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Finding (Short) Paths in Social
Networks
André Allavena, Anirban Dasgupta, John Hopcroft, and Ravi Kumar

Abstract. While several analytic models aim to explain the existence of short paths
in social networks such as the web, relatively few address the problem of efficiently
finding them, especially in a decentralized manner. Since developing purely decen-
tralized search algorithms in general social-network models appears hard, we relax the
notion of decentralized search by allowing the option of storing a small amount of
preprocessed information about the network. We show that one can identify a small
set of vertices in an undirected social network so that connectivity information of the
vertices in this set can be used in conjunction with the local connectivity properties
to perform decentralized search and find short paths between vertices. Our results are
for random graphs with power law degree distribution generated by a variant of the
expected degree model.

1. Introduction

In a now-famous social experiment, Stanley Milgram and his coworkers demon-
strated in the 1960s that any pair of people is likely to be separated by a short
chain of acquaintances [Milgram 67, Travers and Milgram 69, Korte and Mil-
gram 78]. Each trial in their experiment had the following flavor. A source
person, say Alice, in a city was given a letter to be delivered to a target person,
say Bob, in a different city. Alice and Bob did not know each other but Alice
would be told some basic information about Bob. Alice would be instructed to
send the letter to one of her acquaintances, with the ultimate goal that the letter
should reach Bob as efficaciously as possible; Alice would pass on the letter and
the same set of instructions to the acquaintance she chooses for the task. The
trial is successful if the letter reaches Bob. It turned out that the average number
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of intermediate acquaintances in a successful trial was under six. This so-called
“six degrees of separation” phenomenon has prompted serious attention from the
scientific community. Very recently, the above experiment was repeated using
emails and it was found that the average number of acquaintances was around
4.1 [Dodds et al. 03].

The existence of short paths has been documented in many social networks
including the World Wide Web; for the web, it is a direct consequence of its
small average distance [Albert et al. 99, Broder et al. 00]. It is not surprising
that many social networks have short paths or small diameter. What is more
intriguing is people’s ability to navigate effectively in such social networks in
a decentralized fashion1 using just the local connectivity information. A lot of
analytic models have been proposed to understand and explain the existence of
short paths in social networks—see the surveys [Bollobás and Riordan 03, Al-
bert and Barabasi 02, Newman 00]. While much of the work focus on why short
paths exist between two vertices in the social network, relatively few address
how they can be found efficiently, especially in a decentralized manner; in other
words, which networks support efficient search? Watts and Strogatz [Watts and
Strogatz 98] proposed a social network model that consists of a p-dimensional
lattice superimposed with long-range links of the form (u, v) where v is chosen
uniformly at random; they showed that these networks have short paths. Klein-
berg [Kleinberg 00a, Kleinberg 00b] showed that, in general, there is no efficient
decentralized search algorithm (that runs in polylogarithmic time) for these net-
works; however, if v is chosen with probability proportional to d(u, v)−p, where
d(u, v) is the lattice distance between u and v, then (and only then) an efficient
decentralized search algorithm exists. Kleinberg [Kleinberg 01] also considered a
more general hierarchical model and decentralized search with partial informa-
tion about the underlying network. See the survey by Kleinberg [Kleinberg 06].

In this paper we focus on the algorithmic aspects of a search in random graphs
generated by a variant of the expected degree model. While this model is math-
ematically tractable, a general-purpose decentralized search algorithm for this
model seems unlikely. Therefore, we relax the requirements of an efficient de-
centralized search algorithm and consider the option of storing a small amount
of preprocessed information about the network that will, in conjunction with
the local information, let us find paths between two vertices. We demand that
the preprocessed information be small relative to size of the network, that the

1Online services such as LinkedIn (http://www.linkedin.com), Friendster (http://www.
friendster.com), Spoke (http://www.spokesoftware.com), and Orkut (http://www.orkut.com)
are attempting to exploit this phenomenon. These services help users to expand their social
circle and link to other users with overlapping interests; users typically accomplish this by local
navigation, say, by looking at friends of friends.
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search algorithm uses only this and the local connectivity information, and that
the path found by the search algorithm is of the order of the diameter of the
network.

1.1. Main Contributions

We show that one can identify a small set of vertices (the core) in an undirected
social network so that connectivity information about the vertices in this set,
along with local information about degree and connectivity, can be used to per-
form an efficient decentralized search. Our results are obtained for the random
graphs with power law degree distributions generated by a variant of the expected
degree model. For a power law distribution with parameter β ∈ (2, 3), the size
of the core is roughly Õ(n1−2/β). The length of paths found by our algorithm is
O(lnn) and matches the diameter of such graphs [Chung and Lu 02, Chung and
Lu 03].

The intuition behind our algorithm is very simple. The algorithm consists
of a preprocessing stage and a querying stage. In the preprocessing stage, we
designate a set of vertices of sufficiently high degree in the graph to be the core.
We explicitly compute all-pair shortest paths for the vertices in the core and
store the information in a table T . In the querying stage, we are given two
vertices s and t and the goal is to find a path between s and t using only local
information and the table T . The key step is to find a short path from both s

and t to the core via a mixture of random and deterministic walks. We start
with a random walk from s until a vertex of sufficiently high degree is reached,
at which point we switch to a deterministic walk by following the neighbor with
the highest degree until a vertex in the core is reached; call this vertex sc. We
perform a similar operation by starting from t until tc, a vertex in the core, is
reached. Note that all the operations in this step are decentralized and can be
performed just using local connectivity and degree information. Now, finding
a path between sc and tc is easy using the table T . Note that even if table T
were not computed, performing a random walk from sc and tc, but restricting
the walk to only visiting vertices that are in the core, will eventually establish a
path between sc and tc.

Our result is the first of its kind for graph models that are significantly more
general than the Watts–Strogatz family of random graphs. We believe our al-
gorithm, owing to its simplicity, will find applications in peer-to-peer networks
and distributed settings, where decentralized search is often desirable, and in the
context of developing algorithms for massive graphs, where it is not possible to
look at the entire graph to answer path queries on the fly; for a sample setting,
see [Faloutsos et al. 04].
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1.2. Related Work

There have been several generative models proposed for social networks such as
web graphs [Aiello et al. 00, Barabasi and Albert 99, Aiello et al. 02, Kumar
et al. 00, Cooper and Frieze 03, Bollobás and Riordan 04]. A pervading theme in
many of these models is that new edges do not point to randomly chosen vertices,
but rather to vertices chosen proportional to their “popularity,” i.e., their current
degree. It was also shown that these graphs have small average distance and
diameter [Bollobás and Riordan 04, Lu 01, Chung and Lu 02, Chung and Lu 03].
Fabrikant, Koutsoupias, and Papadimitriou [Fabrikant et al. 02] proposed the
FKP model of vertices on a plane in which edges are added to optimize the
trade-off between distances and “centrality” in the graph. It is important to note
that the graphs generated by neither the Watts–Strogatz model nor the FKP
model have the power law degree distribution that is often observed in many
social networks. To amend this, Chung and Lu [Chung and Lu 04] proposed a
hybrid power law graph model that incorporates power law degree distribution
while retaining small-world properties; they did not consider search problems in
the networks.

Chung and Lu [Chung and Lu 02, Chung and Lu 03] analyzed a simple variant
of the configuration model and showed that there is a core of size n1−c/ ln ln n

such that almost all vertices are within distance ln lnn of the core. Though their
definition of core is similar to ours, their work differs from ours in two aspects.
Firstly, their focus was more on the existence of short paths and not on obtaining
a search algorithm that finds these short paths. Secondly, the core they obtain
is substantially bigger than ours. Mihail, Saberi, and Tetali [Mihail et al. 06]
show that in power law random graphs, the expected rate at which a random
walk with lookahead discovers the nodes of the graph is sublinear.

The problem of searching a social network from an experimental point of
view was considered by Adamic et al. [Adamic and Adar 03, Adamic et al. 01]
and Kim et al. [Kim et al. 02]. They explore the path-finding strategy of
following the neighbor with the highest degree; their results, however, are from
an experimental point of view.

2. Model

A number of random graph models have been proposed for social networks with
skewed degree distribution. Notable among these are the expected degree model,
in which each edge is chosen independently according a certain probability, and
the configuration model, in which the set of edges is generated as a random
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matching between the vertices. Most of these models generate graphs with a
unique giant component, along with a number of components whose sizes are
asymptotically smaller. Note that the problem of finding a path between two
vertices is interesting only when both the vertices are in the giant component.
To address this technicality, we adopt a modified version of the expected degree
model, detailed in Coja-Oghlan and Lanka [Coja-Oghlan and Lanka 06], in order
to generate a random graph with a single connected component.

Notation. For a graph G, let VG denote the set of vertices and EG denote the
set of edges. For a vertex v ∈ VG, let dG(v) denote the degree of a vertex v

in G, and for a subset V ⊆ VG \ {v}, let eG(v, VG) denote the number of edges
(v, w) ∈ EG, w ∈ V . For V ⊆ VG, let volG(V ) =

∑
v∈V dG(v).

Let d = d1, . . . , dn be a given sequence of degrees, where dv represents the
degree of a vertex v. Let dmin > 3 (respectively dmax) be the minimum (re-
spectively maximum) degree in the sequence. Given this degree sequence, the
random graph G = G(d) on the vertex set [n] is defined as follows. Define the
n × n probability matrix P entry-wise as Puv = dudv/

∑
w dw, and generate a

graph G by independently rounding to 0/1 (modulo symmetry) each of the en-
tries of the probability matrix P . Note that the expected degree of v in G is
E[dG(v)] = dv. We are interested in random graphs with a power law degree
sequence, and therefore consider only the case when the sequence d is distributed
according to a power law with exponent β ∈ (2, 3), i.e., |{v | dv = i}| = n0/i

β ,
where the normalizing factor n0 = n/

∑dmax
i=dmin

i−β . Also, note that dmax = n
1/β
0 .

The sum of degrees, denoted 2m, is then equal to

2m =
dmax∑

i=dmin

n0

iβ
· i = Θ(n).

Finally, we apply the following procedure on the resulting graph G to define a
subset of vertices H. Let c0 be any constant such that 3 < c0 < dmin.

1. Discard all vertices in VG that are not in the giant component of G.

2. Let VH = VG \ {v | dG(v) ≤ 0.01 · dmin}.

3. While there is a vertex v ∈ VH that has at least

max{c0, exp(−dmin/c0)dG(v)}

neighbors in G \H, remove v from VH .
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Let H be the graph in G induced by the vertices in VH . Denote the degree of
each vertex in H to be dH(v). The following set of results are from [Coja-Oghlan
and Lanka 06]. The first claim states that H constitutes a large fraction of the
vertices and of the total degree of G. The second claim states that, for vertices
of degree at least lnn, the degrees in G and H are both close to the expected
degree. Lastly, the main claim proves that H has a large spectral gap.

Theorem 2.1. [Coja-Oghlan and Lanka 06] The graph H obtained from G as a result
of the iterative steps above satisfies the following properties with high probability
over the generation process of the random graph:

(a) H is connected, and the total sum of degrees of H is close to the total
expected degree of G, i.e.,

∑
v∈H dv ≥ (1 − exp(−100dmin/c0))n.

(b) For every vertex v with expected degree dv > lnn, the actual degree dG(v)
satisfies

dv − 2
√
dv lnn ≤ dG(v) ≤ dv + 2

√
dv lnn.

Furthermore, the degree of v in H satisfies

dH(v) ≥ dG(v) − max{c0, exp(−dmin/c0)dG(v)}.

(c) Finally, let Q be the transition matrix associated with a random walk in
the graph induced by H. Then, the spectral gap of the matrix Q is at least
1 − c0/

√
dmin.

Henceforth, we assume that all the statements in Theorem 2.1 are true. For
vertices with expected degree dv > lnn, we also denote the closeness of the
quantities dv, dG(v), and dH(v) by simply writing dG(v) = Θ(dv) and dH(v) =
Θ(dv).

Given any two vertices s and t, both of which are in VH , our goal is to find a
path between s and t. For any degree d, define the set Sd of vertices to be the
set of vertices of expected degree at least d. For any set X of vertices we will
denote the total expected degree as vol(X) =

∑
v∈X dv.

3. The Algorithm

Define the core to be the set of vertices X whose actual degree dH(·) is at least
dmax(1 − ln n

d3−β
max

). From Theorem 2.1, we have the following.
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Proposition 3.1. The expected degree of each vertex in the core is Θ(dH(v)), and the
size of the core X is at most |X | = O(n(1−2/β) lnn).

The formal description of the algorithm appears in Algorithm 1.
For each of the Steps 1–3, we need to show that we succeed in at most O(lnn)

steps. First, we show that the Step 1 of the algorithm succeeds.

Lemma 3.2. In Step 1, the algorithm sees at most O(lnβ n) vertices and, with
probability at least 1 − 1/n over the random walk choices, finds a path of length
O(lnn) to a vertex of expected degree at least lnn.

Proof. Since the random walk is performed on the graph H, in steady state the
probability of the walk being in any set S is equal to the total degree volH(S)
of the vertices in the set S. Now, let S = {v ∈ H | dv ≥ lnn}. Thus, the total
expected degree of S, vol(S), is at least

vol(S) =
∑

v:dv≥ln n

dv =
dmax∑

i=ln n

n0

iβ
· i

≥
∫ dmax

ln n

n

(i− 1)β−1
di

=
n0

(β − 2)

(
ln2−β n− d2−β

max

)

≥ n0 ln2−β n

2β(β − 2)
.

Algorithm 1
Given a query for a path between vertices s and t in VH , do the following:

1. Start with the given vertex s and do a random walk for lnn steps. If at
any point the random walk hits a vertex of degree at least lnn, go to Step
2. If no vertex of degree at least lnn was encountered even after lnn steps
of the random walk, abort this walk and repeat this step all over.

2. After reaching a vertex of degree lnn, continue to take the maximum degree
neighbor deterministically till the walk reaches one of the vertices in the
core, say sc ∈ X .

3. Do the same for finding a path between t and a core vertex tc.

4. Establish a path between sc and tc using X .
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By Theorem 2.1(b), the total degree volG(S) and simultaneously volH(S) are at
least Ω

(
n0 ln2−β n
2β(β−2)

)
, and the total volume ofH is also Θ(vol(VG)). Thus, the total

probability assigned to S by the stationary distribution is at least Ω
(

n0 ln2−β n
4mβ(β−2)

)
,

i.e., Ω( 1
lnβ−2 n

). Now, by Theorem 2.1(c), the number of steps required to bring
down the state-probability vector to a point-wise distance of at most 1/n from
the stationary probability distribution is given by

O

(
1

1 − c0/
√
dmin

ln(
nvolH(S)
dmin

)
)

≤ O(lnn).

So, after each short walk of length O(ln(n)) from the start node s, the proba-
bility of being in the set S is at least Ω( 1

lnβ−2 n
). Hence, if we take Θ(lnβ−1 n)

independent random walks, each of length Ω(lnn), then the expected number
of times that the random walk ends up in S is Θ(lnβ−1 n · ln2−β n) = Θ(lnn).
Thus, with probability 1 − 1/n, at least one of the random walks will actually
end up in S.

Next, we show that the walk in the second step of the algorithm does not ter-
minate at any local maxima other than the ones that have been stored during
preprocessing. This is the crux of our algorithm.

Lemma 3.3. In Step 2 of the algorithm, if we start from a vertex of expected degree
at least 2 lnn, with probability 1 − o(1) (over the random graph space) we reach
a vertex in X in O(lnn) steps.

Proof. We will evaluate the probability of increasing the degree at each step. More
specifically, we evaluate the probability of not having a neighbor of expected
degree at least d when at a vertex u of expected degree du = k. Namely, we will
show that if the expected degree of a vertex is k, then with high probability it will
have a neighbor whose expected degree is d; the value of the target d will depend
on the specific case with which we are dealing. Since Step 2 of the algorithm
works only with vertices of degree greater than lnn, by applying the union bound,
it is easy to see that this statement implies that each vertex of degree k will have
a neighbor v such that dH(v) = Ω(d). The expected number of edges between
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the vertex u and the subset Sd is given by E[eH(u, Sd)] = duvol(Sd)
2m . Thus,

E[eH(u, Sd)] = du

dmax∑
i=d

i · n0i
−β

2m

=
dun0

2m

∫ dmax

d

i1−βdi

= γdu

(
1

dβ−2
− 1

dβ−2
max

)
,

where the constant γ is defined as

γ =
n0

2m(β − 2)
.

We now break the rest of the analysis into two cases. The first is when our target
degree is d ≤ µdmax for some constant µ, and the second one is when the target
degree d ≥ µdmax. For a vertex v, define N(v) to be its set of neighbors. We
show that the probability of success at each stage is 1 − Ω( 1

n ), and then we can
take the union bound over the O(lnn) steps.

Case 1. For a vertex with current degree du and target degree d ≤ µdmax, where
µ < 1

2 is some constant, we show that we can find a neighbor of degree at least

d = d
2

β−1
u . We will just need to show that the probability of failing to find such a

high expected degree neighbor is small. Since the total number of edges formed in
H, i.e., eH(u, Sd) is a sum of random variables, the result is a simple application
of the following version of the Chernoff bound. Suppose that X1, . . . , Xn are
independent random variables in [0, 1], each with expectation E[Xi] = µi; then,

Pr

[∑
i

Xi <
∑

i

µi − t

]
< exp

( −t2
4
∑

i µi

)
.

So now, since d ≤ µdmax, we have

E[eH(u, Sd)] = γdu

(
1

dβ−2
− 1

dβ−2
max

)

≥ γdu

dβ−2

(
1 − µβ−2

)
.

Since d = d
2

β−1
u ,

E[eH(u, Sd)] = Ω
(
dud

− 2β−4
β−1

u

)
= Ω

(
d

3−β
β−1
u

)
.
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Thus, applying the Chernoff bound with t =
√

E[eH(u, Sd)] ln(du), we see that
there must be nonzero edges between u and Sd in H. Since none of these edges
are lost to the construction of H, we have proved the presence of edges between
u and Sd in the graph H too. Thus, from a vertex of expected degree du, with

high probability we can walk to a vertex of expected degree at least d
2

β−1
u in one

step. Hence, we can reach a vertex of degree µdmax in at most O(ln lnn) steps.

Case 2. In this case, we analyze the walk over the higher degree vertices, when the
current expected degree du is at least µdmax. We will show that in at most two
steps we reach the core. Define

λ =
4 lnn

µ(β − 2)γd3−β
max

.

Let d = (1 − λ)dmax. We show that we can reach a vertex of degree d from a
vertex of degree µdmax. Revisiting the expected number of edges E[eH(u, Sd)],
we have

E[eH(u, Sd)] = γdu

(
1

dβ−2
− 1

dβ−2
max

)

≥ γdu

dβ−2
max

(
1 − (1 − λ)β−2

(1 − λ)β−2

)

≥ γdu

dβ−2
max

· (β − 2)λ
(1 − λ)β−2

≥ (β − 2)γλ dud
2−β
max

≥ 4du lnn
µdmax

≥ 4 lnn.

Thus, the actual number of edges eH(u, Sd) is again at least 2 lnn with proba-
bility at least 1 − 1

n2 , and hence we are able to reach a vertex of degree at least
(1 − λ)dmax. Applying a similar argument, we can prove that from a vertex of
degree at least (1 − λ)dmax, we can reach the core.

Combining the results of the two cases, the proof is complete.

Lemma 3.4. X has diameter O(lnn).

Proof. We use the well-known fact that a random graph G(n, p) has diameter
O(lnn) when p = lnn/n and show that the probability of having any edge
within the core is at least lnn/n.
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Let us consider two nodes u and v from X and the probability that there exists
an edge between them. By the definition of the core,

Pr[eH(u, v)] =
dudv

2m
≥ d2

max

2m

(
1 − lnn

d3−β
max

)2

= Θ(n2/β−1)

= Θ
(

lnn
|X |

)
,

where the last equality follows from Proposition 3.1.

Thus, we obtain our main theorem.

Theorem 3.5. The algorithm stores information about a core of size O(n1− 2
β lnn)

nodes and can find a path from any vertex to another by looking at at most
O(lnβ n) nodes in all. The length of the path found between any two vertices is
at most O(lnn), with probability 1 − o(1).

Proof. The size of the core is O
(
n1− 2

β lnn
)
. The algorithm needs to store only the

core and a sparse set of edges connecting the vertices of the core. The number of
vertices looked at and the length of the path is obtained by adding the estimates
obtained in Lemmas 3.2, 3.3, and 3.4.

Note that, as part of the preprocessing, we can compute all-pair shortest paths
for the vertices in X . This will let us compute the path between sc and tc rather
easily via a table lookup. Alternately, if we do not wish to store this information
explicitly, we could continue to do random walks from sc and from tc till they
hit a common vertex, restricting the random walk to hit only vertices in X . It
can also be shown that, with high probability, after

√|X | steps the walks will
collide, establishing a path between sc and tc. Thus, Step 4 is taken care of.
Special case of β = 2. This is really a special case because the average number
of edges per vertex is not constant anymore but logarithmic in the number of
vertices: m = Θ(n lnn). This changes the derivation of some of the proofs, but
not the results themselves.

However, it is worth noticing that in case of β = 2, the size of the core is
polylogarithmic in n. Moreover, the processing phase is no longer necessary. A
random walk within the core will succeed in linking two nodes in a polylogarith-
mic number of steps.
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4. Discussion

4.1. Other Models

We now discuss the extension of our algorithms to other models such as the
preferential attachment/copying model [Aiello et al. 00, Barabasi and Albert 99,
Aiello et al. 02, Kumar et al. 00, Cooper and Frieze 03, Bollobás and Riordan 04].
Since these graphs evolve over time, we need to define the core differently: the
core is the set of the oldest nodes.

To make our discussion simpler, let us assume the following model. We start
with an initial set of nodes I. At each time step t we add a node u—in fact let’s
label it t—and k edges from t to the previous nodes. Those end points can be
chosen with preferential attachment, for example, or uniformly at random.

It is obvious that in this simple model all the edges point to older nodes. If
one knows the age of the nodes, it would be extremely easy to reach the core:
just follow whichever edge brings us the furthest back. For now, let us assume
that we know the age of the nodes. The question is how long does it take to
reach the core by following edges that point to older nodes. If we are at a node t,
it is straightforward to see that we should have an edge to a node with expected
label t/k; this assumes that end points are chosen uniformly at random. If we
instead use some preferential attachment, or variant of it (copying for example),
the likelihood of picking small labels would be even higher. Thus, it would take
O(ln t) steps to get to the core.

4.2. The Directed Case

In this section we discuss the possibility of extending our algorithm to the di-
rected case. An analog of our algorithm might be hard in the directed case with-
out any assumptions on the correlation between the in-degrees and out-degrees.
Suppose that we define the core to be the set of high out-degree vertices. While
it becomes easy to reach any vertex from the core, the ease of reaching the core
itself from any vertex is not obvious. Similarly, if we define the core to be the
set of high in-degree vertices, then the converse problem happens. Note that
the above two sets might have poor connectivity among them if no correlation
between in-degrees and out-degrees exists.

We therefore assume that the in-degrees and out-degrees are correlated. Under
this assumption, we define the core to be the set of nodes of high out-degree. We
drop the requirement of finding a path between two vertices and instead focus
on an algorithm to reach the core from any vertex in a decentralized fashion.

The model is a simple generalization of the undirected case. We assume that
the out-degree sequence is a power law with exponent β ∈ (2, 3). The in-degree
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sequence can be arbitrary but should be consistent with the definition of corre-
lation that we describe below. The main difference from the undirected case is
that the probability that an edge exists between u and v is now proportional to
the product of the out-degree ou of u and the in-degree iv of v, i.e.,

Pr[e(u→ v)] ∝ ouiv.

4.2.1. Correlation. One way to define correlation between the in-degree and the out-
degree sequences is to say that if a vertex has out-degree x, then it has in-degree
at least xα, where α is a parameter. Note that α = 1 corresponds to perfect
correlation, i.e., the undirected case and α = 0 corresponds to no correlation
at all, i.e., the in-degree of a vertex does not reveal any information about the
out-degree of a node.

4.2.2. α-correlation. In fact, we will significantly weaken the correlation assumption
so that we only need to impose the above condition in an aggregate sense for
a large set of vertices, instead of for each vertex. Our relaxed definition of
correlation is the following. Suppose that Sd is the set of vertices with out-
degree at least d. Given a parameter α ≥ 0, the in-degrees and out-degrees are
said to be α-correlated if for all d, the sum of the in-degrees of the vertices in
Sd is at least as large as when assuming that every node (of out-degree x) has
in-degree xα, i.e.,

∑
v∈Sd

iv ≥
dmax∑
i=d

(iα · number of nodes of outdegree i) =
dmax∑
i=d

iα−βn0.

We show that, with an α-correlation where α > β− 2, we can reach the set of
highest out-degree nodes with very high probability in O(ln lnn) steps. We can
also show a weak lower bound: if there is a weaker correlation (with α < β− 2),
or none, then no algorithm can reach our core faster than in O(nε) steps for
some constant ε > 0.

Lemma 4.1. Suppose that the in-degree and the out-degree sequences are α-correlated,
where β is the power-law exponent of the out-degree sequence and α > β−2. De-
fine the core to be the set of nodes of out-degree at least dmax(1 − λ ln n

dα+2−β
max

) for

some constant λ > 0. The size of the core is O(n
β−α−1

β lnn). Then, starting
from a vertex of out-degree at least lnn, we can reach the core with very high
probability in O(ln lnn) steps with a deterministic algorithm.

Proof. This proof is essentially similar to the undirected case, using β − α − 1
instead of β − 2. Note that if we have a correlation of α, then we also have a
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correlation of α′ for any α′ < α. Thus, without loss of generality, we assume
that α < β − 1.

Let us study the probability for a node u to have an edge to a node of higher
out-degree. Again, let ou be the current out-degree and d the minimum target
out-degree.

E[(u, Sd) ∈ EH ] =
∑
v∈Sd

Pr[(u, v) ∈ EH ]

≥ ou

dmax∑
i=d

iα · n0i
−β

2m
(correlation property)

= ouγ

(
1

dβ−α−1
− 1

dβ−α−1
max

)
. (with γ = n0

2m(β−α−1) )

The derivation of the probability that a vertex u of out-degree ou is not connected
to any vertex of degree d or higher is the same as in the undirected case. This
time we take d to be

d = o
β−α

2(β−α−1)
u ,

where the lower bound on α implies that β−α
2(β−α−1) > 1, i.e., our target degree d

is larger than our current out-degree ou.
Applying the Chernoff bound, the probability of failure when making progress

while d = o(dmax) is then bounded by exp(−γo
α−β+2

2
u ). Similarly, the proba-

bility of failure in the last step when d = Ω(dmax) is Θ
(

1
n(β−α−1)λγµ

)
for some

appropriate constant µ.
Again, as in the undirected case, we can decrease the constant λ in the size

of the core by taking an extra step. But, we cannot hope to decrease the size
of the core any further since the probability of reaching a node of higher degree
goes to 0.

We now show that our assumption on correlation is tight with respect to our
definition of the core.

Lemma 4.2. If there exists a d0 = nε for some constant ε > 0 such that

∑
v∈Sd0

iv ≤
dmax∑
i=d0

(iα · number of nodes of out-degree i) =
dmax∑
i=d0

iα−βn0,

for some α such that α < β − 2, then any algorithm from a certain class of
algorithms is going to need at least an expected Ω(nε(β−2−α)) steps to reach Sd0 .



�

�

“imvol3” — 2007/2/7 — 17:17 — page 143 — #15
�

�

�

�

�

�

Allavena et al.: Finding (Short) Paths in Social Networks 143

Proof. Note that Sd0 is not significant compared to the whole graph: |Sd0 | = nκ,
where κ = 1 − ε(β − 2) < 1 .

The class of algorithms we study is the following: the algorithm knows of a
list Lt of nodes that it has previously visited, with t = |Lt|, and knows of the
out-degree of the nodes in Lt, but not of the nodes not in Lt. At each round
t, it either picks a node v uniformly at random from all possible nodes or picks
one out-going edge from some node in Lt; let us call v the vertex to which that
edge points. Vertex v is added to Lt to form Lt+1, and the neighbors of v and
their out-degrees become known to the algorithm. Note that the algorithm that
we constructed certainly falls in this class. We are in fact giving “extra power”
to the algorithm as we allow it to backtrack for free, or to randomly start over.

The probability of succeeding in any step is the maximum of the probability
of success of the two alternatives of the algorithm. Let us start by examining the
probability of success when following an edge of a node that we already know.

Starting from some node u not in the core with out-degree ou, the probability
of reaching a node v in Sd0 is at most

Pr[∃v ∈ Sd0 | (u, v) ∈ EG] ≤
∑

v∈Sd0

Pr[(u, v) ∈ EG]

≤ ou

dmax∑
i=d0

iα−βn0

2m
(correlation hypothesis)

≤ ou
n0

2m

∫ dmax

d0−1

iα−βdi

≤ ou
n0

2m(β − α− 1)
1

dβ−α−1
0

≤ ouγ

dβ−α−1
0

(with γ = n0
2m(β−α−1) (

d0
d0−1 )β−α−2)

≤ γ

(d0)β−α−2
(since ou ≤ d0)

=
γ

nε(β−α−2)
. (since d0 = nε)

On the other hand, the probability of succeeding by randomly jumping to a new
node and by chance selecting a node in Sd0 is even smaller:

Pr[success by randomly jumping to a node] = nκ−1

= n−ε(β−2)

	 γn−ε(β−2−α).
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The probability of success is the maximum of the two previously detailed prob-
abilities, namely,

p = Pr[success in step t] ≤ max(n−ε(β−2),
γ

nε(β−2−α)
) =

γ

nε(β−2−α)
.

The expected time to succeed is T = 1/p, hence the claimed result.
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