknown protein in a group can be assigned functions that
are common among other members of the group. Interestingly, such methods
[Brun et al. 03, Samanta and Liang 03] share the same hypothesis as the first
group of methods [Schwikowski 00, Hishigaki et al. 01]. To see this, we first
note that by construction, members of the same group are generally interaction
partners of each other. Thus, assigning to a protein a function that is common
among other members of the group is akin to a majority vote of interaction part-
ners of the protein. At the same time, the PRODISTIN type of methods [Brun
et al. 03, Samanta and Liang 03] uses the hypothesis in a stronger way than the
majority-vote type of methods [Schwikowski 00, Hishigaki et al. 01], because as
implied by the clustering step, the former further requires that the interaction
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partners from which the votes are taken be also interaction partners of each
other.

A more recent idea of the third group [Milenkovic and Przulj 08] first clusters
proteins based on the similarity of the network motifs (called graphlets by the
authors) in which they participate. A protein of unknown function can then be
assigned the same function as other annotated proteins in the same cluster. In-
terestingly, such a method [Milenkovic and Przulj 08] shares the same hypothesis
as the second group of methods typified by LaMoFinder [Chen et al. 07]. To see
this, we first note that by construction, members of the same cluster are mapped
to the same network motifs. Thus, assigning to a protein the same function as
other proteins in the same cluster is akin to inferring function from other pro-
teins aligned to the same network motifs. However, this method [Milenkovic and
Przulj 08] uses the hypothesis in a stronger way than LaMoFinder, because as
implied by the clustering step, the former further requires that the interaction
partners from which the function is taken also have the same network motifs as
each other.

Finally, we should briefly mention an idea that is related to—and can be con-
sidered a generalization of—the second group of methods. This is the idea of com-
paring and aligning the biological networks of two different species [Milenkovic et
al. 10, Kelley 04]. Here, after the network alignment is performed, the alignment
can be analyzed and used to infer protein functions based on shared topology in
the aligned (sub)networks of the two species [Kuchaiev et al. 10].

5. Microarray Analysis Using Biological Networks

Many approaches [Tusher et al. 01, Liu et al. 10, Zhao and Wang 10, Li et al. 03b,
Li et al. 03a, Liu et al. 05] have been proposed for the inference of differentially
expressed genes that are useful in the diagnosis of diseases and prognosis of
treatment responses. However, the statistical significance of the selected genes
and the reproducibility of the resulting diagnosis system have a high degree of
uncertainty. In particular, many of these methods produce gene lists that do
not have significant overlap when they are applied to different data sets of the
same disease phenotypes [Zhang et al. 09]. Furthermore, the transition from the
selected genes to an understanding of the sequences of causative molecular events
is unclear [Soh et al. 07].

In order to qualitatively improve the statistical power of microarray analysis
methods and the reliability of the results, additional dimensions present in the
problem have to be brought into consideration. For example, each disease gener-
ally has an underlying cause. So there should be a unifying biological theme—a
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biological pathway or a subnetwork of protein interactions—for genes that are
truly associated with the disease. Hence the uncertainty in the reliability of the
selected genes can be reduced by considering the molecular functions and the
biological processes associated with the genes. Such a unifying biological theme
is also a basis for inferring the underlying cause of the disease phenotype.

There exist a number of approaches to analyze gene expression data with re-
spect to biological context. These approaches can be roughly divided into three
groups [Soh et al. 07]. The first group comprises the overlap analysis methods
[Doniger et al. 03, Zeeberg et al. 03, Khatri and Draghici 05]. The second group
comprises the direct group analysis methods [Goeman et al. 04, Kim and Vol-
sky 05, Subramanian et al. 05]. The third group comprises the network-based
analysis methods [Sohler et al. 04, Sivachenko et al. 07, Chuang et al. 07].

The overlap analysis methods [Doniger et al. 03, Zeeberg et al. 03, Khatri and
Draghici 05] share a common principle. They basically first determine a list of
differentially expressed genes. This list of genes is then intersected with each bi-
ological pathway, and the statistical significance of the overlap is computed, e.g.,
by a hypergeometric test. The differentially expressed genes that are in a statis-
tically significant intersection with a pathway are declared candidate biomarkers
and causal factors of the disease phenotypes. ORA [Khatri and Draghici 05] is
an example of this group of methods.

A shortcoming of these methods is that the starting list of differentially ex-
pressed genes is defined using some test statistics with arbitrary thresholds.
Different test statistics and different thresholds result in a different list of differ-
entially expressed genes. As a result, the outcome of the whole procedure is not
stable. Another shortcoming is that a real causal gene that is not differentially
expressed can never be suggested by these methods. Note that it is not uncom-
mon for a real causal gene underlying a disease phenotype to be not differentially
expressed. For example, suppose a gene A upregulates both genes B and C' in
normal people. Suppose also that genes A, B, and C' are observed to be highly
expressed in normal samples, and that only gene A is observed to be highly ex-
pressed in disease samples. Then only genes B and C' are differentially expressed
and have a chance to be suggested by these methods. In such a situation, since
A is not suggested by these methods as being important, we need to postulate
mutations in B and C' in order to explain their differential expression. However,
a more likely explanation is that A has a mutation that does not change its
expression but changes its ability to upregulate B and C'.

The direct group analysis methods [Goeman et al. 04, Kim and Volsky 05, Sub-
ramanian et al. 05] work on a different principle to avoid the shortcomings above.
They do not start from differentially expressed genes. Instead, they start from
each individual biological pathway and test whether the pathway is differentially
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expressed as a whole. This is done by comparing the distributions of expression
values of genes on the biological pathway with the distributions of expression
values of all the other genes, e.g., by a weighted Kolmogorov—Smirnov test. FCS
[Goeman et al. 04] and GSEA [Subramanian et al. 05] are examples of this group
of methods. These direct group analysis methods are able to detect more subtle
changes in gene expression profiles. For example, if the majority of genes on the
biological pathway have small but correlated expression level changes, they can
still result in a high statistical significance of the biological pathway under a di-
rect group analysis method, even though the whole group is likely to be missed
by all the overlap analysis methods.

A shortcoming of the direct group analysis methods is that they work on
a whole-pathway basis, and thus, they can miss a large pathway when a small
subnetwork in that pathway is responsible for the disease phenotype. Continuing
with our earlier example, suppose the pathway has a second branch involving 30
other genes besides the branch containing the upregulation of B and C by A.
Suppose these 30 other genes are not differentially expressed, while as before,
B and C are differentially expressed and A is highly expressed. Due to the
predominance of the 30 other nondifferentially expressed genes in the pathway,
the whole pathway may not be considered differentially expressed by these direct
group analysis methods.

The network-based analysis methods [Sohler et al. 04, Sivachenko et al. 07,
Chuang et al. 07, Soh et al. 11] are the latest development in gene expression
analysis. Instead of considering a whole biological pathway, these methods try
to identify subnetworks that are significantly differentially expressed.

An early example of this approach is NEA [Sivachenko et al. 07]. For each reg-
ulator in a biological pathway, NEA considers it and all its targets in the pathway
as a group, which is then evaluated in a GSEA-like manner. This splitting into
separate regulatory groups pinpoints the transcriptional regulators whose targets
exhibit a consistent differential expression pattern, leading to a more precise hy-
pothesis that explains the disease phenotype. A shortcoming of NEA is that
it considers only the immediate regulator-regulated relationship in a biological
pathway. In particular, it may not be able to detect a linear chain of genes that
are differentially expressed in a pathway, even though a biologist would con-
sider such a linear chain highly suggestive of the underlying cause of the disease
phenotype.

The latest addition to this family of methods is SNet [Soh et al. 11], which
overcomes this shortcoming as follows. SNet first maps the genes that are highly
expressed—but not necessarily differentially expressed—in most samples of the
disease phenotype in question to biological pathways or protein interaction net-
works. Other genes and proteins in these pathways and networks are discarded.
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Each remaining connected component is considered to be a candidate subnet-
work. A score is then computed for each subnetwork s for each sample ¢ based
on the genes in the subnetwork s that are highly expressed in that sample i. A
t-statistic is then computed between the scores of each subnetwork s in samples
having the disease phenotype and the scores of subnetwork s in other samples.
The obtained t-statistic is compared to a null distribution obtained by permuting
class labels to decide whether the subnetwork s is significant.

Experiments have shown that SNet produces subnetworks that are both much
more substantial in size and much more consistent across independent data sets
of the same disease phenotypes than other methods; in particular, it was tested
on four diseases [Soh et al. 11]. For each disease, there were two independent data
sets obtained on different microarray platforms. SNet was run independently on
the two independent data sets, and the genes it selected were intersected. In each
disease, it selected fewer than 100 genes in each of the two independent data sets
and achieved 51.2% to 93.0% agreement between the two independent data sets.

6. Final Remarks

Recently, biological networks have been put to many more interesting uses. Some
of these interesting analyses enabled by biological network data are briefly men-
tioned below:

Protein complex discovery. Proteins often perform a function by aggregat-
ing into complexes to perform sophisticated biological tasks. This has motivated
approaches to identify protein complexes computationally from protein—protein
interaction data. Most of these approaches are based on the hypothesis that pro-
teins within a complex should have more interactions with each other than with
proteins outside the complex [Enright et al. 02, Przulj and Wigle 03, Adamc-
sek et al. 06, Chua et al. 08, Liu et al. 09, Yu 10]. However, these algorithms
have relatively low sensitivity and precision, because when mapped to protein
interaction networks, perhaps due to the noise and incompleteness of protein
interaction network data, many protein complexes appear to have low density
[Wong and Liu 10].

Countering pathogen drug resistance. There is a need to address the emer-
gence of drug-resistant pathogens, e.g., M. tuberculosis. It has been proposed
that a systems-level analysis of the biological pathways and protein interactions
in these pathogens is critical to gaining insight into their routes to drug resis-
tance [Raman and Chandra 08, Wong and Liu 10]. A pioneering idea [Raman
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and Chandra 08] in this direction uses protein interaction networks to identify
possible paths between known drug targets and known mechanisms for drug re-
sistance such as eflux pumps and cytochrome-like enzymes; then gene expression
experiments can be performed to reveal which of these paths are activated; after
that, analysis can be made to identify druggable proteins in these paths to serve
as “co-targets” to deactivate the drug-resistance mechanisms in the pathogen.
Another idea [Hormozdian et al. 10, Wong and Liu 10] is to identify a mini-
mum number of proteins whose simultaneous inhibition can disrupt a maximum
number of pathways.

Epistatic interaction detection. Genome-wide association study is an ef-
fort to examine the association between phenotype and genotype. Since many
diseases have complex underlying mechanisms, analysis at the level of a sin-
gle SNP (single-nucleotide polymorphism) is insufficient. There is thus intense
interest in exploring the interactions of multiple SNPs—the so-called epistatic
interactions—to uncover more significant associations [Cordell 02]. Exhaustively
considering all the possible SNP combinations is infeasible. One promising idea
that has recently emerged is to restrict the search to SNPs in the loci of genes
that are within the same biological pathways and are proximate in a protein
interaction network [Sun and Kardia 10].

Disease gene identification. This has long been a major research effort. The
availability of networks based on protein interactions, known gene—phenotype
associations, disease phenotype similarities, and other forms of associations has
opened new avenues for inferring gene—phenotype associations. For example,
causative genes for diseases that are phenotypically similar have been observed
in the same biological module or are tightly linked in a protein interaction sub-
network [Wood et al. 07, Ideker and Sharan 08]. A recent idea [Wu et al. 08, Li
and Patra 10] in this direction is to formulate some scores that correlate the dis-
tance between genes in protein interaction networks to the similarity of disease
phenotypes to which the genes are associated. Variations of this idea include us-
ing networks derived from hyperlinks between OMIM pages that describe genes
and diseases [Matsunaga et al. 10] instead of protein interaction networks.

In short, given the holistic information in biological networks, the possibilities
are immense.
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