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An Occupancy Problem Arising in
Power Law Fitting

Ian Abramson and Arthur Berg

Abstract. The power law arises commonly in modeling the number of vertices of a given
degree in large graphs. In estimating the degree of the power law, the typical approach
is to truncate by eye the log-log plot, then fit a linear equation to the remaining
log-transformed data. Here we formulate a hard-coded truncation rule to replace the
visual truncation, justify it by showing that the truncation point goes to infinity and
misses a vanishing fraction of the data with probability tending to one, and refine the
subsequent regression with a weighting and a way to use the covariation between slope
and intercept to optimize the slope estimate.

1. Introduction

The power law is widely used to model the number of edges at the vertices of large
graphs. The emergence of scale-free networks in recent years that model real
networks has the defining characteristic that the probability of a node connecting
to k other nodes follows a power law distribution [Barabási and Bonabeau 03,
Ravasz and Barabási 03]. The suitability of this heavy-tailed distribution in
preference to other close shapes is an empirical matter, not strongly supported
by any mechanistic rationale, and popular in part because a certain plot of
transformed count and frequency data leads transparently to a fitting method
based on simple regression.
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(a) Astrophysics collaborations
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(b) Condensed matter collaborations
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(d) Barabasi−Alber t model

Figure 1. Example log-log plots from real and simulated networks demonstrat-
ing the frequently observed “hook” on the left, the need for truncation on the
right, and the need for weighting the regression. (a) Network of coauthors from
the Astrophysics E-print Archive [Newman 01]; (b) network of coauthors from the
Condensed Matter E-print Archive [Newman 01]; (c) US Western States Power
Grid network [Watts and Strogatz 98]; and (d) Barabasi–Albert scale-free graph
simulation [Barabási and Albert 99] with 1000 nodes and 1998 vertices.

The idealized data model in a large random sample X1, . . . , Xn forms a discrete
power law distribution

f(x) = fβ(x) =
c

xβ
, x = 1, 2, . . . ,

for some β > 1; note that c = cβ = 1
ζ(β) , where ζ is the Riemann zeta function.

Typically there are unknown weak local dependencies in real large-graph data
that the model ignores, along with possible demonstrable lack of fit for small x.
The fitting requirement here is to capture the tail behavior in estimating β in
some way that is robust against such departures from the ideal model.

We shall refer to the log-plot as

{(log x, log Hn(x)) : x = 1, 2, . . . },



�

�

“imvol6” — 2010/7/6 — 15:19 — page 21 — #3
�

�

�

�

�

�

Abramson and Berg: An Occupancy Problem Arising in Power Law Fitting 21

where Hn(x) is the count of vertices of degree x, i.e.,

Hn(x) = nf̂(x) =
n∑

i=1

1[Xi = x].

Logs of zero counts are not plottable. Low counts and zero counts are expected
on the right, where the linear signal is blurred by increasing noise and where the
points are most influential on the regression. The unplottable zero counts for
large x induce a bias for estimating log nf(x), and inclusion in the regression is
undesirable. Our chief purpose here is to develop a right truncation point for
the points included in the regression so that the difficulty arises with probability
tending to 0. (In practice, the plot often shows a “hook” on the left, cf. Figure 1,
an empirical phenomenon with an ad hoc solution: delete by eye!) The regression
will be weighted, with weighting scheme guided by a delta-method calculation.
The deterministic sequence yn of truncation points given in the main theorem is
determined up to a growth condition, but not fully specified. In reality, a user
will usually truncate by eye anyway, and perhaps the main use of the theorem
lies in guaranteeing that a nonwasteful truncation will be possible at about the
end of the usable linear region.

2. Weighting of the Regression and Optimal Use of the Fitted Coefficients

The weighting scheme requires knowing the variance of Hn(x), the frequency
histogram at a fixed value of x. Since Hn(x) is a binomial random variable with
parameters n and cx−β , the central limit theorem implies

Hn(x) − ncx−β√
ncx−β(1 − cx−β)

d−→ N (0, 1).

After invoking the delta method, we obtain the following convergence:

√
n
(
log Hn(x) − log(ncx−β)

) d−→ N (0, c−1xβ − 1).

Thus the asymptotic variance depends on β.
Strictly, this would call for iterative reweighting. At the initial stage, one

would truncate the plot by eye and perform an unweighted or crudely weighted
regression to get a preliminary estimate of β from the slope and c from the
intercept. Now reweight the points inversely to (xβ − c) and iterate, moving the
right truncation point, which is also guided by β according to the main theorem,
which follows. Note that since c depends on β as well, an optimal estimate of β
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from the regression approach would be a convex combination of β̂ and a mapping
of ĉ.

Specifically, note that

β = β(c) = ζ−1 (1/c) and β′(c) =
−1

c2ζ′ (ζ−1 (1/c))
.

The weighted regression statistics include an estimate
(

τ̂11 τ̂12
τ̂21 τ̂22

)
for the covariance

of
(

β̂
ĉ

)
, the fitted weighted least-squares coefficients. Basing another estimate of

β on ĉ given by β̃ = ζ−1(1/ĉ), we have a correlated pair
(

β̂

β̃

)
of asymptotically

unbiased estimates of β with covariance efficiently estimated by(
τ̂11 τ̃12

τ̃21 τ̃22

)
:=
(

1 0
0 β′(ĉ)

)(
τ̂11 τ̂12

τ̂21 τ̂22

)(
1 0
0 β′(ĉ)

)
.

There is an optimal convex combination β̂∗ = aβ̂ + (1 − a)β̃, with a given by

a =
τ̃22 − τ̃12

τ̂11 − 2τ̃12 + τ̃22
,

since it yields the convex combination with minimal asymptotic variance. The
sampling variance of β̂∗ is estimated by

v̂arβ̂ =
τ̂12τ̃22 − τ̃2

12

τ̂11 − 2τ̃12 + τ̃22
,

on which a confidence interval can be based in the usual way.

3. The Main Theorem

We now state and prove the main theorem, which essentially supports the usual
truncate-by-eye approach.

Theorem 3.1. Let β > 1 be fixed and X1, X2, . . .
iid∼ f(x) = cx−β(x = 1, 2, . . . ).

Define Hn(x) =
∑n

i=1 1 [Xi = x] and Mn = min{x : Hn(x) = 0}. Provided a
sequence yn satisfies the growth condition

yne−ncy−β
n −→ 0 (3.1)

as n → ∞, it follows that Pr [Mn > yn] → 1 as n → ∞.

Remark 3.2. (a) The conclusion of the theorem can be expressed by calling yn a
“sequence of probable lower bounds for Mn.”
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(b) The growth condition on yn is implicit and awkward for direct checking.
Explicit sufficient conditions are developed after the proof. They generally entail
yn → ∞, sublinearly, but still enclosing a fraction of the data {Xi} tending to 1.

Proof. First we “poissonize” the sample size n: For each n, let

N = Nn ∼ Poisson(n),

independently of {Xi}, and let M∗
n = MN . We prove that Pr[M∗

n > yn] → 1
when yn satisfies the growth condition (3.1), and then “depoissonize” at the end.

Fix a positive integer y. Then

Pr [M∗
n > y] =

y∏
x=1

Pr [HN (x) > 0]

=
y∏

x=1

E [Pr (HN (x) > 0|N)]

=
y∏

x=1

E
[
1 − (1 − f(x))N

]
=

y∏
x=1

1 − e−nf(x).

The last equality follows from the moment-generating function of the Poisson
random variable; i.e., for any t ∈ R,

E
[
eNt
]

= en(et−1).

Now fix an integer sequence yn → ∞. To have Pr [M∗
n > y] → 1, it is enough to

argue that
yn∑

x=1

log
(
1 − e−nf(x)

)
−→ 0.

Extend the integer argument of f(x) = cx−β (c = ζ(β)−1) to a real argument x.
Then we have the following bound:∣∣∣∣∣

yn∑
x=1

log
(
1 − e−nf(x)

)∣∣∣∣∣ < 2
yn∑

x=1

e−ncx−β

< 2
∫ yn+1

1

e−ncx−β

dx

< 2yne−nc(yn+1)−β

,
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where the last bound tends to zero if the growth condition (3.1) of the theorem
is satisfied; this is seen by the following inequality chain:

yne−ncy−β
n < yne−nc(yn+1)−β

< (yn + 1)e−nc(yn+1)−β

.

The following depoissonization argument then completes the proof. Let 0 <

δ < 1/2 and let integers yn → ∞ satisfy the growth condition (3.1). Then

P [MN > yn] = P
[
MN > yn ∩ N ≤ n + n1/2+δ

]
+ P

[
MN > yn ∩ N > n + n1/2+δ

]
≤ P

[
M[n+n1/2+δ] > yn

]
+ o(1),

where [ · ] in the subscript of M represents the greatest integer function. Since
the left side of the above inequality tends to 1, so does P

[
M[n+n1/2+δ] > yn

]
.

Write
n + n1/2+δ = ν(n) = n (1 + o(1)) as n → ∞.

Inverting, we obtain

n(ν) = ν−1(ν) = ν(1 + o(1)) as ν → ∞,

so P
[
M[ν] > yn(ν)

]→ 1 as ν → ∞ along values making n(ν) integers. To finish
the argument we need to show that

yne−ncy−β
n → 0 implies yn(ν)e

−νcy−β
n(ν) → 0 as ν → ∞.

Taking a log yields

lim
ν→∞ log

(
yn(ν)e

−νcy−β
n(ν)

)
= lim

ν→∞

[
log yn(ν) − n(ν) (1 + o(1)) cy−β

n(ν)

]
= lim

n→∞
[
log yn − n(1 + o(1))cy−β

n

]
= −∞,

as required, since log yn → +∞ and the other term dominates.

4. An Explicit Growth Condition Sufficient for the Main Theorem

The first and crudest argument below leads to an explicit growth condition that
works for all β. We then improve it in the range β ≥ 2 and then extend the
improvement to β ≥ 1.84 (which could be further improved with difficulty and
perhaps little practical gain).
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Fix γ > 1/β; the closer to equality, the weaker the condition and the faster
the guaranteed growth of yn (although the price may be that asymptotics are
slow to take hold). We show that

yn = o
(
n1/β(log n)−γ

)
makes yne−ncy−β

n → 0, as the theorem requires. The argument rests on showing
that ncy−β

n − log yn → ∞. With our choice of yn, the left side exceeds

ncy−β
n − 1

β
log n + γ log log n > c (log n)βγ − 1

β
log n + γ log log n −→ ∞,

since βγ > 1. If β ≥ 2, a further improvement is possible: simply take any

yn = o

((
n

log n

)1/β
)

.

That is, let γ above equal 1/β, and the bound grows faster. This follows from
examining again

ncy−β
n − log yn >

(
c − 1

β

)
log n +

1
β

log log n,

which tends as it must to infinity, provided c ≥ 1/β. But

c =
1∑∞

x=1 x−β
>

1
1 +

∫∞
1

dx
xβ

= 1 − 1
β

,

showing that c ≥ 1/β as long as β ≥ 2.
For a further improvement, observe that the 1 in the denominator can be

replaced by

ζ(2) − 1 =
π2

6
− 1 = sup

s∈(1,2]

[
ζ(s) −

∫ ∞

1

x−s dx

]
. (4.1)

(The last assertion, involving the supremum of the zeta function with its pole
1

s−1 =
∫∞
1

x−s dx removed, is nontrivial and is argued in Section 5.) Finally,
after solving a quadratic, a permissible range for β is found to be

β ≥ 1
12

(
π2 +

√
288 − 24π + π4

)
≈ 1.838,

improving (but not optimally) on β ≥ 2.
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In summary, explicit sufficient growth conditions for yn are given by

1 < β < 1.84 : yn = o

((
n

(log n)1+δ

)1/β
)

(δ > 0 fixed, arbitrary),

β ≥ 1.84 : yn = o

((
n

log n

)1/β
)

.

The conditions are “close” to necessary as well, in that the growth condition of
the theorem implies by an easy argument yn = O

(
n1/β

)
.

5. A Proof of the Growth Condition in the Main Theorem

We proceed to show that

g(s) = ζ(s) −
∫ ∞

1

x−s dx = ζ(s) − 1
s − 1

is strictly increasing on (1, 2], which will justify the assertion

ζ(2) − 1 = sup
s∈(1,2]

[
ζ(s) −

∫ ∞

1

x−s dx

]
.

The Riemann zeta function has the following Laurent series expansion about
s = 1 [Havil 09, p. 118]:

ζ(s) =
1

s − 1
+

∞∑
n=0

(−1)n

n!
γn(s − 1)n,

where the constants γn are referred to as the Stieltjes constants. We have the
following bounds on γn [Berndt 72]:

|γn| <

{
4(n−1)!

πn , n even,
2(n−1)!

πn , n odd.

We wish to show that for s ∈ (1, 2],

g′(s) =
∞∑

n=1

(−1)n

n!
γnn(s − 1)n−1 > 0.
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Note that

g′(s) = −γ1 + γ2(s − 1) − γ3

2
(s − 1)2 +

∞∑
n=4

(−1)n

n!
γnn(s − 1)n−1

> −γ1 + γ2(s − 1) + −γ3

2
(s − 1)2 −

∞∑
n=4

4(n − 1)!
πnn!

n(s − 1)n−1

= −γ1 + γ2(s − 1) + −γ3

2
(s − 1)2 − 4

π

∞∑
n=4

(
s − 1

π

)n−1

= −γ1 + γ2(s − 1) + −γ3

2
(s − 1)2 − 4(s − 1)3

π(1 + π − s)
.

Using the bounds

γ1 = −0.07281584548 . . . < −0.072,

γ2 = −0.009690363192 . . . > −0.01,

γ3 = 0.002053834420 . . . < 0.003,

and
4(s − 1)3

π(1 + π − s)

∣∣∣∣
s=2

=
4

π3(π − 1)
= 0.0602384 . . . < 0.0603,

we see that for all s ∈ (1, 2],

g′(s) > 0.072− 0.01 − 0.003
2

− 0.0603 = 0.0002 > 0.

This bound can certainly be improved by utilizing the stronger bound of the
Stieltjes constants on odd indices and also by isolating more terms before apply-
ing the Berndt bound.
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