
Internet Mathematics Vol. 1, No. 3: 335-380

Deeper Inside PageRank

Amy N. Langville and Carl D. Meyer

Abstract. This paper serves as a companion or extension to the “Inside PageRank”

paper by Bianchini et al. [Bianchini et al. 03]. It is a comprehensive survey of all

issues associated with PageRank, covering the basic PageRank model, available and

recommended solution methods, storage issues, existence, uniqueness, and convergence

properties, possible alterations to the basic model, suggested alternatives to the tradi-

tional solution methods, sensitivity and conditioning, and finally the updating problem.

We introduce a few new results, provide an extensive reference list, and speculate about

exciting areas of future research.

1. Introduction

Many of today’s search engines use a two-step process to retrieve pages related

to a user’s query. In the first step, traditional text processing is done to find

all documents using the query terms, or related to the query terms by semantic

meaning. This can be done by a look-up into an inverted file, with a vector space

method, or with a query expander that uses a thesaurus. With the massive size

of the web, this first step can result in thousands of retrieved pages related to

the query. To make this list manageable for a user, many search engines sort

this list by some ranking criterion. One popular way to create this ranking is

to exploit the additional information inherent in the web due to its hyperlinking

structure. Thus, link analysis has become the means to ranking. One successful

and well-publicized link-based ranking system is PageRank, the ranking system

used by the Google search engine. Actually, for pages related to a query, an IR

(Information Retrieval) score is combined with a PR (PageRank) score to deter-

© A K Peters, Ltd.
1542-7951/04 $0.50 per page 335

336 Internet Mathematics

mine an overall score, which is then used to rank the retrieved pages [Blachman

03]. This paper focuses solely on the PR score.

We begin the paper with a review of the most basic PageRank model for deter-

mining the importance of a web page. This basic model, so simple and elegant,

works well, but part of the model’s beauty and attraction lies in its seemingly

endless capacity for “tinkering.” Some such tinkerings have been proposed and

tested. In this paper, we explore these previously suggested tinkerings to the

basic PageRank model and add a few more suggestions and connections of our

own. For example, why has the PageRank convex combination scaling parame-

ter traditionally been set to .85? One answer, presented in Section 5.1, concerns

convergence to the solution. However, we provide another answer to this ques-

tion in Section 7 by considering the sensitivity of the problem. Another area of

fiddling is the uniform matrix E added to the hyperlinking Markov matrix P.

What other alternatives to this uniform matrix exist? In Section 6.3, we present

the common answer, followed by an analysis of our alternative answer. We also

delve deeper into the PageRank model, discussing convergence in Section 5.5.1;

sensitivity, stability, and conditioning in Section 7; and updating in Section 8.

The numerous alterations to and intricacies of the basic PageRank model pre-

sented in this paper give an appreciation of the model’s beauty and usefulness,

and hopefully, will inspire future and greater improvements.

2. The Scene in 1998

The year 1998 was a busy year for link analysis models. On the East Coast, a

young scientist named Jon Kleinberg, an assistant professor in his second year

at Cornell University, was working on a web search engine project called HITS.

His algorithm used the hyperlink structure of the web to improve search engine

results, an innovative idea at the time, as most search engines used only textual

content to return relevant documents. He presented his work [Kleinberg 99], be-

gun a year earlier at IBM, in January 1998 at the Ninth Annual ACM-SIAM Sym-

posium on Discrete Algorithms held in San Francisco, California. Very nearby,

at Stanford University, two PhD candidates were working late nights on a similar

project called PageRank. Sergey Brin and Larry Page, both computer science

students, had been collaborating on their web search engine since 1995. By 1998,

things were really starting to accelerate for these two scientists. They were us-

ing their dorm rooms as offices for the fledgling business, which later became the

giant Google. By August 1998, both Brin and Page took a leave of absence from

Stanford in order to focus on their growing business. In a public presentation at

the Seventh International World Wide Web conference (WWW98) in Brisbane,

Langville and Meyer: Deeper Inside PageRank 337

Australia, their paper “The PageRank Citation Ranking: Bringing Order to the

Web” [Brin et al. 98b] made small ripples in the information science commu-

nity that quickly turned into waves. The connections between the two models

are striking (see [Langville and Meyer 03]) and it’s hard to say whether HITS

influenced PageRank, or vice versa, or whether both developed independently.

Nevertheless, since that eventful year, PageRank has emerged as the dominant

link analysis model, partly due to its query-independence, its virtual immunity

to spamming, and Google’s huge business success. Kleinberg was already mak-

ing a name for himself as an innovative academic, and unlike Brin and Page, did

not try to develop HITS into a company. However, later entrepreneurs did; the

search engine Teoma uses an extension of the HITS algorithm as the basis of

its underlying technology [Sherman 02]. As a side note, Google kept Brin and

Page busy and wealthy enough to remain on leave from Stanford. This paper

picks up after their well-cited original 1998 paper and explores the numerous

suggestions that have been made to the basic PageRank model, thus, taking

the reader deeper inside PageRank. We note that this paper describes meth-

ods invented by Brin and Page, which were later implemented into their search

engine Google. Of course, it is impossible to surmise the details of Google’s

implementation since the publicly disseminated details of the 1998 papers [Brin

et al. 98a, Brin and Page 98, Brin et al. 98b]. Nevertheless, we do know that

PageRank remains “the heart of [Google’s] software ... and continues to provide

the basis for all of [their] web search tools,” as cited directly from the Google

web page, http://www.google.com/technology/index.html.

3. The Basic PageRank Model

The original Brin and Page model for PageRank uses the hyperlink structure

of the web to build a Markov chain with a primitive1 transition probability

matrix P. The irreducibility of the chain guarantees that the long-run stationary

vector πT , known as the PageRank vector, exists. It is well-known that the

power method applied to a primitive matrix will converge to this stationary

vector. Further, the convergence rate of the power method is determined by the

magnitude of the subdominant eigenvalue of the transition rate matrix [Stewart

94].

1A matrix is irreducible if its graph shows that every node is reachable from every other

node. A nonnegative, irreducible matrix is primitive if it has only one eigenvalue on its spectral
circle. An irreducible Markov chain with a primitive transition matrix is called an aperiodic

chain. Frobenius discovered a simple test for primitivity: the matrix A ≥ 0 is primitive if and
only if Am > 0 for some m > 0 [Meyer 00]. This test is useful in determining whether the

power method applied to a matrix will converge.

338 Internet Mathematics

3.1. The Markov Model of the Web

We begin by showing how Brin and Page, the founders of the PageRank model,

force the transition probability matrix, which is built from the hyperlink struc-

ture of the web, to be stochastic and primitive. Consider the hyperlink structure

of the web as a directed graph. The nodes of this digraph represent web pages

and the directed arcs represent hyperlinks. For example, consider the small

document collection consisting of six web pages linked as in Figure 1.

1 2

3

6 5

4

Figure 1. Directed graph representing web of six pages

The Markov model represents this graph with a square matrixP whose element

pij is the probability of moving from state i (page i) to state j (page j) in one

time-step. For example, assume that, starting from any node (web page), it is

equally likely to follow any of the outgoing links to arrive at another node. Thus,

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6

1 0 1/2 1/2 0 0 0

2 0 0 0 0 0 0

3 1/3 1/3 0 0 1/3 0

4 0 0 0 0 1/2 1/2

5 0 0 0 1/2 0 1/2

6 0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Any suitable probability distribution may be used across the rows. For example,

if web usage logs show that a random surfer accessing page 1 is twice as likely

to jump to page 2 as he or she is to jump to page 3, then the first row of P,

denoted pT1 , becomes

pT1 =
D
0 2/3 1/3 0 0 0

i
.

Langville and Meyer: Deeper Inside PageRank 339

(Similarly, column i of P is denoted pi.) Another weighting scheme is proposed in

[Baeza-Yates and Davis 04]. One problem with solely using the web’s hyperlink

structure to build the Markov matrix is apparent. Some rows of the matrix, such

as row 2 in our example above, contain all zeroes. Thus, P is not stochastic.

This occurs whenever a node contains no outlinks; many such nodes exist on the

web. Such nodes are called dangling nodes. One remedy is to replace all zero

rows, 0T , with 1
n
eT , where eT is the row vector of all ones and n is the order of

the matrix. The revised transition probability matrix called P̄ is

P̄ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 1/2 1/2 0 0 0

1/6 1/6 1/6 1/6 1/6 1/6
1/3 1/3 0 0 1/3 0

0 0 0 0 1/2 1/2
0 0 0 1/2 0 1/2
0 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ .

(We note that the uniform vector 1
n
eT can be replaced with a general probability

vector vT > 0. See Section 6.2. for more details about this personalization vector

vT .) However, this adjustment alone is not enough to insure the existence of

the stationary vector of the chain, i.e., the PageRank vector. Were the chain

irreducible, the PageRank vector is guaranteed to exist. By its very nature, with

probability 1, the web unaltered creates a reducible Markov chain. (In terms

of graph theory, the web graphs are nonbipartite and not necessarily strongly

connected.) Thus, one more adjustment, to make P irreducible, is implemented.

The revised stochastic and irreducible matrix ¯̄P is

¯̄P = αP̄+ (1− α)eeT /n =

⎛⎜⎜⎜⎜⎜⎜⎝
1/60 7/15 7/15 1/60 1/60 1/60
1/6 1/6 1/6 1/6 1/6 1/6
19/60 19/60 1/60 1/60 19/60 1/60
1/60 1/60 1/60 1/60 7/15 7/15
1/60 1/60 1/60 7/15 1/60 7/15
1/60 1/60 1/60 11/12 1/60 1/60

⎞⎟⎟⎟⎟⎟⎟⎠
where 0 ≤ α ≤ 1 and E = 1

n
eT . This convex combination of the stochastic ma-

trix P̄ and a stochastic perturbation matrix E insures that ¯̄P is both stochastic

and irreducible. Every node is now directly connected to every other node, mak-

ing the chain irreducible by definition. Although the probability of transitioning

may be very small in some cases, it is always nonzero. The irreducibility adjust-

ment also insures that ¯̄P is primitive, which implies that the power method will

converge to the stationary PageRank vector πT .

340 Internet Mathematics

4. Storage Issues

The size of the Markov matrix makes storage issues nontrivial. In this section,

we provide a brief discussion of more detailed storage issues for implementation.

The 1998 paper by Brin and Page [Brin and Page 98] and more recent papers

by Google engineers [Barroso et al. 03, Ghemawat et al. 03] provide detailed

discussions of the many storage schemes used by the Google search engine for all

parts of its information retrieval system. The excellent survey paper by Arasu

et al. [Arasu et al. 01] also provides a section on storage schemes needed by a

web search engine. Since this paper is mathematically oriented, we focus only

on the storage of the mathematical components, the matrices and vectors, used

in the PageRank part of the Google system.

For subsets of the web, the transition matrix P (or its graph) may or may not

fit in main memory. For small subsets of the web, when P fits in main memory,

computation of the PageRank vector can be implemented in the usual fashion.

However, when the P matrix does not fit in main memory, researchers must be

more creative in their storage and implementation of the essential components

of the PageRank algorithm. When a large matrix exceeds a machine’s mem-

ory, researchers usually try one of two things: they compress the data needed

so that the compressed representation fits in main memory and then creatively

implement a modified version of PageRank on this compressed representation,

or they keep the data in its uncompressed form and develop I/O-efficient imple-

mentations of the computations that must take place on the large, uncompressed

data.

For modest web graphs for which the transition matrix P can be stored in

main memory, compression of the data is not essential, however, some storage

techniques should still be employed to reduce the work involved at each itera-

tion. For example, the P matrix is decomposed into the product of the inverse

of the diagonal matrix D holding outdegrees of the nodes and the adjacency

matrix G of 0s and 1s is useful in saving storage and reducing work at each

power iteration. The decomposition P = D−1G is used to reduce the num-

ber of multiplications required in each xTP vector-matrix multiplication needed

by the power method. Without the P = D−1G decomposition, this requires

nnz(P) multiplications and nnz(P) additions, where nnz(P) is the number of

nonzeroes in P. Using the vector diag(D−1), xTP can be accomplished as

xTD−1G = (xT). ∗ (diag(D−1))G, where .∗ represents component-wise multi-
plication of the elements in the two vectors. The first part, (xT). ∗ (diag(D−1))
requires n multiplications. SinceG is an adjacency matrix, (xT).∗(diag(D−1))G
now requires an additional nnz(P) additions for a total savings of nnz(P) − n
multiplications. In addition, for large matrices, compact storage schemes

Langville and Meyer: Deeper Inside PageRank 341

[Barrett et al. 94], such as compressed row storage or compressed column storage,

are often used. Of course, each compressed format, while saving some storage,

requires a bit more overhead for matrix operations.

Rather than storing the full matrix or a compressed version of the matrix,

web-sized implementations of the PageRank model store the P or G matrix in

an adjacency list of the columns of the matrix [Raghavan and Garcia-Molina

01a]. In order to compute the PageRank vector, the PageRank power method

(defined in Section 5.1) requires vector-matrix multiplications of x(k−1)TP at

each iteration k. Therefore, quick access to the columns of the matrix P (or G)

is essential to algorithm speed. Column i contains the inlink information for page

i, which, for the PageRank system of ranking web pages, is more important than

the outlink information contained in the rows of P or G. For the tiny six-node

web from Section 3, an adjacency list representation of the columns of G is:

Node Inlinks from

1 3

2 1, 3

3 1

4 5, 6

5 3, 4

6 4, 5

Exercise 2.24 of Cleve Moler’s recent book [Moler 04] gives one possible imple-

mentation of the power method applied to an adjacency list, along with sample

MATLAB code. When the adjacency list does not fit in main memory, references

[Raghavan and Garcia-Molina 01a, Raghavan and Garcia-Molina 03] suggest

methods for compressing the data. Some references [Chen et al. 02a, Haveli-

wala 99] take the other approach and suggest I/O-efficient implementations of

PageRank. Since the PageRank vector itself is large and completely dense, con-

taining over 4.3 billion pages, and must be consulted in order to process each

user query, Haveliwala [Haveliwala 02a] has suggested a technique to compress

the PageRank vector. This encoding of the PageRank vector hopes to keep the

ranking information cached in main memory, thus speeding query processing.

Because of their potential and promise, we briefly discuss two methods for

compressing the information in an adjacency list, the gap technique [Bharat

et al. 98] and the reference encoding technique [Raghavan and Garcia-Molina

01b, Raghavan and Garcia-Molina 03]. The gap method exploits the locality of

hyperlinked pages. The source and destination pages for a hyperlink are often

close to each other lexicographically. A page labeled 100 often has inlinks from

pages nearby such as pages 112, 113, 116, and 117 rather than pages 117,924

and 4,931,010). Based on this locality principle, the information in an adjacency

342 Internet Mathematics

list for page 100 is stored as follows:

Node Inlinks from

100 112 0 2 0

Storing the gaps between pages compresses storage because these gaps are usually

nice, small integers.

The reference encoding technique for graph compression exploits the similarity

between web pages. If pages x and y have similar adjacency lists, it is possible

to compress the adjacency list of y by representing it in terms of the adjacency

list of x, in which case x is called a reference page for y. Pages within the same

domain might often share common outlinks, making the reference encoding tech-

nique attractive. Consider the example in Figure 2, taken from [Raghavan and

Garcia-Molina 03]. The binary reference vector, which has the same size as the

Figure 2. Reference encoding example

adjacency list of x, contains a 1 in the ith position if the corresponding ad-

jacency list entry i is shared by x and y. The second vector in the reference

encoding is a list of all entries in the adjacency list of y that are not found in the

adjacency list of its reference x. Reference encoding provides a nice means of

compressing the data in an adjacency list, however, for each page one needs to

determine which page should serve as the reference page. This is not an easy de-

cision, but heuristics are suggested in [Raghavan and Garcia-Molina 01b]. Both

the gap method and the reference encoding method are used, along with other

compression techniques, to impressively compress the information in a standard

web graph. These techniques are freely available in the graph compression tool

WebGraph, which is produced by Paolo Boldi and Sebastiano Vigna [Boldi and

Vigna 03, Boldi and Vigna 04].

The final storage issue we discuss concerns dangling nodes. The pages of the

web can be classified as either dangling nodes or nondangling nodes. Recall

that dangling nodes are web pages that contain no outlinks. All other pages,

having at least one outlink, are called nondangling nodes. Dangling nodes exist

in many forms. For example, a page of data, a page with a postscript graph, a

page with JPEG pictures, a PDF document, a page that has been fetched by a

Langville and Meyer: Deeper Inside PageRank 343

crawler but not yet explored–these are all examples of possible dangling nodes.

As the research community moves more and more material online in the form

of PDF and postscript files of preprints, talks, slides, and technical reports, the

proportion of dangling nodes is growing. In fact, for some subsets of the web,

dangling nodes make up 80 percent of the collection’s pages.

The presence of these dangling nodes can cause philosophical, storage, and

computational issues for the PageRank problem. We address the storage issue

now and save the philosophical and computational issues associated with dan-

gling nodes for the next section. Recall that Google founders Brin and Page

suggested replacing 0T rows of the sparse hyperlink matrix P with dense vectors

(the uniform vector 1
n
eT or the more general vT vector) to create the stochastic

matrix P̄. Of course, if this suggestion was to be implemented explicitly, storage

requirements would increase dramatically. Instead, the stochasticity fix can be

modeled implicitly with the construction of one vector a. Element ai = 1 if row

i of P corresponds to a dangling node, and 0, otherwise. Then P̄ (and also ¯̄P)

can be written as a rank-one update of P.

P̄ = P+ avT , and therefore, ¯̄P = α P̄+ (1− α) evT
= αP+ (α a+ (1− α) e)vT .

5. Solution Methods for Solving the PageRank Problem

Regardless of the method for filling in and storing the entries of ¯̄P, PageRank is

determined by computing the stationary solution πT of the Markov chain. The

row vector πT can be found by solving either the eigenvector problem

πT ¯̄P = πT ,

or by solving the homogeneous linear system

πT (I− ¯̄P) = 0T ,

where I is the identity matrix. Both formulations are subject to an additional

equation, the normalization equation πTe = 1, where e is the column vector of

all 1s. The normalization equation insures that πT is a probability vector. The

ith element of πT , πi, is the PageRank of page i. Stewart’s book, An Introduction

to the Numerical Solution of Markov Chains [Stewart 94], contains an excellent

presentation of the various methods of solving the Markov chain problem.

344 Internet Mathematics

5.1. The Power Method

Traditionally, computing the PageRank vector has been viewed as an eigenvector

problem, πT ¯̄P = πT , and the notoriously slow power method has been the

method of choice. There are several good reasons for using the power method.

First, consider iterates of the power method applied to ¯̄P (a completely dense

matrix, were it to be formed explicitly). Note that E = evT . For any starting

vector x(0)T (generally, x(0)T = eT /n),

x(k)T = x(k−1)T ¯̄P = αx(k−1)T P̄+ (1− α)x(k−1)T evT
= αx(k−1)T P̄+ (1− α)vT
= αx(k−1)TP+ (αx(k−1)Ta+ (1− α))vT , (5.1)

since x(k−1)T is a probability vector, and thus, x(k−1)Te = 1. Written in this way,
it becomes clear that the power method applied to ¯̄P can be implemented with

vector-matrix multiplications on the extremely sparse P, and ¯̄P and P̄ are never

formed or stored. A matrix-free method such as the power method is required due

to the size of the matrices and vectors involved (Google’s index is currently 4.3

billion pages). Fortunately, since P is sparse, each vector-matrix multiplication

required by the power method can be computed in nnz(P) flops, where nnz(P)

is the number of nonzeroes in P. And since the average number of nonzeroes per

row in P is 3-10, O(nnz(P)) ≈ O(n). Furthermore, at each iteration, the power
method only requires the storage of one vector, the current iterate, whereas other

accelerated matrix-free methods, such as restarted GMRES or BiCGStab, require

storage of at least several vectors, depending on the size of the subspace chosen.

Finally, the power method on Brin and Page’s P̄ matrix converges quickly. Brin

and Page report success using only 50 to 100 power iterations [Brin et al. 98b].

We return to the issue of dangling nodes now, this time discussing their philo-

sophical complications. In one of their early papers [Brin et al. 98a], Brin and

Page report that they “often remove dangling nodes during the computation of

PageRank, then add them back in after the PageRanks have converged.” From

this vague statement it is hard to say exactly how Brin and Page were computing

PageRank. But, we are certain that the removal of dangling nodes is not a fair

procedure. Some dangling nodes should receive high PageRank. For example,

a very authoritative PDF file could have many inlinks from respected sources,

and thus, should receive a high PageRank. Simply removing the dangling nodes

biases the PageRank vector unjustly. In fact, doing the opposite and incorpo-

rating dangling nodes adds little computational effort (see Equation (5.1)), and

further, can have a beneficial effect as it can lead to more efficient and accurate

computation of PageRank. (See [Lee et al. 03] and the next section.)

Langville and Meyer: Deeper Inside PageRank 345

5.1.1. Check for Important Mathematical Properties Associated with the Power Method. In this
section, we check the mathematical properties of uniqueness, existence, and con-

vergence to be sure that the PageRank power method of Equation (5.1) will

converge to the correct solution vector. The irreducibility of the matrix ¯̄P, com-

pliments of the fudge factor matrix E, guarantees the existence of the unique sta-

tionary distribution vector for the Markov equation. Convergence of the PageR-

ank power method is governed by the primitivity of ¯̄P. Because the iteration

matrix ¯̄P is a stochastic matrix, the spectral radius ρ(¯̄P) is 1. If this stochastic

matrix is not primitive, it may have several eigenvalues on the unit circle, causing

convergence problems for the power method. One such problem was identified

by Brin and Page as a rank sink, a dangling node that keeps accumulating more

and more PageRank at each iteration. This rank sink is actually an absorbing

state of the Markov chain. More generally, a reducible matrix may contain an

absorbing class that eventually sucks all the PageRank into states in its class.

The web graph may contain several such classes and the long-run probabilities

of the chain then depend greatly on the starting vector. Some states and classes

may have 0 rank in the long-run, giving an undesirable solution and interpreta-

tion for the PageRank problem. However, the situation is much nicer and the

convergence much cleaner for a primitive matrix.

A primitive stochastic matrix has only one eigenvalue on the unit circle, all

other eigenvalues have modulus strictly less than one [Meyer 00]. This means

that the power method applied to a primitive stochastic matrix P is guaranteed

to converge to the unique dominant eigenvector–the stationary vector πT for

the Markov matrix and the PageRank vector for the Google matrix. This is one

reason why Brin and Page added the fudge factor matrix E forcing primitivity.

As a result, there are no issues with convergence of the ranking vector, and any

positive probability vector can be used to start the iterative process. A thorough

paper by Farahat et al. [Farahat et al. 04] discusses uniqueness, existence,

and convergence for several link analysis algorithms and their modifications,

including PageRank and HITS.

Rate of Convergence. Even though the power method applied to the primitive sto-
chastic matrix ¯̄P converges to a unique PageRank vector, the rate of conver-

gence is a crucial issue, especially considering the scope of the matrix-vector

multiplications–it’s on the order of billions since PageRank operates on Google’s

version of the full web. The asymptotic rate of convergence of the PageRank

power method is governed by the subdominant eigenvalue of the transition ma-

trix ¯̄P. Kamvar and Haveliwala [Haveliwala and Kamvar 03] have proven that,

regardless of the value of the personalization vector vT in E = evT , this sub-

dominant eigenvalue is equal to the scaling factor α for a reducible hyperlink

346 Internet Mathematics

matrix P and strictly less than α for an irreducible hyperlink matrix P. Since

the web unaltered is reducible, we can conclude that the rate of convergence

of the power method applied to ¯̄P is the rate at which αk → 0. This explains

the reported quick convergence of the power method from Section 5.1. Brin and

Page, the founders of Google, use α = .85. Thus, a rough estimate of the number

of iterations needed to converge to a tolerance level τ (measured by the residual,

x(k)T ¯̄P− x(k)T = x(k+1)T − x(k)T) is log10τ
log10α

. For τ = 10−6 and α = .85, one can
expect roughly −6

log10.85
≈ 85 iterations until convergence to the PageRank vector.

For τ = 10−8, about 114 iterations and for τ = 10−10, about 142 iterations. Brin
and Page report success using only 50 to 100 power iterations, implying that τ

could range from 10−3 to 10−7.
This means Google can dictate the rate of convergence according to how small

α is chosen to be. Consequently, Google engineers are forced to perform a delicate

balancing act. The smaller α is, the faster the convergence, but the smaller α

is, the less the true hyperlink structure of the web is used to determine web

page importance. And slightly different values for α can produce very different

PageRanks. Moreover, as α→ 1, not only does convergence slow drastically, but

sensitivity issues begin to surface as well. (See Sections 6.1 and 7.)

We now present a shorter alternative proof of the second eigenvalue of the

PageRank matrix to that provided by Kamvar and Haveliwala [Haveliwala and

Kamvar 03]. Our proof also goes further and proves the relationship between

the spectrum of P̄ and the spectrum of ¯̄P. To maintain generality, we use the

generic personalization vector vT rather than the uniform teleportation vector

eT /n. The personalization vector is presented in detail in Section 6.2.

Theorem 5.1. Given the spectrum of the stochastic matrix P̄ is {1,λ2,λ3, . . . ,λn},
the spectrum of the primitive stochastic matrix ¯̄P = αP̄ + (1 − α)evT is

{1,αλ2,αλ3, . . . ,αλn}, where vT is a probability vector.

Proof. Since P̄ is stochastic, (1, e) is an eigenpair of P̄. Let

Q =
D
e X

i
be a nonsingular matrix which has the eigenvector e as its first column. Let

Q−1 =
w
yT

YT

W
.

Then

Q−1Q =

w
yTe yTX
YTe YTX

W
=

w
1 0
0T I

W
,

Langville and Meyer: Deeper Inside PageRank 347

which gives two useful identities, yTe = 1 and YTe = 0. As a result, the

similarity transformation

Q−1P̄Q =

w
yTe yT P̄X
YTe YT P̄X

W
=

w
1 yT P̄X
0 YT P̄X

W
.

Thus, YT P̄X contains the remaining eigenvalues of P̄: λ2, . . . ,λn. Applying the

similarity transformation to ¯̄P = αP̄+ (1− α)evT gives

Q−1(αP̄+ (1− α)evT)Q = αQ−1P̄Q+ (1− α)Q−1evTQ

=

w
α αyT P̄X
0 αYT P̄X

W
+ (1− α)

w
yTe
YTe

WD
vTe vTX

i
=

w
α αyT P̄X
0 αYT P̄X

W
+

w
(1− α) (1− α)vTX
0 0

W
=

w
1 αyT P̄X+ (1− α)vTX
0 αYT P̄X

W
.

Therefore, the eigenvalues of ¯̄P = αP̄+(1−α)evT are {1,αλ2,αλ3, . . . ,αλn}.

This theorem provides a more compact proof than that found in [Haveliwala

and Kamvar 03], showing that for a reducible P̄ with several unit eigenvalues,

λ2(
¯̄P) = α.

Convergence Criteria. The power method applied to ¯̄P is the predominant method for

finding the important PageRank vector. Being an iterative method, the power

method continues until some termination criterion is met. In a previous para-

graph, we mentioned the traditional termination criterion for the power method:

stop when the residual (as measured by the difference of successive iterates) is

less than some predetermined tolerance. However, Haveliwala [Haveliwala 99]

has rightfully noted that the exact values of the PageRank vector are not as

important as the correct ordering of the values in this vector. That is, iterate

until the ordering of the approximate PageRank vector obtained by the power

method converges. Considering the scope of the PageRank problem, saving just

a handful of iterations is praiseworthy. Haveliwala’s experiments show that the

savings could be even more substantial on some data sets. As few as 10 itera-

tions produced a good approximate ordering, competitive with the exact ordering

produced by the traditional convergence measure. This raises several interesting

issues: How does one measure the difference between two orderings? How does

one determine when an ordering has converged satisfactorily? Several papers

[Dwork et al. 01, Fagin et al. 03a, Fagin et al. 03b, Haveliwala 99, Haveliwala

348 Internet Mathematics

02b, Mendelzon and Rafiei 02] have provided a variety of answers to the ques-

tion of comparing rank orderings, using such measures as Kendall’s Tau, rank

aggregation, and set overlap.

5.1.2. Acceleration Techniques for the PageRank Power Method. Despite the fact that the
PageRank problem amounts to solving an old problem (computing the stationary

vector of a Markov chain), the size of the matrix makes this old problem much

more challenging. In fact, it has been dubbed “The World’s Largest Matrix

Computation” by Cleve Moler [Moler 02]. For this reason, some researchers

have proposed quick approximations to the PageRank vector. Chris Ding and

his coworkers [Ding et al. 01, Ding et al. 02] suggested using a simple count

of the number of inlinks to a web page as an approximation to its PageRank.

On their data sets, they found this very inexpensive measure approximated the

exact PageRanks well. However, a paper by Prabahkar Raghavan et al. disputes

this claim noting that “there is very little correlation on the web graph between

a node’s in-degree and its PageRank” [Pandurangan et al. 02]. Intuitively, this

makes sense. PageRank’s thesis is that it is not the quantity of inlinks to a page

that counts, but rather, the quality of inlinks.

While approximations to PageRank have not proved fruitful, other means of

accelerating the computation of the exact rankings have. In fact, because the

classical power method is known for its slow convergence, researchers immedi-

ately looked to other solution methods. However, the size and sparsity of the

web matrix create limitations on the solution methods and have caused the pre-

dominance of the power method. This restriction to the power method has

forced new research on the often criticized power method and has resulted in

numerous improvements to the vanilla-flavored power method that are tailored

to the PageRank problem. Since 1998, the resurgence in work on the power

method has brought exciting, innovative twists to the old unadorned workhorse.

As each iteration of the power method on a web-sized matrix is so expensive,

reducing the number of iterations by a handful can save hours of computation.

Some of the most valuable contributions have come from researchers at Stanford

who have discovered several methods for accelerating the power method. These

acceleration methods can be divided into two classes: those that save time by

reducing the work per iteration and those that aim to reduce the total number

of iterations. These goals are often at odds with one another. For example, re-

ducing the number of iterations usually comes at the expense of a slight increase

in the work per iteration. As long as this overhead is minimal, the proposed

acceleration is considered beneficial.

Reduction in Work per Iteration. Two methods have been proposed that clearly aim to re-
duce the work incurred at each iteration of the power method. The first method

Langville and Meyer: Deeper Inside PageRank 349

was proposed by Kamvar et al. [Kamvar et al. 03a] and is called adaptive

PageRank. This method adaptively reduces the work at each iteration by taking

a closer look at elements in the iteration vector. Kamvar et al. noticed that

some pages converge to their PageRank values faster than other pages. As ele-

ments of the PageRank vector converge, the adaptive PageRank method “locks”

them and does not use them in subsequent computations. This adaptive power

method provides a small speed-up in the computation of PageRank, by 17 per-

cent. However, while this algorithm was shown to converge in practice on a

handful of data sets, it was not proven to converge in theory.

The second acceleration method in this class was produced by another group

at Stanford, this time led by Chris Lee. The algorithm of Lee et al. [Lee et

al. 03] partitions the web into dangling and nondangling nodes and applies

an aggregation method to this partition. Since Google’s fix for dangling nodes

produces a block of identical rows (a row of P̄ is vT for each dangling node),

a lumpable aggregation method can be solved exactly and efficiently. In effect,

this algorithm reduces the large n×n problem to a much smaller k×k problem,
where k is the number of nondangling nodes on the web. If k = 1

s
n, then the

time until convergence is reduced by a factor of s over the power method. In

Section 5.2, we describe a linear system formulation of Lee et al.’s Markov chain

formulation of the lumpable PageRank algorithm.

Reduction in the Number of Iterations. In order to reduce the number of iterations required
by the PageRank power method, Kamvar et al. [Kamvar et al. 03c] produced

an extrapolation method derived from the classic Aitken’s ∆2 method. On the

data sets tested, their extension to Aitken extrapolation, known as quadratic

extrapolation, reduces PageRank computation time by 50 to 300 percent with

minimal overhead.

The same group of Stanford researchers, Kamvar et al. [Kamvar et al. 03b],

has produced one more contribution to the acceleration of PageRank. This

method straddles the classes above because it uses aggregation to reduce both the

number of iterations and the work per iteration. This very promising method,

called BlockRank, is an aggregation method that lumps sections of the web

by hosts. BlockRank involves three main steps that work within the natural

structure of the web. First, local PageRanks for pages in a host are computed

independently using the link structure of the host. As a result, local PageRank

vectors, which are smaller than the global PageRank vector, exist for each host.

In the next step, these local PageRanks are weighted by the importance of the

corresponding host. This host weight is found by forming a host aggregation

matrix, the size of which is equal to the number of hosts. The stationary vector

of the small host aggregation matrix gives the long-run proportion of time a

350 Internet Mathematics

random surfer spends on each host. Finally, the usual PageRank algorithm is

run using the weighted aggregate of the local PageRank vectors as the starting

vector. The BlockRank algorithm produced a speed-up of a factor of 2 on some

of their data sets. More recent, but very related, algorithms [Broder et al. 04, Lu

et al. 04] use similar aggregation techniques to exploit the web’s inherent power

law structure to speed ranking computations.

Yet another group of researchers from Stanford, joined by IBM scientists,

dropped the restriction to the power method. In their short paper, Arasu et al.

[Arasu et al. 02] provide one small experiment with the Gauss-Seidel method

applied to the PageRank problem. Bianchini et al. [Bianchini et al. 03] suggest

using the Jacobi method to compute the PageRank vector. Despite this progress,

these are just beginnings. If the holy grail of real-time personalized search is

ever to be realized, then drastic speed improvements must be made, perhaps by

innovative new algorithms, or the simple combination of many of the current

acceleration methods into one algorithm.

5.2. The Linear System Formulation

In 1998, Brin and Page posed the original formulation and subsequent solution

of the PageRank problem in the Markov chain realm. Since then nearly all of

the subsequent modifications and improvements to the solution method have

remained in the Markov realm. Stepping outside, into the general linear system

realm, presents interesting new research avenues and several advantages, which

are described in this section.

We begin by formulating the PageRank problem as a linear system. The

eigenvalue problem πT (αP̄ + (1 − α)evT) = πT can be rewritten, with some

algebra as,

πT (I− αP̄) = (1− α)vT . (5.2)

This system is always accompanied by the normalization equation πTe = 1.

Cleve Moler [Moler 04] and Bianchini et al. [Bianchini et al. 03] appear to have

been the first to suggest the linear system formulation in Equation (5.2). We

note some interesting properties of the coefficient matrix in this equation.

Properties of (I− αP̄):

1. (I− αP̄) is an M-matrix.2

2Consider the real matrix A that has aij ≤ 0 for all i W= j and aii ≥ 0 for all i. A can be

expressed as A = sI−B, where s > 0 and B ≥ 0. When s ≥ ρ(B), the spectral radius of B,
A is called an M-matrix. M-matrices can be either nonsingular or singular.

Langville and Meyer: Deeper Inside PageRank 351

Proof. Straightforward from the definition of M-matrix given by Berman

and Plemmons [Berman and Plemmons 79] or Meyer [Meyer 00].

2. (I− αP̄) is nonsingular.

Proof. See Berman and Plemmons [Berman and Plemmons 79] or Meyer
[Meyer 00].

3. The row sums of (I− αP̄) are 1− α.

Proof. (I− αP̄)e = (1− α)e.

4. ,I− αP̄,∞ = 1 + α, provided at least one nondangling node exists.

Proof. The ∞-matrix norm is the maximum absolute row sum. If a page i

has a positive number of outlinks, then the corresponding diagonal element

of I− αP̄ is 1. All other off-diagonal elements are negative, but sum to α

in absolute value.

5. Since (I− αP̄) is an M-matrix, (I− αP̄)−1 ≥ 0.

Proof. Again, see Berman and Plemmons [Berman and Plemmons 79] or
Meyer [Meyer 00].

6. The row sums of (I− αP̄)−1 are 1
1−α . Therefore, ,(I− αP̄)−1,∞ = 1

1−α .

Proof. This follows from Properties 3 and 5 above.

7. Thus, the condition number3 κ∞(I− αP̄) = 1+α
1−α .

Proof. By virtue of Properties 4 and 6 above, the condition number,

κ∞(I− αP̄) = ,(I− αP̄),∞ ,(I− αP̄)−1,∞ = 1+α
1−α .

These nice properties of (I−αP̄) cause us to wonder if similar properties hold
for (I−αP). Again, we return to the dangling nodes and their rank-one fix avT .
Since P̄ = P + avT , (I − αP̄) is very dense if the number of dangling nodes,

nnz(a), is large. Using the rank-one dangling node trick, we can once again

3A nonsingular matrix A is ill-conditioned if a small relative change in A can produce a

large relative change in A−1. The condition number of A, given by κ = ,A,,A−1,, measures
the degree of ill-conditioning. Condition numbers can be defined for each matrix norm [Meyer

00].

352 Internet Mathematics

write the Pagerank problem in terms of the very sparse P. The linear system of

Equation (5.2) can be rewritten as

πT (I− αP− αavT) = (1− α)vT .
If we let πTa = γ, then the linear system becomes

πT (I− αP) = (1− α+ αγ)vT .

The scalar γ holds the sum of the πi for i in the set of dangling nodes. Since the

normalization equation πTe = 1 will be applied at the end, we can arbitrarily

choose a convenient value for γ, say γ = 1. Thus, the sparse linear system

formulation of the PageRank problem becomes

πT (I− αP) = vT with πT e = 1. (5.3)

In addition, (I− αP) has many of the same properties as (I− αP̄).
Properties of (I− αP):
1. (I− αP) is an M-matrix.

2. (I− αP) is nonsingular.

3. The row sums of (I− αP) are either 1− α for nondangling nodes or 1 for
dangling nodes.

4. ,I− αP,∞ = 1 + α, provided P is nonzero.

5. Since (I− αP) is an M-matrix, (I− αP)−1 ≥ 0.
6. The row sums of (I−αP)−1 are equal to 1 for the dangling nodes and less
than or equal to 1

1−α for the nondangling nodes.

7. The condition number κ∞(I− αP) ≤ 1+α
1−α .

8. The row of (I−αP)−1 corresponding to dangling node i is eTi , where ei is
the ith column of the identity matrix.

The last property of (I−αP)−1 does not apply to (I−αP̄)−1. This additional
property makes the computation of the PageRank vector especially efficient.

Suppose the rows and columns of P are permuted (i.e., the indices are reordered)

so that the rows corresponding to dangling nodes are at the bottom of the matrix.

P =

w nd d

nd P11 P12
d 0 0

W
,

Langville and Meyer: Deeper Inside PageRank 353

where nd is the set of nondangling nodes and d is the set of dangling nodes.

Then the coefficient matrix in the sparse linear system formulation becomes

(I− αP) =
w
I− αP11 −αP12

0 I

W
,

and the inverse of this matrix is

(I− αP)−1 =
w
(I− αP11)−1 α(I− αP11)−1P12

0 I

W
.

Therefore, the PageRank vector πT = vT (I− αP)−1 can be written as

πT =
D
vT1 (I− αP11)−1 | αvT1 (I− αP11)−1P12 + vT2

i
,

where the personalization vector vT has been partitioned into nondangling (vT1)

and dangling (vT2) sections. Note that I−αP11 inherits many of the properties of
I− αP, most especially nonsingularity. In summary, we now have an algorithm
that computes the PageRank vector using only the nondangling portion of the

web, exploiting the rank-one structure of the dangling node fix.

Algorithm 1.

1. Solve for πT1 in π
T
1 (I− αP11) = vT1 .

2. Compute πT2 = απT1P12 + v
T
2 .

3. Normalize πT = [πT1 πT2]/,[πT1 πT2],1.

Algorithm 1 is much simpler and cleaner, but equivalent, to the specialized

iterative method proposed by Lee et al. [Lee et al. 03] (and mentioned in Section

5.1.2), which exploits the dangling nodes to reduce computation of the PageRank

vector, sometimes by a factor of 1/5.

In [Langville and Meyer 04], we propose that this process of locating zero rows

be repeated recursively on smaller and smaller submatrices of P, continuing until

a submatrix is created that has no zero rows. The result of this process is a

decomposition of the P matrix that looks like Figure 3. In fact, this process

amounts to a simple reordering of the indices of the Markov chain. The left

pane shows the original P matrix and the right pane is the reordered matrix

according to the recursive dangling node idea. The data set California.dat

(available from http://www.cs.cornell.edu/Courses/cs685/2002fa/) is a typical

subset of the web. It contains 9,664 nodes and 16,773 links, pertaining to the

query topic of “california”.

354 Internet Mathematics

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

nz = 16773
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

nz = 16773

Figure 3. Original and reordered P matrix for California.dat.

In general, after this symmetric reordering, the coefficient matrix of the linear

system formulation of the PageRank problem (5.3) has the following structure.

(I− αP) =

⎛⎜⎜⎜⎜⎜⎝
I− αP11 −αP12 −αP13 · · · −αP1b

I −αP23 · · · −αP2b
I · · · −αP3b

. . .

I

⎞⎟⎟⎟⎟⎟⎠ ,
where b is the number of square diagonal blocks in the reordered matrix. Thus,

the system in Equation (5.3) after reordering can be solved by forward substi-

tution. The only system that must be solved directly is the first subsystem,

πT1 (I − αP11) = v
T
1 , where π

T and vT have also been partitioned accordingly.

The remaining subvectors of πT are computed quickly and efficiently by for-

ward substitution. In the California.dat example, a 2, 622 × 2, 622 system
can be solved instead of the full 9, 664× 9, 664 system, or even the once-reduced
5, 132 × 5, 132 system. Using a direct method on the reordered linear system
exploits dangling nodes, and is an extension to the dangling node power method

suggested by Lee et al. [Lee et al. 03]. The technical report [Langville and

Meyer 04] provides further details of the reordering method along with experi-

mental results, suggested methods for solving the πT1 (I − αP11) = vT1 system,

and convergence properties.

In summary, this section and its linear system formulation open the door for

many alternative solution methods, such as the iterative splittings of Jacobi and

SOR, or even direct methods when the size of P11 is small enough. We expect

that much more progress on the PageRank problem may be made now that

researchers are no longer restricted to Markov chain methods and the power

method.

Langville and Meyer: Deeper Inside PageRank 355

6. Tinkering with the Basic PageRank Model

Varying α, although perhaps the most obvious alteration, is just one way to

fiddle with the basic PageRank model presented in Section 3. In this section, we

explore several others, devoting a subsection to each.

6.1. Changing α

One of the most obvious places to begin fiddling with the basic PageRank model

is α. Brin and Page, the founders of Google, have reported using α = .85. One

wonders why this choice for α? Might a different choice produce a very different

ranking of retrieved web pages?

As mentioned in Sections 5.1 and 5.1.1, there are good reasons for using α =

.85, one being the speedy convergence of the power method. With this value

for α, we can expect the power method to converge to the PageRank vector in

about 114 iterations for a convergence tolerance level of τ = 10−8. Obviously,
this choice of α brings faster convergence than higher values of α. Compare

with α = .99, whereby roughly 1833 iterations are required to achieve a residual

less than 10−8. When working with a sparse 4.3 billion by 4.3 billion matrix,
each iteration counts; over a few hundred power iterations is more than Google

is willing to compute. However, in addition to the computational reasons for

choosing α = .85, this choice for α also carries some intuitive weight: α = .85

implies that roughly five-sixths of the time a web surfer randomly clicks on

hyperlinks (i.e., following the structure of the web, as captured by the αP̄ part

of the formula), while one-sixth of the time this web surfer will go to the URL line

and type the address of a new page to “teleport” to (as captured by the (1−α)evT
part of the formula). Perhaps this was the original motivation behind Brin and

Page’s choice of α = .85; it produces an accurate model for web surfing behavior.

Alternatively, α = .99 not only slows convergence of the power method, but also

places much greater emphasis on the hyperlink structure of the web and much

less on the teleportation tendencies of surfers.

The PageRank vector derived from α = .99 can be vastly different from that

obtained using α = .85. Perhaps it gives a “truer” PageRanking. Experiments

with various α show significant variation in rankings produced by different values

of α [Pretto 02a, Pretto 02b, Thorson 04]. As expected, the top section of the

ranking changes only slightly, yet as we proceed down the ranked list we see

more and more variation. Recall that the PageRank algorithm pulls a subset

of elements from this ranked list, namely those elements that use or are related

to the query terms. This means that the greater variation witnessed toward

the latter half of the PageRank vector could lead to substantial variation in the

356 Internet Mathematics

ranking results returned to the user [Pretto 02a, Pretto 02b]. Which ranking

(i.e., which α) is preferred? This is a hard question to answer without doing

extensive user verification tests on various data sets and queries. However, there

are other ways to answer this question. In terms of convergence time, we’ve

already emphasized the fact that α = .85 is preferable, but later, in Section 7,

we present another good reason for choosing α near .85.

6.2. The Personalization Vector vT

One of the first modifications to the basic PageRank model suggested by its

founders was a change to the teleportation matrix E. Rather than using 1
n
eeT ,

they used evT , where vT > 0 is a probability vector called the personalization

or teleportation vector. Since vT is a probability vector with positive elements,

every node is still directly connected to every other node, thus, ¯̄P is irreducible.

Using vT in place of 1
n
eT means that the teleportation probabilities are no longer

uniformly distributed. Instead, each time a surfer teleports, he or she follows

the probability distribution given in vT to jump to the next page. As shown in

Section 5.1, this slight modification retains the advantageous properties of the

power method applied to ¯̄P. To produce a PageRank that is personalized for

a particular user, only the constant vector vT added at each iteration must be

modified. (See Equation (5.1).) Similarly, for the linear system formulation of

the PageRank problem only the right-hand side of the system changes for various

personalized vectors vT .

It appears that the name personalization vector comes from the fact that

Google intended to have many different vT vectors for the many different classes

of surfers. Surfers in one class, if teleporting, may be much more likely to jump

to pages about sports, while surfers in another class may be much more likely

to jump to pages pertaining to news and current events. Such differing telepor-

tation tendencies can be captured in two different personalization vectors. This

seems to have been Google’s original intent in introducing the personalization

vector [Brin et al. 98a]. However, it makes the once query-independent, user-

independent PageRankings user-dependent and more calculation-laden. Never-

theless, it seems this little personalization vector has had more significant side

effects. Google has recently used this personalization vector to control spamming

done by the so-called link farms.

Link farms are set up by spammers to fool information retrieval systems into

increasing the rank of their clients’ pages. For example, suppose a business owner

has decided to move a portion of his business online. The owner creates a web

page. However, this page rarely gets hits or is returned on web searches on his

product. So the owner contacts a search engine optimization company whose sole

Langville and Meyer: Deeper Inside PageRank 357

efforts are aimed at increasing the PageRank (and ranking among other search

engines) of its clients’ pages. One way a search engine optimizer attempts to

do this is with link farms. Knowing that PageRank increases when the number

of important inlinks to a client’s page increases, optimizers add such links to a

client’s page. A link farm might have several interconnected nodes about impor-

tant topics and with significant PageRanks. These interconnected nodes then

link to a client’s page, thus, in essence, sharing some of their PageRank with

the client’s page. The papers by Bianchini et al. [Bianchini et al. 02, Bianchini

et al. 03] present other scenarios for successfully boosting one’s PageRank and

provide helpful pictorial representations. Obviously, link farms are very trouble-

some for search engines. It appears that Google has tinkered with elements of

vT to annihilate the PageRank of link farms and their clients. Interestingly, this

caused a court case between Google and the search engine optimization company

SearchKing. The case ended in Google’s favor [Totty and Mangalindan 03].

Several researchers have taken the personalization idea beyond its spam pre-

vention abilities, creating personalized PageRanking systems. Personalization

is a hot area since some predict personalized engines as the future of search.

See the Stanford research papers [Diligenti et al. 02, Haveliwala 02b, Haveli-

wala et al. 03, Jeh and Widom 02, Richardson and Domingos 02]. While the

concept of personalization (producing a πT for each user’s vT vector) sounds

wonderful in theory, doing this in practice is computationally impossible. (Re-

call that it takes Google days to compute just one πT corresponding to one vT

vector.) We focus on two papers that bring us closer to achieving the lofty goal of

real-time personalized search engines. In [Jeh and Widom 02], Jeh and Widom

present their scalable personalized PageRank method. They identify a linear re-

lationship between personalization vectors and their corresponding personalized

PageRank vectors. This relationship allows the personalized PageRank vector

to be expressed as a linear combination of vectors that Jeh and Widom call basis

vectors. The number of basis vectors is a parameter in the algorithm. The com-

putation of the basis vectors is reduced by the scalable dynamic programming

approach described in [Jeh and Widom 02]. At query time, an approximation

to the personalized PageRank vector is constructed from the precomputed basis

vectors. Their experiments show the promise of their approximations.

The second promising approach to achieving real-time personalized PageR-

ank vectors can be found in [Kamvar et al. 03b]. The BlockRank algorithm of

Kamvar et al. described in Section 5.1.2 was originally designed as a method

for accelerating the computation of the standard PageRank vector by finding a

good starting vector, which it does quite well. However, one exciting additional

consequence of this BlockRank algorithm is its potential use for personaliza-

tion. BlockRank is an aggregation method that lumps sections of the web by

358 Internet Mathematics

hosts, using the natural structure of the web. BlockRank involves three main

steps. First, local PageRanks for pages in a host are computed independently

using the link structure of the host. As a result, local PageRank vectors, which

are smaller than the global PageRank vector, exist for each host. In the next

step, these local PageRanks are weighted by the importance of the corresponding

host. This host weight is found by forming an aggregation matrix, the size of

which is equal to the number of hosts. Finally, the usual PageRank algorithm

is run using the weighted aggregate of the local PageRank vectors as the start-

ing vector. By assuming a web surfer can only teleport to hosts (rather than

individual pages), personalization can be accounted for in the second step, in

the formation of the aggregation matrix. The local PageRank vectors formed in

the first step do not change, regardless of the host personalization vector. The

final step of the personalized BlockRank algorithm proceeds as usual. This per-

sonalized BlockRank algorithm gives the personalized PageRank vector, not an

approximation, with minimal overhead. However, while it does reduce the effort

associated with personalized PageRank, it is still far from producing real-time

personalized rankings.

We also note that as originally conceived, the PageRank model does not factor

a web browser’s back button into a surfer’s hyperlinking possibilities. However,

one team of researchers has made some theoretical progress on the insertion of

the back button to the Markov model [Fagin et al. 00]. Several recent papers

implement the back button in practical algorithms. One by Sydow [Sydow 04]

shows that an alternative ranking is provided by this adjustment, which appears

to have a few advantages over the standard PageRanking. Another by Mathieu

and Bouklit [Mathieu and Bouklit 04] uses a limited browser history stack to

model a Markov chain with finite memory.

6.3. Forcing Irreducibility

In the presentation of the PageRank model, we described the problem of re-

ducibility. Simply put, the Markov chain produced from the hyperlink structure

of the web will almost certainly be reducible and thus a positive long-run sta-

tionary vector will not exist for the subsequent Markov chain. The original

solution of Brin and Page uses the method of maximal irreducibility, whereby

every node is directly connected to every other node, hence irreducibility is triv-

ially enforced. However, maximal irreducibility does alter the true nature of the

web, whereas other methods of forcing irreducibility seem less invasive and more

inline with the web’s true nature. We describe these alternative methods in turn,

showing that they are equivalent, or nearly so, to Google’s method of maximal

irreducibility.

Langville and Meyer: Deeper Inside PageRank 359

We refer to the first alternative as the method of minimal irreducibility [Tomlin

03]. In this method, a dummy node is added to the web, which connects to

every other node and to which every other node is connected, making the chain

irreducible in a minimal sense. One way of creating a minimally irreducible

(n+ 1)× (n+ 1) Markov matrix P̂ is

P̂ =

⎛⎝αP̄ (1− α)e

vT 0

⎞⎠ .
This is clearly irreducible and primitive, and hence π̂T , its corresponding PageR-

ank vector, exists and can be found with the power method. State n + 1 is a

teleportation state. At any page, a random web surfer has a small probability

(1−α) of transitioning to the teleportation state, from which point, he or she will
teleport to one of the n original states according to the probabilities in the tele-

portation vector vT . We show that this minimally irreducible method is, in fact,

equivalent to Google’s maximally irreducible method. We examine the PageR-

ank vector associated with this new P̂ (after the weight of π̂n+1, the PageRank

of the dummy node, has been removed) as well as the convergence properties of

the power method applied to P̂. We begin by comparing the spectrum of P̂ to

the spectrum of P̄.

Theorem 6.1. Given the stochastic matrix P̄ with spectrum {1,λ2,λ3, . . . ,λn}, the

spectrum of P̂ =

⎛⎝αP̄ (1− α)e

vT 0

⎞⎠ is {1,αλ2,αλ3, . . . ,αλn,α− 1}.

Proof. Let Q =

w
I e
0T 1

W
. Then Q−1 =

w
I −e
0T 1

W
. The similarity transforma-

tion

Q−1P̂Q =

w
αP̄− evT 0

vT 1

W
.

Therefore, the spectrum

σ(Q−1P̂Q) = {1} ∪ σ(αP̄− evT) = {1,α− 1,αλ2, . . . ,αλn}.
(The spectrum of αP̄− evT = {α − 1,αλ2, . . . ,αλn} by the same trick used in
the proof of Theorem 5.1.)

Not only is the spectrum of the minimally irreducible P̂ nearly identical to

the spectrum of the traditional ¯̄P used by Google, the PageRank vectors of the

two systems are related.

360 Internet Mathematics

Writing the power method on the partitioned matrix P̂ gives

D
π̂T | π̂n+1

i
=
D
π̂T | π̂n+1

i⎛⎝αP̄ (1− α)e

vT 0

⎞⎠ ,
which gives the following system of equations:

π̂T = απ̂T P̄+ π̂n+1v
T , (6.1)

π̂n+1 = (1− α)π̂Te. (6.2)

Solving for π̂n+1 in Equation (6.2) gives π̂n+1 =
1−α
2−α . Backsubstituting this

value for π̂n+1 into Equation (6.1) gives

π̂T = απ̂T P̄+
1− α
2− αv

T . (6.3)

Now the question is: how does π̂T relate to πT ? Since state n+1 is an artificial

state, we can remove its PageRank π̂n+1 and normalize the remaining subvector

π̂T . This means π̂T is multiplied by 1
1−π̂n+1 = 2−α. Replacing π̂

T in (6.3) with

(2− α)π̂T gives

π̂T = απ̂T P̄+ (1− α)vT ,

which is the exact formulation of the traditional maximally irreducible power

method given in Equation (5.1). Therefore, the particular method of minimal

irreducibility turns out to be equivalent in theory and in computational effi-

ciency to Google’s method of maximal irreducibility. This is not surprising since

intuitively both methods model teleportation in the same way.

There are other means of forcing irreducibility. However, some of these meth-

ods require classification and location of the states of the chain into essential

and transient classes, and thus, can be more computationally intensive than the

methods discussed in this section. Lastly, we mention an approach that, rather

than forcing irreducibility on the web matrix, instead exploits the reducibility

inherent in the web. Avrachenkov et al. [Avrachenkov and Litvak 04] create a

decomposition of the reducible matrix P. The global PageRank solution can be

found in a computationally efficient manner by computing the subPageRank of

each connected component, then pasting the subPageRanks together to form the

global PageRank. Identification of the connected components of the web graph

can be determined by a graph traversal algorithm such as breadth-first search or

depth-first search, which requires O(n(P) + nnz(P)) time. Then the computa-

tion of the subPageRank for each connected component can be done in parallel

Langville and Meyer: Deeper Inside PageRank 361

requiring O(n(PCC)) time, where n(PCC) is the size of the largest connected

component. This is theoretically promising, however, the bowtie structure dis-

covered by Broder et al. [Broder et al. 00] shows that the largest connected

component for a web graph is composed of nearly 30 percent of the nodes, so

the savings are not overwhelming.

7. Sensitivity, Stability, and Condition Numbers

Section 6 discussed ideas for changing some parameters in the PageRank model.

A natural question is how such changes affect the PageRank vector. Regarding

the issues of sensitivity and stability, one would like to know how changes in P

affect πT . The two different formulations of the PageRank problem, the linear

system formulation and the eigenvector formulation, give some insight. The

PageRank problem in its general linear system form is

πT (I− αP̄) = (1− α)vT .
Section 5.2. listed a property pertaining to the condition number of the linear

system, κ∞(I − αP̄) = 1+α
1−α . (Also proven in [Kamvar and Haveliwala 03].) As

α → 1, the linear system becomes more ill-conditioned, meaning that a small

change in the coefficient matrix creates a large change in the solution vector.

However, πT is actually an eigenvector for the corresponding Markov chain.

While elements in the solution vector may change greatly for small changes in

the coefficient matrix, the direction of the vector may change minutely. Once

the solution is normalized to create a probability vector, the effect is minimal.

The ill-conditioning of the linear system does not imply that the corresponding

eigensystem is ill-conditioned, a fact documented by Wilkinson [Wilkenson 65]

(with respect to the inverse iteration method).

To answer the questions about how changes inP affect πT , what we need to ex-

amine is eigenvector sensitivity, not linear system sensitivity. A crude statement

about eigenvector sensitivity is that if a simple eigenvalue is close to the other

eigenvalues, then the corresponding eigenvector is sensitive to perturbations in

P, but a large gap does not insure insensitivity.

More rigorous measures of eigenvector sensitivity for Markov chains were de-

veloped by Meyer and Stewart [Meyer and Stewart 88], Meyer and Golub [Golub

and Meyer 86], Cho and Meyer [Cho and Meyer 00], and Funderlic and Meyer

[Funderlic and Meyer 86]. While not true for general eigenanalysis, it is known

[Meyer 93] that for a Markov chain with matrix P the sensitivity of πT to per-

turbations in P is governed by how close the subdominant eigenvalue λ2 of P is

to 1. Therefore, as α increases, the PageRank vector becomes more and more

362 Internet Mathematics

sensitive to small changes in P. Thus, Google’s choice of α = .85, while staying

further from the true hyperlink structure of the web, gives a much more stable

PageRank than the “truer to the web” choice of α = .99.

This same observation can be arrived at alternatively using derivatives. The

parameter α is usually set to .85, but it can theoretically vary between 0 < α < 1.

Of course, ¯̄P depends on α, and so, ¯̄P(α) = αP̄+(1−α)evT . The question about
how sensitive πT (α) is to changes in α can be answered precisely if the derivative

dπT (α)/dα can be evaluated. But before attempting to differentiate we should

be sure that this derivative is well-defined. The distribution πT (α) is a left-hand

eigenvector for ¯̄P(α), but eigenvector components need not be differentiable (or

even continuous) functions of the entries of ¯̄P(α) [Meyer 00, page 497], so the

existence of dπT (α)/dα is not a slam dunk. The following theorem provides

what is needed.

Theorem 7.1. The PageRank vector is given by

πT (α) =
1�n

i=1Di(α)

D
D1(α), D2(α), . . . , Dn(α)

i
,

where Di(α) is the ith principal minor determinant of order n− 1 in I− ¯̄P(α).
Because each principal minor Di(α) > 0 is just a sum of products of numbers

from I− ¯̄P(α), it follows that each component in πT (α) is a differentiable function
of α on the interval (0, 1).

Proof. For convenience, let P = ¯̄P(α), πT (α) = πT , Di = Di(α), and set A =

I − P. If adj (A) denotes the transpose of the matrix of cofactors (often called
the adjugate or adjoint), then

A[adj (A)] = 0 = [adj (A)]A.

It follows from the Perron-Frobenius theorem that rank (A) = n− 1, and hence
rank (adj (A)) = 1. Furthermore, Perron-Frobenius insures that each column

of [adj (A)] is a multiple of e, so [adj (A)] = ewT for some vector w. But

[adj (A)]ii = Di, so w
T = (D1, D2, . . . , Dn). Similarly, [adj (A)]A = 0 insures

that each row in [adj (A)] is a multiple of πT and hence wT = απT for some

α. This scalar α can’t be zero; otherwise [adj (A)] = 0, which is impossible.

Therefore, wTe = α W= 0, and wT /(wTe) = wT /α = πT .

Theorem 7.2. If πT (α) =
D
π1(α),π2(α), . . .πn(α)

i
is the PageRank vector , theneeeedπj(α)dα

eeee ≤ 1

1− α for each j = 1, 2, . . . , n, (7.1)

Langville and Meyer: Deeper Inside PageRank 363

and EEEEdπT (α)dα

EEEE
1

≤ 2

1− α . (7.2)

Proof. First compute dπT (α)/dα by noting that πT (α)e = 1 implies

dπT (α)

dα
e = 0.

Using this while differentiating both sides of

πT (α) = πT (α)
D
αP̄+ (1− α)evT i

yields

dπT (α)

dα
(I− αP̄) = πT (α)(P̄− evT).

Matrix I− αP̄(α) is nonsingular because α < 1 guarantees that ρ
D
αP̄(α)

i
< 1,

so

dπT (α)

dα
= πT (α)(P̄− evT)(I− αP̄)−1. (7.3)

The proof of (7.1) hinges on the following inequality. For every real x ∈ e⊥ (the
orthogonal complement of span{e}), and for all real vectors yn×1,

|xTy| ≤ ,x,1
w
ymax − ymin

2

W
. (7.4)

This is a consequence of Hölder’s inequality because for all real α,

|xTy| = ,xT (y − αe)| ≤ ,x,1,y − αe,∞,

and minα ,y − αe,∞ = (ymax − ymin)/2, where the minimum is attained at

α = (ymax + ymin)/2. It follows from (7.3) that

dπj(α)

dα
= πT (α)(P̄− evT)(I− αP̄)−1ej ,

where ej is the jth standard basis vector (i.e., the jth column of In×n). Since
πT (α)(P̄− evT)e = 0, Inequality (7.4) may be applied with

y = (I− αP̄)−1ej

364 Internet Mathematics

to obtain eeeedπj(α)dα

eeee ≤ ,πT (α)(P̄− evT),1wymax − ymin2

W
.

But ,πT (α)(P̄− evT),1 ≤ 2, soeeeedπj(α)dα

eeee ≤ ymax − ymin.
Now use the fact that (I− αP̄)−1 ≥ 0 together with the observation that

(I− αP̄)e = (1− α)e =⇒ (I− αP̄)−1e = (1− α)−1e

to conclude that ymin ≥ 0 and

ymax ≤ max
i,j

J
(I− αP̄)−1o

ij
≤ ,(I− αP̄)−1,∞ = ,(I− αP̄)−1e,∞ = 1

1− α .

Consequently, eeeedπj(α)dα

eeee ≤ 1

1− α ,

which is (7.1). Inequality (7.2) is a direct consequence of (7.3) along with the

above observation that

,(I− αP̄)−1,∞ = ,(I− αP̄)−1e,∞ = 1

1− α .

Theorem 7.2 makes it apparent that the sensitivity of the PageRank vector as

a function of α is primarily governed by the size of (1− α)−1. If α is close to 1,
then PageRank is sensitive to small changes in α. Therefore, there is a balancing

act to be performed. As α becomes smaller, the influence of the the actual link

structure in the web is decreased and effects of the artificial probability vT are

increased. Since PageRank is trying to take advantage of the underlying link

structure, it is more desirable (at least in this respect) to choose α close to 1.

However, if α is too close to 1, then, as we have just observed, PageRanks will

be unstable, and the convergence rate slows.

Three other research groups have examined the sensitivity and stability of the

PageRank vector: Ng et al. at the University of California at Berkeley, Bianchini

et al. in Siena, Italy, and Borodin et al. at the University of Toronto. All

three groups have computed bounds on the difference between the old PageRank

vector πT and the new, updated PageRank vector π̃T . Using Aldous’ notion of

variational distance [Aldous 83], Ng et al. [Ng et al. 01a] arrive at

,πT − π̃T ,1 ≤ 2

1− α
3
i∈U

πi,

Langville and Meyer: Deeper Inside PageRank 365

where U is the set of all pages that have been updated. Bianchini et al. [Bianchini

et al. 03], using concepts of energy flow, and Borodin et al. [Lee and Borodin 03]

improve upon this bound, replacing 2
1−α with

2α
1−α . The interpretation is that as

long as α is not close to 1 and the updated pages do not have high PageRank,

then the updated PageRanks do not change much. For α = .85, 2α
1−α = 11.3,

which means that the 1-norm of the difference between the old PageRank vector

and the new, updated PageRank vector is less than 11.3 times the sum of the old

PageRank for all updated pages. All three groups use the bounds to conclude

that PageRank is “robust” and “stable,” compared to other ranking algorithms

such as HITS. However, being more stable than another algorithm only makes

the algorithm in question comparatively stable not uniformly stable.

In fact, Bianchini et al. [Bianchini et al. 03] “highlight a nice property of

PageRank, namely that a community can only make a very limited change to

the overall PageRank of the web. Thus, regardless of the way they change,

nonauthoritative communities cannot affect significantly the global PageRank.”

On the other hand, authoritative communities whose high-ranking pages are

updated can significantly affect the global PageRank. The experiments done

by the Berkeley group involve removing a random 30 percent of their data set

and recomputing the importance vector [Ng et al. 01b]. (The Toronto group

conducted similar experiments on much smaller data sets [Lee and Borodin 03].)

Their findings show that PageRank is stable under such perturbation. However,

we contest that these results may be misleading. As stated aptly by the Italian

researchers, perturbations to nonauthoritative pages have little effect on the

rankings. Removing a random portion of the graph amounts to removing a very

large proportion of nonauthoritative pages compared to authoritative pages, due

to the web’s scale-free structure [Barabasi et al 00]. (A more detailed description

of the scale-free structure of the web comes in Section 9.) A better indication

of PageRank’s stability (or any ranking algorithm’s stability) is its sensitivity

to carefully selected perturbations, namely perturbations of the hubs or high

PageRank pages. In fact, this paints a much more realistic picture as these

are the most likely to change and most frequently changing pages on the web

[Fetterly et al. 03].

A fourth group of researchers recently joined the stability discussion. Lempel

and Moran, the inventors of the SALSA algorithm [Lempel and Moran 00], have

added a further distinction to the definition of stability. In [Lempel and Moran

04], they note that stability of an algorithm, which concerns volatility of the

scores assigned to pages, has been well-studied. What has not been studied is the

notion of rank-stability (first defined and studied by Borodin et al. [Borodin 01],

which addresses how volatile the rankings of pages are with respect to changes

in the underlying graph. Lempel and Moran show that stability does not imply

366 Internet Mathematics

rank-stability. In fact, they provide a small example demonstrating that a change

in one outlink of a very low ranking page can turn the entire ranking upside

down! They also introduce the interesting concept of running-time stability,

challenging researchers to examine the effect of small perturbations in the graph

on an algorithm’s running time.

8. Updating the PageRank Vector

Section 7 gave a brief introduction to the updating problem. Here we present

a more thorough analysis. We begin by emphasizing the need for updating

the PageRank vector frequently. A study by Cho and Garcia-Molina [Cho and

Garcia-Molina 00] in 2000 reported that 40 percent of all web pages in their data

set changed within a week, and 23 percent of the .com pages changed daily. In

a much more extensive and recent study, the results of Fetterly et al. [Fetterly

et al. 03] concur. About 35 percent of all web pages changed over the course of

their study, and also pages that were larger in size changed more often and more

extensively than their smaller counterparts. In the above studies, change was

defined as either a change in page content or a change in page outlinks or both.

Now consider news web pages, where updates to both content and links might

occur on an hourly basis. Clearly, the PageRank vector must be as dynamic as

the web. Currently, Google updates its PageRank vector monthly [Google 03].

Researchers have been working to make updating easier, taking advantage of old

computations to speed updated computations. To our knowledge, the PageRank

vector for the entire web is recomputed each month from scratch. (Popular sites

may have their PageRank updated more frequently.) That is, last month’s vector

is not used to create this month’s vector. A Google spokesperson at the annual

SIAM meeting in 2002 reported that restarting this month’s power method with

last month’s vector seemed to provide no improvement. This implies that the two

vectors are just not close enough to each other for the restarted power method

to effect any gains.

In general, the updating problem is stated as: given an old Markov matrix P

and its stationary vector πT along with the updated Markov matrix P̃, find the

updated stationary vector π̃T . There are several updating methods for finding

π̃T when the updates affect only elements of P (as opposed to the addition or

deletion of states, which change the size of P). The simplest updating approach

begins an iterative method applied to P̃ with πT as the starting vector. Intuition

counsels that if P̃ ≈ P, then π̃T should be close to π and can thus be obtained,
starting from πT , with only a few more iterations of the chosen iterative method.

However, unless πT is very close to π̃T , this takes as many iterations as using

Langville and Meyer: Deeper Inside PageRank 367

a random or uniform starting vector. Apparently, this is what PageRank engi-

neers have witnessed. Since the PageRank updating problem is really a Markov

chain with a particular form, we begin by reviewing Markov chain updating

techniques. Markov chain researchers have been studying the updating problem

for some time, hoping to find π̃T inexpensively without resorting to full recom-

putation. There have been many papers on the topic of perturbation bounds

for the stationary solution of a Markov chain [Cho and Meyer 01, Funderlic

and Meyer 86, Golub and Meyer 86, Ipsen and Meyer 94, Meyer 94, Seneta 91].

These bounds are similar in spirit to the bounds of Ng et al. [Ng et al. 01a]

and Bianchini et al. [Bianchini et al. 03] presented in Section 7. These papers

aim to produce tight bounds on the difference between πT and π̃T , showing

that the magnitude of the changes in P gives information about the sensitivity

of elements of πT . However, there are some papers whose aim is to produce

more than just bounds; these papers show exactly how changes in P affect each

element in πT . One expensive method uses the group inverse to update the

static chain [Meyer and Shoaf 80]. Calculating the group inverse for a web-sized

matrix is not a practical option. Similar analyses use mean first passage times,

the fundamental matrix, or an LU factorization to update πT exactly [Cho and

Meyer 01, Funderlic and Plemmons 86, Kemeny and Snell 60, Seneta 91]. Yet

these are also expensive means of obtaining π̃T and remain computationally im-

practical. These classical Markov chain updating methods are also considered

static, in that they only accommodate updates to the elements of the matrix;

state additions and deletions cannot be handled. Thus, due to the dynamics of

the web, these computationally impractical methods also have theoretical lim-

itations. New updating methods that handle dynamic Markov chains must be

developed.

The first updating paper [Chien et al. 01] aimed specifically at the PageRank

problem and its dynamics was available online in early 2002 and was the work

of Steve Chien, a Berkeley student, Cynthia Dwork from Microsoft, and Kumar

and Sivakumar of IBM Almaden. These researchers created an algorithm that

provided a fast approximate PageRank for updates to the web’s link structure.

The intuition behind their algorithm was the following: identify a small portion

of the web graph “near” the link changes and model the rest of the web as

a single node in a new, much smaller graph; compute a PageRank vector for

this small graph and transfer these results to the much bigger, original graph.

Their results, although only handling link updates, not state updates, were quite

promising. So much so, that we recognized the potential for improvement to

their algorithm. In [Langville and Meyer 02a, Langville and Meyer 02b], we

outlined the connection between the algorithm of Chien et al. and aggregation

methods. In fact, Chien et al. essentially complete one step of an aggregation

368 Internet Mathematics

method. We formalized the connection and produced a specialized iterative

aggregation algorithm for updating any Markov chain with any type of update,

link or state. This iterative aggregation algorithm works especially well on the

PageRank problem due to the graph’s underlying scale-free structure. (More

on the scale-free properties can be found in Section 9.) Our updating algorithm

produced speed-ups on the order of 5—10. Even greater potential for speed-up

exists since the other power method acceleration methods of Section 5.1.2 can

be used in conjunction with our method. While our updating solution can be

applied to any Markov chain, other updating techniques tailored completely to

the PageRank problem exist [Abiteboul et al. 03, Bianchini et al. 03, Kamvar

et al. 03b, Tsoi et al. 03]. These techniques often use the crawlers employed

by the search engine to adaptively update PageRank approximately, without

requiring storage of the transition matrix. Although the dynamic nature of the

web creates challenges, it has pushed researchers to develop better solutions to

the old problem of updating the stationary vector of a Markov chain. Other

areas for improvement are detailed in the next section.

9. Areas of Future Research

9.1. Storage and Speed

Two areas of current research, storage and computational speed, will remain

areas of future work for some time. As the web continues its amazing growth, the

need for smarter storage schemes and even faster numerical methods will become

more evident. Both are exciting areas for computer scientists and numerical

analysts interested in information retrieval.

9.2. Spam

Another area drawing attention recently is spam identification and prevention.

This was cited by Monika Henzinger, former Research Director at Google, as

a present “challenge” in an October 2002 paper [Henzinger et al. 02]. Once

thought to be impervious to spamming, researchers have been revealing subtle

ways of boosting PageRank [Bianchini et al. 03, Tsoi et al. 03]. The paper

by Bianchini et al. [Bianchini et al. 03], based on its suggested ways to alter

PageRank, goes on to describe how to identify spamming techniques, such as

link farms, which can take the form of a regular graph. This is a first step to-

ward preventing spam. However, as long as the web provides some mercantile

potential, search engine optimization companies will exist and the papers they

write for spammers will circulate. At least a dozen or so papers with nearly

Langville and Meyer: Deeper Inside PageRank 369

the same title exist for spammers, “PageRank Explained and How to Make the

Most of It” [WebRankInfo 03, Craven 03, Ridings 02, Ridings and Shishigin 02].

Clearly, this makes for an ongoing war between search engines and the optimiza-

tion companies and requires constant tweaking of the underlying algorithms in

an attempt to outwit the spammers.

9.3. The Evolution and Dynamics of the Web

Viewing the web as a dynamic organism introduces some interesting areas of

research. The web’s constant growth and frequent updates create an evolving

network, as opposed to a static network. Adaptive algorithms have been pre-

sented to accommodate for this evolution [Abiteboul et al. 03, Fetterly et al.

03, Tsoi et al. 03]. Google itself has begun research on “stream of text” informa-

tion such as news and TV broadcasts. Such dynamic content creates challenges

that need tailored solutions. One example is the query-free news search proposed

by Google engineers in [Henzinger et al. 03]. This is related to the algorithmic

challenge of using changes in data streams to locate interesting trends, a chal-

lenge identified by Monika Henzinger in her 2003 paper, “Algorithmic Challenges

in Web Search Engines” [Henzinger 03].

9.4. Structure on Many Levels

A final prediction for future research is the exploitation of the web’s structure

in all aspects of information retrieval. The web has structure on many different

levels. A level discovered in 2000 by Broder et al. [Broder et al. 00] and often

cited since is the bowtie structure. Their findings show that nearly a quarter

of the web is composed of one giant strongly connected component, one-fifth

is composed of pages pointing into the strongly connected component, another

one-fifth of pages point out from the strongly connected component, another

one-fifth is composed of pages called tendrils, and the remaining web consists of

disconnected pages. Arasu et al. [Arasu et al. 02] propose an algorithm that

computes PageRank more efficiently by exploiting this bowtie structure. Dill et

al. discovered that the bowtie structure is self-similar. That is, within the giant

structure of the web, there are subsets that are themselves small bowties, and so

on. The fractal nature of the web appears with respect to many of its properties

including inlink, outlink, and PageRank power law exponents.

Recent work by Barabasi et al. [Barabasi 03, Barabasi et al 00, Farkas et

al. 01] has uncovered the scale-free structure of the web. This new discovery

disputed earlier claims about the random network nature of the web [Erdos

and Renyi 59] and the small-world nature of the web [Watts 99]. This model,

called the scale-free model, describes well the various power law distributions

370 Internet Mathematics

that have been witnessed for node indegree, outdegree, and PageRank as well as

the average degree of separation [Barabasi 03, Faloutsos et al. 99, Pandurangan

et al. 02]. The scale-free structure of the web explains the emergence of hubs

and a new node’s increasing struggle to gain importance as time marches on.

We view the use of the scale-free structure to improve PageRank computations

as an uncharted area of future research.

Kamvar et al. [Kamvar et al. 03b] have considered the block domain structure

of the web to speed PageRank computations. We predict other aggregation algo-

rithms from numerical analysis, similar to their BlockRank algorithm, will play a

greater role in the future, as researchers in Italy [Boldi et al. 02] have uncovered

what appears to be a nearly completely decomposable structure [Stewart 94] in

the African web.

The increase in intranet search engines has driven other researchers to de-

lineate the structural and philosophical differences between the WWW and in-

tranets [Fagin et al. 03a]. The various intranets provide structure on yet another

level and deserve greater attention.

Finally, we mention the level of structure considered by Bianchini et al. [Bian-

chini et al. 03]. They examine the PageRank within a community of nodes. How

do changes within the community affect the PageRank of community pages? How

do changes outside the community affect the PageRank of community pages?

How do changes inside the community affect the global PageRank? This pro-

vides for an interesting type of sensitivity analysis, with respect to groups of

pages. In general, we believe that algorithms designed for the PageRank prob-

lem and tailored to exploit the various levels of structure on the web should

create significant improvements.

It is also worth noting that the ideas in this paper, concerning PageRank,

extend to any network where finding the importance ranking of nodes is desired,

for example, social networks, networks modeling the spread of disease, economic

networks, citation networks, relational database networks, the Internet’s network

of routers, the email network, the power network, and the transportation net-

work. The book [Barabasi 03] by Barabasi contains an entertaining introduction

to the science of networks, such as these.

10. Related Work

As alluded to in the introduction, HITS [Kleinberg 99] is very similar to the

PageRank model, but the differences are worth mentioning. Unlike PageRank,

HITS is query-dependent due to its creation of a neighborhood graph of pages re-

lated to the query terms. HITS forms both an authority matrix and a hub matrix

Langville and Meyer: Deeper Inside PageRank 371

from the hyperlink adjacency matrix, rather than one Markov chain. As a result,

HITS returns both authority and hub scores for each page, whereas PageRank

returns only authority scores. PageRank is a global scoring vector, whereas HITS

must compute two eigenvector calculations at query time. Numerous modifica-

tions and improvements to both HITS and PageRank and hybrids between the

two have been created [Achlioptas et al. 01, Bharat and Henzinger 98, Bharat

and Mihaila 02, Borodin 01, Chakrabarti et al. 98, Chen et al. 02b, Cohn and

Chang 00, Davison et al. 99, Diligenti et al. 02, Ding et al. 01, Ding et al.

02, Farahat et al. 01, Farahat et al. 04, Mendelzon and Rafiei 00, Rafiei and

Mendelzon 00, Zhang and Dong 00]. Several groups have suggested incorporat-

ing text information into the link analysis [Bharat and Henzinger 98, Cohn and

Hofmann 01, Haveliwala 02b, Jeh and Widom 02, Richardson and Domingos 02].

Two other novel methods have been introduced, one based on entropy concepts

[Kao et al. 02] and another using flow [Tomlin 03]. A final related algorithm is

the SALSA method of Lempel and Moran [Lempel and Moran 00], which uses a

bipartite graph of the web to create two Markov chains for ranking pages.

Disclaimer. We mention that PageRank is just one of many measures employed by
Google to return relevant results to users. Many other heuristics are part of this

successful engine; we have focused on only one. In addition, Google, of course,

is very secretive about their technology. This survey paper, in no way, speaks

for Google.

Acknowledgements. We thank Cleve Moler for sharing his Mathworks data set,

mathworks.dat, and other web-crawling m-files. We also thank Ronny Lempel for

providing us with several data sets that we used for testing. Finally, we thank the

anonymous referee for the many valuable comments that improved the paper. The

second author’s research was supported in part by NSF CCR-ITR-0113121 and NSF

CCR-0318575.

References

[Abiteboul et al. 03] Serge Abiteboul, Mihai Preda, and Gregory Cobena. “Adaptive

On-Line Page Importance Computation.” In Proc. of Twelfth International Con-

ference on World Wide Web (WWW12), pp. 280—290. New York: ACM Press,

2003.

[Achlioptas et al. 01] Dimitris Achlioptas, Amos Fiat, Anna R. Karlin, and Frank Mc-

Sherry. “Web Search via Hub Synthesis.” In IEEE Symposium on Foundations

of Computer Science, pp. 500—509. Los Alamitos: IEEE Press, 2001.

[Aldous 83] David Aldous. “Random Walks on Finite Groups and Rapidly Mixing

Markov Chains.” In Seminar on Probability XVII, Lecture Notes in Mathematics

986, pp. 243—297. Berlin: Springer-Verlag, 1983.

372 Internet Mathematics

[Arasu et al. 01] Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas

Paepcke, and Sriram Raghavan. “Searching the Web.” ACM Transactions on

Internet Technology 1:1 (2001), 2—43.

[Arasu et al. 02] Arvind Arasu, Jasmine Novak, Andrew Tomkins, and John Tomlin.

“PageRank Computation and the Structure of the Web: Experiments and Al-

gorithms.” The Eleventh International World Wide Web Conference, Posters.

Available from World Wide Web (http://www2002.org/CDROM/poster/

173.pdf), 2002.

[Avrachenkov and Litvak 04] Konstantin Avrachenkov and Nelly Litvak. “Decompo-

sition of the Google Pagerank and Optimal Linking Strategy.” Technical report,

INRIA, January 2004.

[Baeza-Yates and Davis 04] Ricardo Baeza-Yates and Emilio Davis. “Web Page Rank-

ing Using Link Attributes.” In International World Wide Web Conference archive

Proceedings of the 13th international World Wide Web conference, Alternate

Track Papers & Posters, pp. 328—329. New York: ACM Press, 2004.

[Barabasi 03] Albert-Laszlo Barabasi. Linked: The New Science of Networks. New

York: Plume Books, 2003.

[Barabasi et al 00] Albert-Laszlo Barabasi, Reka Albert, and Hawoong Jeong. “Scale-

Free Characteristics of Random Networks: The Topology of the World-Wide

Web.” Physica A 281 (2000), 69—77.

[Barrett et al. 94] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-

garra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the

Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd Edition.

Philadelphia, PA: SIAM, 1994.

[Barroso et al. 03] Luiz Andre Barroso, Jeffrey Dean, and Urs Holzle. “Web Search for

a Planet: The Google Cluster Architecture.” IEEE Micro 23:2 (2003), 22—28.

[Berman and Plemmons 79] Abraham Berman and Robert J. Plemmons. Nonnegative

Matrices in the Mathematical Sciences. New York: Academic Press, Inc., 1979.

[Bharat et al. 98] Krishna Bharat, Andrei Broder, Monika Henzinger, Puneet Kumar,

and Suresh Venkatasubramanian. “The Connectivity Server: Fast Access to

Linkage Information on the Web.” In Proceedings of the Seventh International

Conference on World Wide Web, pp. 469—477. New York: ACM Press, 1998.

[Bharat and Henzinger 98] Krishna Bharat and Monika R. Henzinger. “Improved Al-

gorithms for Topic Distillation in Hyperlinked Environments.” In 21st Inter-

national ACM SIGIR Conference on Research and Development in Information

Retrieval (SIGIR), pp. 104—111, New York: ACM Press, 1998.

[Bharat and Mihaila 02] Krishna Bharat and George A. Mihaila. “When Experts

Agree: Using Non-Affiliated Experts to Rank Popular Topics.” ACM Trans-

actions on Information Systems 20:1 (2002), 47—58.

[Bianchini et al. 02] Monica Bianchini, Marco Gori, and Franco Scarselli.

“PageRank: A Circuital Analysis.” The Eleventh International World

Wide Web Conference, Posters. Available from World Wide Web

(http://www2002.org/CDROM/poster/165.pdf), 2002.

Langville and Meyer: Deeper Inside PageRank 373

[Bianchini et al. 03] Monica Bianchini, Marco Gori, and Franco Scarselli. “Inside

PageRank.” Preprint 2003; to appear in ACM Transactions on Internet Tech-

nology 4:4, February 2005.

[Blachman 03] Nancy Blachman, Eric Fredricksen, and Fritz Schneider. How to Do

Everything with Google. New York: McGraw-Hill, 2003.

[Boldi et al. 02] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano

Vigna. “Structural Properties of the African Web.” The Eleventh Interna-

tional World Wide Web Conference, Posters. Available from World Wide Web

(http://www2002.org/CDROM/poster/164/index.html), 2002.

[Boldi and Vigna 03] Paolo Boldi and Sebastiano Vigna. “The WebGraph Framework

II: Codes for the World Wide Web.” Technical Report 294-03, Universita di

Milano, Dipartimento di Scienze dell’ Informazione Engineering, 2003.

[Boldi and Vigna 04] Paolo Boldi and Sebastiano Vigna. “The WebGraph Framework

I: Compression Techniques.” In Proc. of the Thirteenth International World Wide

Web Conference, pp. 595-601. New York: ACM Press, 2004.

[Borodin 01] Allan Borodin, Gareth O. Roberts, Jeffrey S. Rosenthal, and Panayiotis

Tsaparas. “Finding Authorities and Hubs from Link Structures on the World

Wide Web.” In Proc. of the Tenth International World Wide Web Conference,

pp. 415—429. New York: ACM Press, 2001.

[Brin et al. 98a] Sergey Brin, Rajeev Motwani, Lawrence Page, and Terry Winograd.

“What Can You Do With a Web in Your Pocket?” Data Engineering Bulletin

21 (1998), 37—47.

[Brin and Page 98] Sergey Brin and Lawrence Page. “The Anatomy of a Large-Scale

Hypertextual Web Search Engine.” Computer Networks and ISDN Systems 33

(1998), 107—117.

[Brin et al. 98b] Sergey Brin, Lawrence Page, R. Motwami, and Terry Winograd. “The

PageRank Citation Ranking: Bringing Order to the Web.” Technical report,

Computer Science Department, Stanford University, 1998.

[Broder et al. 00] Andrei Broder, Ravi Kumar, and Marzin Maghoul. “Graph Struc-

ture in the Web.” In Proc. of the Ninth International World Wide Web Confer-

ence, pp. 309—320. New York: ACM Press, 2000.

[Broder et al. 04] Andrei Broder, Ronny Lempel, Farzin Maghoul, and Jan Pedersen.

“Efficient Pagerank Approximation via Graph Aggregation.” In Proceedings of

the 13th International World Wide Web conference. Alternate Track Papers &

Posters. pp. 484—485. New York: ACM Press, 2004.

[Chakrabarti et al. 98] Soumen Chakrabarti, Byron Dom, David Gibson, Ravi Kumar,

Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew Tomkins. “Spectral

Filtering for Resource Discovery.” Presented at the ACM SIGIR Workshop on

Hypertext Information Retrieval on the Web, 1998. Revised version available

as “Topic Distillation and Spectral Filtering.” Artificial Intelligence Review 13

(1999), 409—435.

[Chen et al. 02a] Yen-Yu Chen, Qingqing Gan, and Torsten Suel. “I/O-Efficient Tech-

niques for Computing PageRank.” In Proceedings of the Eleventh International

374 Internet Mathematics

Conference on Information and Knowledge Management (CIKM’02), pp. 549—

557. New York: ACM Press, 2002.

[Chen et al. 02b] Zheng Chen, Jidong Wang, Liu Wenyin, and Wei-Ying Ma. “A Uni-

fied Framework for Web Link Analysis.” In Proc. of Web Information Systems

Engineering 2002, p. 63. New York: ACM Press, 2002.

[Chien et al. 01] Steve Chien, Cynthia Dwork, Ravi Kumar, and D. Sivakumar. “To-

wards Exploiting Link Evolution.” Unpublished manuscript, 2001.

[Cho and Meyer 00] Grace E. Cho and Carl D. Meyer. “Markov Chain Sensitivity

Measured by Mean First Passage Times.” Linear Algebra and its Applications

313 (2000), 21—28.

[Cho and Meyer 01] Grace E. Cho and Carl D. Meyer. “Comparison of Perturbation

Bounds for the Stationary Distribution of a Markov Chain.” Linear Algebra and

its Applications 335:1—3 (2001), 137—150.

[Cho and Garcia-Molina 00] Junghoo Cho and Hector Garcia-Molina. “The Evolution

of the Web and Implications for an Incremental Crawler.” In Proceedings of the

Twenty-Sixth International Conference on Very Large Databases, pp. 200—209.

New York: ACM Press, 2000.

[Cohn and Chang 00] David Cohn and Huan Chang. “Learning to Probabilistically

Identify Authoritative Documents.” In Proceedings of the 17th International Con-

ference on Machine Learning, pp. 167—174. San Francisco: Morgan Kaufmann,

2000.

[Cohn and Hofmann 01] David Cohn and Thomas Hofmann. “The Missing Link: A

Probabilistic Model of Document Content and Hyperlink Connectivity.” In Ad-

vances in Neural Information Processing Systems 13, edited by T. Leen, T. Di-

etterich and V. Tresp, pp. 430—436. Cambridge, MA: MIT Press, 2001.

[Craven 03] Phil Craven. “Google’s PageRank Explained.” Web Workshop. Available

from World Wide Web (http://www.webworkshop.net/), 2003.

[Davison et al. 99] Brian D. Davison, Apostolos Gerasoulis, Konstantinos Kleisouris,

Yingfang Lu, Hyun ju Seo, Wei Wang, and Baohua Wu. “Discoweb: Applying

Link Analysis to Web Search.” In Proc. Eighth International World Wide Web

Conference, pp. 148—149. New York: ACM Press, 1999.

[Diligenti et al. 02] Michelangelo Diligenti, Marco Gori, and Marco Maggini. “Web

Page Scoring Systems for Horizontal and Vertical Search.” In Proceedings of the

Eleventh International Conference on World Wide Web, pp. 508—516. New York:

ACM Press, 2002.

[Ding et al. 01] Chris Ding, Xiaofeng He, Parry Husbands, Hongyuan Zha, and Horst

Simon. “Link Analysis: Hubs and Authorities on the World Wide Web.” Tech-

nical Report 47847, Lawrence Berkeley National Laboratory, 2001.

[Ding et al. 02] Chris Ding, Xiaofeng He, Hongyuan Zha, and Horst Simon. “PageR-

ank, HITS and a Unified Framework for Link Analysis.” In Proceedings of the

25th ACM SIGIR Conference, pp. 353—354. New York: ACM Press, 2002.

Langville and Meyer: Deeper Inside PageRank 375

[Dwork et al. 01] Cynthia Dwork, Ravi Kumar, and Moni Naor and D. Sivakumar.

“Rank Aggregation Methods for the Web.” In Proceedings of the Tenth Inter-

national Conference on World Wide Web (WWW10), pp. 613—622. New York:

ACM Press, 2001.

[Erdos and Renyi 59] Paul Erdos and Alfred Renyi. “On Random Graphs I.” Math.

Debrechen 6 (1959), 290—297.

[Fagin et al. 00] Ronald Fagin, Anna R. Karlin, Jon Kleinberg, Prabhakar Raghavan,

Sridhar Rajagopalan, Ronitt Rubinfeld, Madhu Sudan, and Andrew Tomkins.

“Random Walks with ‘Back Buttons’.” In 32nd ACM Symposium on Theory of

Computing, pp. 484—493. New York: ACM Press, 2000.

[Fagin et al. 03a] Ronald Fagin, Ravi Kumar, Kevin S. McCurley, Jasmine Novak,

D. Sivakumar, John A. Tomlin, and David P. Williamson. “Searching the Work-

place Web.” In Proceedings of the Twelfth International Conference on World

Wide Web (WWW12), pp. 366—375. New York: ACM Press, 2003.

[Fagin et al. 03b] Ronald Fagin, Ravi Kumar, and D. Sivakumar. “Comparing Top k
Lists.” In ACM SIAM Symposium on Discrete Algorithms, pp. 28—36. Philadel-

phia, PA: SIAM, 2003.

[Faloutsos et al. 99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. “On

Power-law Relationships of the Internet Topology.” In SIGCOMM, pp. 251—262.

New York: ACM Press, 1999.

[Farahat et al. 01] Ayman Farahat, Thomas Lofaro, Joel C. Miller, Gregory Rae,

F. Schaefer, and Lesley A. Ward. “Modifications of Kleinberg’s HITS Algo-

rithm Using Matrix Exponentiation and Web Log Records.” In ACM SIGIR

Conference, pp. 444—445. New York: ACM Press, 2001.

[Farahat et al. 04] Ayman Farahat, Thomas Lofaro, Joel C. Miller, Gregory Rae, and

Lesley A. Ward. “Existence and Uniqueness of Ranking Vectors for Linear Link

Analysis.” Preprint, 2004; to appear in SIAM Journal on Scientific Computing.

[Farkas et al. 01] Illes J. Farkas, Imre Derenyi, Albert-Laszlo Barabasi, and Tamas

Vicsek. “Spectra of Real-World Graphs: Beyond the Semicircle Law.” Physical

Review E 64 (2001), 026704-1—026704-12.

[Fetterly et al. 03] Dennis Fetterly, Mark Manasse, Marc Najork, and Janet L. Wiener.

“A Large-Scale Study of the Evolution of Web Pages.” Software-Practice and

Experience 34:2 (2004), 213—217.

[Funderlic and Meyer 86] Robert E. Funderlic and Carl D. Meyer. “Sensitivity of the

Stationary Distribution Vector for an Ergodic Markov Chain.” Linear Algebra

and its Applications 76 (1986), 1—17.

[Funderlic and Plemmons 86] Robert E. Funderlic and Robert J. Plemmons. “Updat-

ing LU Factorizations for Computing Stationary Distributions.” SIAM Journal

on Algebraic and Discrete Methods 7:1 (1986), 30—42.

[Ghemawat et al. 03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The

Google File System.” In Proceedings of the Nineteenth ACM Symposium on

Operating Systems Principles, pp. 29—43. New York: ACM Press, 2003.

376 Internet Mathematics

[Golub and Meyer 86] Gene H. Golub and Carl D. Meyer. “Using the QR Factorization
and Group Inverse to Compute, Differentiate and Estimate the Sensitivity of

Stationary Probabilities for Markov Chains.” SIAM Journal on Algebraic and

Discrete Methods 17 (1986), 273—281.

[Google 03] Google. “Why Does My Page’s Rank Keep Changing?” Google PageRank

Information. Available on Word Wide Web (http://www.google.com/

webmasters/4.html), 2003.

[Haveliwala 99] Taher H. Haveliwala. “Efficient Computation of PageRank.” Technical

Report. Computer Science Department, Stanford University, 1999.

[Haveliwala 02a] Taher H. Haveliwala. “Efficient Encodings for Document Ranking

Vectors.” Technical Report. Computer Science Department, Stanford University,

November 2002.

[Haveliwala 02b] Taher H. Haveliwala. “Topic-Sensitive PageRank.” In Proceedings of

the Eleventh International Conference on World Wide Web, pp. 517—526. New

York: ACM Press, 2002.

[Haveliwala and Kamvar 03] Taher H. Haveliwala and Sepandar D. Kamvar. “The

Second Eigenvalue of the Google Matrix.” Technical report. Stanford University,

2003.

[Haveliwala et al. 03] Taher H. Haveliwala, Sepandar D. Kamvar, and Glen Jeh. “An

Analytical Comparison of Approaches to Personalizing Pagerank.” Technical

report. Stanford University, 2003.

[Henzinger 03] Monika Henzinger. “Algorithmic Challenges in Web Search Engines.”

Internet Mathematics 1:1 (2003), 115—126.

[Henzinger et al. 03] Monika Henzinger, Bay-Wei Chang, Brian Milch, and Sergey

Brin. “Query-Free News Search.” In Proceedings of the Twelfth International

Conference on World Wide Web (WWW12), pp. 1—10. New York: ACM Press,

2003.

[Henzinger et al. 02] Monika Henzinger, Rajeev Motwani, and Craig Silverstein.

“Challenges in Web Search Engines.” SIGIR Forum 36:2 (2002), 11—22.

[Ipsen and Meyer 94] Ilse C. F. Ipsen and Carl D. Meyer. “Uniform Stability of Markov

Chains.” SIAM Journal on Matrix Analysis and Applications 15:4 (1994), 1061—

1074.

[Jeh and Widom 02] Glen Jeh and Jennifer Widom. “Scaling Personalized Web

Search.” Technical report. Stanford University, 2002.

[Kamvar and Haveliwala 03] Sepandar D. Kamvar and Taher H. Haveliwala. “The

Condition Number of the PageRank Problem.” Technical report. Stanford Uni-

versity, 2003.

[Kamvar et al. 03a] Sepandar D. Kamvar, Taher H. Haveliwala, and Gene H. Golub.

“Adaptive Methods for the Computation of PageRank.” Technical Report. Stan-

ford University, 2003.

[Kamvar et al. 03b] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Man-

ning, and Gene H. Golub. “Exploiting the Block Structure of the Web for Com-

puting PageRank.” Technical Report. Stanford University, 2003.

Langville and Meyer: Deeper Inside PageRank 377

[Kamvar et al. 03c] Sepandar D. Kamvar, Taher H. Haveliwala, Christopher D. Man-

ning, and Gene H. Golub. “Extrapolation Methods for Accelerating PageRank

Computations.” In Proc. of the Twelfth International Conference on World Wide

Web, pp. 261—270. New York: ACM Press, 2003.

[Kao et al. 02] Hung-Yu Kao, Ming-Syan Chen, Shian-Hua Lin, and Jan-Ming Ho.

“Entropy-Based Link Analysis for Mining Web Informative Structures.” In Pro-

ceedings of the Eleventh International Conference on Information and Knowledge

Management, pp. 574—581. New York: ACM Press, 2002.

[Kemeny and Snell 60] John G. Kemeny and Laurie J. Snell. Finite Markov Chains.

New York: D. Van Nostrand, 1960.

[Kleinberg 99] Jon Kleinberg. “Authoritative Sources in a Hyperlinked Environment.”

Journal of the ACM 46:5 (1999), 604—632.

[Langville and Meyer 02a] Amy N. Langville and Carl D. Meyer. “Updating PageRank

Using the Group Inverse and Stochastic Complementation.” Technical Report.

North Carolina State University, Mathematics Department, 2002.

[Langville and Meyer 02b] Amy N. Langville and Carl D. Meyer. “Updating the Sta-

tionary Vector of an Irreducible Markov Chain.” Technical Report. N. C. State,

Mathematics Dept., 2002.

[Langville and Meyer 03] Amy N. Langville and Carl D. Meyer. “A Survey of Eigen-

vector Methods of Web Information Retrieval.” To appear in The SIAM Review.

[Langville and Meyer 04] Amy Langville and Carl Meyer. “A Reordering for the

PageRank Problem.” CRSC Tech Report. Center For Research in Scientific Com-

putation, 2004.

[Lee et al. 03] Chris Pan-Chi Lee, Gene H. Golub, and Stefanos A. Zenios. “Partial

State Space Aggregation Based on Lumpability and Its Application to PageR-

ank.” Technical Report. Stanford University, 2003.

[Lee and Borodin 03] Hyun Chul Lee and Allan Borodin. “Perturbation of the Hy-

perlinked Environment.” In Computing and Combinatorics: 9th Annual Inter-

national Conference, COCOON 2003, Big Sky, MT, USA, July 25—28, 2003,

Proceedings, Lecture Notes in Computer Science 2697, edited by T. Warnow and

B. Zhu, pp. 272—283. Heidelberg: Springer-Verlag, 2003.

[Lempel and Moran 00] Ronny Lempel and S. Moran. “The Stochastic Approach for

Link-Structure Analysis (SALSA) and the TKC Effect. Computer Netwroks 33:1—

6 (2000) 387—401.

[Lempel and Moran 04] Ronny Lempel and Shlomo Moran. “Rank-Stability and

Rank-Similarity of Link-Based Web Ranking Algorithms in Authority-

Connected Graphs.” Preprint available from World Wide Web (http://www

.cs.technion.ac.il/~moran/r/PS/stab-kluwer.pdf), 2004; to appear in Information

Retrieval, 2005.

[Lu et al. 04] Yizhou Lu, Benyu Zhang, Wensi Xi, Zheng Chen, Yi Liu, Michael R.

Lyu, and Wei-Ying Ma. “The PowerRank Web Link Annalysis Algorithm.” In

Proceedings of the 13th International World Wide Web Conference. Alternate

Track Papers & Posters, pp. 254—255. New York: ACM Press, 2004.

378 Internet Mathematics

[Mathieu and Bouklit 04] Fabien Mathieu and Mohamed Bouklit. “The Effect of the

Back Button in a Random Walk: Application for PageRank.” In Proceedings of

the 13th International World Wide Web Conference. Alternate Track Papers &

Posters, pp. 370—371. New York: ACM Press, 2004.

[Mendelzon and Rafiei 00] Alberto O. Mendelzon and Davood Rafiei. “What Do the

Neighbours Think? Computing Web Page Reputations.” IEEE Data Engineering

Bulletin 23:3 (2000), 9—16.

[Mendelzon and Rafiei 02] Alberto O. Mendelzon and Davood Rafiei. “An Au-

tonomous Page Ranking Method for Metasearch Engines.” The Eleventh Inter-

national Conference on World Wide Web, Posters. Available from World Wide

Web (http://www2002.org/CDROM/poster/48.pdf), 2002.

[Meyer 93] Carl D. Meyer. “The Character of a Finite Markov Chain.” In Linear

Algebra, Markov Chains, and Queueing Models, IMA Volumes in Mathematics

and its Applications 48, pp. 47—58. Berlin: Springer-Verlag 1993.

[Meyer 94] Carl D. Meyer. “Sensitivity of the Stationary Distribution of a Markov

Chain.” SIAM Journal on Matrix Analysis and Applications 15:3 (1994), 715—

728.

[Meyer 00] Carl D. Meyer. Matrix Analysis and Applied Linear Algebra. Philadelphia,

PA: SIAM, 2000.

[Meyer and Shoaf 80] Carl D. Meyer and James M. Shoaf. “Updating Finite Markov

Chains by Using Techniques of Group Matrix Inversion.” Journal of Statistical

Computation and Simulation 11 (1980), 163—181.

[Meyer and Stewart 88] Carl D. Meyer and G. W. Stewart. “Derivatives and Perturba-

tions of Eigenvectors.” SIAM Journal on Numerical Analysis 25 (1988), 679—691.

[Moler 02] Cleve Moler. “The World’s Largest Matrix Computation.” In Matlab News

and Notes, October 2002, pp. 12—13.

[Moler 04] Cleve B. Moler. Numerical Computing with MATLAB. Philadelphia, PA:

SIAM, 2004.

[Ng et al. 01a] Andrew Y. Ng, Alice X. Zheng, and Michael I. Jordan. “Link Analy-

sis, Eigenvectors and Stability.” In Proc. of the Seventeenth International Joint

Conference on Artificial Intelligence, pp. 903—910. San Francisco, CA: Morgan

Kaufmann, 2001.

[Ng et al. 01b] Andrew Y. Ng, Alice X. Zheng, and Michael I. Jordan. “Stable Algo-

rithms for Link Analysis.” In Proceedings of the 24th Annual International ACM

SIGIR Conference, pp. 258—266. New York: ACM Press, 2001.

[Pandurangan et al. 02] Gopal Pandurangan, Prabhakara Raghavan, and Eli Upfal.

“Using PageRank to Characterize Web Structure.” In 8th Annual International

Computing and Combinatorics Conference (COCOON), pp. 330—339. New York:

ACM Press, 2002.

[Pretto 02a] Luca Pretto. “Link Analysis Techniques for Ranking Webpages.” PhD

thesis. University of Padua, 2002.

Langville and Meyer: Deeper Inside PageRank 379

[Pretto 02b] Luca Pretto. “A Theoretical Analysis of PageRank.” In Proceedings of the

Ninth International Symposium on String Processing and Information Retrieval,

pp. 131—144. New York: Springer-Verlag, 2002.

[Rafiei and Mendelzon 00] Davood Rafiei and Alberto O. Mendelzon. “What is this

Page Known For? Computing Webpage Reputations.” In The Ninth Interna-

tional WWW Conference, pp. 823—835. New York: Elsevier Science, 2000.

[Raghavan and Garcia-Molina 01a] Sriram Raghavan and Hector Garcia-Molina.

“Compressing the Graph Structure of the Web.” In Proceedings of the IEEE

Conference on Data Compression, pp. 213—222. Los Alamitos: IEEE Press, 2001.

[Raghavan and Garcia-Molina 01b] Sriram Raghavan and Hector Garcia-Molina. “To-

wards Compressing Web Graphs.” In Proceedings of the IEEE Conference on

Data Compression, pp. 203—212. Los Alamitos: IEEE Press, 2001.

[Raghavan and Garcia-Molina 03] Sriram Raghavan and Hector Garcia-Molina. “Rep-

resenting Web Graphs.” In Proceedings of the 19th IEEE Conference on Data

Engineering, pp. 405—416. Los Alamitos, CA: IEEE Press, 2003.

[Richardson and Domingos 02] Matthew Richardson and Petro Domingos. “The In-

telligent Surfer: Probabilistic Combination of Link and Content Information in

PageRank.” In Advances in Neural Information Processing Systems 14, pp. 1441—

1448. Cambridge, MA: MIT Press, 2001.

[Ridings 02] Chris Ridings. “PageRank Explained: Everything You’ve Always Wanted

to Know About PageRank.” Black Box Group: Rank Write Roundtable. Available

from World Wide Web (http://www.rankwrite.com/), 2002.

[Ridings and Shishigin 02] Chris Ridings and Mike Shishigin. “PageRank Uncov-

ered.” White paper available from World Wide Web (http://www.voelspriel2.nl/

PageRank.pdf), 2002.

[Seneta 91] Eugene Seneta. “Sensivity Analysis, Ergodicity Coefficients, and Rank-One

Updates for Finite Markov Chains.” In Numerical Solution of Markov Chains,

edited by William J. Stewart, pp. 121—129. New York: Marcel Dekker, 1991.

[Sherman 02] Chris Sherman. “Teoma vs. Google, Round 2.” Silicon Val-

ley Internet. Available from World Wide Web (http://dc.internet.com/

news/print.php/1002061), 2002.

[Stewart 94] William J. Stewart. Introduction to the Numerical Solution of Markov

Chains. Princeton: Princeton University Press, 1994.

[Sydow 04] Marcin Sydow. “Random Surfer with Back Step.” In International World

Wide Web Conference Archive Proceedings of the 13th International World Wide

Web Conference. Alternate Track Papers & Posters, pp. 352—353. New York:

ACM Press, 2004.

[Thorson 04] Kristen Thorson. “Modeling the Web and the Computation of PageR-

ank.” Undergraduate thesis, Hollins University, 2004.

[Tomlin 03] John A. Tomlin. “A New Paradigm for Ranking Pages on the World Wide

Web.” In Proceedings of the Twelfth International Conference on World Wide

Web, pp. 350—355. New York: ACM Press, 2003.

380 Internet Mathematics

[Totty and Mangalindan 03] Michael Totty and Mylene Mangalindan. “As Google Be-

comes Web’s Gatekeeper, Sites Fight to Get In.”Wall Street Journal, CCXLI(39),

February 26, 2003.

[Tsoi et al. 03] Ah Chung Tsoi, Gianni Morini, Franco Scarselli, and Markus Hagen-

buchner. “Adaptive Ranking of Web Pages.” In Proceedings of the Twelfth

International Conference on World Wide Web, pp. 356—365. New York: ACM

Press, 2003.

[Watts 99] Duncan J. Watts. Small Worlds. Princeton: Princeton University Press,

1999.

[WebRankInfo 03] WebRankInfo. “PageRank Explained.” Available on World Wide

Web (http://www.webrankinfo.com/english/pagerank), 2003.

[Wilkenson 65] James H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford, UK:

Clarendon Press, 1965.

[Zhang and Dong 00] Dell Zhang and Yisheng Dong. “An Efficient Algorithm to Rank

Web Resources.” Computer Networks 33 (2000), 449—455.

Amy N. Langville, Department of Mathematics, North Carolina State University,

Raleigh, NC 27695-8205 (anlangvi@unity.ncsu.edu)

Carl D. Meyer, Department of Mathematics, Center for Research in Scientific Computa-

tion, North Carolina State University, Raleigh, NC 27695-8205 (meyer@math.ncsu.edu)

Received October 1, 2003; accepted July 6, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox false
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046002000660069006c0065007300200066006f00720020007300750062006d0069007300730069006f006e00200074006f002000540068006500200053006800650072006900640061006e002000500072006500730073002e002000540068006500730065002000730065007400740069006e0067007300200063006f006e006600690067007500720065006400200066006f00720020004100630072006f006200610074002000760036002e0030002000300038002f00300036002f00300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

