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SYMMETRIC CONTINUOUS COHOMOLOGY OF TOPOLOGICAL
GROUPS

MAHENDER SINGH

(communicated by Graham Ellis)

Abstract
In this paper, we introduce a symmetric continuous coho-

mology of topological groups. This is obtained by topologiz-
ing a recent construction due to Staic [23], where a symmetric
cohomology of abstract groups is constructed. We give a char-
acterization of topological group extensions that correspond to
elements of the second symmetric continuous cohomology. We
also show that the symmetric continuous cohomology of a profi-
nite group with coefficients in a discrete module is equal to the
direct limit of the symmetric cohomology of finite groups. In
the end, we also define symmetric smooth cohomology of Lie
groups and prove similar results.

1. Introduction

The cohomology of abstract groups came into being with the fundamental work
of Eilenberg and MacLane [6, 7]. The theory developed rapidly with the works of
Eilenberg, MacLane, Hopf, Eckmann, Segal, Serre and many other authors. The coho-
mology of groups has been a popular research subject and has been studied from dif-
ferent perspectives with applications in algebraic number theory, algebraic topology
and Lie algebras, to name a few. A detailed account of the history of the subject
appears in [27].

When the group under consideration is equipped with a topology, then it is natural
to look for a cohomology theory which also takes the topology into account. This lead
to many new cohomology theories of topological groups and the topology was first
inserted in the formal definition of group cohomology in the works of Heller [10],
Hu [13] and van Est [26].

In [8], Fiedorowicz and Loday defined a homology theory of crossed simplicial
groups. Motivated by their construction, Staic [23] introduced the notion of the ∆-
group Γ(X) for a topological space X. Given a group G and a G-module A, for each
n > 0, Staic defined an action of the symmetric group Σn+1 on the standard nth
cochain group Cn(G,A) used to compute the usual group cohomology and proved
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it to be compatible with the standard coboundary operators ∂n. Thus, the subcom-
plex {Cn(G,A)Σn+1 , ∂n}n>0 of invariant elements of {Cn(G,A), ∂n}n>0 gives a new
cohomology theory HS∗(G,A) called the symmetric cohomology. Staic showed that
the ∆-group Γ(X) is determined by the action of π1(X) on π2(X) and an element of
HS3(π1(X), π2(X)).

The inclusion of the cochain groups Cn(G,A)Σn+1 ↪→ Cn(G,A) induces a homo-
morphism HSn(G,A)→ Hn(G,A). In [23], it is shown that HS2(G,A)→ H2(G,A)
is injective.

It is well known that, if A is a G-module, then there is a bijection betweenH2(G,A)
and the set of equivalence classes of group extensions of G by A with the given
G-module structure. Therefore, it is natural to ask what kind of group extensions
correspond to elements of the second symmetric cohomology. In [24], Staic proved
that HS2(G,A) is in bijection with the set of equivalence classes of group exten-
sions 0→ A→ E → G→ 1 admitting a section s : G→ E with the property that
s(g−1) = s(g)−1 for all g ∈ G. Note that the condition is slightly weaker than s being
a homomorphism. We shall see that there are examples of non-split extensions of
groups admitting such a section.

The purpose of this paper is to topologize this construction and introduce a sym-
metric continuous cohomology of topological groups. As for the discrete case, we give
a characterization of topological group extensions that correspond to elements of the
second symmetric continuous cohomology. We also show that the symmetric continu-
ous cohomology of a profinite group with coefficients in a discrete module is equal to
the direct limit of the symmetric cohomology of finite groups. In the end, we define
symmetric smooth cohomology of Lie groups.

The paper is organized as follows. In Section 2, we fix some notation and recall
some known definitions and results that will be used in the paper. In Section 3, we
introduce the symmetric continuous cohomology of topological groups. In Section 4,
we give some examples to illustrate the proposed cohomology theory. In Section 5, we
prove some properties of the symmetric continuous cohomology of topological groups.
In Section 6, we discuss the symmetric continuous cohomology of profinite groups.
Finally, in Section 7, we define the symmetric smooth cohomology of Lie groups and
prove some of its properties.
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2. Notation and terminology

In this section, we fix some notation and recall some known definitions and results.
We refer the reader to Brown [3] for basic material on the cohomology of groups.
For any extension 0→ A→ E → G→ 1 of groups (abstract, topological or Lie), the
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group A is written additively and the groups E and G are written multiplicatively,
unless otherwise stated or it is clear from the context.

Cohomology of abstract groups
Let us recall the construction of the cochain complex defining the cohomology of

abstract groups (groups without any other structure). Let G be a group and A be a
G-module. More precisely, there is a group action

G×A→ A

by automorphisms. As usual A is written additively and G is written multiplicatively,
unless otherwise stated or it is clear from the context. For each n > 0, the group of
n-cochains Cn(G,A) is the group of all maps σ : Gn → A. The coboundary

∂n : Cn(G,A)→ Cn+1(G,A)

is given by

∂n(σ)(g1, . . . , gn+1) = g1σ(g2, . . . , gn+1)

+
n∑
i=1

(−1)i+1σ(g1, . . . , gigi+1, . . . , gn+1)

+ σ(g1, . . . , gn),

(1)

for all σ ∈ Cn(G,A) and (g1, . . . , gn+1) ∈ Gn+1. It is straightforward to verify that
∂n+1∂n = 0 and hence we obtain a cochain complex. Let Zn(G,A) = Ker(∂n) be the
group of n-cocycles and Bn(G,A) = Im(∂n−1) be the group of n-coboundaries. Then
the nth cohomology group is given by

Hn(G,A) = Zn(G,A)/Bn(G,A).

If σ ∈ Zn(G,A) is a n-cocyle, then we denote by [σ] ∈ Hn(G,A) the corresponding
cohomology class.

Symmetric cohomology of abstract groups
For each n > 0, let Σn+1 be the symmetric group on n+ 1 symbols. In [23], Staic

defined an action of the symmetric group Σn+1 on the nth cochain group Cn(G,A).
Since the transpositions of adjacent elements form a generating set for Σn+1, it is
enough to define the action of these transpositions τi = (i, i+ 1) for 1 6 i 6 n. For
σ ∈ Cn(G,A) and (g1, . . . , gn) ∈ Gn, define

(τ1σ)(g1, g2, g3, . . . , gn) = −g1σ
(
(g1)

−1, g1g2, g3, . . . , gn
)
,

(τiσ)(g1, g2, g3, . . . , gn) = −σ
(
g1, . . . , gi−2, gi−1gi, (gi)

−1, gigi+1, gi+2, . . . , gn
)

for 1 < i < n,

(τnσ)(g1, g2, g3, . . . , gn) = −σ
(
g1, g2, g3, . . . , gn−1gn, (gn)

−1
)
.

(2)

It is shown in [23] that the above action is compatible with the coboundary oper-
ators ∂n and hence yields the subcomplex of invariants

{CSn(G,A), ∂n}n>0 = {Cn(G,A)Σn+1 , ∂n}n>0.

The cohomology of this cochain complex is called the symmetric cohomology of G
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with coefficients in A and is denoted HSn(G,A). The cocycles and the coboundaries
are called the symmetric cocycles and the symmetric coboundaries, respectively.

Continuous cohomology of topological groups
We assume that all topological groups under consideration satisfy the T0 separation

axiom. Let G be a topological group and A be an abelian topological group. We say
that A is a topological G-module if there is a continuous action of G on A. The
continuous cohomology of topological groups was defined independently by Hu [13],
van Est [26] and Heller [10] as follows.

For each n > 0, let Cnc (G,A) be the group of all continuous maps from Gn → A,
where Gn is the product topological group. The coboundary maps given by the stan-
dard formula as in (1), gives the cochain complex {Cnc (G,A), ∂n}n>0. The continuous
cohomology of G with coefficients in A is defined to be the cohomology of this cochain
complex and is denoted by H∗

c (G,A).
Clearly, this cohomology theory coincides with the abstract cohomology theory

when the groups under consideration are discrete (in particular finite). The low
dimensional cohomology groups are as expected. More precisely, H0

c (G,A) = AG and
Z1
c (G,A) = the group of continuous crossed homomorphisms from G to A.
An extension of topological groups

0→ A
i→ E

π→ G→ 1

is an algebraically exact sequence of topological groups with the additional property
that i is closed continuous and π is open continuous. Note that if we assume that
i and π are only continuous, then A viewed as a subgroup of E may not have the
relative topology and the isomorphism E/i(A) ∼= G may not be a homeomorphism.

A section to the given extension is a map s : G→ E such that πs(g) = g for all
g ∈ G. Since A is closed and i is closed continuous, it follows that i(A) = π−1({1}) is
a closed subgroup of E and i : A→ E is an embedding of A onto a closed subgroup
of E.

Let G be a topological group and A a topological G-module. Let 0→ A
i→ E

π→
G→ 1 be a topological group extension and let s : G→ E be a section to π. Since
A is abelian, for a ∈ A and g ∈ G, one can see that the element i−1

(
s(g)i(a)s(g)−1

)
does not depend on the choice of the section. The extension 0→ A

i→ E
π→ G→ 1 is

said to correspond to the given way in which G acts on A if

ga = i−1
(
s(g)i(a)s(g)−1

)
for all a ∈ A and g ∈ G.

Consider the set of all topological group extensions of G by A corresponding to

the given way in which G acts on A. Two such extensions 0→ A
i→ E

π→ G→ 1 and

0→ A
i′→ E′ π

′

→ G→ 1 are said to be equivalent if there exists an open continuous
isomorphism φ : E → E′ such that the following diagram commutes

0 // A
i // E

π //

φ

��

G // 1

0 // A
i′ // E′ π′

// G // 1.
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For brevity, E ∼= E′ denotes the equivalence of extensions. Heller [10] and Hu [13,
Theorem 5.3] independently proved the following result.

Theorem 2.1. Let G be a topological group and A a topological G-module. Then
H2
c (G,A) is in bijection with the set of equivalence classes of topological group exten-

sions of G by A admitting a (global) continuous section and the given G-module
structure.

We shall prove similar theorems using symmetric continuous cohomology of topo-
logical groups (Theorem 3.3) and symmetric smooth cohomology of Lie groups (The-
orem 7.2) in the following sections.

An extension of topological groups is said to be topologically split if E is A×G as a
topological space. Note that if an extension of topological groups admits a continuous
section, then the extension is topologically split. Extensions of topological groups
admitting a continuous section are assured by the following theorem.

Theorem 2.2. [22, Theorem 2] Let G be a connected locally compact group. Then
any topological group extension of G by a simply connected Lie group admits a con-
tinuous section.

3. Symmetric continuous cohomology of topological groups

In this section, we define the symmetric continuous cohomology of topological
groups, having the expected cohomology groups in low dimensions. From now on,
G is a topological group and A a topological G-module. Let n > 0. Since G is a
topological group, for (g1, . . . , gn) ∈ Gn,

(g1, g2, g3, . . . , gn) 7→
(
(g1)

−1, g1g2, g3, . . . , gn
)
,

(g1, g2, g3, . . . , gn) 7→
(
g1, . . . , gi−2, gi−1gi, (gi)

−1, gigi+1, gi+2, . . . , gn
)
for 1 < i < n,

(g1, g2, g3, . . . , gn) 7→
(
g1, g2, g3, . . . , gn−1gn, (gn)

−1
)
,

(3)

are all continuous maps Gn → Gn.

The continuity of the action G×A→ A and the maps given by (3) shows that
τσ ∈ Cnc (G,A) for each τ ∈ Σn+1 and σ ∈ Cnc (G,A). By [23, Proposition 5.1], the
formulas given by (2) define an action compatible with the coboundary operators ∂n

given by (1).

This gives the subcomplex of invariants

{CSnc (G,A), ∂n}n>0 = {Cnc (G,A)Σn+1 , ∂n}n>0.

We call the cohomology of this cochain complex the symmetric continuous cohomol-
ogy of G with coefficients in A and denote it by HSnc (G,A).

Clearly, when the groups under consideration are discrete, then HSnc (G,A) =
HSn(G,A). When G is a connected topological group and A is a discrete G-module,
then G acts trivially on A and the continuous cochains are only constant maps. Then
it follows that HS0

c (G,A) = A and HSnc (G,A) = 0 for each n > 1.
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Observe that a 1-cocycle λ : G→ A is symmetric if

λ(g) = −gλ(g−1) for all g ∈ G

and a 2-cocycle σ : G×G→ A is symmetric if

σ(g, k) = −gσ(g−1, gk) = −σ(gk, k−1) for all g, k ∈ G. (4)

It is easy to establish the following properties.

Proposition 3.1. Let G be a topological group and A be a topological G-module.
Then

1. HS0
c (G,A) = AG = H0

c (G,A)

2. ZS1
c (G,A) = the group of symmetric continuous crossed homomorphisms from

G to A.

Proof. (1) is straightforward. By definition

ZS1
c (G,A) = Ker{∂1 : CS1

c (G,A)→ CS2
c (G,A)}.

Therefore, λ ∈ ZS1
c (G,A) if and only if λ is continuous and satisfy λ(g) = −gλ(g−1)

and λ(gk) = gλ(k) + λ(g) for all g, k ∈ G. In other words, λ is a symmetric continuous
crossed homomorphism. This proves (2).

As in the discrete case, the inclusion of the subcomplex

CS∗
c (G,A) ↪→ C∗

c (G,A)

induces a homomorphism

h∗ : HS∗
c (G,A)→ H∗

c (G,A).

Clearly, h∗ : HS1
c (G,A)→ H1

c (G,A) is injective. In dimension two, we have the fol-
lowing proposition, which is essentially [24, Lemma 3.1]. We provide a proof here for
the sake of completeness.

Proposition 3.2. The map h∗ : HS2
c (G,A)→ H2

c (G,A) is injective.

Proof. Let σ represent an element in Ker(h∗). In other words, σ ∈ ZS2
c (G,A) ∩

B2
c (G,A). This implies that σ is symmetric and there exists λ ∈ C1

c (G,A) such that

σ(g, k) = ∂1λ(g, k) = gλ(k)− λ(gk) + λ(g)

for all g, k ∈ G. The symmetry of σ gives,

σ(g, k) = −gσ(g−1, gk) = −λ(gk) + gλ(k)− gλ(g−1)

and

σ(g, k) = −σ(gk, k−1) = −gkλ(k−1) + λ(g)− λ(gk) for all g, k ∈ G.

By taking g = 1 and equating the above two equations, we get λ(k) = −kλ(k−1) for all
k ∈ G. This shows that λ ∈ CS1

c (G,A) and hence σ ∈ BS2
c (G,A). Thus, σ represents

the trivial element in HS2
c (G,A) and the map h∗ is injective.
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Note that the map h∗ need not be surjective in general. This will be illustrated by
examples in Section 4.

By Theorem 2.1, H2
c (G,A) classifies the equivalence classes of topological group

extensions of G by A admitting a continuous section. In view of Proposition 3.2,
we would like to know which of these extensions correspond to HS2

c (G,A). Let
0→ A→ E → G→ 1 be an extension of topological groups. We say that a section
s : G→ E is symmetric if

s(g−1) = s(g)−1 for all g ∈ G.

For simplicity, we assume that s satisfies the normalization condition s(1) = 1. Let
C(G,A) denote the set of equivalence classes of topological group extensions of G
by A admitting a symmetric continuous section and being equipped with the given
G-module structure. With these definitions, we prove the following theorem.

Theorem 3.3. Let G be a topological group and A be a topological G-module. Then
there is a bijection Φ: C(G,A)→ HS2

c (G,A).

Proof. Let 0→ A
i−→ E

π−→ G→ 1 be a topological group extension of G by A
admitting a symmetric continuous section s : G→ E and corresponding to the given
way in which G acts on A. Every element of E can be written uniquely as i(a)s(g)
for some a ∈ A and g ∈ G. Since the extension corresponds to the given way in which
G acts on A, we have that

ga = i−1
(
s(g)i(a)s(g)−1

)
for all a ∈ A and g ∈ G.

As i and s are continuous, we see that the action is continuous. Also, we have

π(s(gh)) = gh = π(s(g))π(s(h)) = π(s(g)s(h)) for all g, h ∈ G.

Thus, there exists a unique element (say) σ(g, h) in A such that

σ(g, h) = i−1
(
s(g)s(h)s(gh)−1

)
.

Observe that σ : G×G→ A satisfies the condition

gσ(h, k)− σ(gh, k) + σ(g, hk)− σ(g, h) = 0 for all g, h, k ∈ G. (5)

In other words, σ is a 2-cocycle. Moreover, continuity of i and s implies that σ is
continuous. Finally, using the symmetry of s and the action of G on A, we show that
σ is in fact symmetric. That is, for all g, h ∈ G, we have

−gσ(g−1, gh) = −gi−1
(
s(g−1)s(gh)s(h)−1

)
= −gi−1

(
s(g)−1s(gh)s(h)−1

)
= −i−1

(
s(g)s(g)−1s(gh)s(h)−1s(g)−1

)
= −i−1

((
s(g)s(h)s(gh)−1

)−1)
= i−1

(
s(g)s(h)s(gh)−1

)
= σ(g, h)
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and

−σ(gh, h−1) = −i−1
(
s(gh)s(h−1)s(g)−1

)
= −i−1

(
s(gh)s(h)−1s(g)−1

)
= −i−1

((
s(g)s(h)s(gh)−1

)−1)
= i−1

(
s(g)s(h)s(gh)−1

)
= σ(g, h).

Thus, σ gives an element in HS2
c (G,A).

We need to show that the cohomology class of σ is independent of the choice of
the section. Let s, t : G→ E be two symmetric continuous sections. As above we get
symmetric continuous 2-cocycles σ, µ : G×G→ A such that for all g, h ∈ G, we have

σ(g, h) = i−1
(
s(g)s(h)s(gh)−1

)
and

µ(g, h) = i−1
(
t(g)t(h)t(gh)−1

)
.

Since s(g) and t(g) satisfy π(s(g)) = g = π(t(g)), there exists a unique element (say)
λ(g) ∈ A such that

λ(g) = i−1
(
s(g)t(g)−1

)
.

This yields a 1-cochain λ : G→ A which is continuous and symmetric, as

τ1λ(g) = −gλ(g−1)

= −gi−1
(
s(g−1)t(g−1)−1

)
= −gi−1

(
s(g)−1t(g)

)
= −i−1

(
s(g)s(g)−1t(g)s(g)−1

)
= −i−1

(
(s(g)t(g)−1)−1

)
= i−1

(
s(g)t(g)−1

)
= λ(g).

Thus, we have that

σ(g, h)− µ(g, h) = gλ(h)− λ(gh) + λ(g).

In other words, σ − µ ∈ BS2
c (G,A) and hence [σ] = [µ] in HS2

c (G,A).

Let 0→ A
i′→ E′ π

′

→ G→ 1 be an extension equivalent to 0→ A
i→ E

π→ G→ 1 via
an open continuous isomorphism φ : E → E′. Then s′ = φs : G→ E′ is a symmetric
continuous section. It is clear that the 2-cocycle corresponding to s′ is the same as
the one corresponding to s. Hence equivalent extensions gives the same element in
HS2

c (G,A).

Now we can define

Φ: C(G,A)→ HS2
c (G,A)

by mapping an equivalence class of extensions to the corresponding cohomology class
as obtained above. The above arguments show that Φ is well defined.
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We first prove that Φ is surjective. Let σ ∈ ZS2
c (G,A) be a symmetric continuous

2-cocyle representing an element in HS2
c (G,A). The symmetry of the 2-cocyle gives

the equation (4). Let

Eσ := A×G

be equipped with the product topology. Define a binary operation on Eσ by

(a, g)(b, h) =
(
a+ gb+ σ(g, h), gh

)
for all a, b ∈ A and g, h ∈ G.

It is routine to check that this binary operation gives a group structure on Eσ. Since
A is a topological G-module and the 2-cocyle σ is continuous, the group operation
from Eσ × Eσ → Eσ and the inverting operation from Eσ → Eσ are continuous with
respect to the product topology on Eσ. Hence Eσ is a topological group.

Clearly, the map π : Eσ → G given by π(a, g) = g is an open continuous homomor-
phism; and the map i : A→ Eσ given by i(a) = (a, 1) is an embedding of A onto the
closed subgroup i(A) of Eσ. This gives the following extension of topological groups

0→ A
i−→ Eσ

π−→ G→ 1.

The extension has an obvious continuous section s : G→ Eσ, given by s(g) = (0, g).
Using the group operation and the symmetry of σ, we get

s(g)
(
s(g−1)s(gh)

)
=

(
gσ(g−1, gh) + σ(g, h), gh

)
= (0, gh) = s(gh)

and (
s(gh)s(h−1)

)
s(h) =

(
σ(g, h) + σ(gh, h−1), gh

)
= (0, gh) = s(gh).

This gives s(g−1) = s(g)−1 and hence the section s is symmetric.

Note that by (5) and the normalization of the section, we have

σ(g, 1) = σ(1, g) = σ(1, 1) = 0 for all g ∈ G.

For all a ∈ A and g ∈ G, we have

i−1
(
s(g)i(a)s(g)−1

)
= i−1

(
(0, g)(a, 1)(0, g)−1

)
= i−1

(
(ga+ σ(g, 1), g)(0, g)−1

)
= i−1

(
(ga+ σ(g, 1), g)(−g−1σ(g, g−1), g−1)

)
= i−1

(
(ga+ σ(g, 1) + g(−g−1σ(g, g−1)) + σ(g, g−1), 1)

)
= i−1

(
(ga+ σ(g, 1), 1)

)
= i−1

(
(ga, 1)

)
= ga.

Thus, the extension 0→ A→ Eσ → G→ 1 corresponds to the given G-module struc-
ture on A.
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Next, for all g, h ∈ G, we have

σ(g, h) = i−1
(
(σ(g, h), 1)

)
= i−1

(
(σ(g, h)− σ(1, gh), 1)

)
= i−1

(
(σ(g, h)− σ(1, gh), 1)(0, gh)(0, gh)−1

)
= i−1

(
(σ(g, h), gh)(0, gh)−1

)
= i−1

(
(0, g)(0, h)(0, gh)−1

)
= i−1

(
s(g)s(h)s(gh)−1

)
.

Thus, σ is the 2-cocycle corresponding to the section s. Hence Φ is surjective.

Finally, we prove that Φ is injective. Let 0→ A
i→ E

π→ G→ 1 and 0→ A
i′→ E′ π

′

→
G→ 1 be two topological group extensions admitting symmetric continuous sections s
and s′, respectively. Let σ and σ′ be the 2-cocyles associated to s and s′, respectively.
Suppose that σ and σ′ represent the same element in HS2

c (G,A). In other words,
σ′ − σ = ∂1(λ) for some λ ∈ CS1

c (G,A). Define t : G→ E by

t(g) = iλ(g)s(g) for all g ∈ G.

We can see that t is a continuous section to π and also gives rise to the 2-cocycle σ′

as

i−1
(
t(g)t(h)t(gh)−1

)
= i−1

(
iλ(g)s(g)iλ(h)s(h)s(gh)−1iλ(gh)−1

)
= i−1

(
iλ(g)s(g)iλ(h)s(g)−1s(g)s(h)s(gh)−1iλ(gh)−1

)
= i−1

(
iλ(g)s(g)iλ(h)s(g)−1i(σ(g, h))iλ(gh)−1

)
= λ(g) + i−1

(
s(g)iλ(h)s(g)−1

)
+ σ(g, h)− λ(gh)

= λ(g) + gλ(h) + σ(g, h)− λ(gh)
= σ′(g, h).

Let 0→ A→ Eσ′ → G→ 1 be the extension associated to σ′. Define φt : Eσ′ → E
by

φt(a, g) = i(a)t(g) for all a ∈ A and g ∈ G.

Clearly, φt is continuous, and it is a homomorphism because

φt
(
(a, g)(b, h)

)
= φt(a+ gb+ σ′(g, h), gh)

= i(a+ gb+ σ′(g, h))t(gh)

= i(a)i(gb)i(σ′(g, h))t(gh)

= i(a)t(g)i(b)t(g)−1t(g)t(h)t(gh)−1t(gh)

= i(a)t(g)i(b)t(h)

= φt(a, g)φt(b, h).

It is easy to see that φt is bijective with inverse i(a)t(g) 7→ (a, g). As both Eσ′ and E
have the product topology, the inverse homomorphism is also continuous and hence
φt is an equivalence of extensions Eσ′ ∼= E. Similarly, define φs′ : Eσ′ → E′ by

φs′(a, g) = i′(a)s′(g) for all a ∈ A and g ∈ G.

Just as above, we can see that φs′ is an equivalence of extensions Eσ′ ∼= E′. Hence
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we get an equivalence of extensions E ∼= E′ proving that Φ is injective. The proof of
the theorem is now complete.

We conclude this section with the following remarks.

Remark 3.4. Recall that a topological group G is said to be a free topological group
if there exists a completely regular space X such that:

(i) X is topologically embeddable in G;

(ii) when embedded X generates G;

(iii) every continuous map from X to a topological group H can be extended to a
unique continuous homomorphism from G to H.

If G is a free topological group, then H2
c (G,A) = 0 by [13, Proposition 5.6]. Thus,

if G is a free topological group and A is a topological G-module, then HS2
c (G,A) = 0

by Proposition 3.2.

Remark 3.5. Let G be a topological group and A be a topological G-module. Restric-
tion to the underlying abstract group structure gives, for each n > 0, the homomor-
phisms (with the same notation)

r∗ : Hn
c (G,A)→ Hn(G,A)

and

r∗ : HSnc (G,A)→ HSn(G,A).

It is easy to see that the following diagram is commutative

HS2
c (G,A)

h∗

��

r∗ // HS2(G,A)

h∗

��

H2
c (G,A)

r∗ // H2(G,A).

Note that both the vertical maps are injective by Proposition 3.2 and [24, Lemma 3.1].
When G and A are locally compact groups, then Moore [19] defined a cohomology
theory H∗

m(G,A) with measurable cochains. He showed that if G is perfect, then the
restriction map

H2
m(G,A)→ H2(G,A)

is injective [19, Theorem 2.3]. Further, he showed that, if G is a profinite group and
A a discrete G-module or G is a Lie group and A a finite dimensional G-vector space,
then the restriction map

H2
c (G,A)

∼=→ H2
m(G,A)

is an isomorphism [18, p.32]. When the group G is perfect, combining the above two
results of Moore shows that the restriction map

r∗ : H2
c (G,A)→ H2(G,A)

is injective. This together with the injectivity of the vertical maps h∗ in the above
commutative diagram proves the following:

Let G be a perfect group satisfying either of the following conditions:
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(i) G is a profinite group and A a discrete G-module;

(ii) G is a Lie group and A a finite dimensional G-vector space.

Then the restriction map r∗ : HS2
c (G,A)→ HS2(G,A) is injective. We shall show in

Example 4.4 that this map is not injective in general.

4. Some examples

In this section, we give some examples to illustrate the symmetric continuous
cohomology introduced in the previous section.

Example 4.1. We give an example of a topological group and a topological module
for which the two cohomology theories HS∗

c (−,−) and H∗
c (−,−) are different. More

precisely, we show that, the map h∗ : HS2
c (−,−)→ H2

c (−,−) is not surjective in
general.

First consider the extension

0→ Z i→ Z× Z/2 π→ Z/4→ 0,

where i(n) = (2n, n) and π(n,m) = n+ 2m. Here n denotes the class of n modulo 2
or 4 depending on the context. Let s : Z/4→ Z× Z/2 be the section given by

s(0) = (0, 0), s(1) = (−1, 1), s(2) = (0, 1) and s(3) = (1, 1).

Equipping each group with the discrete topology, we can consider this as an extension
of topological groups. Then s is clearly a symmetic continuous section. Let G be a
non-discrete abelian topological group. Consider the extension

0→ Z×G i′→ Z× Z/2×G×G π′

→ Z/4×G→ 0, (6)

where i′(n, g) = (i(n), g, 0) and π′(n,m, g, h) = (π(n,m), h). This is a non-split exten-
sion of topological groups. Note that the extension also admits a symmetric continuous
section s′ : Z/4×G→ Z× Z/2×G×G given by

s′(n, h) = (s(n), 0, h).

Therefore, (6) represents a unique non-trivial element in HS2
c (Z/4×G,Z×G).

Next consider the extension

0→ Z j→ Z ν→ Z/4→ 0,

where j(n) = 4n and ν(n) = n. With the discrete topology, we can consider this as
an extension of topological groups. This extension does not admit any symmetric
continuous section. For any non-discrete abelian topological group G, we get the
following non-split extension of topological groups

0→ Z×G j′→ Z×G×G ν′

→ Z/4×G→ 0, (7)

where j′(n, g) = (j(n), g, 0) and ν′(n, g, h) = (ν(n), h). Let s : Z/4→ Z be any contin-
uous section, which exists as the topologies are discrete. Then the section
s′ : Z/4×G→ Z×G×G given by

s′(n, h) = (s(n), 0, h)

is continuous. However, there does not exist any symmetric continuous section. There-



SYMMETRIC CONTINUOUS COHOMOLOGY OF TOPOLOGICAL GROUPS 291

fore, (7) represents a unique non-trivial element in H2
c (Z/4×G,Z×G), but does not

represent an element in HS2
c (Z/4×G,Z×G).

Example 4.2. We now give an example which is specific to the continuous case. Let

H3(R) =


 1 x z

0 1 y
0 0 1

 ∣∣∣∣∣∣ x, y, z ∈ R


be the 3-dimensional real Heisenberg group. Note that H3(R) is a non-abelian topo-
logical group (in fact a Lie group) with respect to matrix multiplication. Let

A =


 1 0 z

0 1 0
0 0 1

 ∣∣∣∣∣∣ z ∈ R


be the center of H3(R). Then A ∼= R and H3(R)/A ∼= R2 as a topological group. This
gives an extension of topological groups

0→ R→ H3(R)→ R2 → 0. (8)

The extension is non-split as an extension of topological groups as this would make the
group H3(R) to be abelian. However, the extension admits a section s : R2 → H3(R)
given by

s(x, y) =

 1 x xy
2

0 1 y
0 0 1


which is continuous and symmetric, since

s(−x,−y) =

 1 −x xy
2

0 1 −y
0 0 1

 = s(x, y)−1.

Therefore, (8) represents a unique non-trivial element in HS2
c (R2,R).

Example 4.3. We give an example of a topological group and a topological module
for which HS2

c (−,−) ∼= H2
c (−,−).

Examples of (abelian) topological group extensions admitting a symmetric con-
tinuous section are guaranteed by a well known result of Michael [15, Proposition
7.2], which states that: If X and Y are real or complex Banach spaces regarded as
topological groups with respect to their addition and π : X → Y is a surjective con-
tinuous linear transformation, then there exists a continuous map s : Y → X such
that πs(y) = y and s(−y) = −s(y) for all y ∈ Y .

Let Y and A be infinite dimensional real or complex Banach spaces. Consider
A as a trivial Y -module. If 0→ A→ X → Y → 0 is any extension of Banach spaces
regarded as an extension of topological groups, then the map X → Y always admits a
symmetric continuous section by the above mentioned result of Michael. This together
with Proposition 3.2 shows that HS2

c (Y,A)
∼= H2

c (Y,A).
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Example 4.4. Let G be a topological group and A be a topological G-module. As
announced in the previous section, we give an example to show that the homomor-
phism

r∗ : HS2
c (G,A)→ HS2(G,A)

is not injective in general.

Let X be an infinite dimensional real or complex Banach space and let A be a
non-complemented subspace of X. The quotient map X → X/A admits a symmet-
ric continuous section by the above mentioned result of Michael. Since A is non-
complemented in X, the extension is non-split as an extension of topological groups.
But X is isomorphic to A×X/A as an abelian group and the extension is split
as an extension of abstract groups. Hence r∗ : HS2

c (X/A,A)→ HS2(X/A,A) is not
injective.

Let us consider a particular example. Let k be the field of real or complex numbers
and `∞ be the space of all bounded sequences x = (xn)

∞
n=1, where xn ∈ k for each

n > 1. Note that `∞ is a Banach space with respect to the norm ‖x‖∞ = supn |xn|.
Let c0 be the subspace of `∞ consisting of all sequences whose limit is zero. This is
a closed subspace of `∞ and hence a Banach space. By a well-known result due to
Phillips [5, p.33, Corollary 4], c0 is a non-complemented subspace of `∞ and hence

0→ c0 → `∞ → `∞/c0 → 0

is a non-split extension of topological groups. We would like to mention that there is
a general method of constructing non-split extensions of Banach spaces due to Kalton
and Peck [14].

Example 4.5. We now give an example to show that the restriction homomorphism
r∗ is not surjective in general.

Consider the 3-dimensional real Heisenberg group H3(R) as an abstract group.
Consider the center A ∼= R of H3(R) as a topological group with the discrete topology
and consider H3(R)/A ∼= R2 as a topological group with the usual topology. Then
regarding

0→ R→ H3(R)→ R2 → 0 (9)

as an extension of abstract groups, we see that it is non-split and admits a symmetric
section s : R2 → H3(R). Thus, the extension (9) represents a non-trivial element in
HS2(R2,R).

Suppose that, there is a topology on H3(R) making (9) into an extension of topo-
logical groups admitting a symmetric continuous section and inducing the underlying
abstract group extension. Then H3(R) is a topological group with the product topol-
ogy R2 × R. In particular, the map I : H3(R)→ H3(R) sending each matrix to its
inverse must be continuous. But this is not true. Consider the open set

U =


 1 x 0

0 1 y
0 0 1

 ∣∣∣∣∣∣ x, y ∈ (−1, 1)


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in H3(R). Then

I−1(U) =


 1 x z

0 1 y
0 0 1

 ∣∣∣∣∣∣
 1 −x xy − z

0 1 −y
0 0 1

 ∈ U


=


 1 x z

0 1 y
0 0 1

 ∣∣∣∣∣∣ − x,−y ∈ (−1, 1) and xy = z


=


 1 x xy

0 1 y
0 0 1

 ∣∣∣∣∣∣ x, y ∈ (−1, 1)


is not open in H3(R). Hence the element represented by (9) in HS2(R2,R) has no
pre-image in HS2

c (R2,R).

5. Properties of symmetric continuous cohomology

Let G and G′ be topological groups. Let A be a topological G-module and A′ a
topological G′-module. We say that a pair (α, β) of continuous group homomorphisms
α : G′ → G and β : A→ A′ is compatible if the following diagram commutes

G×A −−−−→ A

α

x yβ yβ
G′×A′ −−−−→ A′.

In other words, g′β(a) = β(α(g′)a) for all a ∈ A and g′ ∈ G. For simplicity, we write
ψ = (α, β). Under these conditions, we have the following proposition.

Proposition 5.1. There is a homomorphism of cohomology groups

ψn : HSnc (G,A)→ HSnc (G
′, A′) for each n > 0.

Proof. Fix n > 0. For each σ ∈ CSnc (G,A), define σ′ : G′n → A′ by

σ′(g′1, g
′
2, g

′
3, . . . , g

′
n) = β

(
σ(α(g′1), α(g

′
2), α(g

′
3), . . . , α(g

′
n))

)
for all (g′1, g

′
2, g

′
3, . . . , g

′
n) ∈ G′n. Clearly, σ′ is continuous being composite of continu-

ous maps. Next we show that σ′ is symmetric. We have

τ1σ
′(g′1, g

′
2, g

′
3, . . . , g

′
n)

= −g′1σ′(g′1−1
, g′1g

′
2, g

′
3, . . . , g

′
n

)
= −g′1β

(
σ(α(g′1

−1
), α(g′1g

′
2), α(g

′
3), . . . , α(g

′
n))

)
= β

(
− α(g′1)σ(α(g′1)−1, α(g′1)α(g

′
2), α(g

′
3), . . . , α(g

′
n))

)
by compatibility

= β
(
σ(α(g′1), α(g

′
2), α(g

′
3), . . . , α(g

′
n))

)
by τ1σ = σ

= σ′(g′1, g
′
2, g

′
3, . . . , g

′
n).
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For 2 6 i 6 n− 1, we have

τiσ
′(g′1, g

′
2, g

′
3, . . . , g

′
n)

= −σ′(g′1, . . . , g′i−2, g
′
i−1g

′
i, g

′
i
−1
, g′ig

′
i+1, g

′
i+2, . . . , g

′
n

)
= −β

(
σ(α(g′1), . . . , α(g

′
i−2), α(g

′
i−1g

′
i), α(g

′
i
−1

), α(g′ig
′
i+1), α(g

′
i+2), . . . , α(g

′
n))

)
= β

(
− σ(α(g′1), . . . , α(g′i−2), α(g

′
i−1)α(g

′
i), α(g

′
i)

−1,

α(g′i)α(g
′
i+1), α(g

′
i+2), . . . , α(g

′
n))

)
= β

(
σ(α(g′1), α(g

′
2), α(g

′
3), . . . , α(g

′
n))

)
by τiσ = σ

= σ′(g′1, g
′
2, g

′
3, . . . , g

′
n).

Similarly, we can see that τnσ
′(g′1, g

′
2, g

′
3, . . . , g

′
n) = σ′(g′1, g

′
2, g

′
3, . . . , g

′
n). This shows

that σ′ is symmetric, and hence an element of CSnc (G
′, A′).

Define ψn : CSnc (G,A)→ CSnc (G
′, A′) by ψn(σ) = σ′. It it routine to check that ψn

is a homomorphism commuting with the coboundary operators, that is, the following
diagram commutes

CSnc (G,A)

∂n

��

ψn

// CSnc (G
′, A′)

∂n

��

CSn+1
c (G,A)

ψn+1

// CSn+1
c (G′, A′).

This shows that ψn preserves both cycles and boundaries and hence defines a map

ψn : HSnc (G,A)→ HSnc (G
′, A′)

given by

ψn([σ]) = [σ′].

It is again routine to check that ψn is a homomorphism. This completes the proof.

In particular, for G = G′ and α = idG, we have a homomorphism

β∗ : HS∗
c (G,A)→ HS∗

c (G,A
′).

The following is an immediate consequence of Proposition 5.1.

Corollary 5.2. The following statements hold:

1. Let H be a subgroup of G. Then the compatible pair of homomorphisms, the
inclusion map H ↪→ G and the identity map A→ A, gives the restriction homo-
morphism HS∗

c (G,A)→ HS∗
c (H,A).

2. Let H be a normal subgroup of G. Then the compatible pair of homomorphisms,
the quotient map G→ G/H and the inclusion map AH ↪→ A, gives the inflation
homomorphism HS∗

c (G/H,A
H)→ HS∗

c (G,A).

We also have, a long exact sequence in cohomology associated to a short exact
sequence of topological G-modules admitting a symmetric continuous section which
is compatible with the actions.
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Proposition 5.3. Let 0→ A′ i→ A
j→ A′′ → 0 be a short exact sequence of topological

G-modules admitting a symmetric continuous section which is compatible with the
actions. Then there is a long exact sequence of symmetric continuous cohomology
groups,

· · · → HSnc (G,A
′)

in→ HSnc (G,A)
jn→ HSnc (G,A

′′)
δ→ HSn+1

c (G,A′)→ · · · .

Proof. We first show that, for each n > 0, there is a short exact sequence of symmetric
continuous cochain groups

0→ CSnc (G,A
′)

in→ CSnc (G,A)
jn→ CSnc (G,A

′′)→ 0.

Let σ ∈ CSnc (G,A′) be such that in(σ) = 0, that is, i(σ(g1, . . . , gn)) = 0 for all
(g1, . . . , gn) ∈ Gn. But injectivity of i implies that σ(g1, . . . , gn) = 0 for all
(g1, . . . , gn) ∈ Gn. Hence σ = 0 and in is injective.

Since ji = 0, we have jnin = 0 and hence Im(in) ⊆ Ker(jn). Suppose σ ∈ Ker(jn),
that is, j(σ(g1, . . . , gn)) = 0. This implies σ(g1, . . . , gn) ∈ Ker(j) = Im(i). But i : A′ →
Im(i) is a homeomorphism and hence has a continuous inverse i−1 : Im(i)→ A′.
Taking µ = i−1σ, we have in(µ) = σ and hence Ker(jn) ⊆ Im(in).

Next we show that jn is surjective. Let σ ∈ CSnc (G,A′′) and let s : A′′ → A be a
symmetric continuous section which is compatible with the actions. Taking µ = sσ,
we see that µ is continuous and jn(µ) = j(sσ) = σ. It remains to check that µ is
symmetric. We have

τ1µ(g1, g2, g3, . . . , gn) = −g1µ(g−1
1 , g1g2, g3, . . . , gn)

= −g1s
(
σ(g−1

1 , g1g2, g3, . . . , gn)
)

= −s
(
g1σ(g

−1
1 , g1g2, g3, . . . , gn)

)
by compatibility of s

= −s
(
− (−g1σ(g−1

1 , g1g2, g3, . . . , gn))
)

= −s
(
− σ(g1, g2, g3, . . . , gn)

)
by τ1σ = σ

= s
(
σ(g1, g2, g3, . . . , gn)

)
by symmetry of s

= µ(g1, g2, g3, . . . , gn).

For 2 6 i 6 n− 1, we have

τiµ(g1, g2, g3, . . . , gn) = −µ(g1, . . . , gi−2, gi−1gi, g
−1
i , gigi+1, gi+2, . . . , gn)

= −s
(
σ(g1, . . . , gi−2, gi−1gi, g

−1
i , gigi+1, gi+2, . . . , gn)

)
= −s

(
− (−σ(g1, . . . , gi−2, gi−1gi, g

−1
i , gigi+1, gi+2, . . . , gn))

)
= −s

(
− σ(g1, g2, g3, . . . , gn)

)
) by τiσ = σ

= s
(
σ(g1, g2, g3, . . . , gn)

)
by symmetry of s

= µ(g1, g2, g3, . . . , gn).

Similarly, one can show that

τnµ(g1, g2, g3, . . . , gn) = µ(g1, g2, g3, . . . , gn).

Hence jn is surjective. Note that only the surjectivity of jn depends on the choice of
the section.
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As in the previous proposition, the maps i∗ and j∗ commute with the coboundary
operators and hence we get the following short exact sequence of symmetric contin-
uous cochain complexes

0→ CS∗
c (G,A

′)
i∗→ CS∗

c (G,A)
j∗→ CS∗

c (G,A
′′)→ 0.

It is now routine to obtain the desired long exact sequence of symmetric continuous
cohomology groups by a diagram chase. This completes the proof.

6. Symmetric continuous cohomology of profinite groups

Profinite groups form a special class of topological groups. We refer the reader
to [21] for basic definitions and results regarding profinite groups. The continuous
cohomology of a profinite group with coefficients in a discrete module is well studied
and equals the direct limit of the cohomology of finite groups. We prove the following
similar result for symmetric continuous cohomology.

Theorem 6.1. The symmetric continuous cohomology of a profinite group with coef-
ficients in a discrete module equals the direct limit of the symmetric cohomology of
finite groups.

We now set notations for the proof of Theorem 6.1. Let G be a profinite group and
A a discrete G-module. Let U be the set of all open normal subgroups of G. It can be
proved that for each U ∈ U , the quotient group G/U is finite. Also, for each U ∈ U ,
the group of invariants

AU = {a ∈ A| ua = a for al lu ∈ U}

is a G/U -module by means of the action

(gU, a) 7→ ga for gU ∈ G/U and a ∈ A.

For elements U, V ∈ U , we say that V 6 U if U is a subgroup of V . This makes U
a directed poset. For V 6 U , there are canonical homomorphisms

αUV : G/U → G/V and βV U : AV → AU

which form compatible pairs and gives rise to an inverse system of finite groups
{G/U}U∈U and a direct system of abelian groups {AU}U∈U . It is then well known
that

G = lim←−G/U and A = lim−→AU .

Further, for each n > 0 and each V 6 U , as in Proposition 5.1, the compatible pair
of homomorphisms (αUV , βV U ) induces a homomorphism

ψnV U : CSn(G/V,AV )→ CSn(G/U,AU ).
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Thus, we obtain in a natural way the following direct systems of abelian groups
over U :

{CSn(G/U,AU )}U∈U and {HSn(G/U,AU )}U∈U .

Note that for each n > 0, the coboundary operator

∂nU : CSn(G/U,AU )→ Cn+1(G/U,AU )

commutes with the bonding maps ψnV U and hence gives a coboundary operator

∂n : lim−→CSn(G/U,AU )→ lim−→CSn+1(G/U,AU )

making {lim−→CSn(G/U,AU ), ∂n} into a cochain complex.
To prove Theorem 6.1, it suffices to prove the following lemma, which is essen-

tially [21, Lemma 6.5.4].

Lemma 6.2. Let G be a profinite group and A a discrete G-module. Then for each
n > 0, there is an isomorphism

lim−→CSn(G/U,AU ) ∼= CSnc (G,A)

commuting with the corresponding coboundary operators.

Proof. The proof is same as that of [21, Lemma 6.5.4] and we outline it briefly for
the convenience of the readers. Fix n > 0. For each U ∈ U , let

αU : G→ G/U and βU : AU → A

be the obvious homomorphisms. Note that βU (αU (g)a) = βU (ga) = ga = gβU (a) for
all g ∈ G and a ∈ AU . Thus, the pair (αU , βU ) is compatible. Let

ψnU : CSnc (G/U,A
U )→ CSnc (G,A)

be the homomorphism induced by the compatible pair (αU , βU ) as in Proposition 5.1.
Note that this also commutes with the coboundary operators. Considering both G/U
and AU equipped with discrete topology, we have CSnc (G/U,A

U ) = CSn(G/U,AU ).
Therefore, we have

ψnU : CSn(G/U,AU )→ CSnc (G,A).

For elements U, V ∈ U with V 6 U , by definitions, the following diagram commutes

CSn(G/V,AV )

ψn
V U

��

ψn
V // CSnc (G,A)

CSn(G/U,AU ).

ψn
U

66nnnnnnnnnnnn

Hence there is a homomorphism

ψn : lim−→CSn(G/U,AU )→ CSnc (G,A)

given by

ψn([σU ]) = ψnU (σU ) for σU ∈ CSn(G/U,AU ).

The proof of the bijectivity of ψn is routine as in [21, Lemma 6.5.4]. The commuta-
tivity of the homomorphisms ψn with the coboundary operators is immediate from
the definitions and the formula (1). This proves the lemma.
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Note that lim−→ is an exact functor and hence we obtain

HSnc (G,A) = Hn(CS∗
c (G,A))

= Hn(lim−→CS∗(G/U,AU ))

= lim−→Hn(CS∗(G/U,AU ))

= lim−→HSn(G/U,AU ).

This completes the proof of the Theorem 6.1.

7. Symmetric smooth cohomology of Lie groups

The theory of Lie groups, particularly cohomology of Lie groups, has been studied
from different points of view. Various cohomology theories of Lie groups have been
constructed in the literature [11, 12, 13, 26, 20]. There is a rich interplay between
the continuous cohomology of a Lie group, the cohomology of its Lie algebra and the
de Rham cohomology of its associated symmetric space [2, 25].

There is a well known theory of smooth cohomology of a Lie group G with coef-
ficients in a topological vector space V on which G acts smoothly. This theory was
defined by Blanc [1] and was later extended by Brylinski [4] to coefficients in an arbi-
trary abelian Lie group. In this section, we define the symmetric smooth cohomology
of a Lie group and prove some basic properties as we did for topological groups.

Let G be a Lie group and A be a smooth G-module. We can define an analogous
cohomology theory by imposing the condition that the standard cochains are sym-
metric and smooth. More precisely, for each n > 0, let Cns (G,A) be the group of all
smooth maps from the product Lie group Gn → A and let the coboundary be given
by the standard formula as in (1). Analogous to the construction in the continuous
case, for each n > 0, consider the action of the symmetric group Σn+1 on Cns (G,A)
as given by equations (2). The smoothness of the action of G on A implies that the
action is well-defined. As in the continuous case, the action is compatible with the
standard coboundary operators ∂n and hence gives the subcomplex of invariants

{CSns (G,A), ∂n}n>0 = {Cns (G,A)Σn+1 , ∂n}n>0.

We define the symmetric smooth cohomology HSns (G,A) to be the cohomology
groups of this new cochain complex.

We obtain some basic properties of this cohomology theory as follows.

Proposition 7.1. Let G be a Lie group and A be a smooth G-module. Then we have
the following:

1. HS0
s (G,A) = AG.

2. ZS1
s (G,A) = the group of symmetric smooth crossed homomorphisms from G

to A.

3. The map h∗ : HS2
s (G,A)→ H2

s (G,A) is injective.

4. Let A be a G-module and A′ be a G′-module such that the actions are com-
patible. Then there is a homomorphism of cohomology groups HSns (G,A)→
HSns (G

′, A′) for each n > 0.
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5. Let 0→ A′ i→ A
j→ A′′ → 0 be a short exact sequence of smooth G-modules

admitting a symmetric smooth section which is compatible with the actions.
Then there is a long exact sequence of symmetric smooth cohomology groups

· · · → HSns (G,A
′)

in→ HSns (G,A)
jn→ HSns (G,A

′′)
δ→ HSn+1

s (G,A′)→ · · · .

Proof. We leave the proofs to the reader as they are similar to those of the continuous
case.

As in the continuous case, we would like to have an interpretation of the symmetric
smooth cohomology in dimension two. For that purpose, we recall that, an extension
of Lie groups

0→ A
i→ E

π→ G→ 1

is an algebraic short exact sequence of Lie groups with the additional property that
both i and π are smooth homomorphisms and π admits a smooth local section s : U →
E, where U ⊂ G is an open neighbourhood of identity. The existence of a smooth local
section means that E is a principal A-bundle over G with respect to the left action of
A on E given by (a, e) 7→ i(a)e for a ∈ A and e ∈ E. Since an extension of Lie groups
is a principal bundle, it follows that it is a trivial bundle (E is A×G as a smooth
manifold) if and only if it admits a smooth section.

Two extensions of Lie groups 0→ A
i→ E

π→ G→ 1 and 0→ A
i′→ E′ π

′

→ G→ 1 are
said to be equivalent if there exists a smooth isomorphism φ : E → E′ with smooth
inverse such that the following diagram commute

0 // A
i // E

π //

φ

��

G // 1

0 // A
i′ // E′ π′

// G // 1.

Let S(G,A) denote the set of equivalence classes of Lie group extensions of G
by A admitting a symmetric smooth section and corresponding to the given way in
which G acts on A. Such extensions are classified by the second symmetric smooth
cohomology as follows.

Theorem 7.2. Let G be a Lie group and A be a smooth G-module. Then there is a
bijection Ψ: S(G,A)→ HS2

s (G,A)

Proof. We leave the proof to the reader as it is similar to that of the continuous
case.

Note that countable groups with the discrete topology are 0-dimensional Lie
groups. Taking G to be an abelian Lie group of positive dimension in the Example 4.1,
we have an example of a positive dimensional Lie group and a smooth module for
which the two cohomology theories HS∗

s (−,−) and H∗
s (−,−) are different. Similarly,

Example 4.2 also serves as an example for the Lie group case.

Note that an extension of Lie groups 0→ A
i→ E

π→ G→ 1 can be thought of as an
extension of topological groups by considering only the underlying topological group
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structure (i becomes closed continuous and π becomes open continuous). This gives
the restriction homomorphism

r∗ : HSns (G,A)→ HSnc (G,A) for each n > 0.

We investigate this homomorphism in dimension two. Before that, we recall Hilbert’s
fifth problem, which asked: Is every locally Euclidean topological group necessarily
a Lie group? It is well known that Hilbert’s fifth problem has a positive solution [9,
17, 28]. We use this in the following concluding theorem.

Theorem 7.3. Let G be a Lie group and A be a smooth G-module. Then the natural
homomorphism

r∗ : HS2
s (G,A)→ HS2

c (G,A)

is an isomorphism.

Proof. Let [σ] ∈ HS2
s (G,A) and let 0→ A→ E → G→ 1 be an extension of Lie

groups corresponding to [σ] by Theorem 7.2, which is unique up to equivalence of
extensions. Suppose that r∗([σ]) is trivial in HS2

c (G,A). Then there exists a con-
tinuous section s : G→ E which is a group homomorphism. This gives a continuous
isomorphism between the Lie groups E and AoG. A continuous homomorphism
between Lie groups is smooth [16, Theorem 4.21]. As a consequence this isomor-
phism is smooth. Hence the cohomology class [σ] is trivial in HS2

s (G,A) and the
homomorphism r∗ is injective.

Let [σ] ∈ HS2
c (G,A) and let 0→ A

i→ Eσ
π→ G→ 1 be the extension of topological

groups defined using the 2-cocycle σ as in the proof of Theorem 3.3. The extension
admits a symmetric continuous section s : G→ Eσ given by s(g) = (0, g) for all g ∈ G.
By construction, Eσ is A×G as a topological space. Also, Eσ is locally Euclidean
as both A and G are Lie groups. Hence we conclude that Eσ is a Lie group by
the positive solution to Hilbert’s fifth problem. Since a continuous homomorphism
between Lie groups is smooth, we have that both i and π are smooth homomorphisms.
Applying the implicit function theorem, we can find a smooth section of π defined
in a neighbourhood of identity in G. This shows that 0→ A→ Eσ → G→ 1 is an
extension of Lie groups. Further, the section s : G→ Eσ becomes smooth as Eσ has
the product smooth structure. Let σ′ be the symmetric smooth 2-cocycle associated
to the symmetric smooth section s. Then r∗([σ′]) = [σ] and the homomorphism r∗ is
surjective.
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