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Stability and Similarity of Link
Analysis Ranking Algorithms
Debora Donato, Stefano Leonardi, and Panayiotis Tsaparas

Abstract. Recently, there has been a surge of research activity in the area of link analysis
ranking, where hyperlink structures are used to determine the relative authority of
webpages. One of the seminal works in this area is that of Kleinberg [Kleinberg 98],
who proposed the HITS algorithm. In this paper, we undertake a theoretical analysis
of the properties of the HITS algorithm on a broad class of random graphs. Working
within the framework of Borodin et al. [Borodin et al. 05], we prove that, under
some assumptions, on this class (a) the HITS algorithm is stable with high probability
and (b) the HITS algorithm is similar to the InDegree heuristic that assigns to each
node weight proportional to the number of incoming links. We demonstrate that our
results go through for the case that the expected in-degrees of the graph follow a
power law distribution. We also study experimentally the similarity between HITS and
InDegree, and we investigate the general conditions under which the two algorithms are
similar.

1. Introduction

In the past years there has been increasing research interest in the analysis of
the web graph for the purpose of improving the performance of search engines.
The seminal works of Kleinberg [Kleinberg 98] and Brin and Page [Brin and
Page 98] introduced the area of link analysis ranking (LAR), where hyperlink
structures are used to rank the results of search queries. Their work was followed
by a plethora of modifications, generalizations, and improvements [Bharat and
Henzinger 98, Lempel and Moran 00, Rafiei and Mendelzon 00, Ng et al. 01b,
Achlioptas et al. 01, Borodin et al. 01, Haveliwala 02, Tomlin 03, Tsaparas 04].
As a result, today there exists a wide range of link analysis ranking algorithms,
many of which are variations of each other.
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The wide usage of LAR algorithms raises naturally the question of defining a
formal framework for assessing and comparing their properties. Borodin et al.
introduced a theoretical framework for the analysis of LAR algorithms [Borodin
et al. 01, Borodin et al. 05]. In their framework a LAR algorithm is defined as a
function from a class of graphs of size n to an n-dimensional real vector. Every
node in the graph is associated with a weight that captures the relative authority
of the node. The nodes are ranked in decreasing order of their weights. Borodin
et al. studied various properties of LAR algorithms such as stability, similarity,
monotonicity, and locality [Borodin et al. 01]. In this work we focus on stability
and similarity. Stability considers the effect of small changes in the graph to
the output of an LAR algorithm. An LAR algorithm is stable if small changes
in the graph result in small changes in the output of the algorithm. Similarity
studies how close are the results of two algorithms on the same graph. Similar
algorithms should produce similar rankings on the same graph.

Borodin et al. considered the question of stability and similarity over an unre-
stricted class of graphs [Borodin et al. 05]. They studied a variety of algorithms,
and they proved that no pair of these algorithms is similar and that almost all
algorithms are unstable. It appears that the class of all possible graphs is too
broad to allow for positive results. This naturally raises the question whether it
is possible to prove positive results if we restrict ourselves to a smaller class of
graphs. Since the explosion of the World Wide Web, various stochastic models
have been proposed for the web graph [Azar et al. 01, Barabasi and Albert 99, Ku-
mar et al. 00a, Aiello et al. 01]. The model we consider, that was proposed by
Azar et al. [Azar et al. 01], is the following: assume that every node i in the
graph comes with two parameters ai and hi that take values in [0, 1]. For some
node i, the value hi can be thought of as the probability of node i to be a good
hub, while the value ai is the probability of the node i to be a good authority.
We then generate an edge from i to j with probability proportional to hiaj . We
will refer to this model as the product model and to the corresponding class of
graphs as the class of product graphs. The product graph model generalizes the
traditional random graph model of Erdös and Rèny [Erdős and Rèny 60] to in-
clude graphs where the expected degrees follow specific distributions. This is of
particular interest since it is well known [Kumar et al. 00a, Broder et al. 00] that
the in-degrees of the nodes in the web graph follow a power law distribution.
This model has recently attracted considerable attention [Azar et al. 01, Chung
and Lu 02, Mihail and Papadimitriou 02, Chung et al. 03], as a model for real-life
networks such as the Internet and the World Wide Web.

1.1. Our Contribution

In this paper we study the behavior of the HITS algorithm, proposed by Klein-
berg [Kleinberg 98], on the class of product graphs. The study of HITS on
product graphs was initiated by Azar et al. [Azar et al. 01], who showed that



�

�

“imvol3” — 2008/4/1 — 13:58 — page 481 — #3
�

�

�

�

�

�

Donato et al.: Stability and Similarity of Link Analysis Ranking Algorithms 481

under some assumptions the HITS algorithm returns weights that are very close
to the authority parameters. We formalize the findings of Azar et al. [Azar
et al. 01] in the framework of Borodin et al. [Borodin et al. 05]. We extend
the definitions of stability and similarity for classes of random graphs, and we
demonstrate a connection between stability and similarity. We then prove that,
with high probability, under some restrictive assumptions the HITS algorithm is
stable on the class of product graphs and is similar to the InDegree heuristic that
ranks pages according to their in-degree. This similarity result is the main con-
tribution of the paper. The implication of the result is that on product graphs,
with high probability, the HITS algorithm reduces to simple in-degree count.
We show that our assumptions are general enough to capture graphs where the
expected degrees follow a power law distribution, and we provide conditions for
the stability and similarity of LAR algorithms on the Erdös-Rèny model. We
also analyze the correlation between InDegree and HITS on a large sample of
the web graph. The experimental analysis reveals that similarity between HITS
and InDegree can also be observed on the World Wide Web. We conclude with
a discussion on the conditions that guarantee similarity of HITS and InDegree
for the class of all possible graphs.

Our work focuses on the theoretical understanding of LAR algorithms, and
the relationship between HITS and InDegree. For this analysis we focus on the
product graph model, which has received considerable attention in the network
literature. Although the product model cannot capture the full complexity of
the web graph, it is still an interesting model to study since it may be proven
to be an adequate model for some specialized subset of the World Wide Web,
or for some other real-life network. The motivation of our work comes from web
search: however, LAR algorithms can be applied to any setting where given a
network we want to infer a measure of authority for the nodes in the network
using its link structure. Applications include diverse fields such as databases
[Bhalotia et al. 02], immunology [Dezso and Barabasi 02], and social network
analysis [Newman 01].

2. Related Work

2.1. Link Analysis Ranking Algorithms

Let P be a collection of n webpages that need to be ranked. This collection may
be the whole web, or a query dependent subset of the web. We construct the
underlying hyperlink graph G = (P, E) by creating a node for each webpage in
the collection, and a directed edge for each hyperlink between two pages. The
input to a LAR algorithm is the n×n adjacency matrix W of the graph G. The
output of the algorithm is an n-dimensional authority weight vector w, where
wi, the ith coordinate of w, is the authority weight of node i.



�

�

“imvol3” — 2008/4/1 — 13:58 — page 482 — #4
�

�

�

�

�

�

482 Internet Mathematics

We now describe the two LAR algorithms we consider in this paper: the InDe-
gree algorithm and the HITS algorithm. The InDegree algorithm is the simple
heuristic that assigns to each node weight equal to the number of incoming links
in the graph G. The HITS algorithm was proposed by Kleinberg in the seminal
paper [Kleinberg 98] that introduced the hubs and authorities paradigm. In the
HITS framework, every page can be thought of as having a hub and an authority
identity. There is a mutually reinforcing relationship between the two. A good
hub is a page that points to many good authorities, while a good authority is
a page that is pointed to by many good hubs. In order to quantify the quality
of a page as a hub and an authority, Kleinberg associated every page with a
hub and an authority weight, and he proposed the following iterative algorithm,
called HITS, for computing these weights. Let h and a respectively denote the
n-dimensional hub and authority weight vectors. Initially, all weights are set to
1. At each iteration the algorithm updates sequentially the hub and authority
weights. For some node i, the authority weight of node i is set to be the sum of
the hub weights of the nodes that point to i, while the hub weight of node i is the
authority weight of the nodes pointed by i. In matrix-vector terms this is equiv-
alent to setting setting h = Wa and a = WT h. A normalization step is then
applied, so that the vectors a and h become unit vectors in some norm. After
a sufficient number of iterations, the vectors a and h converge to the principal
eigenvectors of the matrices WT W and WWT , respectively. The vectors a and
h respectively correspond to the right and left singular vectors of the matrix W ,
as these vectors are computed by the Singular Value Decomposition. The HITS
algorithm returns the vector a, the right singular vector of matrix W . More
information on Singular Value Decomposition can be found in Section 4.1.

Independently from Kleinberg, Brin and Page developed the celebrated Page-
Rank algorithm [Brin and Page 98]. The algorithm performs a random walk on
the web graph, following links uniformly at random and occasionally resetting
the random walk by jumping to a random page. The output of the algorithm is
the stationary distribution of the random walk. The works of Kleinberg [Klein-
berg 98] and Brin and Page [Brin and Page 98] were followed by numerous modi-
fications and extensions [Bharat and Henzinger 98, Lempel and Moran 00, Rafiei
and Mendelzon 00, Ng et al. 01b, Achlioptas et al. 01, Borodin et al. 01, Haveli-
wala 02, Tomlin 03, Tsaparas 04]. Of particular interest is the SALSA algorithm
by Lempel and Moran [Lempel and Moran 00]. This is a hybrid between the
HITS and PageRank algorithms that performs a random walk that alternates
between hubs and authorities.

2.2. Theoretical Study of LAR Algorithms

In [Borodin et al. 01], Borodin et al. defined a theoretical framework for the
study of LAR algorithms, which was later refined [Borodin et al. 05]. In their
framework they provided formal definitions for stability and similarity between
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LAR algorithms. They considered various algorithms, including HITS, SALSA,
InDegree, and variants of HITS defined in their paper and proved that no pair of
algorithms is similar, and, except for the InDegree algorithm, all other algorithms
are unstable on the class of all possible graphs.

Ng, Zheng, and Jordan studied the stability of the HITS and PageRank al-
gorithms [Ng et al. 01a]. Using perturbation theory (see [Stewart and Sun 90]),
Ng et al. prove that the HITS algorithm is stable if the first and second singu-
lar values are well separated. Moreover, for the PageRank algorithm they show
that the perturbation of the authority weights of the algorithm depends on the
authority weight of the nodes whose outgoing links are changed. Their result
was later improved by Bianchini et al. [Bianchini et al. 02]. Lee and Borodin
[Lee and Borodin 03] modified the Borodin et al. definition of stability [Borodin
et al. 01] so that the effect of a change in the graph to the output of the algorithm
is allowed to depend upon the importance of the perturbed pages. They proved
that, under this definition, the PageRank algorithm and a modified version of
the SALSA algorithm are stable, while the HITS algorithm is unstable.

Borodin et al. defined also the notion of rank stability and rank similarity,
where instead of considering the weights output by the algorithms, they consid-
ered the ordinal ranks induced by the weight vectors [Borodin et al. 05]. The
results remain negative. The InDegree algorithm is the only algorithm that is
rank stable, and no pair of algorithms is rank similar. Lempel and Moran ex-
tended their results to the class of irreducible graphs, and they also proved that
the PageRank algorithm is rank unstable on this class [Lempel and Moran 03].

2.3. The Product Graph Model

Early measurements on the web graph [Kleinberg et al. 99, Kumar et al. 00b,
Broder et al. 00] indicated that the in-degrees of the nodes in the web graph follow
a power law distribution [Kleinberg et al. 99, Kumar et al. 00b, Broder et al. 00].
Following this discovery, it became clear that the Erdös-Rènyi random graph
model [Erdős and Rèny 60] is not sufficient for modeling the web graph. This
resulted in intensive research activity [Barabasi and Albert 99, Kumar et al. 00a,
Aiello et al. 00, Aiello et al. 01, Pandurangan et al. 02, Pennock et al. 02] aimed
at finding new stochastic models that adhere better with the characteristics of
the World Wide Web. Product graphs (also known as random graphs with given
expected degrees) were first considered as a model for the web graph by Azar et
al. [Azar et al. 01]. The undirected case, where the hi and ai values are equal
and edges are undirected, has been studied extensively, as a model for generating
the Internet graph by Mihail and Papadimitriou [Mihail and Papadimitriou 02]
and Chung et al. [Chung and Lu 02, Chung and Lu 03, Chung et al. 03, Chung
et al. 04]. This model was introduced to study the case where the parameters
follow a power law distribution. It has been shown [Mihail and Papadimitriou 02,
Chung et al. 03, Chung et al. 04] that in this case the eigenvalues of the adjacency
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matrix also follow a power law distribution, a fact that serves as an explanation
for the observed power law distribution of the eigenvalues of the Internet graph
[Faloutsos et al. 99]. Chung et al. also studied other related matrices [Chung
et al. 04] and other properties of the product graphs, such as the average and
maximum distance between two nodes [Chung and Lu 03] and the distribution
of connected components [Chung and Lu 02].

3. The Theoretical Framework

In this section we review the definitions of Borodin et al. [Borodin et al. 05],
and we extend them for classes of random graphs. Let Gn denote the set of all
possible graphs of size n. The size of a graph is the number of nodes in the graph.
Let Gn ⊆ Gn denote a collection of graphs in Gn. Following the work of Borodin
et al. [Borodin et al. 05], we define a link analysis algorithm A as a function
A : Gn → R

n that maps a graph G ∈ Gn to an n-dimensional real vector. The
vector A(G) is the authority weight vector produced by the algorithm A on
graph G. The weight vector A(G) is normalized under some chosen norm L,
that is, the algorithm maps the graphs in Gn onto the unit L-sphere. Typically,
the weights are normalized under some Lp norm. The Lp norm of a vector w is
defined as ‖w‖p = (

∑n
i=1 |wi|p)1/p.

3.1. Distance Measures

In order to compare the behavior of different algorithms, or the behavior of
the same algorithm on different graphs, Borodin et al. defined various distance
measures between authority weight vectors [Borodin et al. 05]. The distance
functions we consider are defined using the Lq norm as well. The dq distance
between two weight vectors w1 and w2 is defined as follows:

dq(w1, w2) = min
γ1,γ2≥1

‖γ1w1 − γ2w2‖q .

The constants γ1 and γ2 serve the purpose of alleviating differences due to dif-
ferent normalization factors. When using distance dq we will assume that the
vectors are normalized in the Lq norm. In this paper we consider mainly the
d2 distance measure. We can prove that d2(a, b) = ‖a − b‖2, and thus the d2

distance is a metric. For the following lemma and the proof, we use ‖ · ‖ to
denote the L2 norm.

Lemma 3.1. Let a and b be two unit vectors in the L2 norm. For the distance
measure d2, we have that d2(a, b) = ‖a− b‖.
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Proof. By definition of the d2 distance measure for any two weight vectors a and
b, we have that d2(a, b) ≤ ‖a− b‖. We will now prove that d2(a, b) ≥ ‖a− b‖,
which implies that d2(a, b) = ‖a− b‖.

Borodin et al. proved that at least one of the constants γ1 and γ2 should be
equal to 1. Without loss of generality, assume that γ1 = 1 [Borodin et al. 05]. We
have that d2(a, b) = minγ≥1 ‖a− γb‖. Given two vectors a and b, let cos(a, b)
denote the cosine of the angle of the vectors a and b. For two unit vectors a
and b it is easy to show that ‖a− b‖2 = 2− 2 cos(a, b). We also have that

‖a− γb‖2 = ‖a‖2 + ‖γb‖2 − 2‖a‖‖γb‖ cos(a, γb)
≥ 2γ − 2γ cos(a, b) ≥ ‖a− b‖2.

The first inequality follows from the fact that 1 + γ2 ≥ 2γ.

3.2. Similarity

Borodin et al. [Borodin et al. 05] give the following general definition of similarity
for any distance function d and any normalization norm L. In the following
we define Mn(d, L) = sup‖w1‖=‖w2‖=1 d(w1, w2) to be the maximum distance
between any two n-dimensional vectors with unit norm L = || · ||.

Definition 3.2. Algorithms A1 and A2 are (L, d)-similar on the class Gn if as n→∞,

max
G∈Gn

d (A1(G),A2(G)) = o (Mn(d, L)) .

Consider now the case that the class Gn is a class of random graphs, generated
according to some random process. That is, we define a probability space 〈Gn,P〉,
where P is a probability distribution over the class Gn. We extend the definition
of similarity on the class Gn as follows.

Definition 3.3. Algorithms A1 and A2 are (L, d)-similar with high probability on the
class of random graphs Gn if for a graph G drawn from Gn, as n→∞,

d (A1(G),A2(G)) = o (Mn(d, L))

with probability 1− o(1).

We note that when we consider (Lq, dq)-similarity, we have that Mn(dq, Lq) =
Θ(1). Furthermore, if the distance function d is a metric, or a near metric,1 then
the transitivity property holds. It is easy to show that if algorithms A1 and

1A near metric [Fagin et al. 03] is a distance function that is reflexive and symmetric,
and there exists a constant c independent of n such that, for all k > 0 and all vectors
u, w1, w2, . . . , wk, v, d(u, v) ≤ c(d(u, w1) + d(w1, w2) + · · · + d(wk, v)).
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A2 are similar (with high probability), and algorithms A2 and A3 are similar
(with high probability), then algorithms A1 and A3 are also similar (with high
probability).

3.3. Stability

Let Gn be a class of graphs, and let G = (P, E) and G′ = (P, E′) be two
graphs in Gn. The link distance d� between graphs G and G′ is defined as
d� (G, G′) = |(E ∪ E′) \ (E ∩E′)|. That is, d�(G, G′) is the minimum number
of links that we need to add and/or remove so as to change one graph into the
other.

Given a class of graphs Gn, let Ck(G) = {G′ ∈ Gn : d�(G, G′) ≤ k} denote the
set of all graphs that have link distance at most k from graph G. Borodin et al.
[Borodin et al. 05] give the following definition of stability.

Definition 3.4. [Borodin et al. 05] An algorithm A is (L, d)-stable on the class of
graphs Gn if for every fixed positive integer k, we have as n→∞,

max
G∈Gn

max
G′∈Ck(G)

d(A(G),A(G′)) = o (Mn(d, L)) .

Given a class of random graphs Gn we define stability with high probability
as follows.

Definition 3.5. An algorithm A is (L, d)-stable with high probability on the class of
random graphs Gn if for every fixed positive integer k and for a graph G drawn
from Gn, we have as n→∞,

max
G′∈Ck(G)

d(A(G),A(G′)) = o (Mn(d, L))

with probability 1− o(1).

3.4. Stability and Similarity

The following lemma shows the connection between stability and similarity. The
lemma is a generalization of a lemma by Borodin et al. [Borodin et al. 05].

Lemma 3.6. Let d be a metric or near metric distance function, L a norm, and Gn

a class of random graphs. If algorithm A1 is (L, d)-stable with high probability
on the class Gn and algorithm A2 is (L, d)-similar to A1 with high probability on
the class Gn, then A2 is (L, d)-stable with high probability on the class Gn.

Proof. Let G ∈ Gn be a graph drawn from the class Gn. Also, let M = Mn(d, L).
Since A1 and A2 are (L, d)-similar with high probability on the class Gn, it
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follows that
p1 = Pr[d(A2(G),A1(G)) = Ω(M)] = o(1).

Furthermore, since A1 is (L, d)-stable with high probability on the class Gn, we
have that

p2 = Pr[ max
G′∈Ck(G)

d(A1(G),A1(G′)) = Ω(M)] = o(1).

Define the graphs

G1 = arg max
G′∈Ck(G)

d(A1(G),A1(G′)),

G2 = arg max
G′∈Ck(G)

d(A2(G),A2(G′)).

By definition of the graph G1, we have that d(A1(G),A1(G2)) ≤ d(A1(G),
A1(G1)), thus

p3 = Pr[d(A1(G),A1(G2)) = Ω(M)] = o(1).

From the metric or near metric property of the function d, we have that

d(A2(G),A2(G2)) ≤
c (d(A2(G),A1(G)) + d(A1(G),A1(G2)) + d(A1(G2),A2(G2)))

Therefore, Pr[d(A2(G),A2(G2)) = Ω(M)] ≤ p1 + p2 + p3 = o(1). Therefore, A2

is (L, d)-stable with high probability.

4. Stability and Similarity on the Class of Product Graphs

The class of product graphs Gp
n(h, a) (or, for brevity, Gp

n) is defined with two
parameters h and a, which are two n-dimensional real vectors, with hi and ai

taking values in [0, 1]. These two vectors can be thought of as the latent hub
and authority vectors, respectively. A link is generated from node i to node j
with probability hiaj .

Let G ∈ Gp
n, and let W be the adjacency matrix of the graph G. Following

Azar et al. [Azar et al. 01], we express the matrix W as W = haT + R, where
R is a random matrix such that

R[i, j] =
{ −hiaj with probability 1− hiaj ,

1− hiaj with probability hiaj .

We can think of the matrix W as a perturbation of the matrix M = haT by the
matrix R. We refer to matrix R as the rounding matrix, which rounds the entries
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of M to 0 or 1. The matrix M is a rank-one matrix since all columns (rows)
are multiples of the same vector. If we run HITS on the matrix M (assuming
a small modification of the algorithm so that it runs on weighted graphs), the
algorithm will reconstruct the latent vectors a and h, which are the singular
vectors of matrix M . Note also that if we run the InDegree algorithm on the
matrix M (assuming again that we take the weighted in-degrees), the algorithm
will also output the latent vector a. So, on rank-one matrices the two algorithms
are identical. The question is how the addition of the rounding matrix R affects
the output of the two algorithms. We will show that it has only a small effect
and that the two algorithms remain similar.

More formally, let Latent denote the (imaginary) LAR algorithm that, for any
graph G in the class Gp

n(h, a), outputs the vector a. We will show that both
HITS and InDegree are similar to Latent with high probability. This implies
that the two algorithms are similar with high probability. Furthermore, we will
show that it also implies the stability of the HITS algorithm.

4.1. Mathematical Tools

We now introduce some mathematical tools that we will use for the remaining
of this section.

4.1.1. Matrix Norms. Let M be an n×n matrix. The L2 norm, ‖M‖2 (also referred
to as the spectral norm), and the Frobenius norm, ‖M‖F , of matrix M are
defined as follows:

‖M‖2 = max
v:‖v‖=1

‖Mv‖2
and

‖M‖F =

⎛
⎝ n∑

i=1

n∑
j=1

M [i, j]2

⎞
⎠

1/2

.

Both norms are unitary invariant. That is, for unitary matrices U and V (i.e.,
UT U = V T V = I), we have that ‖UT MV ‖ = ‖M‖. For the L2 norm we have
that ‖U‖2 = ‖V ‖2 = 1. Furthermore, both norms are consistent, that is, for any
two matrices M and W , we have that ‖MW‖ ≤ ‖M‖‖W‖. The two norms are
related by the inequality ‖M‖2 ≤ ‖M‖F ≤ √n‖M‖2.
4.1.2. Singular Value Decomposition. Let M be an n × n matrix. The Singular Value
Decomposition of the matrix M is a factorization of the form M = UΣV T ,
where U and V are n × n unitary matrices and Σ is a diagonal matrix, Σ =
diag(σ1, σ2, . . . , σn), where σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0. The values σ1, . . . , σn are
called the singular values of the matrix M . The pair (uk, vk) of the kth column
vectors of matrices U and V , respectively, is a pair of the kth principal singular
vectors of the matrix M . The column vectors of U are the left singular vectors of
M , and the columns of V are the right singular vectors of M . The left singular
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vectors of M are also the eigenvectors of MMT , while the right singular vectors
of M are the eigenvectors of MT M . Given the Singular Value Decomposition of
M , we can express the matrix M as M =

∑n
i=1 σiuiv

T
i , that is, as the sum of n

rank-one matrices. We can think of each of these matrices as capturing a linear
trend in the vector space defined by M . The value of the corresponding singular
value captures the strength of the linear trend.

The matrix norms can be computed using the singular values. Specifically,
we have that ‖M‖2 = σ1 and ‖M‖2F = σ2

1 + σ2
2 + · · · + σ2

n. Furthermore, let
Mk =

∑k
i=1 σiuiv

T
i denote a rank-k approximation of the matrix M . It can be

proved that Mk is the best rank-k approximation with respect to both the L2

and Frobenius norms.

4.1.3. Perturbation Theory. Perturbation theory studies how adding a perturbation
matrix E to a matrix M affects the eigenvalues and eigenvectors of M . Let
G and G′ be two graphs, and let W and W ′ denote the respective adjacency
matrices. The matrix W ′ can be written as W ′ = W + E, where E is a matrix
with entries in {−1, 0, 1}. The entry E[i, j] is 1 if we add a link from i to j and
−1 if we remove a link from i to j. Therefore, we can think of the matrix W ′

as a perturbation of the matrix W by a matrix E. Note that if we assume that
only a constant number of links is added and removed, then both the Frobenius
and the L2 norms of E are bounded by a constant.

We now introduce an important lemma that we will use in the following.

Lemma 4.1. Let W be a matrix, and let W +E be a perturbation of the matrix. Let
u and v respectively denote the left and right principal singular vectors of the
matrix W , and u′ and v′ the principal singular vectors of the perturbed matrix.
Let σ1 and σ2 denote the first and second singular values of the matrix W . If
σ1 − σ2 = ω(‖E‖2), then ‖u′ − u‖2 = o(1) and ‖v′ − v‖2 = o(1).

Lemma 4.1 says that if the “eigengap” between the first and the second singu-
lar values of matrix M is large with respect to the L2 norm (singular value) of
the perturbation matrix E, then adding E to M will cause only a small pertur-
bation to the principal singular vectors of M . The proof of the lemma appears in
Section 9. Intuitively, the first and the second singular values respectively cap-
ture the strength of the strongest and second strongest linear trends in matrix
M , while ‖E‖2 captures the strongest linear trend in the perturbation matrix
E. The value of ‖E‖2 also captures the effect that E can have on the matrix M .
If the separation between σ1 and σ2 is larger than ‖E‖2, then adding E to M
cannot cause another linear trend to emerge as dominant, and thus the principal
singular vectors are not significantly perturbed.

4.1.4. Norms of random matrices. We also make use of the following theorem for con-
centration bounds on the L2 norm of random symmetric matrices. We state the
theorem as it appears in [Achlioptas and McSherry 01].
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Theorem 4.2. Given an m×n matrix A and any ε > 0, let Â be any random matrix
such that for all i, j: E[Âij ] = Aij, V ar(Âij) ≤ σ2, and |Âij −Aij | ≤ K, where

K =
(

4ε

4 + 3ε

)3
σ
√

m + n

log3(m + n)
.

For any α > 0 and m + n ≥ 20, with probability at least 1− (m + n)−α2
,

‖Â−A‖2 < (2 + α + ε)σ
√

m + n.

4.1.5. Chernoff bounds. We will make use of standard Chernoff bounds. The follow-
ing theorem can be found in the textbook of Motwani and Raghavan [Motwani
and Raghavan 95].

Theorem 4.3. Let X1, X2, . . . , Xn be independent Poisson trials such that, for 1 ≤
i ≤ n, Pr[Xi = 1] = pi, where 0 ≤ pi ≤ 1. Let X =

∑n
i=1 Xi, and μ = E[X ] =∑n

i=1 pi. Then, for 0 < δ ≤ 1, we have that

Pr[X < (1− δ)μ] < exp(−μδ2/2), (4.1)
Pr[X > (1 + δ)μ] < exp(−μδ2/4). (4.2)

4.2. Conditions for the Stability of HITS

We first provide general conditions for the stability of the HITS algorithm. Let
Gσ

n denote the class of graphs with adjacency matrix W that satisfies σ1(W ) −
σ2(W ) = ω(1). The proof of the following theorem follows directly from Lemma
4.1, and the fact that the perturbation matrix E has L2 norm bounded by a
constant.

Theorem 4.4. The HITS algorithm is (L2, d2)-stable on the class of graphs Gσ
n .

Proof. The proof follows directly from Lemma 4.1. Given a graph G ∈ Gσ
n with

adjacency matrix W and a graph G′ ∈ Ck(G) with adjacency matrix W ′, let
E = W −W ′. We have ‖E‖2 ≤ ‖E‖F =

√
k. Therefore, σ1 − σ2 = ω(‖E‖2).

If a and a′ are the weight vectors of the HITS algorithm (normalized under the
L2 norm) on the graphs G and G′, then ‖a− a′‖2 = o(1).

Theorem 4.4 provides a sufficient condition for the stability of HITS on general
graphs, and it will be useful when considering stability on the class of product
graphs.

The class Gσ
n is actually a subset of the class defined by the result of Ng et

al. [Ng et al. 01a]. Translating their result in the framework of Borodin et al.
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[Borodin et al. 05], they prove that the HITS algorithm is stable on the class of
graphs with σ1(W )2 − σ2(W )2 = ω(

√
d), where d is the maximum out-degree.

Note that we can rewrite this as σ1−σ2 = ω(
√

d
σ1+σ2

). This is a weaker condition

than σ1(W )− σ2(W ) = ω(1). We will show this, by showing that
√

d
σ1+σ2

≤ 1.
We have that σ1+σ2 ≥ σ1. Furthermore, by definition, σ1 = maxx:‖x‖=1‖Wx‖.

Let i be the node with the maximum out-degree, and let Wi be the ith row in the
matrix W . Setting x = Wi/

√
d, we have that ‖Wx‖ ≥ √d. Therefore, σ1 ≥

√
d,

and
√

d
σ1+σ2

≤ 1.

4.3. Similarity of HITS and Latent

We now turn our attention to product graphs, and we prove that HITS and
Latent are similar on this class. A result of similar spirit is shown in the work of
Azar et al. [Azar et al. 01]. We make the following assumption for the vectors
a and h.

Assumption 4.5. For the class Gp
n(h, a), the latent vectors a and h satisfy ‖a‖2‖h‖2 =

ω(
√

n).

As we show below, Assumption 4.5 places a direct lower bound on the principal
singular value of the matrix M = haT . Therefore, we require that the matrix
M defines a strong linear trend that will not disappear when perturbing by the
rounding matrix R. In the resulting adjacency matrix, this linear trend will
translate to a tightly knit community of hubs and authorities in the graph.

Furthermore, let A =
∑n

i=1 ai denote the sum of the authority values, and
H =

∑n
j=1 hj the sum of the hub values. Since the values are positive, we have

A = ‖a‖1 and H = ‖h‖1. The product HA is equal to expected number of
edges in the graph. We have that HA ≥ ‖a‖2‖h‖2, thus, from Assumption 4.5,
HA = ω(

√
n). However, this lower bound seems too weak; it does not seem

possible to satisfy Assumption 4.5 while HA = Θ(
√

n). We also have that
HA ≤ n‖a‖2‖h‖2, thus Assumption 4.5 can be satisfied by requiring that HA =
ω(n3/2), which implies that the underlying graph is dense. However, it is possible
to satisfy Assumption 4.5 while HA = o(n

3
2 ). For example, if we set all the values

of h to some value c = Θ(1), log n values of a to c as well, and the remaining
values of a to 1/n, then we have that ‖h‖2‖a‖2 = Θ(

√
n log n) and HA =

Θ(n log n). Note that these Θ(n log n) edges define the tightly knit community
in the underlying graph.

Lemma 4.6. The algorithms HITS and Latent are (L2, d2)-similar with high proba-
bility on the class Gp

n, subject to Assumption 4.5.
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Proof. The singular vectors of the matrix M are the L2-unit vectors a2 = a/‖a‖2
and h2 = h/‖h‖2. The matrix M can be expressed as M = h2‖h‖2‖a‖2aT

2 .
Therefore, the principal singular value of M is σ1 = ‖h‖2‖a‖2 = ω(

√
n). Since

M is rank-one, σi = 0, for all i = 2, 3, . . . , n. Therefore, for matrix M we have
that σ1 − σ2 = ω(

√
n).

Matrix R is a random matrix, where each entry is a independent random
variable with mean 0 and the maximum value and variance bounded by 1. Using
Theorem 4.2, we observe that K = 1 and σ = 1. Setting ε = 1 and α = 1, we get
that Pr[‖R‖2 ≤ 8

√
n] ≥ 1− o (1/n), thus ‖R‖2 = O(

√
n) with high probability.

Therefore,we have that σ1 − σ2 = ω(‖R‖2) with probability 1 − o(1). If w2

is the right singular vector of matrix W normalized in the L2 norm, then using
Lemma 4.1, we have that ‖w2 − a2‖2 = o(1) with probability 1− o(1).

Assumption 4.5 guarantees also the stability of HITS on Gp
n. The proof follows

from the fact that if G ∈ Gp
n, then G ∈ Gσ

n with high probability, that is, the
resulting matrix has a large eigengap between the first and the second singular
values. This follows from the fact that the “base” rank-1 matrix M has eigengap
significantly larger than the singular value of the rounding matrix R. Adding
the rounding matrix R to M cannot decrease the eigengap significantly.

Theorem 4.7. The HITS algorithm is (L2, d2)-stable with high probability on the
class of graphs Gp

n, subject to Assumption 4.5.

Proof. Assumption 4.5 guarantees that the principal singular value of matrix
M is ω(

√
n). Furthermore, since the matrix M is a rank-one matrix, σ2 = 0,

thus σ1 − σ2 = ω(
√

n). The L2 norm of the rounding matrix R is O(
√

n) with
high probability. Perturbation theory [Stewart and Sun 90] guarantees that the
singular values of the matrix M cannot be perturbed more than ‖R‖2, that
is |σi(M + R) − σi(M)| ≤ ‖R‖2, for every singular value σi. We have that
σ1(M) = ω(

√
n); therefore, σ1(M + R) = ω(

√
n). Furthermore, σ2(M) = 0, so

σ2(M + R) = O(
√

n). It follows that for the matrix W = M + R we have that
σ1(W ) − σ2(W ) = ω(

√
n) with high probability. From Theorem 4.4 it follows

that HITS is stable on Gp
n with high probability.

4.4. Similarity of InDegree and Latent

We now consider the (Lq, dq)-similarity of InDegree and Latent, for all 1 ≤ q <
∞. Again, let A =

∑n
i=1 ai, and let H =

∑n
j=1 hj . Also, let d denote the vector

of the InDegree algorithm before any normalization is applied. That is, di is the
in-degree of node i. For some node i, we have that

di =
n∑

j=1

W [j, i] =
n∑

j=1

M [j, i] +
n∑

j=1

R[j, i].



�

�

“imvol3” — 2008/4/1 — 13:58 — page 493 — #15
�

�

�

�

�

�

Donato et al.: Stability and Similarity of Link Analysis Ranking Algorithms 493

We have that
∑n

j=1 M [j, i] = Hai. Furthermore, let ri =
∑n

j=1 R[j, i], and let
r = [r1, . . . , rn]T . The vector d can be expressed as d = Ha + r. The vector
Ha is the vector of expected degrees, and thus r is the vector of the deviations
of the actual degrees from their expected values. We will now show that if the
Lq-norm of the vector of the expected degrees is large, then the Lq norm of r is
small relative to that of Ha.

Lemma 4.8. For every q ∈ [1,∞), if H‖a‖q = ω(n1/q ln n), then ‖r‖q = o(H‖a‖q)
with high probability.

Proof. For the following we will use ‖·‖ to denote the Lq norm, for some q ∈ [1,∞).
We will prove that ‖r‖ = o(H‖a‖) with probability at least 1−1/n. It is sufficient
to show that, for all 1 ≤ i ≤ n, ri = o(Hai) with probability 1− 1/n2. We note
again that ri = di − Hai, so essentially we need to bound the deviation of di

from its expectation. When Hai is large, that is, Hai = ω(ln n), this is easy to
do, using standard Chernoff bounds. The bounds cannot be applied when Hai is
small, that is, Hai = O(ln n). However, in this case, although ri is comparable
to Hai, it is also small, and it does not contribute much to the norm ‖r‖. It
thus suffices to show that |ri| = O(ln n) with probability at least 1− 1/n2. If for
all 1 ≤ i ≤ n, |ri| = O(ln n), then ‖r‖ = O(n1/q ln n) = o(H‖a‖).

We thus partition the nodes into two sets S and B. Set S contains all nodes
such that Hai = O(ln n), that is, nodes with “small” expected in-degree, and set
B contains all nodes such that Hai = ω(ln n), that is, nodes with “big” expected
in-degree.

Consider a node i ∈ S. We have that Hai ≤ c ln n, for some constant c. Using
Equation (4.2) from Theorem 4.3, we set δ = k ln n/(Hai), where k is a constant
such that k ≥ √8c, and we get that Pr[di − Hai ≥ k ln n] ≤ exp(−2 lnn).
Therefore, for all nodes in S we have that |ri| = O(ln n) with probability at
least 1 − 1/n2. This implies that

∑
i∈S |ri|q = O(n lnq n) = o(Hq‖a‖q), with

probability 1− 1/n.
Consider now a node i ∈ B. We have that Hai = ω(ln n), thus Hai =

(ln n)/s(n), where s(n) is a function such that s(n) = o(1). Using Theorem 4.3,
we set δ = k

√
s(n), where k is a constant such that k ≥ √8, and we get

that Pr[|di −Hai| ≥ δHai] ≤ exp(−2 lnn). Therefore, for the nodes in B, we
have that |ri| = o(Hai) with probability at least 1− 1/n2. Thus,

∑
i∈B |ri|q =

o(Hq‖a‖q), with probability 1− 1/n.
Putting everything together we have that ‖r‖q =

∑
i∈S |ri|q +

∑
i∈B |ri|q =

o(Hq‖a‖q), with probability 1−2/n. Therefore, ‖r‖ = o(H‖a‖) with probability
1− 2/n. This concludes our proof.

We are now ready to prove the similarity of InDegree and Latent. The follow-
ing lemma follows from Lemma 4.8.
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Lemma 4.9. For every q ∈ [1,∞), the InDegree and Latent algorithms are (Lq, dq)-
similar with high probability on the class Gp

n, when the latent vectors a and h
satisfy H‖a‖q = ω(n1/q ln n).

Proof. For the following we will use ‖·‖ to denote the Lq norm, for some q ∈ [1,∞).
Let dq and aq respectively denote the d and a vectors when normalized under
the Lq norm. We will now bound the difference ‖γ1aq − γ2dq‖ for γ1, γ2 ≥ 1.

First we observe that since d = Ha + r, using norm properties, we can easily
show that

H‖a‖ − ‖r‖ ≤ ‖d‖ ≤ H‖a‖+ ‖r‖.
Since we have that ‖r‖ = o(H‖a‖), it follows that ‖d‖ = Θ(H‖a‖).

Now consider two cases. If ‖d‖ ≥ H‖a‖, then let γ1 = 1 and γ2 = ‖d‖
H‖a‖ ≥ 1.

We have that

‖γ1aq − γ2dq‖ =
∥∥∥∥ a

‖a‖ −
‖d‖

H‖a‖
Ha + r

‖d‖
∥∥∥∥ =

‖r‖
H‖a‖ .

If ‖d‖ ≤ H‖a‖, then let γ1 = H‖a‖
‖d‖ ≥ 1 and γ2 = 1. We have that

‖γ1aq − γ2dq‖ =
∥∥∥∥H‖a‖
‖d‖

a

‖a‖ −
Ha + r

‖d‖
∥∥∥∥ ≤ ‖r‖‖d‖ ≤ c

‖r‖
H‖a‖

for some constant c, such that ‖d‖ ≥ cH‖a‖.
Therefore, we have that ‖γ1aq − γ2dq‖ ≤ c ‖r‖

H‖a‖ . When H‖a‖ = ω(n1/q ln n),
we have that ‖r‖ = o(H‖a‖). Therefore, ‖γ1aq−γ2dq‖ = o(1), which concludes
the proof.

We now make the following assumption for vectors a and h.

Assumption 4.10. For the class Gp
n(h, a), the latent vectors a and h satisfy H‖a‖2 =

ω(
√

n ln n).

Assumption 4.10 places a direct lower bound on the L2-norm of the expected
in-degree sequence. Using the fact that ‖a‖2 ≤ A ≤ √n‖a‖2, we can show
that if the assumption is satisfied then HA = ω(

√
n ln n). Furthermore, we can

satisfy Assumption 4.10 by requiring HA = ω(n lnn), placing a direct bound on
the expected number of edges in the graph. We note that for the same expected
number of edges, the L2 norm will produce higher values if the expected in-
degree sequence is uneven (in the extreme case where all edges are attached to
a single node, the two norms are the same).

The InDegree and Latent algorithms are (L2, d2)-similar subject to Assump-
tion 4.10. The following theorem follows from the transitivity property of simi-
larity.
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Theorem 4.11. The HITS and InDegree algorithms are (L2, d2)-similar with high
probability on the class Gp

n, subject to Assumptions 4.5 and 4.10.

Intuitively, a graph that belongs to class Gp
n that satisfies both Assumptions 4.5

and 4.10 should be dense enough, and it should contain a large enough tightly
knit community. We note that we can satisfy both Assumptions 4.5 and 4.10 ei-
ther by requiring that HA = ω(n3/2), or by requiring that σ1(M) = ‖h‖2‖a‖2 =
ω(
√

n ln n).

5. Case Studies

5.1. The Erdős–Rèny Model

The Erdős–Rèny G(n, p) model is a special case of the product model, when we set
ai = hi =

√
p, for all 1 ≤ i ≤ n. Therefore, Assumptions 4.5 and 4.10 can be used

to derive conditions on p that guarantee the stability of HITS and its similarity
with InDegree. We have that ‖a‖2‖h‖2 = np, the average degree of the graph.
Therefore, Assumption 4.5 is satisfied when p = ω( 1√

n
). It is straightforward to

see that in that case Assumption 4.10 is also satisfied. Therefore, we have the
following theorem.

Theorem 5.1. For p = ω( 1√
n
), the HITS algorithm is (L2, d2)-stable with high

probability on the on the class G(n, p). Furthermore, the HITS and InDegree
algorithms are (L2, d2)-similar with high probability.

5.2. Power Law Graphs

A discrete random variable X follows a power law distribution with parameter
α if Pr[X = x] ∝ x−α. For variable X it holds that the cumulative distribution
follows a power law with exponent α − 1, that is, Pr[X ≥ x] ∝ x−α+1 [New-
man 03]. Closely related to the power law distribution is the Zipfian distribution,
also known as Zipf’s law [Zipf 49]. Zipf’s law states that the rth largest value
of the random variable X is proportional to r−β . It can be proved [Adamic and
Huberman 02] that if X follows a Zipfian distribution with exponent β, then it
also follows a power law distribution with parameter α = 1 + 1/β.

We will now prove that Assumptions 4.5 and 4.10 are general enough to include
the case that the authority values follow a power law distribution with exponent
α ≥ 3. Therefore, in the resulting graphs the expected in-degrees follow a power
law distribution with exponent also α ≥ 3.

First, we set the hub values such that hi = Θ(1), for all 1 ≤ i ≤ n. Therefore,
we have that H = Θ(n) and ‖h‖2 = Θ(

√
n). Having H = Θ(n) guarantees

that H‖a‖2 = ω(
√

n log n) for any a such that ‖a‖2 = Ω(1), thus satisfying
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Assumption 4.5. Furthermore, since ‖h‖2 = Θ(
√

n), we need that ‖a‖2 = ω(1)
in order to satisfy Assumption 4.10. Therefore, our objective becomes to set the
authority values ai such that they follow a power law and ‖a‖2 = ω(1).

We consider two possible ways of setting the authority values. In the first
case, we select the authority values so that they follow Zipf’s law, with exponent
β. Without loss of generality, we assume that a1 ≥ a2 ≥ · · · ≥ an. For some
constant c ≤ 1 the ith authority value is defined as ai = ci−β, for β > 0. We
have that ‖a‖22 =

∑n
i=1

c
i2β . This sum converges to a constant for β > 1/2, while

for β ≤ 1/2 we have that ‖a‖22 = Ω(log n). This implies a power law distribution
on the authority values with exponent α ≥ 3.

A different way of obtaining a power law distribution on the authority values
with exponent α is by making the cumulative distribution follow a power law
with exponent α− 1. We accomplish this as follows. Assume that n = mα−1 for
some m > 0. We then generate numbers x1, · · · , xn such that n/kα−1 take value
at least k. Therefore, the fraction of xi’s that take value at least k is 1/kα−1,
and the xi values are power law distributed with exponent α. The maximum
value is m.

We now define ai = xi/m. We are interested in finding the values of α for
which ‖a‖2 =

∑n
i=1 a2

i = ω(1). Let Nk denote the number of xi values that are
equal to k. For all 1 ≤ k ≤ m− 1, we have that

Nk =
n

kα−1
− n

(k + 1)α−1

and Nm = 1. Therefore,

‖a‖22 =
1

m2

n∑
i=1

x2
i =

1
m2

m∑
k=1

Nkx2
k

=
1

m2

((
n− n

2α−1

)
12 +

( n

2α−1
− n

3α−1

)
22 + · · ·

+
(

n

kα−1
− n

(k + 1)α−1

)
k2 + · · ·+ n

ma−1
m2

)

=
n

m2

m∑
k=1

1
kα−1

(
(k + 1)2 − k2

)
=

n

m2

m∑
k=1

2k + 1
kα−1

= mα−3Θ

(
m∑

k=1

1
kα−2

)
,

where in the last equality we replaced n with mα−1.
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For α = 3 we have that ‖a‖22 = Θ(log m) = Θ(log n), while for α > 3 we have
that ‖a‖22 = Θ(mα−3) = Θ(nδ) for δ = α−3

α−1 ; therefore, our requirement holds.
For α < 3 the sum

Sm(α) =
m∑

k=1

1
kα−2

can be shown [Apostol 76] to be Sm(α) = Θ(m3−α). Therefore, ‖a‖2 = Θ(1).
It appears that when setting the authority values to follow an exact power

law distribution, we can satisfy Assumption 4.5 only if α ≥ 3.2 This is rather
unfortunate since the exponent for the web graph distribution is estimated to
be around 2.1, and in most real-life networks 2 < α < 3. One possible way
to enforce Assumption 4.5, while having a distribution that is almost a power
law distribution, is to explicitly set ω(1) number of authority values to be Θ(1),
resulting in a power law with a “fatter” tail. If ω(n1/2) authority and hub values
are set to be Θ(1), then we can have the hub values also follow a power law
distribution.

6. Experimental Analysis
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Figure 1. InDegree and HITS distributions on the web graph.

In this section we study experimentally the similarity of HITS and InDegree
on a large sample of the World Wide Web. We analyze a sample of 136 million
vertices and about 1.2 billion edges of the web graph collected in 2001 by the
WebBase project3 at Stanford. Figures 1(a) and 1(b) show the distributions of
the InDegree and HITS authority values. The in-degree distribution, as it is
well known, follows a power law distribution. The HITS authority weights also

2In the preliminary version of the paper, we incorrectly claim that the assumptions are
satisfied when α ≥ 2.

3http://www-diglib.stanford.edu/$\sim$testbed/doc2/WebBase/
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authority/in-degree hub/out-degree

d2 distance 0.36 1.23
correlation coefficient 0.93 0.005

Table 1. Similarity between HITS and InDegree.

follow a “fat” power law distribution in the central part of the plot. Table 1
summarizes our findings on the relationship between InDegree and HITS. Since
we only have a single graph and not a sequence of graphs, the distance measures
are not very informative, so we also compute the correlation coefficient between
the two weight vectors. We observe a strong correlation between the authority
weights of HITS and the in-degrees and almost no correlation between the hub
weights and the out-degrees. Similar trends are observed for the d2 distance,
where the distance between hub weights and out-degrees is much larger than
that between authority weights and in-degrees.

In order to better understand the high correlation value between the authority
weights and the in-degrees, we looked at how the two sequences correlate when we
look at different percentiles of the authority weights. For most ranking applica-
tions the interest is in the top part of the ranking. We would like the correlation
between the two algorithms to be due to agreement on the high ranked nodes
rather than on the tail of the distribution. We thus removed the nodes that corre-
spond to the top 10% of the authority values and computed again the correlation
coefficient for the remaining nodes. We observed that the correlation coefficient
dropped from 0.93 to 0.06, indicating that there is very little correlation in the
tail of distribution. We then zoomed in on the top 10% of the authority values,
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Figure 2. Correlation for different percentiles of the top 10% of the HITS values
with the InDegree values.
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and we computed the correlation coefficient for different percentiles of the data.
The results are shown in Figure 2. From the plot we see that the correlation coef-
ficient is low, even when considering 90% of the top values, and it grows close to 1
only when the top 10% of the top values is included. Given that both the author-
ity and the in-degree values follow a power law distribution, we can thus conclude
that the strong correlation between the HITS and InDegree is due to a few nodes,
that both HITS and InDegree rank highly, and to which nodes they both assign
very high weights. These nodes dominate the computation of the correlation
coefficient.

In conclusion, although the World Wide Web, as expected, is not a rank-one
matrix, there is strong correlation between HITS and InDegree that is due to
their agreement for the top of the ranking. For these nodes, the HITS authority
weights can be well approximated by the in-degrees.

7. Similarity of HITS and InDegree

In this section we study the general conditions under which the HITS and In-
Degree algorithms are similar. Consider a graph G ∈ Gn and the corresponding
adjacency matrix W . Let σ1 ≥ σ2 ≥ . . . ≥ σn be the singular values of W ,
and let a1, . . . , an and h1, . . . , hn denote the right (authority) and left (hub)
singular vectors, respectively. All vectors are unit vectors in the L2 norm. The
HITS algorithm outputs the vector a = a1. Let w denote the output of the
InDegree algorithm (normalized in L2). Also, let Hi =

∑n
j=1 hi(j) be the sum

of the entries of the ith hub vector. We can prove the following proposition.

Proposition 7.1. For a graph G ∈ Gn, the d2 distance between HITS and InDegree is

d2(a, w) =

√(
σ2H2

σ1H1

)2

+ · · ·+
(

σnHn

σ1H1

)2

. (7.1)

Proof. The adjacency matrix W of graph G can be decomposed as W = σ1h1a
T
1 +

· · ·+σnhnaT
n . Let d denote the vector such that the ith entry d(i) of this vector

is the in-degree of node i (not normalized). We have that d(i) = σ1H1a1(i) +
· · ·+ σnHnan(i) and d = σ1H1a1 + · · ·+ σnHnan. Note that

‖d‖2 = (σ1H1a1 + · · ·+ σnHnan)T (σ1H1a1 + · · ·+ σnHnan)
= σ2

1H
2
1 + · · ·+ σ2

nH2
n ≥ σ2

1H
2
1 ,

where the last equation follows from the fact that aT
i ai = 1 and aT

i aj = 0.
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The output of InDegree is w = d/‖d‖, and the output of HITS is a = a1. We
are interested in bounding ‖a− γw‖, where γ = ‖d‖/σ1H1 ≥ 1. We have that

‖a− γw‖2 =
∥∥∥∥σ2H2

σ1H1
a2 + · · ·+ σnHn

σ1H1
an

∥∥∥∥
2

=
(

σ2H2

σ1H1
a2 + · · ·+ σnHn

σ1H1
an

)T

·
(

σ2H2

σ1H1
a2 + · · ·+ σnHn

σ1H1
an

)

=
(

σ2H2

σ1H1

)2

+ · · ·+
(

σnHn

σ1H1

)2

.

Therefore,

d2(a, w) =

√(
σ2H2

σ1H1

)2

+ · · ·+
(

σnHn

σ1H1

)2

.

We now study the conditions under which d2(a, w) = o(1). Since the values
of h1 are positive, we have that H1 = ‖h1‖1 and 1 ≤ H1 ≤ √n. For every i > 1,
we have that |Hi| ≤ ‖hi‖1 and |Hi| ≤ √n. Any of the following conditions
guarantees the similarity of HITS and InDegree:

1. σ2/σ1 = o(1/
√

n) and there exists a constant k such that σk+1/σ1 =
o(1/n);

2. H1 = Θ(
√

n), σ2/σ1 = o(1), and there exists a constant k such that
σk+1/σ1 = o(1/n);

3. H1 = Θ(
√

n) and σ2/σ1 = o(1/
√

n).

Assume now that |Hi|/(σ1H1) = o(1), for all i ≥ 2. One possible way to
obtain this bound is to assume that σ1 = ω(

√
n), or that H1 = Θ(

√
n) and

σ1 = ω(1). Then, we can obtain the following characterization of the distance
between HITS and InDegree. From Equation (7.1) we have that d2(a, w) =
o
(√

σ2
2 + · · ·+ σ2

n

)
. Let W1 = σ1h1a

T
1 denote the rank-one approximation of

W . The matrix D = W −W1 is called the residual matrix, and it has singular
values σ2, . . . , σn. We have that

d2(a, w) = o (‖W −W1‖F ) and d2(a, w) = o

(√
‖W‖2F − ‖W‖22

)
.

(7.2)
Equation (7.2) says that the similarity of the HITS and InDegree algorithms de-
pends on the Frobenius norm of the residual matrix. Furthermore, the similarity
of the HITS and InDegree algorithms depends on the difference between the
Frobenius and the spectral (L2) norm of matrix W . The L2 norm measures the
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strength of the strongest linear trend in the matrix, while the Frobenius norm
captures the sum of the strengths of all linear trends in the matrix [Achlioptas
and McSherry 01]. The similarity of the HITS and InDegree algorithms de-
pends upon the contribution of the strongest linear trend to the sum of linear
trends.

8. Conclusions

Our work opens a number of interesting directions for future work. First, it
would be interesting to determine a necessary condition for the stability of the
HITS algorithm, that is, the converse of Theorem 4.4. Ng, Zheng, and Jordan
show that if the gap between the singular values is small then there is a per-
turbation matrix with small norm that can cause a large perturbation on the
singular vectors [Ng et al. 01a]. However, this perturbation does not necessarily
produce an adjacency matrix. It is not clear how to modify the proof to work
for perturbations that transform graphs.

It would be interesting to study the stability and similarity of other LAR
algorithms on product graphs, such as the PageRank and the SALSA algorithms.
Finally, it would be interesting to study other classes of random graphs [Barabasi
and Albert 99, Kumar et al. 00a].

In this paper we studied the behavior of the HITS algorithm on the class of
product graphs. We proved that under some assumptions the HITS algorithm
is stable, and it is similar to the InDegree algorithm. Our assumptions include
graphs with expected degrees that follow a power law distribution.

It would also be interesting to find a condition that characterizes the family
of graphs on which the PageRank algorithm is stable. The work on stability
of PageRank so far has shown that the perturbation on the PageRank values is
bounded by the weights of the nodes whose out-links are perturbed. Thus, the
existence of a node with PageRank value in O(1) is a necessary condition for the
instability of PageRank. However, this does not provide a characterization of
the graphs on which PageRank is stable.

For the product graph model, it would be interesting to examine if it is possible
to weaken Assumptions 4.5 and 4.10. It would also be interesting to study
whether the results in Section 5.2 can be extended for power law distributions
with exponent less than 3, or show that this is not possible.

Furthermore, for the proof of similarity between HITS and InDegree, we used
the fact that both algorithms produce the latent authority values on a rank-one
matrix. There are other algorithm that on a rank-one matrix also reconstruct
the vector a. The PageRank algorithm, the SALSA algorithm, and the HubAvg
algorithm [Borodin et al. 05] are such algorithms. Is it possible to prove or
disprove that these algorithms are similar to the InDegree algorithm? This
would be especially interesting for the case of the PageRank algorithm.



�

�

“imvol3” — 2008/4/14 — 12:04 — page 502 — #24
�

�

�

�

�

�

502 Internet Mathematics

It would also be interesting to study the rank similarity between the algorithms
on the class of product graphs. This is likely more difficult, since linear algebra
and perturbation theory cannot help us for this task.

Finally, it would be interesting to study theoretically the questions of stabil-
ity and similarity for the classes of random graphs defined by other generative
models [Barabasi and Albert 99, Kumar et al. 00a].

9. Appendix: Proof of Lemma 4.1

We use results from perturbation theory [Stewart and Sun 90] to study how the
principal singular vectors of a matrix W change when we add the matrix E. The
theorems that we use assume that both the matrix W and the perturbation E
are symmetric, so instead of using the matrices W and E, we will consider the
matrices B and F defined as follows:

B =
[

0 WT

W 0

]
and F =

[
0 ET

E 0

]
. (9.1)

If σi is the ith singular value of W , and (ui, vi) is the corresponding pair of sin-
gular vectors, then the matrix B has eigenvalues ±σi, with eigenvectors [vi, ui]T

for the eigenvalue σi, and [vi,−ui]T for the eigenvalue −σi. Therefore, instead
of studying the perturbation of the singular values and vectors of matrix W +E,
we will study the eigenvalues and eigenvectors of matrix B + F . Note also that
‖F‖2 = ‖E‖2 and that ‖F‖F =

√
2‖E‖F .

We make use of the following theorem by Stewart (Theorem V.2.8 in [Stewart
and Sun 90] for the symmetric case).

Theorem 9.1. Suppose that B and B + F are n by n symmetric matrices and that

Q = [q, Q2]

is a unitary matrix, such that the vector q is an eigenvector for the matrix B.
Partition the matrices QT BQ and QT FQ as follows:

QT BQ =
[
λ 0
0 B22

]
and QT FQ =

[
f11 fT

21

f21 F22

]
.

Let
δ = min

μ∈λ(B22)
|λ− μ| − |f11| − ‖F22‖2,

where λ(B22) denotes the set of eigenvalues of B22. If δ > 0 and δ > 2‖f21‖2,
then there exists a vector p such that

‖p‖2 < 2
‖f21‖2

δ
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and
q′ = q + Q2p

is an eigenvector of the matrix B + F . For the eigenvalue λ′ that corresponds to
the eigenvector q′, we have that

λ′ = λ + f11 + fT
21p.

We now give the proof of Lemma 4.1.

Proof. In the following, we will argue that under condition σ1 − σ2 = ω(‖E‖2),
perturbing matrix W by E causes only a small perturbation of the principal
left and right singular vectors of W . Moreover, we will prove that the perturbed
singular vectors remain the principal singular vectors of W since the perturbation
does not change the relative order of the first and the second singular values.

In Theorem 9.1, define matrices B and F as in the Equation (9.1). Now,
set q = [u, v]T , where u and v are the left and right singular vectors of W ,
respectively. We have that λ = σ1. We have that

δ = σ1 − σ2 − |f11| − ‖F22‖2.

Note that f11 = qT Fq, F22 = QT
2 FQ2, and f21 = QT

2 Fq. Since ‖AB‖2 ≤
‖A‖2‖B‖2 and unitary matrices have L2 norm 1, we have that |f11| ≤ ‖F‖2,
‖F22‖2 ≤ ‖F‖2, and ‖f21‖2 ≤ ‖F‖2.

Note that ‖F‖2 = ‖E‖2. If σ1 − σ2 = ω(‖E‖2), then δ = ω(‖E‖2) and
obviously δ > 0 and δ > 2‖f21‖2. Therefore, there exists a vector p with
‖p‖2 < ‖f21‖2/δ, such that the vector

q′ = q + Q2p

is an eigenvector of the matrix B + F . We also have that ‖p‖ = o(1) since
‖f21‖ ≤ ‖E‖2 and δ = ω(‖E‖2).

The eigenvalue associated with the vector q′ is λ′ = λ+f11 +fT
21p. Therefore,

|λ− λ′| = |f11 + fT
21p| ≤ |f11|+ ‖fT

21‖2‖p‖2
≤ ‖E‖2 + o(‖E‖2) = O(‖E‖2).

The first and second inequalities follow from the well-known property of the
absolute value and the properties of the L2 vector norm. The last inequality
follows from the fact that ‖fT

21‖2 = O(‖E‖2) and ‖p‖2 = o(1).
Note that λ = σ1 is the principal singular value of the matrix W . Let σ′

i

denote the ith singular value of the matrix W ′ = W + E. We know that for
any singular value σi, |σi − σ′

i| ≤ ‖E‖2. We have that |σ1 − σ′
1| ≤ ‖E‖2 and

|σ2 − σ′
2| ≤ ‖E‖2. We have assumed that σ1 − σ2 = ω(‖E‖2). Therefore, it
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must be that σ′
1 − σ′

2 = ω(‖E‖2). Since |λ − λ′| = O(‖E‖2), it follows that
λ′ = σ′

1. Thus, the vector q′ is the principal eigenvector of the matrix B + F ,
and q′ = [u′, v′]T , where u′ and v′ are the left and right singular vectors of W ′.
Since ‖Q2p‖2 ≤ ‖p‖2, it follows that ‖q − q′‖2 = o(1). Therefore,

‖v′ − v‖2 = o(1) and ‖u′ − u‖2 = o(1).
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