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Threshold Graph Limits and
Random Threshold Graphs
Persi Diaconis, Susan Holmes, and Svante Janson

Abstract. We study the limit theory of large threshold graphs and apply this to a variety
of models for random threshold graphs. The results give a nice set of examples for the
emerging theory of graph limits.

1. Introduction

1.1. Threshold Graphs

Graphs have important applications in modern systems biology and social sci-
ences. Edges are created between interacting genes or people who know each
other. However, graphs are not objects that are naturally amenable to sim-
ple statistical analysis. There is no natural average graph, for instance. Being
able to predict or replace a graph by hidden (statisticians call them latent) real
variables has many advantages. This paper studies such a class of graphs that
sits within the larger class of interval graphs [McKee and McMorris 99], itself a
subset of intersection graphs [Erdős et al. 89]; see also [Brandstädt et al. 99].

Consider the following properties of a simple graph G on [n] := {1, 2, . . . , n}:

(1.1) There are real weights wi and a threshold value t such that there is an edge
from i to j if and only if wi + wj > t. Thus “the rich people always know
each other.”
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Figure 1. A threshold graph.

(1.2) The graph G can be built sequentially from the empty graph by adding
vertices one at a time, where each new vertex is either isolated (nonadjacent
to all the previous) or dominant (connected to all the previous).

(1.3) The graph is uniquely determined (as a labeled graph) by its degree
sequence.

(1.4) Any induced subgraph has either an isolated or a dominant vertex.

(1.5) There is no induced subgraph 2K2, P4, or C4. (Equivalently, there is no
alternating 4-cycle, i.e., four distinct vertices x, y, z, w with edges xy and
zw but no edges yz and xw; the diagonals xz and yw may or may not
exist.)

These properties are equivalent and define the class of threshold graphs.
The book [Mahadev and Peled 95] contains proofs and several other seemingly
different characterizations. Note that the complement of a threshold graph is
a threshold graph (by any of (1.1)–(1.5)). By (1.2), a threshold graph is ei-
ther connected (if the last vertex is dominant) or has an isolated vertex (if
the last vertex is isolated); clearly these two possibilities exclude each other
when n > 1.

Example 1.1. The graph in Figure 1 is a threshold graph, from (1.1) by taking
weights 1, 5, 2, 3, 2 on vertices 1 through 5 with t = 4.5, or from (1.2) by adding
vertices 3, 5 (isolated), 4 (dominant), 1 (isolated), and 2 (dominant).

While many familiar graphs are threshold graphs (stars and complete graphs,
for example), many are not (e.g., paths and cycles of length 4 or more). For
example, of the 64 labeled graphs on four vertices, 46 are threshold graphs; the
other 18 are paths P4, cycles C4, and pairs of edges 2K2 (which is the complement
of C4). Considering unlabeled graphs, there are 11 graphs on four vertices, and
eight of them are threshold graphs.
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Figure 2. A whole threshold graph with isolates (above) and with only the con-
nected part expanded (below); the labels are the rounded weights wi.

1.2. Random Threshold Graphs

It is natural to study random threshold graphs. There are several different
natural random constructions; we will in particular consider the following three:

(1.6) From (1.1) by choosing {wi}1≤i≤n as independent and identically dis-
tributed (i.i.d.) random variables from some probability distribution. (We
also choose some fixed t; we may assume t = 0 by replacing wi by wi−t/2.)

(1.7) From (1.2) by ordering the vertices randomly and adding the vertices one
by one, each time choosing at random between the qualifiers “dominant”
and “isolated” with probabilities pi and 1 − pi, respectively, 1 ≤ i ≤ n.
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Figure 3. A threshold graph with n = 20 and uniform wi. It turns out that this
instance has no isolates. The labels are the rounded weights wi.

This is a simple random attachment model in a similar vein to those in
[Mitzenmacher 04]. We mainly consider the case that all pi are equal to a
single parameter p ∈ [0, 1].

(1.8) The uniform distribution on the set of threshold graphs.

Example 1.2. Figure 2 shows a random threshold graph constructed by (1.6) with
wi chosen independently from the standardized normal distribution and t = 3.
About half of the vertices are isolated, most of those with negative weights.

Example 1.3. Figure 3 shows a random threshold graph constructed by (1.6) with
wi chosen as i.i.d. uniform random variables on [0, 1] and t = 1. This instance
is connected; this happens if and only if the maximum and minimum of the wi

add to more than 1 (then there is a dominant vertex); in this example this has
probability 1/2.

We show below (Corollaries 6.6 and 6.7) that this uniform-weight model is
equivalent to adding isolated or dominant nodes as in (1.7) with probability p =
1/2, independently and in random order. It follows that this same distribution
appears as the stationary distribution of a Markov chain on threshold graphs that
picks a vertex at random and changes it to dominant or isolated with probability
1/2 (this walk is analyzed in [Brown and Diaconis 98]). Furthermore, it follows
from Section 2.1 that these models yield a uniform distribution on the set of
unlabeled threshold graphs of order n.
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1.3. Bipartite Threshold Graphs

We also study the parallel case of bipartite threshold graphs (difference graphs),
both for its own sake and because one of the main theorems is proved by first
considering the bipartite case.

By a bipartite graph we mean a graph with an explicit bipartition of the
vertex set; it can thus be written as (V1, V2, E), where the edge set E satisfies
E ⊆ V1 × V2. The following properties of a bipartite graph are equivalent and
define the class of bipartite threshold graphs. (See [Mahadev and Peled 95] for
further characterizations.)

(1.9) There are real weights w′
i, i ∈ V1, and w′′

j , j ∈ V2, and a threshold value t

such that there is an edge from i to j if and only if w′
i + w′′

j > t.

(1.10) The graph G can be built sequentially starting from n1 white vertices
and n2 black vertices in some fixed total order. Proceeding in this order,
make each white vertex dominant or isolated from all the black vertices
that precede it and each black vertex dominant or isolated from all earlier
white vertices.

(1.11) Any induced subgraph has either an isolated vertex or a vertex dominating
every vertex in the other part.

(1.12) There is no induced subgraph 2K2.

Remark 1.4. Threshold graphs were defined in [Chvátal and Hammer 77]. Bipartite
threshold graphs were studied in [Hammer et al. 90] under the name difference
graphs because they can equivalently be characterized as the graphs (V, E) for
which there exist weights wv, v ∈ V , and a real number t such that |wv| < t

for every v and uv ∈ E ⇐⇒ |wu − wv| > t; it is easily seen that every
such graph is bipartite with V1 = { v : wv ≥ 0 } and V2 = { v : wv < 0 } and
that this satisfies the definition above (e.g., with w′

v = wv and w′′
v = −wv),

and conversely. We will use the name bipartite threshold graph to empha-
size that we consider these graphs equipped with a given bipartition. The
same graphs were called chain graphs in [Yannakakis 82] because each par-
tition can be linearly ordered for the inclusion of the neighborhoods of its
elements.

Remark 1.5. A suite of programs for working with threshold graphs appears in
[Hagberg et al. 06] with further developments in [Konno et al. 05] and [Masuda
et al. 05].
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Figure 4. The function W (x, y) for Example 1.3. Hashed values have W (x, y) = 1;
unhashed, W (x, y) = 0.

Remark 1.6. The most natural class of graphs built from a coordinate system are
commonly called geometric graphs [Penrose 03] or geographical graphs [Konno
et al. 05, Masuda et al. 05]. Threshold graphs are a special case of these. Their
recognition and manipulation in a statistical context relies on useful measures
on such graphs. We will start by defining such measures and developing a limit
theory.

1.4. Overview of the Paper

The purpose of this paper is to study the limiting properties of large thresh-
old graphs in the spirit of the theory of graph limits developed in [Lovász and
Szegedy 06] and [Borgs et al. 07b] (and in further papers by those authors and
others). As explained below, the limiting objects are not graphs, but can rather
be represented by symmetric functions W (x, y) from [0, 1]2 to [0, 1]; any sequence
of graphs that converges in the appropriate way has such a limit.

Conversely, such a function W may be used to form a random graph Gn by
choosing independent random points Ui in [0, 1], and then for each pair (i, j) with
1 ≤ i < j ≤ n flipping a biased coin with heads probability W (Ui, Uj), putting
an edge from i to j if the coin comes up heads. The resulting sequence of random
graphs is (almost surely) an example of a sequence of graphs converging to W .
For Example 1.3, letting n → ∞, there is (as we show in greater generality in
Section 6) a limit W that may be pictured as in Figure 4.

One of our main results (Theorem 5.5) shows that graph limits of thresh-
old graphs have unique representations by increasing symmetric zero–one-valued
functions W . Furthermore, there is a one-to-one correspondence between these
limiting objects and a certain type of “symmetric” probability distribution PW

on [0, 1]. A threshold graph is characterized by its degree sequence; normalizing
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Figure 5. Threshold graphs generated with n = 50 as in Example 1.3 with uniform
wi and t = 1; this is the degree histogram for a sample of 10,000 random graphs.

this to be a probability distribution, say ν(Gn), we show (Theorem 5.8) that a
sequence of threshold graphs converges to W when n → ∞ if and only if ν(Gn)
converges to PW . (Hence PW can be regarded as the degree distribution of the
limit. The result that a limit of threshold graphs is determined by its degree dis-
tribution is a natural analogue for the limit objects of the fact that an unlabeled
threshold graph is uniquely determined by its degree distribution.)

Figures 5 and 7 show simulations of these results. In Figure 5, ten thou-
sand graphs with n = 50 were generated from (1.6) with uniform weights as in
Example 1.3.

In the bipartite case, there is a similar one-to-one correspondence between the
limit objects and probability distributions on [0, 1]; now all probability distribu-
tions on [0, 1] appear in the representation of the limits (Theorem 5.1).

Section 2 discusses uniform random threshold graphs (both labeled and un-
labeled) and methods to generate them. Section 3 gives a succinct review of
notation and graph limits. Section 4 develops the limit theory of degree se-
quences; this is not restricted to threshold graphs. Section 5 develops the limit
theory for threshold graphs both deterministic and random. Section 6 treats
examples of random threshold graphs and their limits, and Section 8 gives corre-
sponding examples and results for random bipartite threshold graphs. Section 7
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treats the degree distribution of uniform random threshold graphs in greater
detail. Section 9 treats the spectrum of the Laplacian of threshold graphs.

We denote the vertex and edge sets of a graph G by V (G) and E(G), and the
numbers of vertices and edges by v(G) := |V (G)| and e(G) := |E(G)|. For a
bipartite graph we similarly use Vj(G) and vj(G), j = 1, 2.

Throughout the paper, “increasing” and “decreasing” should be interpreted
in the weak sense (nondecreasing and nonincreasing). Unspecified limits are to
be taken as n → ∞.

2. Generating Threshold Graphs Uniformly

This section gives algorithms for generating uniformly distributed threshold
graphs, in both the labeled case and unlabeled cases. The algorithms are used
here for simulation and in Sections 6 and 7 to prove limit theorems.

Let Tn and LT n be the sets of unlabeled and labeled threshold graphs on
n vertices. These are different objects; Tn is a quotient of LT n, and we treat
counting and uniform generation separately for the two cases. We assume in this
section that n ≥ 2.

2.1. Unlabeled Threshold Graphs

We can code an unlabeled threshold graph on n vertices by a binary code
α2 · · ·αn of length n−1: Given a code α2 · · ·αn, we construct G by (1.2), adding
vertex i as a dominant vertex if and only if αi = 1 (i ≥ 2). Conversely, given
G of order n ≥ 2, let αn = 1 if there is a dominant vertex (G is connected) and
αn = 0 if there is an isolated vertex (G is disconnected). We then remove one
such dominant or isolated vertex and continue recursively to define αn−1, . . . , α2.

Since all dominant (isolated) vertices are equivalent to each other, this coding
gives a bijection between Tn and { 0, 1 }n−1. In particular,

|Tn| = 2n−1, n ≥ 1.

See Figure 6 for an example.

, , ,
00 01 10 11
Figure 6. The four graphs in T3 and their codes.
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Algorithm 1. (Generating uniform random unlabeled threshold graphs of a given order n.)

1. Add n vertices by (1.2), each time randomly choosing “isolated” or
“dominant” with probability 1/2.

This leads to a simple algorithm to generate a uniformly distributed random
unlabeled threshold graph: we construct a random code by making n − 1 coin
flips, according to Algorithm 1.

This is thus the same as the second method in Example 1.3, so Corollary 6.6
shows that the first method in Example 1.3 also yields uniform random unlabeled
threshold graphs (if we forget the labels).

The following notation is used to define two further algorithms (Section 2.3)
and for proof of the limiting results in Section 7.

Define the extended binary code of a threshold graph to be the binary code
with the first binary digit repeated; it is thus α1α2α3 · · ·αn with α1 := α2.
The runs of 0’s and 1’s in the extended binary code then correspond to blocks
of vertices that can be added together in (1.2) as either isolated or dominant
vertices, with the blocks alternating between isolated and dominant.

The vertices in each block are equivalent and have in particular the same
vertex degrees, while vertices in different blocks can be seen to have different
degrees. (The degree increases strictly from one dominant block to the next and
decreases strictly from one isolated block to the next, with every dominant block
having higher degree than every isolated block; cf. Example 2.1 below.) The
number of different vertex degrees thus equals the number of blocks.

If the lengths of the blocks are b1, b2, . . . , bτ , then the number of automor-
phisms of G is

∏τ
j=1 bj !, since the vertices in each block may be permuted arbi-

trarily.
Note that if b1, . . . , bτ are the lengths of the blocks, then

b1 ≥ 2, bk ≥ 1 (k ≥ 2),
τ∑

k=1

bk = n. (2.1)

Since the blocks are alternately dominant or isolated, and the first block
may be either, each sequence b1, . . . , bτ satisfying (2.1) corresponds to exactly
two unlabeled threshold graphs of order n. (These graphs are the comple-
ments of each other. One has isolated blocks where the other has dominant
blocks.)
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2.2. Labeled Threshold Graphs

The situation is different for labeled threshold graphs. For example, all of the
2(3

2) = 8 labeled graphs with n = 3 turn out to be threshold graphs, and for
instance, the graphs

1

2

3, 1 2

3

, 12

3

are distinguished. Hence the distribution of a uniform random labeled threshold
graph differs from the distribution of a uniform unlabeled threshold graph (even
if we forget the labels). In particular, Example 1.3 does not produce uniform
random labeled threshold graphs.

Let G be an unlabeled threshold graph with an extended code having block
lengths (runs) b1, . . . , bτ . Then the number of labeled threshold graphs cor-
responding to G is n!/

∏τ
1 bj!, since every such graph corresponds to a unique

assignment of the labels 1, . . . , n to the τ blocks, with bi labels to block i. (Alter-
natively and equivalently, this follows from the number

∏τ
1 bj! of automorphisms

given above.)
The number t(n) := |LT n| of labeled threshold graphs [Sloane 09, A005840]

has been studied in [Beissinger and Peled 87]. Among other things, the authors
show that ∞∑

n=0

t(n)
xn

n!
=

(1 − x)ex

2 − ex
,

so by Taylor expansion,

n 1 2 3 4 5 6 7 8 9 10

t(n) 1 2 8 46 332 2874 29024 334982 4349492 62749906

and by expanding the singularities (cf. [Flajolet and Sedgewick 09, Chapter IV]),
they obtain the exact formula

t(n)
n!

=
∞∑

k=−∞

( 1
log 2 + 2πik

− 1
)( 1

log 2 + 2πik

)n

, n ≥ 2, (2.2)

where the leading term is the one with k = 0, and thus one has the asymptotics

t(n)
n!

=
( 1

log 2
− 1
)( 1

log 2

)n

+ ε(n), |ε(n)| ≤ 2ζ(n)
(2π)n

, (2.3)

where ζ(n) is the Riemann zeta function and thus ζ(n) → 1. Furthermore,

t(n) = 2Rn − 2nRn−1, n ≥ 2, with Rn =
n∑

k=1

k!S(n, k) =
∞∑

�=0

�n

2�+1
, (2.4)
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where S(n, k) are Stirling numbers; Rn is the number of preferential arrange-
ments of n labeled elements, or the number of weak orders on n labeled elements
[Sloane 09, A000670], also called surjection numbers [Flajolet and Sedgewick 09,
II.3]. (This is easily seen using the blocks above; the number of labeled thresh-
old graphs with a given sequence of blocks is twice—since the first block may
be either isolated or dominant—the number of preferential arrangements with
the same block sizes; if we did not require b1 ≥ 2, this would yield 2Rn, but
we have to subtract twice the number of preferential arrangements with b1 = 1,
which is 2nRn−1.) We note for future use the generating function [Flajolet and
Sedgewick 09, (II.15)]

∞∑
n=0

Rn
xn

n!
=

1
2 − ex

. (2.5)

Let t(n, j) be the number of labeled threshold graphs with j isolated points.
Then, as also shown in [Beissinger and Peled 87] (and easily seen), for n ≥ 2,

t(n, 0) = t(n)/2,

t(n, j) =

⎧⎪⎨⎪⎩
(
n
j

)
t(n − j, 0) = 1

2

(
n
j

)
t(n − j), 0 ≤ j ≤ n − 2,

0, j = n − 1,

1, j = n.

(2.6)

Thus knowledge of t(n) provides t(n, j).
These ingredients allow us to give an algorithm, Algorithm 2, for choosing

uniformly in LT n.
Alternatively, instead of selecting the subsets in steps 1 and 2 at random,

we may choose them in any way, provided the algorithm begins or ends with a
random permutation of the points.

The algorithm works because of a characterization of threshold graphs by
Chvátal and Hammer [Chvátal and Hammer 77], cf. (1.4): a graph is a threshold
graph iff any subset S of vertices contains at least one isolated or one dominant
vertex (within the graph induced by S). Thus in step 2, since there are no
isolates among the n′ vertices left, there must be at least one dominant vertex.
(Note that j0 may be zero, but not j1, j2, . . . .) The probability distribution for
the number of dominant vertices follows the same law as that of the isolates
because the complement of a threshold graph is a threshold graph (or because
of the interchangeability of 0’s and 1’s in the binary coding given earlier in this
section).

Note that this algorithm treats vertices in the reverse of the order in (1.2),
where we add vertices instead of peeling them off, as here. It follows that we
obtain the extended binary code of the graph by taking runs of j0 0’s, j1 1’s,
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Algorithm 2. (Generating uniform random labeled threshold graphs of a given order n.)

0. Make a list of t(k) for k between 1 and n. Make lists of t(k, j) for
k = 1, . . . , n and j = 0, . . . , k.

1. Choose an integer j0 in {0, . . . , n} with probability that j0 = j given
by t(n, j)/t(n). Choose (at random) a subset of j0 points in {1, . . . , n}.
These are the isolated vertices in the graph. Let n′ := n − j0 be the
number of remaining points. If n′ = 0 then stop.

2. Choose an integer j1 in {1, . . . , n′} with probability that j1 = j given
by t(n′, j)/(t(n′) − t(n′, 0)) = 2t(n′, j)/t(n′) and choose (at random) j1
points of those remaining; these will dominate all further points, so
add edges between these vertices and from them to all remaining
points. Update n′ to n′ − j1, the number of remaining points. If n′= 0
then stop.

3. Choose an integer j2 in {1, . . . , n′} with probability that j2 = j given
by 2t(n′, j)/t(n′) and choose (at random) j2 points of those remaining;
these will be isolated among the remaining points, so no further edges
are added. Update n′ to n′ − j1, the number of remaining points. If
n′ = 0 then stop.

4. Repeat from step 2 with the remaining n′ points.

j2 0’s, and so on, and then reversing the order. Hence, in the notation used
above, the sequence (bk) equals (jk) in reverse order, ignoring j0 if j0 = 0. (In
particular, note that the last jk is greater than or equal to 2, since t(n′, n′−1) = 0
for n′ ≥ 2, which corresponds to the first block b1 ≥ 2.)

Example 2.1. A sequence of j’s generated for a threshold graph of size 20 is 0 2 3

1 1 1 3 1 1 3 1 1 2, which yields the sequence d d i i i d i d i i i d

i d d d i d i i of dominant and isolated vertices. A random permutation of
{ 1, . . . , 20 } was generated and we obtain

13 2 11 15 8 20 6 12 16 4 18 7 10 9 14 17 1 19 5 3

d d i i i d i d i i i d i d d d i d i i

where d signifies that the vertex is connected to all later vertices in this list.
The degree sequence is thus, taking the vertices in this order: 19, 19, 2, 2,
2, 16, 3, 15, 4, 4, 4, 12, 5, 11, 11, 11, 8, 10, 9, 9. The extended binary code
00101110100010100011 is obtained by translating i to 0 and d to 1, and reversing
the order.
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Figure 7. Threshold graphs were generated according to the algorithm of this
section; this is the degree histogram.

Remark 2.2. Note that the last j is at least 2, since t(n′, n′ − 1) = 0 for every
n′ ≥ 2. Hence, the sequence of d’s and i’s always ends with at least two identical
symbols.

Note that the vertex degrees are constant in each block of vertices assigned
in one of the steps, i.e., for each run of i’s or d’s, and that they decrease from
each run of d’s to the next and increase from each run of i’s to the next, with
each vertex labeled d having a higher degree than every vertex labeled with i;
the number of different vertex degrees is thus equal to the number of j’s chosen
by the algorithm, which equals the number of runs in the sequence of d’s and
i’s (or in the extended binary code).

In Figure 7, ten thousand graphs were generated with n = 100 according to
the uniform distribution over all labeled threshold graphs. We discuss the central
“bump” and other features of Figure 7 in Theorem 7.4.
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2.3. The Distribution of Block Lengths

We have seen in Section 2.1 that if b1, . . . , bτ are the lengths of the blocks of
isolated or dominant vertices added to the graph in building it as in (1.2), then
(2.1) holds.

Consider now a sequence of independent integer random variables B1, B2, . . .

with B1 ≥ 2 and Bj ≥ 1 for j ≥ 2, and let Sk :=
∑k

j=1 Bj be the partial sums.
If some Sτ = n, then stop and output the sequence (B1, . . . , Bτ ). Conditioning
on the event that Sτ = n for some τ , this yields a random sequence b1, . . . , bτ

satisfying (2.1), and the probability that we obtain a given sequence (bj)τ
1 equals

c
∏τ

j=1 P(Bj = bj) for some normalizing constant c.

We now specialize to the case that B1
d= (B∗ | B∗ ≥ 2) and Bj

d= (B∗ | B∗ ≥ 1)
for j ≥ 2, for some given random variable B∗. Then the (conditional) probability
of obtaining a given b1, . . . , bτ satisfying (2.1) can be written

c′
τ∏

j=1

P(B∗ = bj)
P(B∗ ≥ 1)

(2.7)

(with c′ = c P(B∗ ≥ 1)/ P(B∗ ≥ 2)).
There are two important cases. First, if we take B∗ ∼ Ge(1/2), then P(B∗ =

bj)/ P(B∗ ≥ 1) = 2−bj , and thus (2.7) yields c′2−
∑

j bj = c′2−n, so the proba-
bility is the same for all allowed sequences. Hence, in this case the distribution
of the constructed sequence is uniform on the set of sequences satisfying (2.1),
so it equals the distribution of block lengths for a random unlabeled threshold
graph of size n.

The other case is B∗ ∼ Po(log 2). Then P(B∗ ≥ 1) = 1 − e− log 2 = 1/2,
and P(B∗ = bj)/ P(B∗ ≥ 1) = (log 2)bj /bj!. Thus, (2.7) yields the probability
c′(log 2)n/

∏
j bj !, which is proportional to the number 2 · n!/

∏
j bj! of labeled

threshold graphs with block lengths b1, . . . , bτ . Hence, in this case the distribu-
tion of the constructed sequence equals the distribution of block lengths for a
random labeled threshold graph of size n.

We have proved the following result.

Theorem 2.3. Construct a random sequence B1, . . . , Bτ as above, based on a random
variable B∗, stopping when

∑τ
1 Bj ≥ n and conditioning on

∑τ
1 Bj = n.

(i) If B∗ ∼ Ge(1/2), then (B1, . . . , Bτ ) has the same distribution as the block
lengths in a random unlabeled threshold graph of order n.

(ii) If B∗ ∼ Po(log 2), then (B1, . . . , Bτ ) has the same distribution as the block
lengths in a random labeled threshold graph of order n.



�

�

“imvol5” — 2009/11/4 — 9:42 — page 281 — #15
�

�

�

�

�

�

Diaconis et al.: Threshold Graph Limits and Random Threshold Graphs 281

Algorithm 3. (Generating uniform unlabeled or labeled threshold graphs of a given order n.)

1. In the unlabeled case, let B∗ ∼ Ge(1/2). In the labeled case, let
B∗ ∼ Po(log 2).

2. Choose independent random numbers B1, B2, . . . , Bτ , with
B1

d= (B∗ | B∗ ≥ 2) and Bj
d= (B∗ | B∗ ≥ 1), j ≥ 2, until the sum[2]∑τ

1 Bj is greater than or equal to n.

3. If
∑τ

1 Bj > n, start again with step 2.

4. We have found B1, . . . , Bτ with
∑τ

1 Bj = n. Toss a coin to decide
whether the first block is isolated or dominant; the following blocks
alternate. Construct a threshold graph by adding vertices as in (1.2),
block by block.

5. In the labeled case, make a random labeling of the graph.

It follows that the length of a typical (for example, a random) block converges
in distribution to (B∗ | B∗ ≥ 1). Theorem 2.3 also leads to another algorithm
to construct uniform random threshold graphs (Algorithm 3).

By standard renewal theory, the probability that
∑τ

1 Bj is exactly n is asymp-
totically 1/ E(B∗ | B∗ ≥ 1) = P(B∗ ≥ 1)/ E B∗, which is 1/2 in the unlabeled
case and 1/(2 log 2) ≈ 0.72 in the labeled case, so we do not have to do very
many restarts in step 3.

3. Graph Limits

This section reviews needed tools from the emerging field of graph limits.

3.1. Graph Limits

Here we review briefly the theory of graph limits as described in [Lovász and
Szegedy 06], [Borgs et al. 07b], and [Diaconis and Janson 08].

If F and G are two graphs, let t(F, G) be the probability that a random
mapping φ : V (F ) → V (G) defines a graph homomorphism, i.e., that φ(v)φ(w) ∈
E(G) when vw ∈ E(F ). (By a random mapping we mean a mapping uniformly
chosen among all v(G)v(F ) possible ones; the images of the vertices in F are
thus independent and uniformly distributed over V (G), i.e., they are obtained
by random sampling with replacement.)
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The basic definition is that a sequence Gn of (generally unlabeled) graphs
converges if t(F, Gn) converges for every graph F ; as in [Diaconis and Janson 08],
we will further assume v(Gn) → ∞.

More precisely, the (countable and discrete) set U of all unlabeled graphs
can be embedded in a compact metric space U such that a sequence Gn ∈ U
of graphs with v(Gn) → ∞ converges in U to some limit Γ ∈ U if and only
if t(F, Gn) converges for every graph F (see [Lovász and Szegedy 06, Borgs et
al. 07b, Diaconis and Janson 08]).

Let U∞ := U \ U be the set of proper limit elements; we call the elements of
U∞ graph limits. The functionals t(F, ·) extend to continuous functions on U ,
so Gn → Γ ∈ U∞ if and only if v(Gn) → ∞ and t(F, Gn) → t(F, Γ) for every
graph F .

Let W be the set of all measurable functions W : [0, 1]2 → [0, 1] and let Ws be
the subset of symmetric functions. The main result of [Lovász and Szegedy 06] is
that every element of U∞ can be represented by a (nonunique) function W ∈ Ws.
We let ΓW ∈ U∞ denote the graph limit defined by W . (We sometimes use the
notation Γ(W ) for readability.) Then, for every graph F ,

t(F, ΓW ) =
∫

[0,1]v(F )

∏
ij∈E(F )

W (xi, xj) dx1 · · · dxv(F ). (3.1)

Moreover, define, for every n ≥ 1, a random graph G(n, W ) as follows: first
choose a sequence X1, X2, . . . , Xn of i.i.d. random variables uniformly distributed
on [0, 1], and then, given this sequence, for each pair (i, j) with i < j draw an
edge ij with probability W (Xi, Xj), independently for all pairs (i, j) with i < j.
Then the random graph G(n, W ) converges to ΓW a.s. as n → ∞.

If G is a graph, with V (G) = { 1, . . . , v(G) } for simplicity, we define a function
WG ∈ Ws by partitioning [0, 1] into v(G) intervals Ii, i = 1, . . . , v(G), and
letting WG be the indicator 1[ij ∈ E(G)] on Ii × Ij . (In other words, WG is
a step function corresponding to the adjacency matrix of G.) We let π(G) :=
Γ(WG) denote the corresponding object in U∞. It follows easily from (3.1) that
t(F, π(G)) = t(F, G) for every graph F . In particular, if Gn is a sequence of
graphs with v(Gn) → ∞, then Gn converges to some graph limit Γ if and only
if π(Gn) → Γ in U∞. (Unlike [Lovász and Szegedy 06] and [Borgs et al. 07b],
we distinguish between graphs and limit objects and we do not identify G and
π(G); see [Diaconis and Janson 08].)

3.2. Bipartite Graphs and Their Limits

In the bipartite case, there are analogous definitions and results (see [Diaconis
and Janson 08] for further details). We define a bipartite graph to be a graph
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G with an explicit bipartition V (G) = V1(G)∪V2(G) of the vertex set such that
the edge set E(G) is a subset of V1(G) × V2(G). Then we define t(F, G) in
the same way as above but now for bipartite graphs F , by letting φ = (φ1, φ2)
be a pair of random mappings φj : Vj(F ) → Vj(G). We let B be the set of
all unlabeled bipartite graphs and embed B in a compact metric space B. A
sequence (Gn) of bipartite graphs with v1(Gn), v2(Gn) → ∞ converges in B if
and only if t(F, Gn) converges for every bipartite graph F .

Let B∞∞ be the (compact) set of all such limits; we call the elements of
B∞∞ bipartite graph limits. Every element of B∞∞ can be represented by a
(nonunique) function W ∈ W . We let Γ′′

W ∈ B∞∞ denote the element repre-
sented by W and have for every bipartite F ,

t(F, Γ′′
W ) =

∫
[0,1]v1(F )+v2(F )

∏
ij∈E(F )

W (xi, yj) dx1 · · · dxv1(F ) dy1 · · · dyv2(F ).

(3.2)
Given W ∈ W and n1, n2 ≥ 1, we define a random bipartite graph G(n1, n2, W )

by an analogue of the construction in Section 3.1: first choose two sequences
X1, X2, . . . , Xn1 and Y1, Y2, . . . , Yn2 of i.i.d. random variables uniformly dis-
tributed on [0, 1], and then, given these sequences, for each pair (i, j) draw an
edge ij with probability W (Xi, Yj), independently for all pairs (i, j) ∈ [n1× [n2].

If G is a bipartite graph we define WG ∈ W similarly as above (in general,
with different numbers of steps in the two variables; note that WG now in general
is not symmetric) and let π(G) := Γ′′(WG). Then by (3.2), t(F, π(G)) = t(F, G)
for every bipartite graph F . Hence if Gn is a sequence of bipartite graphs with
v1(Gn), v2(Gn) → ∞, then Gn converges to some bipartite graph limit Γ if and
only if π(Gn) → Γ in B∞∞.

3.3. Cut Distance

The authors of [Borgs et al. 07b, Section 3.4] define a (pseudo)metric δ� on
Ws called the cut distance. This is only a pseudometric, since two different
functions in Ws may have cut distance 0 (for example, if one is obtained by a
measure-preserving transformation of the other; see further [Borgs et al. 07a]
and [Diaconis and Janson 08]), and it is shown in [Borgs et al. 07b] that in fact,
δ�(W1, W2) = 0 if and only if t(F, W1) = t(F, W2) for every graph F , i.e., if
and only if ΓW1 = ΓW2 in U∞. Moreover, the quotient space Ws/δ�, where we
identify elements of Ws with cut distance 0, is a compact metric space and the
mapping W 
→ ΓW is a homeomorphism of Ws/δ� onto U∞.

This extends to the bipartite case. In this case, we define δ′′� on W as δ� is de-
fined in [Borgs et al. 07b, Section 3.4], but allowing different measure-preserving
mappings for the two coordinates. Then if we identify elements in W with cut
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distance 0, W 
→ Γ′′
W becomes a homeomorphism of W/δ′′� onto B∞∞. Instead

of repeating and modifying the complicated proofs from [Borgs et al. 07b], one
can use their result in the symmetric case and define an embedding W 
→ W̃ of
W into Ws by

W̃ (x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, x < 1

2 , y < 1
2 ;

1, x > 1
2 , y > 1

2 ;
1
4 + 1

2W (2x − 1, 2y), x > 1
2 , y < 1

2 ;
1
4 + 1

2W (2y − 1, 2x), x < 1
2 , y > 1

2 .

It is easily seen that δ′′�(W1, W2) and δ�(W̃1, W̃2) are equal within some constant
factors, for W1, W2 ∈ W , and that for each graph F , t(F, W̃ ) is a linear combi-
nation of t(Fi, W ) for a family of bipartite graphs F (obtained by partitioning
V (F ) and erasing edges within the two parts). This and the results in [Borgs et
al. 07b], together with the simple fact that W 
→ t(F, W ) is continuous for δ′′�
for every bipartite graph F , imply easily the result claimed.

3.4. A Reflection Involution

If G is a bipartite graph, let G† be the graph obtained by interchanging the order
of the two vertex sets; thus Vj(G†) = V3−j(G) and E(G†) = { uv : vu ∈ E(G) }.
We say that G† is the reflection of G. Obviously, t(F, G†) = t(F †, G) for any
bipartite graphs F and G. It follows that if Gn → Γ ∈ B, then G†

n → Γ† for
some Γ† ∈ B, and this defines a continuous map of B onto itself that extends the
map just defined for bipartite graphs. We have, by continuity,

t(F, Γ†) = t(F †, Γ), F ∈ B, G ∈ B. (3.3)

Furthermore, Γ†† = Γ, so the map is an involution, and it maps B∞∞ onto itself.
For a function W on [0, 1]2, let W †(x, y) := W (y, x) be its reflection in the

main diagonal. It follows from (3.2) and (3.3) that Γ′′(W †) = Γ′′(W )†.

3.5. Threshold Graph Limits

Let T :=
⋃∞

n=1 Tn be the family of all (unlabeled) threshold graphs. Thus T is
a subset of the family U of all unlabeled graphs, and we define T as the closure
of T in U , and T∞ := T \ T = T ∩U∞, i.e., the set of proper limits of sequences
of threshold graphs; we call these threshold graph limits.

In the bipartite case, we similarly consider the set T ′′ :=
⋃

n1,n2≥1 Tn1,n2 ⊂
B of all bipartite threshold graphs, and let T ′′ ⊂ B be its closure in B, and
T ′′
∞,∞ := T ′′ ∩ B∞∞ the set of proper limits of sequences of bipartite threshold

graphs; we call these bipartite threshold graph limits.
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Note that T , T∞, T ′′, T ′′
∞,∞ are compact metric spaces, since they are closed

subsets of U or B.
We will give concrete representations of the threshold graph limits in Section 5.

Here we give only a more abstract characterization.
Recall that t(F, G) is defined as the proportion of maps V (F ) → V (G) that are

graph homomorphisms. Since we are interested only in limits with v(G) → ∞,
it is equivalent to consider injective maps only. By inclusion–exclusion, it is
further equivalent to consider tind(F, G), defined as the probability that a random
injective map V (F ) → V (G) maps F isomorphically onto an induced copy of F

in G; in other words, tind(F, G) equals the number of labeled induced copies of
F in G divided by the falling factorial v(G) · · · (v(G)− v(F )+1). Then tind(F, ·)
extends by continuity to U , and by inclusion–exclusion, for graph limits Γ ∈ U∞,
tind(F, Γ) can be written as a linear combination of t(Fi, Γ) for subgraphs Fi ⊆ F .
We can define tind for bipartite graphs in the same way; further details are in
[Borgs et al. 07b] and [Diaconis and Janson 08].

Theorem 3.1.

(i) Let Γ ∈ U∞; i.e., Γ is a graph limit. Then Γ ∈ T∞ if and only if
tind(P4, Γ) = tind(C4, Γ) = tind(2K2, Γ) = 0.

(ii) Let Γ ∈ B∞∞; i.e., Γ is a bipartite graph limit. Then Γ ∈ T ′′
∞,∞ if and only

if tind(2K2, Γ) = 0.

In view of (1.5) and (1.12), this is a special case of the following simple general
statement.

Theorem 3.2. Let F = {F1, F2, . . . } be a finite or infinite family of graphs, and let
UF ⊆ U be the set of all graphs that do not contain any graph from F as an
induced subgraph, i.e.,

UF := {G ∈ U : tind(F, G) = 0 for F ∈ F }.

Let UF be the closure of UF in U . Then

UF := {Γ ∈ U : tind(F, Γ) = 0 for F ∈ F }.

In other words, if Γ ∈ U∞ is a graph limit, then Γ is a limit of a sequence of
graphs in UF if and only if tind(F, Γ) = 0 for F ∈ F .

Conversely, if Γ ∈ UF ∩ U∞ is represented by a function W , then the random
graph G(n, W ) is in UF (almost surely).

The same results hold in the bipartite case.
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Proof. If Gn → Γ with G ∈ UF , then t(F, Γ) = limn→∞ t(F, Gn) = 0 for every
F ∈ F , by the continuity of t(F, ·).

Conversely, suppose that Γ ∈ U∞ and t(F, Γ) = 0 for F ∈ F , and let Γ
be represented by a function W . It follows from (3.1) that if F ∈ F then
E t(F, G(n, W )) = t(F, Γ) = 0, and thus t(F, G(n, W )) = 0 almost surely (a.s.);
consequently, G(n, W ) ∈ UF a.s. This proves the second statement. Since
G(n, W ) → Γ a.s., it also shows that Γ is the limit of a sequence in UF , and thus
Γ ∈ UF , which completes the proof of the first part.

4. Degree Distributions

The results in this section hold for general graphs. They are applied to threshold
graphs in Section 5.

Let P be the set of probability measures on [0, 1], equipped with the standard
topology of weak convergence, which makes P a compact metric space (see, for
example, [Billingsley 68]).

If G is a graph, let d(v) = dG(v) denote the degree of vertex v ∈ V (G), and
let DG denote the random variable defined as the degree dG(v) of a randomly
chosen vertex v (with the uniform distribution on V (G)). Thus 0 ≤ DG ≤
v(G) − 1. For a bipartite graph we similarly define DG;j as the degree dG(v) of
a randomly chosen vertex v ∈ Vj(G), j = 1, 2. Note that 0 ≤ DG;1 ≤ v2(G) and
0 ≤ DG;2 ≤ v1(G). Since we are interested in dense graphs, we will normalize
these random degrees to DG/v(G) and, in the bipartite case, DG;1/v2(G) and
DG;2/v1(G); these are random variables in [0, 1].

The distribution of DG/v(G) will be called the (normalized) degree distribution
of G and denoted by ν(G) ∈ P ; in other words, ν(G) is the empirical distribution
function of { dG(v)/v(G) : v ∈ V (G) }. In the bipartite case we similarly have
two (normalized) degree distributions: ν1(G) for V1(G) and ν2(G) for V2(G).

The moments of the degree distribution(s) are given by the functional t(F, ·)
for stars F , as stated in the following lemma. We omit the proof, which is a
straightforward consequence of the definitions.

Lemma 4.1. The moments of ν(G) are given by

∫ 1

0

tk dν(G)(t) = t(K1,k, G), k ≥ 1, (4.1)

where K1,k is a star with k edges.
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In the bipartite case, similarly, for k ≥ 1,∫ 1

0

tk dν1(G)(t) = t(K1,k, G),
∫ 1

0

tk dν2(G)(t) = t(Kk,1, G). (4.2)

This enables us to extend the definition of the (normalized) degree distribution
to the limit objects by continuity.

Theorem 4.2. If Gn are graphs with v(Gn) → ∞ and Gn → Γ for some Γ ∈ U as
n → ∞, then ν(Gn) → ν(Γ) for some distribution ν(Γ) ∈ P. This defines the
“degree distribution” ν(Γ) (uniquely) for every graph limit Γ ∈ U∞, and Γ 
→ ν(Γ)
is a continuous map U∞ → P. Furthermore, (4.1) holds for all G ∈ U .

Similarly, in the bipartite case, ν1 and ν2 extend to continuous maps B → P
such that (4.2) holds for all G ∈ B. Furthermore, ν2(Γ) = ν1(Γ†) for Γ ∈ B.

Proof. The result is an immediate consequence of Lemma 4.1 and the method of
moments. The last sentence follows from (4.2) and (3.3).

Remark 4.3. Theorem 4.2 says that the degree distribution ν is a testable graph
parameter in the sense of [Borgs et al. 07b]; see in particular [Borgs et al. 07b,
Section 6] (except that ν takes values in P instead of R).

If Γ is represented by a function W on [0, 1]2, we can easily find its degree
distribution from W .

Theorem 4.4. If W ∈ Ws, then ν(ΓW ) equals the distribution of
∫ 1

0 W (U, y) dy,
where U ∼ U(0, 1).

Similarly, in the bipartite case, if W ∈ W, then ν1(Γ′′
W ) equals the distribution

of
∫ 1

0 W (U, y) dy, and ν2(Γ′′
W ) equals the distribution of

∫ 1

0 W (x, U) dx.

Proof. By (4.1) and (3.1),

∫ 1

0

tk dν(ΓW )(t) = t(K1,k, ΓW ) =
∫

[0,1]

(∫
[0,1]

W (x, y) dy

)k

dx

= E

(∫
[0,1]

W (U, y) dy

)k

for every k ≥ 1, and the result follows. The bipartite case is similar, using (3.2).
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If a graph G has n vertices, its number of edges is

|E(G)| =
1
2

∑
v∈V (G)

d(v) =
n

2
E DG =

n2

2
E(DG/n) =

n2

2

∫ 1

0

t dν(G)(t).

Hence the edge density of G is

|E(G)|(
n
2

) =
n

n − 1

∫ 1

0

t dν(G)(t). (4.3)

If (Gn) is a sequence of graphs with v(Gn) → ∞ and Gn → Γ ∈ U∞, we see
from (4.3) and Theorem 4.2 that the graph densities converge to

∫ 1

0
t dν(Γ)(t),

the mean of the distribution ν(Γ), which thus may be called the (edge) density
of Γ ∈ U∞.

If Γ is represented by a function W on [0, 1]2, Theorem 4.4 yields the following.

Corollary 4.5. The graph ΓW has edge density
∫∫

[0,1]2 W (x, y) dxdy for every W ∈ Ws.

Proof. By Theorem 4.4, the mean of μ(ΓW ) equals

E

∫ 1

0

W (U, y) dy =
∫ 1

0

∫ 1

0

W (x, y) dxdy.

5. Limits of Threshold Graphs

Recall from Section 3.5 that T∞ is the set of limits of threshold graphs, and T ′′
∞,∞

is the set of limits of bipartite threshold graphs. Our purpose in this section is
to characterize the threshold graph limits, i.e., the elements of T∞ and T ′′

∞,∞,
and give simple criteria for the convergence of a sequence of threshold graphs to
one of these limits. We begin with some definitions.

A function W : [0, 1]2 → R is increasing if W (x, y) ≤ W (x′, y′) whenever
0 ≤ x ≤ x′ ≤ 1 and 0 ≤ y ≤ y′ ≤ 1. A set S ⊆ [0, 1]2 is increasing if its indicator
1S is an increasing function on [0, 1]2, i.e., if (x, y) ∈ S implies (x′, y′) ∈ S

whenever 0 ≤ x ≤ x′ ≤ 1 and 0 ≤ y ≤ y′ ≤ 1.
If μ ∈ P , let Fμ be its distribution function Fμ(x) := μ([0, x]), and let

Fμ(x−) := μ([0, x)) be its left-continuous version. Thus Fμ(0−) = 0 ≤ Fμ(0) and
Fμ(1−) ≤ 1 = Fμ(1). Further, let F−1

μ : [0, 1] → [0, 1] be the right-continuous
inverse defined by

F−1
μ (x) := sup{ t ≤ 1 : Fμ(t) ≤ x }. (5.1)
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Note that F−1
μ (0) ≥ 0 and F−1

μ (1) = 1. Finally, define

Sμ :=
{

(x, y) ∈ [0, 1]2 : x ≥ Fμ

(
(1 − y)−

) }
. (5.2)

It is easily seen that Sμ is a closed increasing subset of [0, 1]2 and that it contains
the upper and right edges { (x, 1) } and { (1, y) }. Since x ≥ Fμ

(
(1 − y)−

)
⇐⇒

F−1
μ (x) ≥ 1 − y, we also have

Sμ =
{

(x, y) ∈ [0, 1]2 : F−1
μ (x) + y ≥ 1

}
. (5.3)

We further write Wμ := 1Sμ and let Γ′′
μ := Γ′′(Wμ), and when W is symmetric,

Γμ := Γ(Wμ). We denote the interior of a set S by S◦. It is easily verified from
(5.2) that

S◦
μ =

{
(x, y) ∈ (0, 1)2 : x > Fμ(1 − y)

}
. (5.4)

Recall that the Hausdorff distance between two nonempty compact subsets
K1 and K2 of some metric space S is defined by

dH(K1, K2) := max
(

max
x∈K1

d(x, K2), max
y∈K2

d(y, K1)
)

. (5.5)

This defines a metric on the set of all nonempty compact subsets of S. If S is
compact, the resulting topology on the set of compact subsets of S (with the
empty set as an isolated point) is compact and equals the Fell topology (see, for
example, [Kallenberg 02, Appendix A.2]) on the set of all closed subsets of S.

Let λd denote the Lebesgue measure in R
d. For measurable subsets S1, S2

of [0, 1]2, we also consider their measure distance λ2(S1ΔS2). This equals the
L1-distance of their indicator functions, and is thus a metric modulo null
sets.

For functions in W we also use two different metrics: the L1-distance∫
[0,1]2

|W1(x, y) − W2(x, y)| dxdy

and, in the symmetric case, the cut distance δ� defined in [Borgs et al. 07b], and
in the bipartite case its analogue δ′′�; see Section 3. Note that the cut distance
is only a pseudometric, since the distance of two different functions may be 0.
Note further that the cut distance is less than or equal to the L1-distance.

We can now prove one of our main results, giving several related character-
izations of threshold graph limits. There are two versions, since we treat the
bipartite case in parallel.
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5.1. The Bipartite Case

It is convenient to begin with the bipartite case.

Theorem 5.1. There are bijections between the set T ′′
∞,∞ of graph limits of bipartite

threshold graphs and each of the following sets:

(i) The set P of probability distributions on [0, 1].

(ii) The set CB of increasing closed sets S ⊆ [0, 1]2 that contain the upper and
right edges [0, 1] × { 1 } ∪ { 1 } × [0, 1].

(iii) The set OB of increasing open sets S ⊆ (0, 1)2.

(iv) The set WB of increasing 0–1-valued functions W : [0, 1]2 → { 0, 1 } modulo
a.e. equality.

More precisely, there are commuting bijections between these sets given by the
following mappings and their compositions:

ιBP : T ′′
∞,∞ → P , ιBP(Γ) := ν1(Γ);

ιPC : P → CB, ιPC(μ) := Sμ;

ιCO : CB → OB, ιCO(S) := S◦;

ιCW : CB → WB, ιCW(S) := 1S ;

ιOW : OB → WB, ιOW(S) := 1S ;

ιWB : WB → T ′′
∞,∞, ιWB(W ) := Γ′′

W ;

(5.6)

T ′′
∞,∞

ιBP � P ιPC � CB

WB �
ιOW

�

ι CW

�
ιW

B

OB

ιCO

�

In particular, a probability distribution μ ∈ P corresponds to Γ′′
μ ∈ T ′′

∞,∞ and
to Sμ ∈ CB, S◦

μ ∈ OB, and Wμ ∈ WB. Conversely, Γ ∈ T ′′
∞,∞ corresponds to

ν1(Γ) ∈ P. Thus, the mappings Γ 
→ ν1(Γ) and μ 
→ Γ′′
μ are the inverses of each

other.
Moreover, these bijections are homeomorphisms, with any of the following

topologies or metrics: the standard (weak) topology on P; the Hausdorff met-
ric or the Fell topology or the measure distance on CB; the measure distance on
OB; the L1-distance or the cut distance on the set WB.
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Proof. The mappings in (5.6) are all well defined, except that we do not yet know
that ιWB maps WB into T ′′

∞,∞. We thus regard ιWB as a map WB → B∞∞ and
let B̃ := ιWB(WB) be its image; we will identify this as T ′′

∞,∞ later. For the time
being, we also regard ιBP as defined on B̃ (or on all of B∞∞).

Consider first ιPC : P → CB. By (5.2), Sμ determines Fμ at all continuity
points, and thus it determines μ. Consequently, ιPC is injective.

If S ∈ CB and y ∈ [0, 1], then { x : (x, y) ∈ S } is a closed subinterval of [0, 1]
that contains 1, and thus S = { (x, y) ∈ [0, 1]2 : x ≥ g(y) } for some function
g : [0, 1] → [0, 1]. Moreover, g(1) = 0, g is decreasing, i.e., g(y2) ≤ g(y1) if
y1 ≤ y2, and since S is closed, g is right-continuous. Thus g(1− x) is increasing
and left-continuous, and hence there exists a probability measure μ ∈ P such
that Fμ(x−) = g(1 − x), x ∈ [0, 1]. By (5.2), then

ιPC(μ) = Sμ = { (x, y) ∈ [0, 1]2 : x ≥ g(y) } = S.

Hence ιPC is onto. Consequently, ιPC is a bijection of P onto CB.
If S1 and S2 are two different sets in CB, then there exists a point (x, y) ∈

S1 \ S2, say. There is a small open disk with center in (x, y) that does not
intersect S2, and since S1 is increasing, at least a quarter of the disk is contained
in S1 \ S2. Hence λ2(S1ΔS2) > 0. Similarly, if S1 and S2 are two different sets
in OB and (x, y) ∈ S1 \ S2, then there is a small open disk with center in (x, y)
that is contained in S1, and since S2 is increasing, at least a quarter of the disk
is contained in S1 \ S2, whence λ2(S1ΔS2) > 0. This shows that the measure
distance is a metric on CB and on OB, and that the mappings ιCW and ιOW into
WB are injective (recall that a.e. equal functions are identified in WB).

Next, let S ⊆ [0, 1]2 be increasing. If (x, y) ∈ S with x < 1 and y < 1, it is
easily seen that (x, x + δ) × (y, y + δ) ⊆ S for δ = min{ 1 − x, 1 − y }, and thus
(x, x + δ)× (y, y + δ) ⊆ S◦. It follows that for any real a, the intersection of the
boundary ∂S := S \S◦ with the diagonal line La := { (x, x+a) : x ∈ R } consists
of at most two points (of which one is on the boundary of [0, 1]2). In particular,
λ1(∂S ∩ La) = 0 and thus

λ2(∂S) = 2−1/2

∫ 1

−1

λ1(∂S ∩ La) da = 0. (5.7)

Consequently, ∂S is a null set for every increasing S. Among other things, this
shows that if S ∈ CB, then ιOW ιCO(S) = 1S◦ = 1S a.e. Since elements of WB
are defined modulo a.e. equality, this shows that ιOWιCO = ιCW : CB → WB.

If W ∈ WB, and thus W = 1S for some increasing S ⊆ [0, 1]2, let

S̃ := S ∪ [0, 1]× { 1 } ∪ { 1 } × [0, 1]. (5.8)
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Then S̃ ∈ CB and (5.7) imply that ιCW(S̃) = 1S̃ = 1S = W a.e. Similarly,
S◦ ∈ OB and ιOW(S◦) = 1S = W a.e. Consequently, ιCW and ιOW are onto,
and thus bijections. Similarly (or as a consequence), ιCO is a bijection of CB onto
OB, with inverse S 
→ S̃ given by (5.8).

Note that the composition ιCW ιPC maps μ 
→ 1Sμ = Wμ, and let ιPB be the
composition ιWBιCW ιPC : μ 
→ Γ′′(Wμ) = Γ′′

μ mapping P into B∞∞. Since ιPC

and ιCW are bijections, its image satisfies ιBP (P) = ιWB(WB) = B̃ ⊆ B∞∞.
If μ ∈ P , then the composition ιBP ιPB(μ) = ν1(Γ′′

μ) equals by Theorem 4.4
and (5.3) the distribution of∫ 1

0

1Sμ(U, y) dy = F−1
μ (U). (5.9)

As is well known, and easy to verify using (5.1), this distribution equals μ. Hence,
the composition ιBP ιPB is the identity. It follows that ιPB is injective and thus
a bijection of P onto its image B̃, and that ιBP (restricted to B̃) is its inverse.

We have shown that all mappings in (5.6) are bijections, except that we have
not yet shown that B̃ = T ′′

∞,∞. We next show that the mappings are homeomor-
phisms.

Recall that the topology on P can be defined by the Lévy metric defined by
(see, e.g., [Gut 05, Problem 5.25])

dL(μ1, μ2) := inf{ ε > 0 : Fμ1 (x − ε) − ε ≤ Fμ2(x) ≤ Fμ1(x + ε) + ε for all x }.
(5.10)

If μ1, μ2 ∈ P with dL(μ1, μ2) < ε, it follows from (5.2) and (5.10) that if (x, y) ∈
Sμ1 and x, y < 1 − ε, then

Fμ2

(
(1 − y − ε)−

)
≤ Fμ1

(
(1 − y)−

)
+ ε ≤ x + ε,

and thus (x + ε, y + ε) ∈ Sμ2 . Considering also the simple cases x ∈ [1 − ε, 1]
and y ∈ [1 − ε, 1], it follows that if (x, y) ∈ Sμ1 , then d

(
(x, y), Sμ2

)
≤

√
2 ε.

Consequently, by (5.5) and symmetry,

dH(Sμ1 , Sμ2) ≤
√

2 dL(μ1, μ2),

which shows that ιPC is continuous if CB is given the topology given by the
Hausdorff metric.

The same argument shows that for any (x0, y0), the intersection of the differ-
ence Sμ1ΔSμ2 with the diagonal line La defined above is an interval of length at
most

√
2 dL(μ1, μ2), and thus by integration over a as in (5.7),

λ2

(
Sμ1ΔSμ2

)
≤ 2dL(μ1, μ2).
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Hence, ιPC is continuous also if CB is given the topology given by the measure
distance.

Since P is compact and ιPC is a bijection, it follows that ιPC is a homeomor-
phism for both these topologies on CB. In particular, these topologies coincide
on CB. As remarked before the theorem, since [0, 1]2 is compact, also the Fell
topologies coincide with these on CB.

The bijections ιCO, ιCW , and ιOW are isometries for the measure distance on CB
and OB and the L1-distance on WB, and thus homeomorphisms. Furthermore,
still using the L1-distance on WB, it is easily seen from (3.2), as for the symmetric
case in [Lovász and Szegedy 06, Borgs et al. 07b], that for every fixed bipartite
graph F , the mapping W 
→ t(F, Γ′′

W ) is continuous, which by definition of the
topology in B∞∞ means that ιWB : W 
→ Γ′′

W is continuous. Hence, the bijection
ιWB is a homeomorphism of the compact space WB onto its image B̃.

As stated above, the cut distance is only a pseudometric on W . But two func-
tions in W with cut distance 0 are mapped onto the same element in B∞∞, and
since we have shown that ιWB is injective on WB, it follows that the restriction
of the cut distance to WB is a metric. Moreover, the identity map on WB is
continuous from the L1-metric to the cut metric, and since the space is compact
under the former metric, the two metrics are equivalent on WB.

We have shown that all mappings are homeomorphisms. It remains only to
show that B̃ = T ′′

∞,∞. To do this, observe first that if G is a bipartite threshold
graph, and we order its vertices in each of the two vertex sets with increasing
vertex degrees, then the function WG defined in Section 3 is increasing and
belongs thus to WB. Consequently, π(G) = ιWB(WG) ∈ B̃. If Γ ∈ T ′′

∞,∞,
then by definition there exists a sequence Gn of bipartite threshold graphs with
v1(Gn), v2(Gn) → ∞ such that Gn → Γ in B. This implies that π(Gn) → Γ in
B∞∞, and since π(Gn) ∈ B̃ and B̃ is compact and thus a closed subset of B∞∞,
we find that Γ ∈ B̃.

Conversely, if Γ ∈ B̃, then Γ = ιWBιCW(S) for some set S ∈ CB. For each n,
partition [0, 1]2 into n2 closed squares Qij of side 1/n, and let Sn be the union
of all Qij that intersect S. Then Sn ∈ CB, S ⊆ Sn, and dH(Sn, S) ≤

√
2/n.

Let Wn := 1Sn = ιCW (Sn) and let Γn := ιWB(Wn) ∈ B̃. Since ιCW and ιWB
are continuous, Wn → W := 1S in WB and Γn → ιWB(W ) = Γ in B̃ ⊂ B∞∞.
However, Wn is a step function of the form W (Gn) for some bipartite graph
Gn with v1(Gn) = v2(Gn) = n, and thus π(Gn) = Γ′′

Wn
= Γn. Moreover,

each Sn, and thus each Wn, is increasing, and hence Gn is a bipartite threshold
graph. Since π(Gn) = Γn → Γ in B∞∞, it follows that Gn → Γ in B, and
thus Γ ∈ T ′′

∞,∞.

Consequently, B̃ = T ′′
∞,∞, which completes the proof.
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Remark 5.2. Another unique representation by increasing closed sets is given by the
family C′

B of closed increasing subsets S of [0, 1]2 that satisfy S = S◦; there are
bijections C′

B → OB and OB → C′
B given by S 
→ S◦ and S 
→ S. We can again

use the measure distance on C′
B, but not the Hausdorff distance. (For example,

[0, 1]× [1 − ε, 1] → ∅ in C′
B as ε → 0.)

Corollary 5.3. The degree distribution yields a homeomorphism Γ 
→ ν1(Γ) of T ′′
∞,∞

onto P.

Of course, Γ 
→ ν2(Γ) = ν1(Γ†) yields another homeomorphism of T ′′
∞,∞ onto

P . To see the connection between these, and (more importantly) to prepare
for the corresponding result in the nonbipartite case, we investigate further the
reflection involution.

If S ⊆ [0, 1]2, let S† := { (x, y) : (y, x) ∈ S } be the set S reflected in the main
diagonal. Thus 1S† = 1†

S . We have defined the reflection map † for bipartite
graphs and graph limits, and for the sets and functions in Theorem 5.1(ii)(iii)(iv),
and it is easily seen that these correspond to each other by the bijections in
Theorem 5.1. Consequently, there is a corresponding map (involution) μ 
→ μ†

of P onto itself too. This map is less intuitive than the others; to find it explicitly,
we find from (5.2), (5.3), and Sμ† = S†

μ that

x ≥ Fμ†
(
(1 − y)−

)
⇐⇒ (y, x) ∈ Sμ ⇐⇒ F−1

μ (y) + x ≥ 1

and thus Fμ†
(
(1 − y)−

)
= 1 − F−1

μ (y) and

Fμ†(t) = 1 − F−1
μ

(
(1 − t)−

)
, 0 ≤ t ≤ 1. (5.11)

This means that the graph of the distribution function is reflected about the
diagonal between (0, 1) and (1, 0) (and adjusted at the jumps).

The map † is continuous on P , by Theorem 5.1 and the obvious fact that
S 
→ S† is continuous on, for example, CB.

We let Ps := {μ ∈ P : μ† = μ } = {μ ∈ P : Sμ = S†
μ } be the set of probability

distributions invariant under the involution †. Since † is continuous, Ps is a
closed and thus compact subset of P .

Remark 5.4. If μ ∈ Ps, let x0 := 1 − inf{ x : (x, x) ∈ Sμ }. Then (5.2) and (5.4)
imply that Fμ(x0−) ≤ 1− x0 ≤ Fμ(x0), and the restriction of Fμ to [0, x0) is an
increasing right-continuous function with values in [0, 1−x0], and this restriction
determines Fμ(t) for x ≥ x0 too by (5.11).

Conversely, given any x0 ∈ [0, 1] and increasing right-continuous F : [0, x0) →
[0, 1− x0], there is a unique μ ∈ Ps with Fμ(x) = F (x) for x < x0 and Fμ(x0) ≥
1 − x0.
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5.2. Nonbipartite Case

We can now state our main theorem for (nonbipartite) threshold graph limits.

Theorem 5.5. There are bijections between the set T∞ of graph limits of threshold
graphs and each of the following sets:

(i) The set Ps of probability distributions on [0, 1] symmetric with respect to †.

(ii) The set CT of symmetric increasing closed sets S ⊆ [0, 1]2 that contain the
upper and right edges [0, 1]× { 1 } ∪ { 1 } × [0, 1].

(iii) The set OT of symmetric increasing open sets S ⊆ (0, 1)2.

(iv) The set WT of symmetric increasing 0–1-valued functions W : [0, 1]2 →
{ 0, 1 } modulo a.e. equality.

More precisely, there are commuting bijections between these sets given by the
following mappings and their compositions:

ιT P : T∞ → Ps, ιT P(Γ) := ν(Γ);

ιPC : Ps → CT , ιPC(μ) := Sμ;

ιCO : CT → OT , ιCO(S) := S◦;

ιCW : CT → WT , ιCW(S) := 1S ;

ιOW : OT → WT , ιOW(S) := 1S ;

ιWT : WT → T∞, ιWT (W ) := ΓW .

(5.12)

In particular, a probability distribution μ ∈ Ps corresponds to Γμ ∈ T∞ and
to Sμ ∈ CT , S◦

μ ∈ OT , and Wμ ∈ WT . Conversely, Γ ∈ T∞ corresponds to
ν(Γ) ∈ Ps. Thus, the mappings Γ 
→ ν(Γ) and μ 
→ Γμ are the inverses of each
other.

T∞
ιT P � Ps

ιPC � CT

WT �
ιOW

�

ι CW

�
ιW

T

OT

ιCO

�

Moreover, these bijections are homeomorphisms, with any of the following
topologies or metrics: the standard (weak) topology on Ps ⊂ P; the Hausdorff
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metric or the Fell topology or the measure distance on CT ; the measure distance
on OT ; the L1-distance or the cut distance on the set WT . These homeomorphic
topological spaces are compact metric spaces.

Proof. The mappings ιPC , ιCO, ιCW , ιOW are restrictions of the corresponding
mappings in Theorem 5.1, and it follows from Theorem 5.1 and the definitions
that these mappings are bijections and homeomorphisms for the given topologies.
The spaces are closed subspaces of the corresponding spaces in Theorem 5.1, since
† is continuous on these spaces, and are thus compact metric spaces.

The rest is as in the proof of Theorem 5.1, and we omit some details. It
follows from Theorem 4.4 that the composition ιWBιCW ιPC : μ 
→ Γ(Wμ) = Γμ

is a bijection of Ps onto a subset T ′ of T ′′
∞,∞, with ιT P as its inverse. It follows

that these mappings too are homeomorphisms, and that the L1-distance and cut
distance are equivalent on WT .

To see that T ′ = T∞, we also follow the proof of Theorem 5.1. A minor
complication is that if G ∈ T is a threshold graph, and we order the vertices
with increasing degrees, then WG is not increasing, because WG(x, x) = 0 for
all x, since we consider loopless graphs only. However, we can define W ∗(G) by
changing WG to be 1 on some squares on the diagonal so that W ∗(G) is increasing
and thus W ∗(G) ∈ WT , and the error ‖WG−W ∗(G)‖L1 is at most 1/v(G). If we
define π∗(G) := Γ(W ∗(G)) ∈ T ′, we see that if (Gn) is a sequence of threshold
graphs with v(Gn) → ∞, then for every graph F , by a simple estimate, see, e.g.,
[Lovász and Szegedy 06, Lemma 4.1], we have

|t(F, π∗(Gn)) − t(F, Gn)| ≤ e(F )‖W (Gn) − W ∗(Gn)‖L1 ≤ e(F )/v(Gn) → 0.

(5.13)
It follows that Gn → Γ in U if and only if π∗(Gn) → Γ in U∞. If Γ ∈ T∞, then
there exists such a sequence Gn → Γ, and thus π∗(Gn) → Γ in U∞, and since
π∗(Gn) ∈ T ′ and T ′ is compact, we find that Γ ∈ T ′.

The converse follows in the same way. If Γ ∈ T ′, then Γ = ιWT (W ) for some
function W ∈ WT . The approximating step functions Wn constructed in the
proof of Theorem 5.1 are symmetric, and if we let W ∗

n be the modification that
vanishes on all diagonal squares, then W ∗

n = WGn for some threshold graph Gn,
and for every graph F ,

t(F, Gn) = t(F, W ∗
n ) = t(F, Wn) + o(1) = t(F, W ) + o(1).

Hence, Gn → ΓW = Γ in U , and thus Γ ∈ T∞. Consequently, T ′ = T∞.

Corollary 5.6. The degree distribution yields a homeomorphism Γ 
→ ν(Γ) of T∞
onto the closed subspace Ps of P.
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Remark 5.7. The fact that a graph limit Γ can be represented by a function W ∈ WT
if and only if tind(P4, Γ) = tind(C4, Γ) = tind(2K2, Γ) = 0, which by Theorem 3.1
is equivalent to the bijection T∞ ↔ WT in Theorem 5.5, is also proved in [Lovász
and Szegedy 09].

We have described the possible limits of sequences of threshold graphs; this
makes it easy to see when such sequences converge.

Theorem 5.8. Let Gn be a sequence of threshold graphs such that v(Gn) → ∞.
Then Gn converges in U as n → ∞ if and only if the degree distributions ν(Gn)
converge to some distribution μ. In this case, μ ∈ Ps and Gn → Γμ.

Proof. As in the proof of Theorem 5.5, Gn → Γ if and only if π∗(Gn) → Γ in
T ′ = T∞, which by Theorem 5.5 holds if and only if ν(π∗(Gn)) → ν(Γ). By
Theorem 4.4, ν(π∗(Gn)) equals the distribution of

∫ 1

0 W ∗(Gn)(U, y) dy, but this
random variable differs by at most 1/v(Gn) = o(1) from the random variable∫ 1

0
WGn(U, y) dy, which has degree distribution ν(Gn). The result follows.

Theorem 5.9. Let Gn be a sequence of bipartite threshold graphs such that

v1(Gn), v2(Gn) → ∞.

Then Gn converges in B as n → ∞if and only if the degree distributions ν1(Gn)
converge to some distribution μ. In this case, ν2(Gn) → μ† and Gn → Γ′′

μ.

Proof. Gn → Γ if and only if π(Gn) → Γ in B̃ = B∞∞, which by Theorem 5.1 holds
if and only if ν1(π(Gn)) → ν1(Γ). It follows from Theorem 4.4 that ν1(π(Gn)) =
ν1(Gn), and the result follows from Theorem 5.1.

Remark 5.10. A threshold graph limit Γ is, by Theorem 5.5, determined by its
degree distribution and the fact that it is a threshold graph limit. By The-
orem 3.2 and Lemma 4.1, Γ is thus determined by t(F, Γ) for F in the set
{P4, C4, 2K2, K1,1, K1,2, . . . }. It is shown in [Lovász and Szegedy 09] that in
some special cases, a finite set of F is enough; for example, the limit defined
by the function W (x, y) = 1[x + y ≥ 1] (see Example 1.3 and Figure 4) is the
unique graph limit with t(P4, Γ) = t(C4, Γ) = t(2K2, Γ) = 0, t(K2, Γ) = 1/2,
t(P3, Γ) = 1/3.
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6. Random Threshold Graphs

We consider several ways to define random threshold graphs. We will consider
only constructions with a fixed number n of vertices; in fact, we take the vertex
set to be [n] = { 1, . . . , n }, where n ≥ 1 is a given parameter. By a random
threshold graph we thus mean a random element of Tn := {G ∈ T : V (G) = [n] }
for some n; we do not imply any particular construction or distribution unless
otherwise stated. (We can regard these graphs as either labeled or unlabeled.)

This section treats four classes of examples: a canonical example based on
increasing sets, random-weights examples, random-attachment examples, and
uniform random-threshold graphs.

6.1. Increasing Set

For any symmetric increasing S ⊆ [0, 1]2, we let W = 1S and define Tn;S :=
G(n, W ) as in Section 3. In other words, we take i.i.d. random variables

U1, . . . , Un ∼ U(0, 1)

and draw an edge ij if (Ui, Uj) ∈ S.
As stated in Section 3, G(n, W ) a.s.−→ ΓW , which in this case means that

Tn;S
a.s.−→ Γ(1S) ∈ T∞. We denote Γ(1S) by ΓS and have thus the following

result, using also Theorem 4.4.

Theorem 6.1. As n → ∞, Tn;S
a.s.−→ ΓS. In particular, the degree distribution ν(Tn;S)

converges a.s. to ν(ΓS), which equals the distribution of

ϕS(U) := |{ y : (U, y) ∈ S }| = P
(
(U, U ′) ∈ S | U

)
, (6.1)

with U, U ′ ∼ U(0, 1) independent.

By Theorem 5.5, this construction gives a canonical representation of the
limit objects in T∞, and we may restrict ourselves to closed or open sets as in
Theorem 5.5(ii)(iii) to get a unique representation. We can obtain any desired
degree distribution μ ∈ Ps for the limit by choosing S = Sμ. This construction
further gives a canonical representation of random threshold graphs for finite n,
provided we make two natural additional assumptions.

Theorem 6.2. Suppose that (Gn)∞1 is a sequence of random threshold graphs with
V (Gn) = [n] such that the distribution of each Gn is invariant under permuta-
tions of [n] and that the restriction (induced subgraph) of Gn+1 to [n] has the
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same distribution as Gn, for every n ≥ 1. If further ν(Gn)
p−→ μ as n → ∞, for

some μ ∈ P, then μ ∈ Ps, and for every n, Gn
d= Tn;Sμ .

Proof. It follows from Theorem 5.8 that Gn
p−→ Γμ. (To apply Theorem 5.8 to

convergence in probability, we can use the standard trick of considering subse-
quences that converge a.e., since every subsequence has such a subsubsequence
[Kallenberg 02, Lemma 4.2].)

If we represent a graph by its edge indicators, the random graph Gn can
be regarded as a family of 0–1-valued random variables indexed by pairs (i, j),
1 ≤ i < j ≤ n. By assumption, these families for different n are consistent, so by
the Kolmogorov extension theorem [Kallenberg 02, Theorem 6.16], they can be
defined for all n together, which means that there exists a random infinite graph
G∞ with vertex set N whose restriction to [n] coincides (in distribution) with
Gn. Moreover, since each Gn is invariant under permutations of the vertices, so
is G∞, i.e., G∞ is exchangeable.

By the representation theorem by Aldous and Hoover (see [Aldous 85], [Kallen-
berg 05], and [Diaconis and Janson 08]), every exchangeable random infinite
graph can be obtained as a mixture of G(∞, W ); in other words, as G(∞, W )
for some random function W ∈ Ws. In this case, the subgraphs Gn converge
in probability to the corresponding random ΓW ; see [Diaconis and Janson 08].
Since we have shown that the Gn converge to a deterministic graph limit Γμ, we

can take W deterministic, so it follows that G∞
d= G(∞, W ) for some W ∈ Ws;

moreover, Γμ = ΓW , and thus by Theorem 5.5 we can choose W = Wμ. (Recall
that in general, W is not unique.) Consequently,

Gn
d= G(n, Wμ) = Tn;Sμ ,

which completes the proof.

6.2. Random Weights

Definition (1.1) suggests immediately the construction (1.6): Let X1, X2, . . . , be
i.i.d. copies of a random variable X , let t ∈ R, and let Tn;X,t be the threshold
graph with vertex set [n] and edges ij for all pairs ij such that Xi +Xj > t. (We
can without loss of generality let t = 0, by replacing X by X − t/2.) Examples
1.2 and 1.3 are in this mode.

Let F (x) := P(X ≤ x) be the distribution function of X , and let F−1 be its
right-continuous inverse defined by

F−1(u) := sup{ x ∈ R : F (x) ≤ u } (6.2)
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(cf. (5.1), where we consider distributions on [0, 1] only). Thus −∞ < F−1(u) <

∞ if 0 < u < 1, while F−1(1) = ∞. It is well known that the random variables
Xi can be constructed as F−1(Ui) with Ui independent uniformly distributed
random variables on (0, 1), which leads to the following theorem, showing that
this construction is equivalent to the one in Section 6.1 for a suitable set S. Parts
of this theorem were found earlier; see [Konno et al. 05, Masuda et al. 05].

Theorem 6.3. Let S be the symmetric increasing set

S := { (x, y) ∈ (0, 1]2 : F−1(x) + F−1(y) > t }. (6.3)

Then Tn;X,t
d= Tn;S for every n.

Furthermore, as n → ∞, the degree distribution ν(Tn;X,t) converges a.s. to μ,
and thus Tn;X,t

a.s.−→ Γμ, where μ ∈ Ps is the distribution of the random variable
1 − F (t − X), i.e.,

μ[0, s] = P
(
1 − F (t − X) ≤ s

)
, s ∈ [0, 1]. (6.4)

Proof. Taking Xi = F−1(Ui), we see that

there is an edge ij ⇐⇒ F−1(Ui) + F−1(Uj) > t ⇐⇒ (Ui, Uj) ∈ S,

which shows that Tn;X,t = Tn;S .
The remaining assertions now follow from Theorem 6.1 together with the cal-

culation, with U, U ′ ∼ U(0, 1) independent and X = F−1(U), X ′ = F−1(U ′),

ϕS(U) = P
(
(U, U ′) ∈ S | U

)
= P

(
F−1(U) + F−1(U ′) > t | U

)
= P

(
X + X ′ > t | X

)
= P

(
X ′ > t − X | X

)
= 1 − F (t − X).

The set S defined in (6.3) is in general neither open nor closed; the corre-
sponding open set is

S◦ =
{

(x, y) ∈ (0, 1)2 : F−1(x−) + F−1(y−) > t
}
,

and the corresponding closed set Sμ in Theorem 5.5 can be found as S̃◦ from
(5.8). If we assume for simplicity that the distribution of X is continuous, then,
as is easily verified,

Sμ =
{

(x, y) ∈ [0, 1]2 : F−1(x) + F−1(y) ≥ t
}
,

where we define F−1(1) = ∞ (and interpret ∞ + (−∞) = ∞ in case F−1(0) =
−∞). We can use these sets instead of S in (6.3), since they differ by null sets
only.
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6.3. Random Addition of Vertices

Preferential attachment graphs are a rich topic of research in modern graph
theory. See the monograph [Lu and Chung 06], along with the survey [Mitzen-
macher 04]. The versions in this section are natural because of (1.2) and the
construction (1.7).

Let Tn,p be the random threshold graph with n vertices obtained by adding
vertices one by one with the new vertices chosen as isolated or dominant at
random, independently of each other and with a given probability p ∈ [0, 1] of
being dominant. (Starting with a single vertex, there are thus n − 1 vertex
additions.)

The vertices are not equivalent (for example, note that the edges 1i, i �= 1,
appear independently, but not the edges ni, i �= n), so we also define the random
threshold graph T̂n,p obtained by a random permutation of the vertices in Tn,p.
(In considering unlabeled graphs, there is no difference between Tn,p and T̂n,p.)

Remark 6.4. We may, as stated in (1.7), use different probabilities pi for different
vertices. We leave it to the reader to explore this case, for example with pi =
f(i/n) for some given continuous function f : [0, 1] → [0, 1].

Theorem 6.5. The degree distribution ν(Tn,p) converges a.s. as n → ∞ to a distribu-
tion μp that for 0 < p < 1, has constant density (1−p)/p on (0, p) and p/(1−p)
on (p, 1); μ0 is a point mass at 0, and μ1 is a point mass at 1. In particular,
μ1/2 is the uniform distribution on [0, 1]. Consequently, Tn,p

a.s.−→ Γμp ∈ T∞.

Proof. Let Zn(t) be the number of vertices in { 1, . . . , �nt� } that are added as
dominant. It follows from the law of large numbers that n−1Zn(t) a.s.−→ pt,
uniformly on [0, 1], and we assume this in the sequel of the proof.

If vertex k was added as isolated, it has degree Zn(1) − Zn(k/n), since its
neighbors are the vertices that later are added as dominant. Similarly, if vertex
k was added as dominant, it has degree k− 1 + Zn(1)−Zn(k/n). Consequently,
if μn is the (normalized) degree distribution of Tn,p, and φ is any continuous
function on [0, 1], then∫ 1

0

φ(t) dμn(t) =
1
n

n∑
k=1

φ(d(k)/n)

=
1
n

n∑
k=1

(
φ
(
n−1Zn(1) − n−1Zn(k/n)

)
1[ΔZn(k/n) = 0]

+ φ
(
n−1Zn(1) − n−1Zn(k/n) + (k − 1)/n

)
1[ΔZn(k/n) = 1]

)
.
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Since n−1Zn(t) → pt uniformly, and φ is uniformly continuous, it follows that
as n → ∞,∫ 1

0

φ(t) dμn(t) =
1
n

n∑
k=1

(
φ
(
p(1 − k/n)

)
1[ΔZn(k/n) = 0]

+ φ
(
p(1 − k/n) + k/n

)
1[ΔZn(k/n) = 1]

)
+ o(1)

=
∫ 1

0

φ
(
p(1 − t)

)
d
(
n−1�nt� − n−1Zn(t)

)
+
∫ 1

0

φ
(
p(1 − t) + t

)
d
(
n−1Zn(t)

)
+ o(1).

Since the convergence n−1Zn(t) → pt implies (weak) convergence of the corre-
sponding measures, we finally obtain, as n → ∞,∫ 1

0

φ(t) dμn(t) →
∫ 1

0

φ
(
p(1 − t)

)
(1 − p) dt +

∫ 1

0

φ
(
p(1 − t) + t

)
p dt

=
1 − p

p

∫ p

0

φ(x) dx +
p

1 − p

∫ 1

p

φ(x) dx

=
∫ 1

0

φ(x) dμp(x),

with obvious modifications if p = 0 or p = 1.

Let Sp := Sμp be the corresponding subset of [0, 1]2. If 0 < p < 1, μp has the
distribution function

Fμp(x) =

{
1−p

p x, 0 ≤ x ≤ p,

1 − p
1−p (1 − x), p ≤ x ≤ 1,

(6.5)

then it follows from (5.2) that Sp is the quadrilateral with vertices (0, 1), (1− p,

1 − p), (1, 0), and (1, 1); see Figure 8. In the special case p = 1/2, μp is the
uniform distribution on [0, 1], and Sp is the triangle { (x, y) ∈ [0, 1]2 : x+ y ≥ 1 }
pictured in Figure 4 with vertices (0, 1), (1, 0), and (1, 1). Finally, S0 consists of
the upper and right edges only, and S1 = [0, 1]2.

Removing any vertex from Tn,p (and relabeling the remaining ones) yields
Tn−1,p. It follows that the same property holds for T̂n,p, so T̂n,p satisfies the
assumptions of Theorem 6.2. Since T̂n,p has the same degree distribution as
Tn,p, Theorems 6.2 and 6.5 yield the following equality.

Corollary 6.6. If 0 ≤ p ≤ 1 and n ≥ 1, then T̂n,p
d= Tn;Sp.
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1

10

1

10

Figure 8. Two examples of the sets Sp; the one on the right shows the special
case p = 0.5.

Hence the random threshold graphs in this subsection are special cases of the
general construction in Section 6.1. We can also construct them using random
weights as in Section 6.2.

Corollary 6.7. If 0 ≤ p ≤ 1 and n ≥ 1, then T̂n,p
d= Tn;X,0, where X has the density

1 − p on (−1, 0) and p on (0, 1).

Proof. A simple calculation shows that the set S given by (6.3) is the quadrilat-
eral Sp.

We may transform X by a linear map; for example, we may equivalently take
X with density 2(1− p) on (0, 1/2) and 2p on (1/2, 1), with the threshold t = 1.
In particular, T̂n,1/2

d= Tn;U,1, where U ∼ U(0, 1) as in Example 1.3.

6.4. Uniform Random Threshold Graphs

Let Tn be a random unlabeled threshold graph of order n with the uniform
distribution studied in Section 2. Similarly, let T L

n be a random labeled threshold
graph of order n with the uniform distribution. Although Tn and T L

n have
different distributions, see Section 2, the next theorem shows that they have the
same limit as n → ∞.

Theorem 6.8. The degree distributions ν(Tn) and ν(T L
n ) both converge in probability

to the uniform distribution λ on [0, 1]. Hence Tn
p−→ Γλ and T L

n
p−→ Γλ.

By Section 2.1, Tn
d= Tn,1/2; hence the result for unlabeled graphs follows from

Theorem 6.5.
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Proof. We use Theorem 2.3; in fact, the proof works for random threshold graphs
generated by Algorithm 3 for any i.i.d. random variables B2, B3, . . . with finite
mean, and any B1. (In the case that B2 is always a multiple of some d > 1,
there is a trivial modification.) Let β := E B2.

The algorithm starts by choosing (random) block lengths B1, B2, . . . until their
sum is at least n, and then rejects them and restarts (step 3) unless the sum is
exactly n. It is simpler to ignore this check, so we consider the following modified
algorithm: Take B1, B2, . . . as above. Let Sk :=

∑k
j=1 Bj be their partial sums

and let τ(n) := min{ k : Sk ≥ n }. Toss a coin to determine whether the
first block is isolated or dominant, and construct a random threshold graph by
adding τ(n) blocks of vertices with B1, . . . , Bτ(n) elements, alternately isolated
and dominant.

This gives a random graph G̃n with Sτ(n) vertices, but conditioned on Sτ(n) =
n; we obtain the desired random threshold graph (cf. Theorem 2.3). Since
P(Sτ(n) = n) converges to 1/β > 0 by renewal theory, it suffices to prove that
ν(G̃n)

p−→ λ as n → ∞. In fact, we will show that ν(G̃n) a.s.−→ λ if we first choose
an infinite sequence B1, B2, . . . and then let n → ∞.

Let SO
m :=

∑
2k+1≤m B2k+1 and SE

m :=
∑

2k≤m B2k be the partial sums of
the odd and even terms. By the law of large numbers, a.s. Sn/n → β and
SO

n /n → 1
2β, SE

n /n → 1
2β. We now consider a fixed sequence (Bj)∞1 such that

these limits hold. Since Sτ(n)−1 < n ≤ Sτ(n), it follows, as is well known, that
n/τ(n) → β, so τ(n) = n/β + o(n).

Suppose for definiteness that the first block is chosen to be isolated; then every
odd block is isolated and every even block is dominant. (In the opposite case,
interchange even and odd below.) If i ∈ (S2k, S2k+1], then i belongs to block
2k + 1, so i is added as isolated, and the neighbors of i will be only the vertices
added after i as dominant, i.e.,

⋃
k<�≤τ(n)/2(S2�−1, S2�], and

d(i) =
∑

2k<2�≤τ(n)

B2� = SE
τ(n) − SE

τ(i).

If instead i ∈ (S2k−1, S2k], then i is also joined to all vertices up to S2k, and thus

d(i) =
∑

2�≤τ(n)

B2� +
∑

2�+1≤τ(i)

B2�+1 = SE
τ(n) + SO

τ(i).

Hence if i is in an odd block,

d(i)
n

=
1
n

(
τ(n)

β

2
− τ(i)

β

2
+ o(n)

)
=

n − i + o(n)
2n

=
1
2
− i

2n
+ o(1),

and if i is in an even block, similarly,

d(i)
n

=
1
2

+
i

2n
+ o(1).
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Now fix t ∈ (0, 1/2) and let ε > 0. Then the following holds if n is large enough:
If i is in an even block, then d(i)/n ≥ 1/2 + o(1) > t. If i is in an odd block and
i ≤ i1 := (1−2t−2ε)n, then d(i)/n = 1

2 (n− i)/n+o(1) ≥ t+ε+o(1) > t. If i is
in an odd block and i ≥ i2 := (1 − 2t + 2ε)n, then d(i)/n = 1

2 (n− i)/n + o(1) ≤
t− ε+ o(1) < t. Consequently, for large n, d(i)/n ≤ t only if i is in an odd block
(S2k, S2k+1], and in this case 2k + 1 > τ(i1) is necessary and 2k + 1 > τ(i2) is
sufficient. Hence

SO
τ(n) − SO

τ(i2)
≤ |{ i : d(i)/n ≤ t }| ≤ SO

τ(n) − SO
τ(i1)

.

Since ν(G̃n)[0, t] = 1
n |{ i : d(i)/n ≤ t }| and

1
n

(
SO

τ(n) − SO
τ(ij)

)
=

β(τ(n) − τ(ij)) + o(n)
2n

=
n − ij + o(n)

2n
= t ± ε + o(1),

it follows that
t − ε + o(1) ≤ ν(G̃n)[0, t] ≤ t + ε + o(1).

Since ε is arbitrary, this shows that ν(G̃n)[0, t] → t, for every t ∈ (0, 1
2 ). We

clearly obtain the same result if the first block is dominant.
For t ∈ (1

2 , 1) we can argue similarly, now analyzing the dominant blocks.
Alternatively, we may apply the result just obtained to the complement of G̃n,
which is obtained from the same Bj by switching the types of the blocks. This
shows that ν(G̃n)[0, t] → t for t ∈ (1

2 , 1) too.
Hence, ν(G̃n)[0, t] → t for every t ∈ (0, 1) except possibly 1

2 , which shows that
ν(G̃n) → λ.

7. Vertex Degrees in Uniform Random Threshold Graphs

We have seen in Theorem 6.8 that the normalized degree distributions ν(Tn) and
ν(T L

n ) for uniform unlabeled and labeled random threshold graphs both converge
to the uniform distribution on [0, 1]. This is for weak convergence of distributions
in P , which is equivalent to averaging over degrees in intervals (an, bn); we here
refine this by studying individual degrees.

Let Nd(G) be the number of vertices of degree d in the graph G. Thus DG,
the degree of a random vertex in G, has distribution P(DG = d) = Nd/v(G).
(Recall that ν(G) is the distribution of DG/v(G); see Section 4.)

We will study the random variables Nd(Tn) and Nd(T L
n ) describing the num-

bers of vertices of a given degree d in a uniform random unlabeled or labeled
threshold graph, and in particular their expectations E Nd(Tn) and E Nd(T L

n );
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note that E Nd(Tn)/n and E Nd(T L
n )/n are the probabilities that a given (or ran-

dom) vertex in the random graph Tn or T L
n has degree d. By symmetry under

complementation,

Nd(Tn) d= Nn−1−d(Tn) and Nd(T L
n ) d= Nn−1−d(T L

n ).

Let us first look at N0, the number of isolated vertices. (By symmetry, we
have the same results for Nn−1, the number of dominant vertices). Note that
for every n ≥ 2, P(N0(Tn) = 0) = P(N0(T L

n ) = 0) = 1/2 by symmetry.

Theorem 7.1.

(i) For any n ≥ 1,

P
(
N0(Tn) = j

)
=

⎧⎪⎨⎪⎩
2−j−1, 0 ≤ j ≤ n − 2,

0, j = n − 1,

2−n+1, j = n.

(7.1)

In other words, if X ∼ Ge(1/2), then N0(Tn) d= X ′
n, where X ′

n := Xn if
x < n − 1 and X ′

n := n if Xn ≥ n − 1. Furthermore, E N0(Tn) = 1, and
N0(Tn) d−→ Ge(1/2) as n → ∞, with convergence of all moments.

(ii) P
(
N0(T L

n ) = j
)

= t(n, j)/t(n), where t(n, j) is given by (2.6); in particular,
if 0 ≤ j ≤ n − 2, then

P
(
N0(T L

n ) = j
)

=
1

2j!
t(n − j)/(n − j)!

t(n)/n!
=

1
2j!

(log 2)j
(
1 + O(ρn−j)

)
with ρ = log 2/(2π) ≈ 0.11. Hence N0(T L

n ) d−→ Po(log 2) as n → ∞ with
convergence of all moments; in particular, E N0(T L

n ) → log 2.

Proof. (i): A threshold graph has j isolated vertices if and only if the extended
binary code α1 · · ·αn in Section 2 ends with exactly j 0’s. For a random unlabeled
threshold graph Tn, the binary code α2 · · ·αn is uniformly distributed, and thus
(7.1) follows. The remaining assertions follow directly.

(ii): In the labeled case, the exact distribution is given by (2.6), and the asymp-
totics follow by (2.3). Uniform integrability of any power N0(T L

n )m follows by
the same estimates, and thus moment convergence holds.

For higher degrees, we begin with an exact result for the unlabeled case.

Theorem 7.2. E Nd(Tn) = 1 for every d = 0, . . . , n − 1.
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Actually, this is the special case p = 1/2 of a more general theorem for the
random threshold graph Tn,p defined in Section 6.3 (cf. Theorem 6.5, which is
for weak convergence, but on the other hand yields an a.s. limit while we here
study the expectations).

Theorem 7.3. Let 0 < p < 1. If q = 1−p and X ∼ Bin(n, p), then for 0 ≤ d ≤ n−1,

E Nd(Tn,p) =
q

p
+
(p

q
− q

p

)
P(X ≤ d).

Proof. We use the definition in Section 6.3. (For the uniform case p = 1/2, this is
Algorithm 1.) Let di be the degree of vertex i. Then if α1 · · ·αn is the extended
binary code of the graph, we have

di = (i − 1)αi +
n∑

j=i+1

αj .

Since the αi are i.i.d. Be(p) for i = 2, . . . , n, the probability-generating function
of di is

E xdi = E x(i−1)αi

n∏
j=i+1

E xαj = (pxi−1 + q)(px + q)n−i.

Consequently,∑
d

E Nd(Tn,p)xd =
n∑

i=1

E xdi =
n∑

i=1

pxi−1(px + q)n−i +
n∑

i=1

q(px + q)n−i

= p
xn − (px + q)n

x − (px + q)
+ q

1 − (px + q)n

1 − (px + q)

=
(q/p) + (p/q − q/p)(px + q)n − (p/q)xn

1 − x
.

In the special case p = 1/2, this is (1 − xn)/(1 − x) =
∑n−1

d=0 xd, which proves
Theorem 7.2 by identifying coefficients. For general p, Theorem 7.3 follows in
the same way.

Recall that Rd denotes the number of preferential arrangements, or surjection
numbers, given in (2.4).

Theorem 7.4.

(i) In the unlabeled case, for any sequence d = d(n) with 0 ≤ d ≤ n − 1,
Nd(Tn) d−→ Ge(1/2) with convergence of all moments.
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(ii) In the labeled case, let Xd, 0 ≤ d ≤ ∞, have the modified Poisson distribu-
tion given by

P(Xd = �) =

{
γd

log 2 P
(
Po(log 2) = �

)
= γd

(log 2)�−1

2·�! , � ≥ 1,

1 − γd

2 log 2 , � = 0,

where γ0 := log 2, γd := 2Rd(log 2)d+1/d! for d ≥ 1, and γ∞ := 1. Then for
every fixed d ≥ 0, Nd(T L

n ) d= Nn−1−d(T L
n ) d−→ Xd, and for every sequence

d = d(n) → ∞ with n − d → ∞, Nd(T L
n ) d= Nn−1−d(T L

n ) d−→ X∞ as
n → ∞, in both cases with convergence of all moments.

In particular, E Nd(T L
n ) = E Nn−1−d(T L

n ) converges to γd for every fixed d,
and to γ∞ = 1 if d → ∞ and n − d → ∞.

In the labeled case we thus have, in particular,

E N0(T L
n ) → log 2 ≈ 0.69315,

E N1(T L
n ) → 2(log 2)2 ≈ 0.96091,

E N2(T L
n ) → 3(log 2)3 ≈ 0.99907,

E N3(T L
n ) → 13

3
(log 2)4 ≈ 1.00028.

The values for degrees 0 and 1 (and symmetrically n − 1 and n − 2) are thus
substantially smaller than 1, which is clearly seen in Figure 7. (We can regard
this as an edge effect; the vertices with degrees close to 0 or n − 1 are those
added last in Algorithm 3. Figure 7 also shows an edge effect at the other side;
there is a small bump for degrees around n/2, which correspond to the vertices
added very early in the algorithm; this bump vanishes asymptotically, as shown
by Theorem 7.4; we believe that it has height of order n−1/2 and width of order
n1/2, but we have not analyzed it in detail.)

Proof. The cases d = 0 and d = n − 1 follow from Theorem 7.1. We may thus
suppose 1 ≤ d ≤ n − 2. We use Algorithm 3. We know that vertices in each
block have the same degree, while different blocks have different degrees; thus
there is at most one block with degree d.

Let pd(�) be the probability that there is such a block of length � ≥ 1, and
that this block is added as isolated. By symmetry, the probability that there is
a dominant block of length � with degree d is pn−1−d, and thus

P(Nd = �) = pd(�) + pn−1−d(�), � ≥ 1. (7.2)
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If block j is an isolated block, then the degree of the vertices in it equals the
number of vertices added as dominant after it, i.e., Bj+1 +Bj+3 + · · ·+Bj+2k−1,
if the total number τ of blocks is j + 2k − 1 or j + 2k. Consequently, there is
an isolated block of length � with vertices of degree d if and only if there exist
j ≥ 1 and k ≥ 1 with

• Bj = �,

• block j is isolated,

•
∑k

i=1 Bj+2i−1 = d,

•
∑j+2k−1

i=1 Bi = n or
∑j+2k

i=1 Bi = n.

Recall that B1, B2, . . . are independent and that B2, B3, . . . have the same dis-
tribution, while B1 has a different one. (The distributions differ between the
unlabeled and labeled cases.) Let

Ŝn :=
m∑

i=1

Bi and Sn :=
m∑

i=1

Bi+1.

Further, let

û(n) =
∞∑

m=0

P(Ŝm = n) = P(Bτ = n) = P

( τ∑
i=1

Bi = n
)
,

u(n) =
∞∑

m=0

P(Sm = n),

and recall that u(n), û(n) → 1/μ := 1/ EB2 (exponentially fast) by standard
renewal theory (for example by considering generating functions). For any m ≥
j + 2k − 1,

m∑
i=1

Bi − Bj −
k∑

i=1

Bj+2i−1
d=

{
Sm−1−k, j = 1,

Ŝm−1−k, j ≥ 2,

and it follows that since B1, B2, . . . are independent and we condition on Ŝτ = n,

pd(�) =
1

2û(n)

{ ∞∑
k=1

P(B1 = �) P(Sk = d)

·
(
P(Sk−1 = n − � − d) + P(Sk = n − � − d)

)
+

∞∑
j=2

∞∑
k=1

P(Bj = �) P(Sk = d)

·
(
P(Ŝj+k−2 = n − � − d) + P(Ŝj+k−1 = n − � − d)

)}
(7.3)
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In the double sum, P(Bj = �) = P(B2 = �) does not depend on j, so the sum is
at most

P(B2 = �)
∑

k

P(Sk = d)2û(n − � − d) = 2 P(B2 = �)u(d)û(n − � − d)

= O(P(B2 = �)).

Similarly, the first sum is O(P(B1 = �)) = O(P(B2 = �)), and it follows that
pd(�) = O(P(B2 = �)) and thus, by (7.2),

P(Nd = �) = O(P(B2 = �)), (7.4)

uniformly in n, d, and �. This shows tightness, so convergence P(Nd = �) →
P(X = �) for some nonnegative-integer-valued random variable X and each fixed
� ≥ 1 implies convergence in distribution (i.e., for � = 0 too). Further, since
all moments of B2 are finite, (7.4) implies that all moments E Nm

d are bounded,
uniformly in d and n; hence convergence in distribution implies that all moments
converge too. In the rest of the proof we thus let � ≥ 1 be fixed.

If d ≤ n/2, it is easy to see that

P(Sk−1 = n − � − d) + P(Sk = n − � − d) = O
(
(n − � − d)−1/2

)
= O(n−1/2),

uniformly in k, so the first sum in (7.3) is O
(
n−1/2u(d)

)
= O

(
n−1/2

)
. If d > n/2,

we similarly have P(Sk = d) = O
(
d−1/2

)
= O

(
n−1/2

)
, and thus the sum is

O
(
n−1/2u(n − � − d)

)
= O

(
n−1/2

)
. Hence (7.3) yields

pd(�) = O
(
n−1/2

)
+

P(B2 = �)
2û(n)

∞∑
k=1

P(Sk = d) (7.5)

·
(∑

i=k

P(Ŝi = n − � − d) +
∑

i=k+1

P(Ŝi = n − � − d)
)
.

The term with i = k can be taken twice, just as those with i > k, since∑
k P(Sk = d) P(Ŝk = n − � − d) = O

(
n−1/2

)
by the same argument as for

the first sum in (7.3). Further, for i ≥ k, Ŝi− Ŝk
d= Si−k, and this is independent

of Ŝk; thus

P(Ŝi = n− �− d) = P(Si−k = n− �− d− Ŝk) = E P
(
Si−k = n− �− d− Ŝk | Ŝk

)
and

∞∑
i=k

P(Ŝi = n − � − d) = E u(n − � − d − Ŝk).
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Hence (7.5) yields

pd(�) =
P(B2 = �)

û(n)

∞∑
k=1

P(Sk = d) E u(n − � − d − Ŝk) + O
(
n−1/2

)
. (7.6)

If d is fixed, then E u(n − � − d − Ŝk) → μ−1 by dominated convergence as
n → ∞ for each k, and thus (7.6) yields, by dominated convergence again,

pd(�) → P(B2 = �)
∞∑

k=1

P(Sk = d) = u(d) P(B2 = �). (7.7)

If d → ∞, we use the fact that u(m) − 1[m ≥ 0]μ−1 is summable over Z to
see that

E u(n − � − d − Ŝk) − μ−1
P(n − � − d − Ŝk ≥ 0) = O

(
max

m
P(Ŝk = m)

)
,

which tends to 0 as k → ∞; on the other hand, P(Sk = d) → 0 for every fixed
k. It follows that (7.6) yields

pd(�) = P(B2 = �)
∞∑

k=1

P(Sk = d) P(Ŝk ≤ n − � − d) + o(1).

If τd := min{ k : Sk ≥ d } and Ŝ′
k denotes a copy of Ŝk independent of {Sj }∞1 ,

then

∞∑
k=1

P(Sk = d) P(Ŝk ≤ n − � − d) = u(d) P
(
Ŝ′

τd
≤ n − � − d | Sτd

= d
)
.

It is easy to see that with σ2 := Var(B2), as d → ∞,(
(Ŝ′

τd
− d)/

√
d | Sτd

= d
)

=
(
(Ŝ′

τd
− Sτd

)/
√

d | Sτd
= d
) d−→ N(0, 2σ2/μ);

cf. [Gut and Janson 83] (the extra conditioning on Sτd
= d makes no difference).

Hence when d → ∞,

pd(�) = P(B2 = �)u(d)Φ
(
(n − � − 2d)/

√
d
)

+ o(1).

(By (7.7), this holds for fixed d too.)
We next observe that Φ

(
(n − � − 2d)/

√
d
)

= Φ
(
(n − 2d)/

√
n/2

)
+ o(1); this

is easily seen by considering separately the three cases d/n → a ∈ [0, 1/2),
d/n → a ∈ (1/2, 1], and d/n → 1/2 and (n − 2d)/

√
n/2 → b ∈ [−∞,∞] (the
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general case follows by considering suitable subsequences). Hence, we have when
d → ∞, recalling that then u(d) → μ−1,

pd(�) = μ−1
P(B2 = �)Φ

(
(n − 2d)/

√
n/2

)
+ o(1).

For fixed d, this implies that pn−d−1(�) → 0, and thus (7.2) and (7.7) yield

P(Nd = �) = pd(�) + pn−1−d(�) = u(d) P(B2 = �) + o(1).

Similarly, if d → ∞ and n − d → ∞, then

P(Nd = �) = pd(�) + pn−1−d(�)

= μ−1
P(B2 = �)

(
Φ
(
(n − 2d)/

√
n/2

)
+ Φ

(
(2d + 2 − n)/

√
n/2

))
+ o(1)

= μ−1
P(B2 = �) + o(1).

We have thus proven convergence as n → ∞, with all moments, Nd
d−→ Xd

for fixed d and Nd
d−→ X∞ for d = d(n) → ∞ with n − d → ∞, where

P(Xd = �) = u(d) P(B2 = �) = 2u(d) P(B∗ = �), � ≥ 1, (7.8)

P(Xd = 0) = 1 − P(Xd ≥ 1) = 1 − u(d), (7.9)

for 1 ≤ d ≤ ∞, with u(∞) := μ−1.
In the unlabeled case, B2 = (B∗ | B∗ ≥ 1) d= B∗ + 1 with B∗ ∼ Ge(1/2).

Consider a random infinite string α1α2 · · · of i.i.d. Be(1/2) binary digits, and
define a block as a string of m ≥ 0 0’s followed by a single 1. Then Bj+1, j ≥ 1,
can be interpreted as the successive block lengths in α1α2 · · · , and thus u(d) is
the probability that some block ends at d, i.e., u(d) = P(αd = 1) = 1/2, for every
d ≥ 1. It follows from (7.8)–(7.9) that Xd

d= B∗ ∼ Ge(1/2) for every d ≥ 1, and
(i) follows.

In the labeled case, when B∗ ∼ Po(log 2), we use generating functions:

∞∑
d=0

u(d)xd =
∞∑

k=0

E xSk =
∞∑

k=0

(
E xB2

)k =
1

1 − E xB2
=

P(B∗ ≥ 1)
1 − E xB∗

=
1/2

1 − e(x−1) log 2
=

1
2 − ex log 2

=
∞∑

d=0

Rd

d!
(x log 2)d,

where we recognize the generating function (2.5). Thus, u(d) = Rd(log 2)d/d!.
(A direct combinatorial proof of this is also easy.)

We let, using μ := E B2 = E B∗/ P(B∗ ≥ 1) = 2 log 2,

γd := E Xd = u(d) E B2 = μu(d) = 2 log 2u(d) = 2Rd(log 2)d+1/d!



�

�

“imvol5” — 2009/11/4 — 9:42 — page 313 — #47
�

�

�

�

�

�

Diaconis et al.: Threshold Graph Limits and Random Threshold Graphs 313

and note that γd → γ∞ = 1 as d → ∞, since u(d) → μ−1, or by the known
asymptotics of Rd [Flajolet and Sedgewick 09, (II.16)]. The description of Xd in
the statement now follows from (7.8)–(7.9).

8. Random Bipartite Threshold Graphs

The constructions and results in Section 6 have analogues for bipartite threshold
graphs. The proofs are simple modifications of those above and are omitted.

8.1. Increasing Set

For any increasing S ⊆ [0, 1]2, define Tn1,n2;S := G(n1, n2,1S). In other words,
take i.i.d. random variables U ′

1, . . . , U
′
n1

, U ′′
1 , . . . , U ′′

n2
∼ U(0, 1) and draw an edge

ij if (U ′
i , U

′′
j ) ∈ S.

Theorem 8.1. As n1, n2 → ∞, Tn1,n2;S
a.s.−→ Γ′′

S. In particular, the degree distribution
ν1(Tn;S) converges a.s. to ν1(Γ′′

S), which equals the distribution of ϕS(U) defined
by (6.1).

As in Section 6, this gives a canonical representation of random bipartite
threshold graphs under natural assumptions.

Theorem 8.2. Suppose that (Gn1,n2)n1,n2≥1 are random bipartite threshold graphs
with V1(Gn1,n2) = [n1] and V2(Gn1,n2) = [n2] such that the distribution of each
Gn1,n2 is invariant under permutations of V1 and V2 and that the restrictions (in-
duced subgraphs) of Gn1+1,n2 and Gn1,n2+1 to V (G) both have the same distribu-
tion as Gn1,n2 , for every n1, n2 ≥ 1. If further ν1(Gn1,n2)

p−→ μ as n1, n2 → ∞,

for some μ ∈ P, then for every n1, n2, Gn1,n2

d= Tn1,n2;Sμ .

8.2. Random Weights

Definition (1.9) suggests the following construction:

(8.1) Let X and Y be two random variables and let t ∈ R. Let X1, X2, . . . ,

be copies of X , let Y1, Y2, . . . , be copies of Y , all independent, and let
Tn1,n2;X,Y,t be the bipartite threshold graph with vertex sets [n1] and [n2]
and edges ij for all pairs ij such that Xi + Yj > t.

Theorem 8.3. Let S be the increasing set

S := { (x, y) ∈ (0, 1]2 : F−1
X (x) + F−1

Y (y) > t }. (8.2)
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Then Tn1,n2;X,Y,t
d= Tn1,n2;S for every n1, n2 ≥ 1.

Furthermore, as n1, n2 → ∞, the degree distribution ν1(Tn1,n2;X,Y,t) converges
a.s. to μ and thus Tn1,n2;X,Y,t

a.s.−→ Γ′′
μ, where μ ∈ P is the distribution of the

random variable 1 − FY (t − X), i.e.,

μ[0, s] = P
(
1 − FY (t − X) ≤ s

)
, s ∈ [0, 1]. (8.3)

In the special case that P(X ∈ [0, 1]) = 1, Y ∼ U(0, 1), and t = 1, (8.3) yields
μ[0, s] = P(X ≤ s), so μ is the distribution of X ; further, the set S in (8.2) is
a.e. equal to Sμ in (5.3).

Corollary 8.4. If μ ∈ Ps, let X have distribution μ and let Y ∼ U(0, 1). Then

Tn1,n2;X,Y,t
d= Tn1,n2;Sμ for every n1, n2 ≥ 1. Furthermore, as n1, n2 → ∞,

ν1(Tn1,n2;X,Y,t)
p−→ μ and Tn1,n2;X,Y,t

p−→ Γ′′
μ.

This yields another canonical construction for every μ ∈ P . (We claim only
convergence in probability in Corollary 8.4; convergence a.s. holds at least along
every increasing subsequence (n1(m), n2(m)); see [Diaconis and Janson 08, Re-
mark 8.2].)

8.3. Random Addition of Vertices

Definition (1.10) suggests the following construction:

(8.4) Let Tn1,n2;p1,p2 be the random bipartite threshold graph with n1 + n2

vertices obtained as follows: Take n1 “white” vertices and n2 “black” ver-
tices, and arrange them in random order. Then join each white vertex
with probability p1 to all earlier black vertices, and join each black
vertex with probability p2 to all earlier white vertices (otherwise, the ver-
tex is joined to no earlier vertex), the decisions being made independently
by tossing a biased coin once for each white vertex, and another biased
coin once for each black vertex.

For p1, p2 ∈ [0, 1], let μp1,p2 be the probability measure in P with distribution
function

Fμp1,p2
(x) =

{
1−p1

p2
x, 0 ≤ x < p2,

1 − p1
1−p2

(1 − x), p2 ≤ x < 1.
(8.5)

Hence μp1,p2 has density (1−p1)/p2 on (0, p2), and p1/(1−p2) on (p2, 1); if p2 = 0
there is also a point mass 1 − p1 at 0, and if p2 = 1 there is also a point mass
p1 at 1. It follows from (5.2) that the corresponding subset Sp1,p2 := Sμp1,p2

of
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[0, 1]2 is the quadrilateral with vertices (0, 1), (1 − p1, 1 − p2), (1, 0), and (1, 1)
(including degenerate cases in which p1 or p2 is 0 or 1).

This is an extension of the definitions in Section 6.3; we have μp,p = μp and
Sp,p = Sp. Note also that μ†

p1,p2
= μp2,p1 . In particular, μp1,p2 ∈ Ps only if

p1 = p2.

Theorem 8.5. As n1, n2 → ∞, the degree distributions

ν1(Tn1,n2;p1,p2) and ν2(Tn1,n2;p1,p2)

converge in probability to μp1,p2 and μp2,p1 , respectively. Consequently,

Tn1,n2;p1,p2

p−→ Γ′′
p1,p2

:= Γ′′
μp1,p2

∈ T ′′
∞,∞.

Corollary 8.6. If p1, p2 ∈ [0, 1] and n1, n2 ≥ 1, then

Tn1,n2;p1,p2

d= Tn1,n2;Sp1,p2

d= Tn1,n2;X1,X2,0,

where Xj has the density 1 − pj on (−1, 0) and pj on (0, 1), j = 1, 2.

Note that if p1 + p2 = 1, then Sp1,p2 is the upper triangle S1/2 := { (x, y) :
x + y ≥ 1 }. Hence the distribution of Tn1,n2;p1,p2 does not depend on p1 as long
as p2 = 1 − p1. In particular, we may then choose p1 = 1 and p2 = 0. In this
case, Definition (8.4) simplifies as follows:

(8.6) Let Tn1,n2 be the random bipartite threshold graph with n1 + n2 vertices
obtained as follows: Take n1 “white” vertices and n2 “black” vertices, and
arrange them in random order. Join every white vertex to every earlier
black vertex.

If p1 = 1 and p2 = 0, then further X1
d= U ∼ U(0, 1) and X2

d= U − 1
in Corollary 8.6. Hence we have found a number of natural constructions that
yield the same random bipartite threshold graph.

Corollary 8.7. If p1 ∈ [0, 1] and n1, n2 ≥ 1, then

Tn1,n2;p1,1−p1

d= Tn1,n2;1,0 = Tn1,n2

d= Tn1,n2;S1/2

d= Tn1,n2;U,U,1,

with U ∼ U(0, 1).

We will see in the next subsection that this random bipartite threshold graph
is uniformly distributed as an unlabeled bipartite threshold graph.
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8.4. Uniform Random Bipartite Threshold Graphs

It is easy to see that for every bipartite threshold graph, if we color the ver-
tices in V1 white and the vertices in V2 black, then there is an ordering of the
vertices such that a white vertex is joined to every earlier black vertex but not
to any later one. (For example, if there are weights as in (1.9), order the vertices
according to w′

i and w′′
j , taking the white vertices first in case of a tie.) This

yields a one-to-one correspondence between unlabeled bipartite threshold graphs
on n1 + n2 vertices and sequences of n1 white and n2 black balls. Consequently,
the number of unlabeled bipartite threshold graphs is

|Tn1,n2 | =
(

n1 + n2

n1

)
, n1, n2 ≥ 1.

Moreover, it follows that Tn1,n2 is uniformly distributed in Tn1,n2 ; hence Corol-
lary 8.7 yields the following:

Theorem 8.8. The random bipartite threshold graphs Tn1,n2 , Tn1,n2;p1,1−p1 (0 ≤ p1 ≤
1), Tn1,n2;S1/2 , Tn1,n2;U,U,1 are all uniformly distributed, regarded as unlabeled
bipartite threshold graphs.

We have not studied uniform random labeled bipartite threshold graphs.

9. Spectrum of Threshold Graphs

There is a healthy literature on the eigenvalue distribution of the adjacency
matrix for various classes of random graphs. Much of this is focused on the
spectral gap (e.g., most k-regular graphs are Ramanujan [Davidoff et al. 03]). See
[Jakobson et al. 99] for evidence showing that random k-regular graphs have the
same limiting eigenvalue distribution as the Gaussian orthogonal ensemble. The
following results show that random threshold graphs give a family of examples
with highly controlled limiting spectrum.

There is a tight connection between the degree distribution of a threshold
graph and the spectrum of its Laplacian; see [Merris 94, Hammer and Kel-
mans 96, Merris and Roby 05]. Recall that the Laplacian of a graph G, with
V (G) = [n], say, is the n×n matrix L = D−A, where A is the adjacency matrix
of G and D is the diagonal matrix with entries dii = dG(i). (Thus L is symmetric
and has row sums 0.) It is easily seen that 〈Lx, y〉 =

∑
ij∈E(G)(xi − xj)(yi − yj)

for x, y ∈ R
n. The eigenvalues λi of L satisfy 0 ≤ λi ≤ n, i = 1, . . . , n, and we

define the normalized spectral distribution νL ∈ P as the empirical distribution
of {λi/n }n

i=1.
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For a threshold graph, it is easily seen that if we order the vertices as in (1.2)
and Section 2.1, then for each i = 2, . . . , n the function

ϕi(j) :=

⎧⎪⎨⎪⎩
−1, j < i,

i − 1, j = i,

0, j > i,

is an eigenfunction of L with eigenvalue d(i) or d(i)+1, depending on whether i

is added as isolated or dominant, i.e., whether αi = 0 or 1 in the binary code of
the graph. Together with ϕ1 := 1 (which is an eigenfunction with eigenvalue 0
for any graph), these form an orthogonal basis of eigenfunctions. The Laplacian
spectrum thus can be written

{ 0 } ∪ { d(i) + αi : i = 2, . . . , n }. (9.1)

In particular, the eigenvalues are all integers.
Moreover, (9.1) shows that the spectrum {λi }n

1 is closely related to the degree
sequence; in particular, asymptotically they are the same in the sense that if Gn

is a sequence of threshold graphs with v(Gn) → ∞ and μ ∈ P , then

νL(Gn) → μ ⇐⇒ ν(Gn) → μ. (9.2)

(See [Hammer and Kelmans 96] for a detailed comparison of the Laplacian spec-
trum and the degree sequence for threshold graphs.) In particular, Theorem 5.8
can be restated using the spectral distribution:

Theorem 9.1. Let Gn be a sequence of threshold graphs such that v(Gn) → ∞. Then
Gn converges in U as n → ∞ if and only if the spectral distributions νL(Gn)
converge to some distribution μ. In this case, μ ∈ Ps and Gn → Γμ.

Remark 9.2. It can be shown that the spectrum and the degree sequence are asymp-
totically close in the sense that (9.2) holds for any graphs Gn with v(Gn) → ∞,
even though in general there is no simple relation like (9.1).

Another relation between the spectrum and the degree sequence for a threshold
graph is that their Ferrers diagrams are transposes of each other; see [Merris 94,
Merris and Roby 05]. This is easily verified from (9.1) by induction. If we scale
the Ferrers diagrams by n, so that they fit in the unit square [0, 1]2 with a corner
at (0, 1), then the lower boundary is the graph of the empirical distribution
function of the corresponding normalized values, i.e., the distribution function
of ν(G) or νL(G). Hence these distribution functions are related by reflection in
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the diagonal between (0, 1) and (1, 0), so by (5.11) (and the comment after it),
for any threshold graph G,

νL(G) = ν(G)†.
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