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COMPLEXIFICATION AND HOMOTOPY
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(communicated by Claude Cibils)

Abstract
Let Y be a real algebraic variety. We are interested in deter-

mining the supremum, β(Y ), of all nonnegative integers n with
the following property: For every n-dimensional compact con-
nected nonsingular real algebraic variety X, every continuous
map from X into Y is homotopic to a regular map. We give an
upper bound for β(Y ), based on a construction involving com-
plexification of real algebraic varieties. In some cases, we obtain
the exact value of β(Y ).

1. Introduction and main results

In the present paper we continue the line of research undertaken in [2, 5]. Our goal
is to identify new obstructions to representing homotopy classes of continuous maps,
between real algebraic varieties, by regular maps. We use the term real algebraic
variety to mean a locally ringed space isomorphic to an algebraic subset of RN ,
for some N , endowed with the Zariski topology and the sheaf of real-valued regular
functions (such an object is called an affine real algebraic variety in [1]). Morphisms
between real algebraic varieties are called regular maps. Each real algebraic variety
carries also the Euclidean topology, which is induced by the usual metric on R. Unless
explicitly stated otherwise, all topological notions relating to real algebraic varieties
refer to the Euclidean topology.

In [2], a numerical invariant β(Y ) was defined for any real algebraic variety Y .
Recall that β(Y ) is the supremum of all nonnegative integers n with the following
property: For every n-dimensional compact connected nonsingular real algebraic vari-
ety X, every continuous map from X into Y is homotopic to a regular map. The exact
value of β(Y ) is known only in some special cases. The main result of [2] is an upper
bound for β(Y ). For any nonnegative integer k, let Hk

alg(Y ;Z/2) denote the subgroup

consisting of all algebraic cohomology classes in the cohomology group Hk(Y ;Z/2)
(cf. [1] for Y compact and nonsingular, and [2] for Y arbitrary). According to [2,
Theorem 2.9], β(Y ) 6 k if Hk

alg(Y,Z/2) 6= 0 for some k > 1.

In this paper we make use of a cohomology subgroup Hk
C(Y ;Q) of Hk(Y ;Q),

defined below, and prove that β(Y ) 6 k if Hk
C(Y ;Q) 6= 0 for some k > 1 (cf. Theo-

rem 1.2). Furthermore, β(Y ) = 0 if H1
C(Y ;Q) 6= 0 (cf. Theorem 1.3), whereas β(Y ) =
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k − 1 if Y is (k − 1)-connected and Hk
C(Y ;Q) 6= 0 for some k > 2 (cf. Theorem 1.4).

Let V be a compact nonsingular real algebraic variety. A nonsingular projective
complexification of V is a pair (V, e), where V is a nonsingular projective scheme
over R and e : V →V(C) is an injective map such that V(R) is Zariski dense in V,
e(V ) = V(R), and e induces a biregular isomorphism between V and V(R). Here the
set V(R) of real points of V is regarded as a subset of the set V(C) of complex
points of V. The existence of (V, e) follows from Hironaka’s theorem on resolution
of singularities [6] (cf. also [7] for a very readable exposition). If dimV > 2, then
V admits infinitely many pairwise nonisomorphic projective complexifications, for
V can be blown up along a nonsingular center disjoined form V(R). In view of this
nonuniqueness, it is remarkable that for any commutative ring R and any nonnegative
integer k, the submodule

Hk
C(V ;R) := e∗(Hk(V(C);R))

of the cohomology R-module Hk(V ;R), where

e∗ : H∗(V(C);R) → H∗(V ;R)

denotes the homomorphism induced by e, does not depend on the choice of (V, e).
This is proved in [9] for V orientable over R, and in [4] for arbitrary V . Note that in
[4, 9] the authors use different notation for our Hk

C(−;R). As proved in [4, 9], the
R-modules Hk

C(−;R) have the expected functorial property: If h : V →W is a regular
map between compact nonsingular real algebraic varieties, then

h∗(Hk
C(W ;R)) ⊆ Hk

C(V ;R).

The reader who wishes to find results comparing Hk
C(−;R) and Hk(−;R) may con-

sult [8].
We extend the definition of Hk

C(−;R) as follows. For any real algebraic variety
X, let Hk

C(X;R) denote the set of all cohomology classes u in Hk(X;R) of the form
u = ϕ∗(v), where ϕ : X→V is a regular map into a compact nonsingular real algebraic
variety V and v is a cohomology class in Hk

C(V ;R).

Proposition 1.1. For any real algebraic variety X and any nonnegative integer k,
the set Hk

C(X;R) forms a submodule of the cohomology R-module Hk(X;R). Fur-
thermore, if f : X→Y is a regular map between real algebraic varieties, then

f∗(Hk
C(Y ;R)) ⊆ Hk

C(X;R).

Proof. Let ϕi : X→Vi be a regular map into a compact nonsingular real algebraic
variety Vi for i = 1, 2. The regular map

(ϕ1, ϕ2) : X→V1 × V2

satisfies πi ◦ (ϕ1, ϕ2) = ϕi, where πi : V1 × V2 →Vi is the canonical projection. If vi is
a cohomology class in Hk(Vi;R) for i = 1, 2, then

ϕ∗
1(v1) + ϕ∗

2(v2) = (ϕ1, ϕ2)∗(π∗
1(v1) + π∗

2(v2)).

If vi is in Hk
C(Vi;R) for i = 1, 2, then π∗

1(v1) + π∗
2(v2) is in Hk

C(V1 × V2;R). It follows
that ϕ∗

1(v1) + ϕ∗
2(v2) belongs to Hk

C(X;R). Consequently, Hk
C(X;R) is a submodule

of the R-module Hk(X;R).
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Let ψ : Y →W be a regular map into a compact nonsingular real algebraic variety
W . For any cohomology class w in Hk(W ;R),

f∗(ψ∗(w)) = (ψ ◦ f)∗(w).

Since ψ ◦ f is a regular map, it follows that f∗(Hk
C(Y ;R)) ⊆ Hk

C(X;R).

We now announce three results whose proofs will be given in Section 2.

Theorem 1.2. Let Y be a real algebraic variety. If Hk
C(Y ;Q) 6= 0 for some positive

integer k, then β(Y ) 6 k.

In some cases, we get stronger results.

Theorem 1.3. Let Y be a real algebraic variety. If H1
C(Y,Q) 6= 0, then β(Y ) = 0.

We also have a criterion for the equality β(Y ) = k − 1, where k > 2.

Theorem 1.4. Let Y be a real algebraic variety. Assume that Y is (k − 1)-connected
for some integer k > 2. If Hk

C(Y ;Q) 6= 0, then β(Y ) = k − 1.

In some cases, our results are stronger than those that can be deduced from [2, 5].

Example 1.5. For any positive integer k, the real algebraic variety

Σk = {(x0, . . . , xk) ∈ Rk+1 | x4
0 + · · · + x4

k = 1}

is nonsingular and diffeomorphic to the unit k-sphere. By [8, Example 2.3], we have

Hk
C(Σk;Q) = Hk(Σ;Q)

and hence Theorems 1.3 and 1.4 imply the equality β(Σk) = k − 1. Since the real curve
Σ1 is not rational, one easily obtains β(Σ1) = 0 without referring to Theorem 1.3; cf.
[2, Example 1.7(v)]. On the other hand, for k > 2, the methods developed in [2, 5]
give only the inequalities k − 1 6 β(Σk) 6 k.

2. Proofs

For any k-dimensional compact oriented smooth (of class C∞) manifold K, let [K]
denote its fundamental class in Hk(K;Z). If K is a subspace of a topological space
P , we denote by [K]P the homology class in Hk(P ;Z) represented by K, that is,
[K]P = i∗([K]), where i : K ↪→ P is the inclusion map.

As usual, for any nonnegative integer d, we denote by Sd the unit d-sphere,

Sd = {(u0, . . . , ud) ∈ Rd+1 | u2
0 + · · · + u2

d = 1}.

The following refinement of Thom’s representability theorem [11, Théorème III.4]
will play a key role.

Theorem 2.1. Let Y be a topological space that is homotopically equivalent to a CW-
complex, k a positive integer, and α a homology class in Hk(Y ;Z). Then there exist a
k-dimensional compact oriented stably parallelizable smooth manifold K, a continuous
map f : K → Y , and a positive integer c such that f∗([K]) = c α. Furthermore, if α
is represented by a singular cycle with support contained in a connected component of
Y , then the manifold K can be chosen connected.
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Proof. We may assume without loss of generality that Y is a compact and connected
CW-complex that is embedded in Rp for some p > 2k + 2. The argument used in
[11, pp. 57, 58] implies the existence of a retraction Q→ Y , where Q ⊆ Rp is a p-
dimensional compact connected smooth submanifold with boundary, containing Y in
its interior. Let P be the double of Q. By construction, P is a compact connected
parallelizable smooth manifold and there exists a retraction r : P → Y . Choose an
orientation of P . Let i : Y ↪→ P be the inclusion map. Let d = p− k and let u be
the cohomology class in Hd(P ;Z) that corresponds via the Poincaré duality to the
homology class i∗(α) in Hk(P ;Z). Since p 6 2d− 2, according to Serre’s result [10,
p. 289, Proposition 2′] we can find a continuous map ϕ : P → Sd and a positive integer
c such that

ϕ∗(sd) = c u,

where sd is a generator of the cohomology group Hd(Sd;Z) ∼= Z. We can assume that
the map ϕ is smooth. By Sard’s theorem, there exists a regular value y in Sd of the
map ϕ. If the smooth submanifold L := ϕ−1(y) of P is suitably oriented, then

[L]P = c i∗(α).

Obviously, the normal bundle of L in P is trivial. Since dimL = k > 1, we can per-
form the connected sum operation on the connected components of L. This can be
done inside P since k 6 p− 2 and hence P \ L is connected. In other words, we join,
in a suitable way, the connected components of L with k-dimensional tubes in P .
Thus we obtain a compact connected oriented smooth submanifold K of P , which is
homologous to L and whose normal bundle in P is trivial. Note that

[K]P = c i∗(α).

If j : K ↪→ P is the inclusion map and f := r ◦ j : K → Y , then j∗([K]) = [K]P =
c i∗(α) and

f∗([K]) = r∗(j∗([K])) = c r∗(i∗(α)) = c (r ◦ i)∗(α) = c α.

It remains to show that the smooth manifold K is stably parallelizable. For any
smooth manifold M , let τM denote its tangent bundle. We have τK ⊕ ν = τP |K ,
where ν is the normal bundle of K in P . Hence K is stably parallelizable, the vector
bundles ν and τP being trivial.

Let S be a topological space. For any cohomology class u in Hk(S;Q) and any
homology class α in Hk(S;Z), we denote by 〈u, α〉 their Kronecker index. If u 6= 0,
then we can choose α so that 〈u, α〉 6= 0.

Recall that any real algebraic variety is homotopically equivalent to a compact
polyhedron (thus, homotopically equivalent to a compact CW-complex); cf. [1, The-
orem 9.2.1, Corollary 9.3.7].

Proof of Theorem 1.2. Assume that Hk
C(Y ;Q) 6= 0, where k > 1. Let u be a nonzero

cohomology class in Hk
C(Y ;Q). Choose a homology class α in Hk(Y ;Z) satisfying

〈u, α〉 6= 0

and such that it is represented by a singular cycle with support contained in a con-
nected component of Y . According to Theorem 2.1, there exist a k-dimensional com-
pact connected oriented smooth manifold K, a continuous map f : K → Y , and a
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positive integer c such that

f∗([K]) = c α

and K is stably parallelizable. By [8, Corollary 2.9], there exists a nonsingular real
algebraic variety X diffeomorphic to K × S1 and satisfying

Hk
C(X;Q) = 0.

Let ϕ : X → K × S1 be a smooth diffeomorphism and let π : K × S1 → K be the
canonical projection. It suffices to prove that the continuous map

g := f ◦ π ◦ ϕ : X → Y

is not homotopic to a regular map. This can be done as follows. Let z0 be a point in
S1 and K0 := ϕ−1(K × {z0}). Then

g∗([K0]X) = f∗(π∗([K × {z0}]K×S1)) = f∗([K]) = c α.

Consequently,

〈g∗(u), [K0]X〉 = 〈u, g∗([K0]X)〉 = c 〈u, α〉 6= 0,

which implies g∗(u) 6= 0. In view of Proposition 1.1 and the equalityHk
C(X;Q) = 0, we

would have g∗(u) = 0 if g were homotopic to a regular map. The proof is complete.

The following fact will be useful.

Example 2.2. If Tn = S1 × · · · × S1 is the n-fold product, then

Hk
C(Tn;Q) = 0 for every k > 1.

Indeed, the real projective line P1 (regarded as a scheme over R) is a nonsingular
projective complexification of S1, and hence the n-fold product V = P1 ×R · · · ×R P1

is a nonsingular projective complexification of Tn. Let

e : V(R) = P1(R) × · · · × P1(R) ↪→ V(C) = P1(C) × · · · × P1(C)

be the inclusion map. It suffices to note that e∗(Hk(V(C);Q)) = 0 for every k > 1.
This follows from the Künneth formula in cohomology since P1(R) is homeomorphic
to S1 while P1(C) is homeomorphic to S2.

Henceforth, for each nonnegative integer d, we choose an orientation of Sd and
regard Sd as an oriented manifold.

Lemma 2.3. Let Y be a real algebraic variety, k a positive integer, and u a cohomol-
ogy class in Hk

C(Y ;Q). Assume that there exists a continuous map f : Sk → Y such

that 〈u, f∗([Sk])〉 6= 0. Then β(Y ) 6 k − 1.

Proof. Let Tk = S1 × · · · × S1 be the k-fold product. We endow Tk with an orientation
and choose a continuous map ϕ : Tk → Sk satisfying

ϕ∗([Tk]) = [Sk].

It suffices to prove that the continuous map

g := f ◦ ϕ : Tk → Y

is not homotopic to a regular map. In view of Proposition 1.1 and Example 2.2, we
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would have g∗(u) = 0 if g were homotopic to a regular map. However

〈g∗(u), [Tk]〉 = 〈u, g∗([Tk])〉 = 〈u, f∗([Sk])〉 6= 0,

which implies g∗(u) 6= 0.

Proof of Theorem 1.3. Assume that H1
C(Y ;Q) 6= 0, and let u be a nonzero cohomology

class in H1
C(Y ;Q). We can find a continuous map f : S1 → Y for which 〈u, f∗([S1])〉 6=

0. This assertion holds since the homology classes of the form f∗([S1]) generate the
group H1(Y ;Z). In order to complete the proof it suffices to apply Lemma 2.3 with
k = 1.

Proof of Theorem 1.4. Assume that Hk
C(Y ;Q) 6= 0, and let u be a nonzero cohomology

class in Hk
C(Y ;Q). Since Y is (k − 1)-connected, according to the Hurewicz theorem,

each homology class in Hk(Y ;Z) is of the form h∗([Sk]) for some continuous map
h : Sk → Y . Hence there exists a continuous map f : Sk → Y such that 〈u, f∗([Sk])〉 6=
0. It follows from Lemma 2.3 that β(Y ) 6 k − 1. We get the equality β(Y ) = k − 1,
since, for every compact polyhedron X of dimension at most k − 1, every continuous
map from X into Y is null homotopic; cf. [3, p. 509, Corollary 13.14].
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