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SMOOTH FUNCTORS VS. DIFFERENTIAL FORMS
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(communicated by Ronald Brown)

Abstract
We establish a relation between smooth 2-functors defined on

the path 2-groupoid of a smooth manifold and differential forms
on this manifold. This relation can be understood as a part of
a dictionary between fundamental notions from category the-
ory and differential geometry. We show that smooth 2-functors
appear in several fields, namely as connections on (non-abelian)
gerbes, as derivatives of smooth functors and as critical points
in BF theory. We demonstrate further that our dictionary pro-
vides a powerful tool to discuss the transgression of geometric
objects to loop spaces.
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1. Introduction

The present article is the second of three articles aiming at a general and system-
atical approach to connections on (non-abelian) gerbes and their surface holonomy.

In the first article [SW09] we have established an equivalence between categories
of fibre bundles with connection over a smooth manifold X, and categories of certain
functors, called transport functors. Let us spell out this equivalence, reduced to trivial
principal G-bundles with connection. These are just g-valued 1-forms on X, where g
is the Lie algebra of the Lie group G. Our equivalence is then a bijection

Ω1(X, g) ∼=
{

Smooth functors
P1(X) → BG

}
between the set of g-valued 1-forms on X and the set of smooth functors between two
groupoids P1(X) and BG. One the one hand, we have the path groupoid P1(X) which
is associated to the manifold X: its objects are the points of X, and the morphisms
between two points are (thin homotopy classes of smooth) paths between these two
points. On the other hand, we have a groupoid BG which is associated to the Lie
group G: it has just one object and every group element acts as an automorphisms
of this object. The notation BG is devoted to the fact that the geometric realization
of its nerve is the classifying space BG of the group G.

Now, the functors F : P1(X) → BG we have on the right hand side of the above
bijection assign group elements F (γ) to paths γ inX; this assignment is smooth in the
sense that it can be expressed in terms of smooth maps between smooth manifolds.
For the convenience of the reader, we review this relation between smooth functors
and differential forms in Section 2.

In the present article we generalize the above bijection between smooth functors
and 1-forms to smooth 2-functors and 2-forms. The aim of this generalization is
multiple, but for a start we want to give an impression of what the generalized
bijection looks like. The first step is the generalization of the categories P1(X) and BG
to appropriate 2-categories. On the one hand, we introduce the path 2-groupoid P2(X)
of a smooth manifoldX by adding 2-morphisms to the path groupoid P1(X). These 2-
morphisms are (thin homotopy classes of) smooth homotopies between smooth paths
in X. On the other hand, we infer that the group G which was present before has to
be replaced by a (strict) 2-group: basically, this is a group object in categories, i.e.,
a category with additional structure. The concept of 2-groups can be refined to Lie
2-groups; such a Lie 2-group G underlies the generalized relation we are after. We
form a 2-category BG mimicking the same idea we used for the category BG: it has
just one object and the Hom-category of this object is the category G.
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Equipped with these generalized 2-categories, we consider 2-functors

F : P2(X) → BG,

and it even makes perfectly sense to qualify some as smooth 2-functors. As before,
the smoothness can be expressed in terms of smooth maps between smooth manifolds
(Definition 3.5).

In order to explore which kind of differential form corresponds to a smooth 2-
functor F : P2(X) → BG, we put the abstract concept of a 2-group in a more familiar
setting. According to Brown and Spencer [BS76], a 2-group G is equivalent to a
crossed module: a structure introduced by Whitehead [Whi46] consisting of two
ordinary groups G and H, a group homomorphism t : H → G and a compatible action
of G on H. Similarly, a Lie 2-group corresponds to Lie groups G and H and smooth
additional structure. We denote the Lie algebras of the two Lie groups G and H by g
and h, respectively. The first result of this article (Proposition 3.8) is that the smooth
2-functor F defines a g-valued 1-form A and an h-valued 2-form B on X that are
related by

dA+ [A ∧A] = t∗(B).

Here, we have the ordinary curvature 2-form of A on the left hand side, and t∗ is the
Lie algebra homomorphism induced by t. The two differential forms A and B contain
in fact all information about the 2-functor F they came from: we describe an explicit
procedure how to integrate two forms A and B (satisfying the above condition) to
a smooth 2-functor F : P2(X) → BG. This integration involves iterated solutions of
ordinary differential equations. The main result of this article (Theorem 3.21) is that
we obtain a bijection{

Smooth 2-functors
F : P2(X) → BG

}
∼=

{
(A,B) ∈ Ω1(X, g)× Ω2(X, h)
with dA+ [A ∧A] = t∗(B)

}
.

This is the announced generalization of the relation between smooth 1-functors and
differential 1-forms from [SW09]. Besides, we also explore the geometric structure
that corresponds to morphisms (pseudonatural transformations) and 2-morphisms
(modifications) between 2-functors. The derivation of all the relations that are im-
posed on this structure takes a large part of this article, and is collected in Section 3.

In Section 4 we try to convince the reader that smooth 2-functors are implicitly
present in various fields, and we describe the impact of our new bijection to these
fields. We give three examples. The first example are connections on (possibly non-
abelian) gerbes. As mentioned at the beginning of this introduction, ordinary smooth
functors correspond to connections on trivial principal bundles. We claim here that
smooth 2-functors correspond in the same way to connections on trivial gerbes.

For abelian gerbes, such connections have been studied by Brylinski on sheaves
of groupoids [Bry93], and by Murray on bundle gerbes [Mur96]. In both cases,
our claim shows to be true. Similar results for abelian gerbes have been obtained
in [MP02]. Connections on a certain class of (possibly) non-abelian gerbes have
been introduced by Breen and Messing [BM05]. Their connection – considered on
a trivial gerbe – is a pair (A,B) of a 1-form and a 2-form like they arise from a
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smooth 2-functor in the way outlined above. Interestingly, the two forms of a Breen-
Messing connection are not necessarily related to each other, in contrast to the two
forms coming from a smooth 2-functor. We argue that this difference is related to the
question, whether such connections induce a notion of surface holonomy .

Moreover, certain higher gauge theories can be described by pairs (A,B) of dif-
ferential forms with values in the Lie algebras belonging to the two Lie groups of a
crossed module, and even the relation between A and B we found here is already
present in this context [GP04]. Since higher gauge theories are naturally related to
connections on gerbes, a further link between smooth 2-functors and connections on
gerbes is present.

A deeper discussion of connections on non-trivial gerbes and their surface holonomy
is the content of the third part [SWA] in our series of articles.

The second example of smooth 2-functors we want to give are derivative 2-functors.
For any Lie group G, a smooth functor F : P1(X) → BG determines a smooth 2-
functor

dF : P2(X) → BEG,

where EG is a Lie 2-group introduced by Segal as a model for the universal G-bundle
EG [Seg68]. Using our dictionary between smooth functors and differential forms
for both F and dF we see that the functor F corresponds to a trivial principal G-
bundle with connection ω over X, while the derivative 2-functor dF induces a 2-form
B ∈ Ω2(X, g). We prove that B is the curvature of the connection ω, so that the
relation between F and dF implies a relation between the holonomy of ω and its
curvature. We show that this establishes a new proof of the so-called non-abelian
Stokes’ Theorem (Theorem 4.4).

The third example where smooth 2-functors arise is a certain topological field
theory which is called BF-theory due to the presence of two fields B and F . These
fields are 2-forms with values in the Lie algebra g of a Lie group G; actually F =
dA+ [A ∧A] is the curvature of a 1-form A. We prove that the critical points of the
BF action functional are those pairs (A,B) satisfying the relation described above. In
other words, smooth 2-functors arise as the classical solutions of the field equations
of BF-theory (Proposition 4.7).

Section 5 is devoted to the following observation: every element in the loop space
LX of a smooth manifold X can be understood as a particular morphism in the path
groupoid P1(X), and also as a particular 1-morphism in the path 2-groupoid P2(X).
This way, functors on the path groupoid, and 2-functors on the path 2-groupoid are
intrinsically related to structure on the loop space of X.

First we observe that the structure on the loop space which is induced by a smooth
functor F : P1(X) → BG is a smooth function LX → G, and that this function is
nothing but the holonomy of the (trivial) principal G-bundle with connection associ-
ated to F . Then we prove that the structure which is induced by a smooth 2-functor
F : P2(X) → BG is a smooth functor

P1(LX) → ΛBG,

where ΛBG is a certain category constructed from the 2-groupoid BG. In order to be
able to speak about smooth functors on the loop space, we work with the canonical
diffeology on LX: this is a structure which generalizes a smooth manifold structure
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and is more suitable for mapping spaces. We extend the relation between functors
and 1-forms from [SW09] to diffeological spaces (Theorem 5.7), and prove that the
above smooth functor on the path groupoid of the loop space corresponds to the
following structure: a smooth function LX → G, a 1-form AF ∈ Ω1(LX, g) and a
1-form ϕF ∈ Ω1(LX, h).

Denoting by (A,B) the differential forms that belong to the smooth 2-functor F we
started with, we derive an explicit relation between the differential forms (A,B) on X
and (AF , ϕF ) on LX (Proposition 5.10). This relation involves integration along the
fibre, and admits an outlook on the question, what the transgression of a non-abelian
gerbe over X to the loop space LX is.

Finally, we have included an Appendix in which we review basic notions from 2-
category theory and important definitions and examples related to Lie 2-groups and
smooth crossed modules. For the convenience of the reader, there is also a table of
notation.

2. Review: Smooth Functors and 1-Forms

In this section we review some relevant definitions and results from [SW09] and
references therein.

2.1. The Path Groupoid of a Smooth Manifold
In the topological category, the basic idea of the path groupoid is very simple: for

a topological space X, it is the category whose objects are the points of X, and whose
morphisms are homotopy classes of continuous paths in X. For smooth manifolds, one
considers smooth paths: these are smooth maps γ : [0, 1] → X with sitting instants, i.e.,
a number 0 < ε < 1

2 with γ(t) = γ(0) for 0 6 t < ε and γ(t) = γ(1) for 1− ε < t 6 1.
The set of smooth paths in X is denoted by PX. The sitting instants assure that
two paths γ : x→ y and γ′ : y → z can be composed to a new path γ′ ◦ γ : x→ z.
However, the composition of paths is not associative, so that a category can only be
defined using certain quotients of PX as its morphisms.

There are essentially three ways to define such quotients. The first is to take repa-
rameterization classes P 0X := PX/ ∼0, where γ1 ∼0 γ2 if there exists an orientation-
preserving diffeomorphism ϕ of [0, 1] such that γ2 = γ1 ◦ ϕ. The second way is to take
thin homotopy classes, P 1X := PX/ ∼1:

Definition 2.1. Two paths γ1, γ2 : x→ y are called thin homotopy equivalent , de-
noted γ1 ∼1 γ2, if there exists a smooth map h : [0, 1]2 →M such that

(1) it has sitting instants: there exists a number 0 < ε < 1
2 with

a) h(s, t) = x for 0 6 t < ε and h(s, t) = y for 1− ε < t 6 1.
b) h(s, t) = γ1(t) for 0 6 s < ε and h(s, t) = γ2(t) for 1− ε < s 6 1.

(2) the differential of h has at most rank 1.

The third way is to take homotopy classes P 2X := PX/ ∼2 just like in Defini-
tion 2.1 but without condition (2). Notice that there are projections

PX // P 0X // P 1X // P 2X (1)

and that the above-mentioned composition of paths induces well-defined compositions
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on all P iX. We denote by idx the constant path at a point x. In P 0X we have

γ ◦ idx ∼0 γ ∼0 idy ◦ γ and (γ3 ◦ γ2) ◦ γ1 ∼0 γ3 ◦ (γ2 ◦ γ1); (2)

these are the axioms of a category with objects X and morphisms P 0X. We further
denote by γ−1 : y → x the path γ−1(t) := γ(1− t). In P 1X we have additionally to
(2)

γ−1 ◦ γ ∼1 idx

for any path γ : x→ y, so that the corresponding category with morphisms P 1X is
even a groupoid. This groupoid is denoted by P1(X) and called the path groupoid
of X. The groupoid Π1(X) with morphisms P 2X is well-known as the fundamental
groupoid of the smooth manifold X. All these categories are compatible with smooth
maps between smooth manifolds in the sense that any smooth map f : X → Y induces
maps f∗ : P

iX → P iY , and that these maps furnish functors between the respective
categories.

Remark 2.2. The groupoids P1(X) and Π1(X) are important for parallel transport
in a fibre bundle with connection over X in the sense that any such bundle defines a
functor

tra : P1(X) → T ,

where T is a category in which the fibres of the bundle are objects. If the connection
is flat, this functor factors through the fundamental groupoid Π1(X). More on the
relation between functors and connections in fibre bundles can be found in Section 4.1
and in [SW09].

2.2. Diffeological Spaces
A Lie category is a category S whose sets S0 of objects and S1 of morphisms are

smooth manifolds, whose target and source maps are surjective submersions, whose
identity map is an embedding and whose composition is smooth. A functor F : S → T
between Lie categories S and T is called smooth, if its assignments F0 : S0 → T0 and
F1 : S1 → T1 are smooth maps. The path groupoid P1(X) of a smooth manifold is,
however, not a Lie category, since its set of morphisms P 1X has not the structure of
a smooth manifold. In [SW09] we have instead equipped P 1X with a diffeology , a
structure that generalizes a smooth manifold structure [Che77, Sou81]. This diffe-
ology on P 1X has been introduced in [CP94]. For the convenience of the reader let
us recall the basic definitions (see also Appendix A.2 of [SW09]).

Definition 2.3. A diffeological space is a set X together with a collection of plots:
maps c : U → X, each of them defined on an open subset U ⊂ Rk for any k ∈ N0,
such that three axioms are satisfied:

(D1) for any plot c : U → X and any smooth function f : V → U also c ◦ f is a plot.

(D2) every constant map c : U → X is a plot.

(D3) if f : U → X is a map defined on U ⊂ Rk and {Ui}i∈I is an open cover of U for
which all restrictions f |Ui

are plots of X, then also f is a plot.

A diffeological map between diffeological spaces X and Y is a map f : X → Y such
that for every plot c : U → X of X the map f ◦ c : U → Y is a plot of Y . The set of
all diffeological maps is denoted by D∞(X,Y ).
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Any smooth manifold is a diffeological space, whose plots are all smooth maps
defined on all open subsets of Rk, for all k. If M and N are smooth manifolds, a map
f : M → N is diffeological if and only if it is smooth. In other words, diffeological
spaces and maps form a category D∞ that contains the category C∞ of smooth
manifolds (without boundary) as a full subcategory. Besides from smooth manifolds,
we have three further examples of sets with a canonical diffeology:

1. If X and Y are diffeological spaces, the set D∞(X,Y ) of diffeological maps
between X and Y is a diffeological space in the following way: a map

c : U → D∞(X,Y )

is a plot if and only if for any plot c′ : V → X of X the composite

U × V
c×c′ // D∞(X,Y )×X

ev // Y

is a plot of Y . Here, ev denotes the evaluation map ev(f, x) := f(x).

2. Subsets Y of a diffeological space X are diffeological: its plots are those plots of
X whose image is contained in Y .

3. If X is a diffeological space, Y is a set and p : X → Y is a map, Y becomes a
diffeological space whose plots are those maps c : U → Y for which there exists a
cover of U by open sets Uα and plots cα : Uα → X of X such that c|Uα = p ◦ cα.

Equipped with these examples, the sets P iX we have defined in Section 2.1 become
diffeological spaces in the following way. The set PX is a subset of the diffeological
space D∞([0, 1], X), and hence a diffeological space. Then we consider one of the pro-
jections pri : PX → P iX from (1) to either reparameterization classes, thin homotopy
classes or homotopy classes. According to the third example above, all the sets P iX
become diffeological spaces. We also have examples of diffeological maps: if f : X → Y
is a smooth map between smooth manifolds, the induced maps f∗ : P

iX → P iY are
all diffeological.

The most important question for us will be, whether a map P iX →M from one of
these diffeological spaces to a smooth manifold M – regarded as a diffeological space
– is diffeological. From the definitions above one can deduce the following result, and
the reader is free to take it either as a result from the background of diffeological
spaces, or as a definition.

Lemma 2.4 ([SW09], Proposition A.7 i)). A map f : P iX →M is diffeological, if
and only if for every k ∈ N0, every open subset U ⊂ Rk and every map c : U → PX
such that the composite

U × [0, 1]
c×id // PX × [0, 1]

ev // X

is smooth, also the map

U
c // PX

pri // P iX
f // M

is smooth.

Now we can study smooth functors F : P1(X) → S to a Lie category S: on objects
F : X → S0 is a smooth map and on morphisms F : P 1X → S1 is a diffeological map.
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Similarly, if η : F → F ′ is a natural transformation between two smooth functors,
it is called smooth natural transformation, if its components η(x) ∈ S1 furnish a
smooth map X → S1. Smooth functors F and smooth natural transformations η
form a category Funct∞(P1(X), S).

Remark 2.5. Concerning Definition 2.3 of a diffeological space, several different con-
ventions for plots are common. For example, in order to deal properly with manifolds
with boundary or corners, it is more convenient to consider plots being defined on
convex subsets U ⊂ Rk rather than open ones [Bae07]. Such questions do not affect
the results of this article, since we consider either maps defined on manifolds without
boundary or maps which are constant near the boundary of a manifold, for example
paths with sitting instants.

2.3. Equivalence between Functors and Forms

In [SW09] we have established an isomorphism between two categories,

Funct∞(P1(X),BG) ∼= Z1
X(G)∞. (3)

Both categories depend on a smooth manifold X and a Lie group G. On the left hand
side we have the category of smooth functors from the path groupoid P1(X) of X to
the Lie groupoid BG. We recall from the introduction that the Lie groupoid BG has
one object, and its set of morphisms is the Lie group G. The composition is defined
by g2 ◦ g1 := g2g1. On the right hand side we have a category Z1

X(G)∞ defined as
follows: its objects are 1-forms A ∈ Ω1(X, g) with values in the Lie algebra g of G,
and a morphism g : A→ A′ is a smooth function g : X → G such that

A′ = Adg(A)− g∗θ̄, (4)

where θ̄ is the right invariant Maurer-Cartan form on G. The identity morphism is
the constant function g = 1 and the composition is the multiplication of functions,
g2 ◦ g1 := g2g1. The equivalence (3) can be given explicitly in both directions: there
are two functors

Funct∞(P1(X),BG)

D

((
Z1
X(G)∞

P

hh

whose definitions we shall review in the following. Several details and proofs will be
skipped and can be found in [SW09].

Given a smooth functor F : P1(X) → BG, a 1-form A ∈ Ω1(X, g) is defined in the
following three steps:

1. For a point x ∈ X and a tangent vector v ∈ TxX, we choose a smooth curve
Γ: R → X with Γ(0) = x and Γ̇(0) = v. Let γR(t0, t) be the (up to thin homotopy
unique) path in R that goes from t0 to t, regarded as a map γR : R2 → P 1R.

2. One can show (Appendix B.4 in [SW09]) that the composite

FΓ := F ◦ Γ∗ ◦ γR : R2 → G (5)
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is a smooth map with FΓ(t0, t0) = 1 for all t0 ∈ R. We define

Ax(v) := − d

dt

∣∣∣∣
0

FΓ(0, t) ∈ g. (6)

3. One can then verify that the value Ax(v) is independent of the choice of Γ
(Lemma B.2 in [SW09]), and that the assignment A : TX → g is smooth and
linear (Lemma B.3 in [SW09]). This defines the 1-form D(F ) := A.

The components of a smooth natural transformation ρ : F → F ′ form by definition a
smooth map D(ρ) := g : X → G. Let again Γ: R → X be a smooth curve and FΓ and
F ′
Γ the functions (5) associated to the functors F and F ′, and let gΓ := g ◦ Γ. The

naturality of ρ implies the equation

gΓ(t) · FΓ(0, t) = F ′
Γ(0, t) · gΓ(0),

whose derivative evaluated at t = 0 shows (4) for A and A′ the 1-forms defined by FΓ

and F ′
Γ, respectively. Hence, D(ρ) is a morphism in Z1

X(G)∞; this defines the functor
D.

Conversely, consider a 1-form A ∈ Ω1(X, g). Then, a smooth functor F : P1(X) →
BG is defined in the following way:

1. Let γ be a path in X, which we extend trivially to R by γ(t) := γ(0) for t < 0
and γ(t) := γ(1) for t > 1. We pose the initial value problem

∂

∂t
uγ(t) = −dru(t)|1

(
Aγ(t)

(
dγ

dt

))
and u(t0) = 1 (7)

for a smooth function u : R → G and fixed t0 ∈ R. Here dru(t) is the differential
of the multiplication with u(t) from the right.

2. The initial value problem (7) has a unique solution fA,γ(t0, t), from which we
define a map

F : PX → G : γ 7→ fA,γ(0, 1). (8)

We remark that this map is sometimes referred to as the “path-ordered expo-
nential”

F (γ) = Pexp

(∫
γ

A

)
. (9)

3. One can show that the map F is independent of the thin homotopy class of
γ (Proposition 4.3 in [SW09]), and that it factors through a smooth map
F : P 1X → G (Lemma 4.5 in [SW09]). It respects the composition of paths
so that we have defined a smooth functor P(A) := F .

For a smooth function g : X → G considered as a morphism g : A→ A′ between
two 1-forms A,A′ ∈ Ω1(X, g) we need to define an associated smooth natural trans-
formation ρ = D(g) : F → F ′ between the associated functors. The component of ρ
at x ∈ X is defined as g(x). One can then show that g(y) · fA,γ(t0, t) · g(x)−1 solves
the initial value problem (7) for A′ and γ (Lemma 4.2 in [SW09]), which implies the
naturality of the natural transformation ρ. This defines the functor P.
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Theorem 2.6 (Proposition 4.7 in [SW09]). Let X be a smooth manifold and G be
a Lie group. The two functors D and P satisfy

D ◦ P = idZ1
X(G)∞ and P ◦ D = idFunct∞(P1(X),BG),

in particular, they form an isomorphism of categories.

We give a short sketch of the proof. If we start with a 1-form A ∈ Ω1(X, g), we
shall test the 1-form D(P(A)) at a point x ∈ X and a tangent vector v ∈ TxX. Let
Γ: R → X be a curve in X with x = Γ(0) and v = Γ̇(0). If we further denote γτ :=
Γ∗(γR(0, τ)) ∈ PX we have

−D(P(A))|x(v)
(6)
=

∂

∂τ

∣∣∣∣
0

P(A)Γ(0, τ)
(5)
=

∂

∂τ

∣∣∣∣
0

P(A)(γτ )
(8)
=

∂

∂τ

∣∣∣∣
0

fA,γτ (0, 1).

Here, fA,γτ denotes the unique solution of the initial value problem (7) for γτ . A
uniqueness argument shows fA,γτ (t0, t) = fA,γ1(τt0, τ t), so that

∂

∂τ
fA,γτ (0, t)

∣∣∣∣
τ=0,t=1

=
∂

∂t
fA,γ1(0, t)

∣∣∣∣
t=0

= −Ap(v),

this yields D(P(A)) = A.
On the other hand, if F : P1(X) → BG is a smooth functor, we test the functor

P(D(F )) on a path γ in X. By (8),

P(D(F ))(γ) = fD(F ),γ(0, 1),

where fD(F ),γ is the solution of the initial value problem (7) for the 1-form D(F ) and
the path γ. Due to the definition (6) of D(F ) by the function Fγ : R2 → G we have

(γ∗D(F ))t

(
∂

∂t

)
= − ∂

∂τ

∣∣∣∣
τ=0

Fγ(t, t+ τ).

Since F is a functor, Fγ(x, z) = Fγ(y, z)Fγ(x, y). Both together show that Fγ also
solves the initial value problem, so that, by uniqueness,

fD(F ),γ(0, 1) = Fγ(0, 1) = F (γ).

This shows P(D(F )) = F .
Remarkably, there is not much structure that is preserved by the functors P and

D (unless the Lie group G is abelian). For example, sums and negatives of differential
forms, or products and inverses of smooth functors are all not preserved. We only
know the following fact:

Proposition 2.7. The functors P and D are compatible with pullbacks along a
smooth map f : X → Y between smooth manifolds X and Y , i.e.,

P(f∗A) = f∗P(A) and D(f∗F ) = f∗D(F )

for a 1-form A ∈ Ω1(Y, g) and a smooth functor F : P1(Y ) → BG, and similarly for
morphisms.

Here we have used the notation f∗F for the functor F ◦ f∗, where f∗ is the induced
map on path groupoids. Proposition 2.7 follows in a straightforward way from the
naturality of the definitions of the functors D and P.
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3. Smooth 2-Functors and Differential Forms

In this section we generalize Theorem 2.6 – the equivalence between 1-forms
and smooth functors – to 2-functors. The basic 2-categorical notions such as 2-
categories, 2-functors, pseudonatural transformations and modifications are summa-
rized in Appendix A; for the reader familiar with these notions it is important to
notice that all 2-categories and 2-functors in this article are assumed to be strict
without further notice.

The first step in concerns the path groupoid P1(X) that was present in Theo-
rem 2.6: in Section 3.1 we define the path 2-groupoid P2(X) associated to a smooth
manifold X. Instead of the Lie group G that was present in Theorem 2.6 we use a
(strict) Lie 2-group G. In the same way that a category BG is associated to any Lie
group G, a 2-category BG is associated to any Lie 2-group G, and the 2-functors we
consider are of the form

F : P2(X) → BG.

A convenient and concrete way to deal with Lie 2-groups is provided by crossed
modules [Whi46, BS76]. Their definition, their relation to Lie 2-groups, and the
associated 2-categories BG are described in Appendix B.

The announced generalization of Theorem 2.6 is worked out in three steps: in
Section 3.2 we extract differential forms from 2-functors, pseudonatural transforma-
tions and modifications. We derive conditions on the extracted differential forms that
lead us straightforwardly to an appropriate generalization Z2

X(G)∞ of the category
Z1
X(G)∞ that was present in Theorem 2.6. The goal of Section 3.2 is that extracting

differential forms furnishes 2-functor

D : Funct∞(P2(X),BG) → Z2
X(G)∞.

In Section 3.3 we introduce a 2-functor

P : Z2
X(G)∞ → Funct∞(P2(X),BG)

in the opposite direction, that reconstructs 2-functors, pseudonatural transformations
and modifications from given differential forms. Finally, we prove in Section 3.4 the
main result of this article, namely that the 2-functors D and P establish an isomor-
phism of 2-categories.

3.1. The Path 2-Groupoid of a Smooth Manifold

As mentioned in the introduction, the path 2-groupoid is obtained by adding 2-
morphisms to the path groupoid P1(X). These 2-morphisms are smooth homotopies
in the sense of Definition 2.1 without the restriction (2) on their rank, explicitly:

Definition 3.1. Let γ0, γ1 : x→ y be paths in X. A bigon Σ: γ0 ⇒ γ1 is a smooth
map Σ: [0, 1]2 → X such that there exists a number 0 < ε < 1

2 with

a) Σ(s, t) = x for 0 6 t < ε and Σ(s, t) = y for 1− ε < t 6 1.

b) Σ(s, t) = γ0(t) for 0 6 s < ε and Σ(s, t) = γ1(t) for 1− ε < s 6 1.

We denote the set of bigons in X by BX. Bigons can be composed in two ways: If
Σ: γ1 ⇒ γ2 and Σ′ : γ2 ⇒ γ3 are bigons, we have a new bigon Σ′ • Σ: γ1 ⇒ γ3 defined
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by

(Σ′ • Σ)(s, t) =

{
Σ(2s, t) for 0 6 s < 1

2

Σ′(2s− 1, t) for 1
2 6 s 6 1;

(10)

and for two bigons Σ1 : γ1 ⇒ γ′1 and Σ2 : γ2 ⇒ γ′2 such that γ1(1) = γ2(0), we have
another new bigon Σ2 ◦ Σ1 : γ2 ◦ γ1 ⇒ γ′2 ◦ γ′1 defined by

(Σ2 ◦ Σ1)(s, t) :=

{
Σ1(s, 2t) for 0 6 t < 1

2

Σ2(s, 2t− 1) for 1
2 6 t 6 1.

(11)

Due to the sitting instants, the new maps (10) and (11) are again smooth and have
sitting instants.

Like in the case of paths, there are several equivalence relations on the set BX of
bigons in X, starting with reparameterization classes, and continued by a ladder of
types of homotopy classes, graded by an upper bound for the rank of the homotopies.
The corresponding quotient spaces are denoted by

BX // B0X // B1X // B2X // B3X.

In this article we are only interested in B2X = BX/∼2.

Definition 3.2. Two bigons Σ: γ0 ⇒ γ1 and Σ′ : γ′0 ⇒ γ′1 are called thin homotopy
equivalent , denoted Σ ∼2 Σ′, if there exists a smooth map h : [0, 1]3 → X such that

(1) it has sitting instants: there exists a number 0 < ε < 1
2 with

a) h(r, s, t) = x for 0 6 t < ε and h(r, s, t) = y for 1− ε < t 6 1.
b) h(r, s, t) = h(r, 0, t) for 0 6 s < ε and h(r, s, t) = h(r, 1, t) for 1− ε < s 6 1.
c) h(r, s, t) = Σ(s, t) for all 0 6 r < ε and h(r, s, t) = Σ′(s, t) for all 1− ε < r 6

1.

(2) the differential of h satisfies

a) rank(dh|(r,s,t)) 6 2 for all r, s, t ∈ [0, 1], and
b) rank(dh|(r,i,t)) 6 1 for i = 0, 1 fixed.

Condition (1) assures that thin homotopy is an equivalence relation on BX.
Condition (2b) asserts that two thin homotopy equivalent bigons Σ: γ0 ⇒ γ1 and
Σ′ : γ′0 ⇒ γ′1 start and end on thin homotopy equivalent paths γ0 ∼1 γ

′
0 and γ1 ∼1 γ

′
1.

The composition ◦ of two bigons defined above clearly induces a well-defined com-
position on B2X. For the composition • this is more involved: let Σ: γ1 ⇒ γ2 and
Σ′ : γ′2 ⇒ γ3 be two bigons such that γ2 ∼1 γ

′
2. Let h : [0, 1] → X be any thin homo-

topy between γ2 and γ′2; this is a particular bigon h : γ2 ⇒ γ′2. Now we define the
composition of the corresponding classes in B2X by

[Σ′]∼2 • [Σ]∼2 := [Σ′ • h • Σ]∼2 .

The proof that this is independent of the choice of h requires a technical computation
carried out in [MP10]. Another important fact is that the two compositions ◦ and •
are compatible with each other in the sense that

(Σ′
1 • Σ′

2) ◦ (Σ1 • Σ2) ∼2 (Σ′
1 ◦ Σ1) • (Σ′

2 ◦ Σ2) (12)

whenever all these compositions are well-defined.
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Definition 3.3. The path 2-groupoid P2(X) of a smooth manifoldX is the 2-category
whose objects are the points of X, whose set of 1-morphisms is P 1X, and whose set
of 2-morphisms is B2X. Horizontal and vertical composition are given by ◦ and •,
and the identities are the identity path idx : x→ x and the identity bigon idγ : γ ⇒ γ
defined by idγ(s, t) := γ(t).

The axioms of a 2-category (see Definition A.1) are satisfied: Axiom (C1) fol-
lows from the second equation in (2), axiom (C2) follows from the first equation in
(2) and from an elementary construction of homotopies Σ • idγ1 ∼2 Σ ∼2 idγ2 • Σ.
Axiom (C3) is (12). It is also clear the the category P2(X) is indeed a groupoid.

For parallel transport along surfaces, the path 2-groupoid plays the same role the
path groupoid P1(X) plays for parallel transport along curves (see Section 2.1): the
corresponding geometric objects are (weak) 2-functors

tra : P2(X) → T

into some 2-category T , as outlined in Section 6 of [SW09]. A detailed discussion of
these 2-functors will follow in [SWA].

In exactly the same way as we have diffeological maps P iX →M we have diffeo-
logical maps from all the equivalence classes BiX of bigons in X to smooth manifolds
M . Analogous to Lemma 2.4, we have

Lemma 3.4. A map f : BiX →M is diffeological if and only if for every k ∈ N0,
every open subset U ⊂ Rk and every map c : U → BX such that the composite

U × [0, 1]2
c×id // BX × [0, 1]2

ev // X

is smooth, also the map

U
c // BX

pri // BiX
f // M

is smooth.

This allows us to define smooth 2-functors defined on the path 2-groupoid of X
with values in smooth 2-categories S: 2-categories for which objects S0, 1-morphisms
S1 and 2-morphisms S2 are smooth manifolds and all structure maps are smooth.

Definition 3.5. A 2-functor F : P2(X) → S from the path 2-groupoid of a smooth
manifold X to a smooth 2-category S is called smooth, if

1. on objects, F : X → S0 is smooth.

2. on 1-morphisms, F : P 1X → S1 is diffeological (see Lemma 2.4).

3. on 2-morphisms, F : B2X → S2 is diffeological (see Lemma 3.4).

For the definitions of morphisms between 2-functors, the pseudonatural trans-
formations, and morphisms between those, the modifications, we refer the reader
again to Appendix A. A pseudonatural transformation ρ : F → F ′ is called smooth,
if its components ρ(x) ∈ S1 at objects x ∈ X furnish a smooth map X → S1, and its
components ρ(γ) ∈ S2 at 1-morphisms γ ∈ P 1X furnish a diffeological map P 1X →
S2. Similarly, a modification A : ρ⇒ ρ′ is called smooth, if its components A(x) ∈
S2 form a smooth map X → S2. Summarizing, these structures form a 2-category
Funct∞(P2(X), S).
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3.2. From Functors to Forms
As we explain in Appendix B that the 2-category BG associated to a Lie 2-group G

which is represented by a smooth crossed module (G,H, t, α) has one object, the set of
morphisms is G and the set of 2-morphisms is the semi-direct product GnH, where
G acts on H via a smooth map α : G×H → H. The guideline for how to extract
differential forms from smooth 2-functors is the same as reviewed in Section 2.3:
we evaluate the Lie group-valued functors on certain paths, obtain Lie group-valued
maps, and take their derivative.

3.2.1. Extracting Forms I: 2-Functors
Here we start with a given smooth 2-functor

F : P2(X) → BG.

Clearly, F restricted to objects and 1-morphisms is just a smooth 1-functor

F0,1 : P1(X) → BG.

By Theorem 2.6 it corresponds to a g-valued 1-form A on X. From the remaining
map F2 : B

2X → GnH we now define an h-valued 2-form B on X. Its definition is
pointwise: let x ∈ X be a point and v1, v2 ∈ TxX be tangent vectors. We choose a
smooth map Γ: R2 → X with x = Γ(0) and

v1 =
d

ds

∣∣∣∣
s=0

Γ(s, 0) and v2 =
d

dt

∣∣∣∣
t=0

Γ(0, t). (13)

Note that in R2 there is only one thin homotopy class of bigons between each two
fixed paths. In particular, we have a canonical family ΣR : R2 → B2R2, where

ΣR(s, t) :=

(0, 0) //

��

(0, t)

w� xx
xx

xx
xx

xx
xx

xx
xx

��
(s, 0) // (s, t)

. (14)

We use this canonical family of bigons to produce a map

FΓ := pH ◦ F2 ◦ Γ∗ ◦ ΣR : R2 → H, (15)

where pH : GnH → H is the projection to the second factor.

Lemma 3.6. The map FΓ : R2 → H is smooth. Furthermore, its second mixed deriva-
tive evaluated at 0 ∈ R2 is a well-defined element in the Lie algebra h of H, and
is independent of the choice of Γ, i.e., if Γ0,Γ1 : R2 → X are smooth maps with
Γ0(0) = Γ1(0) = x and both satisfying (13), then

∂2FΓ0

∂s∂t

∣∣∣∣
(0,0)

=
∂2FΓ1

∂s∂t

∣∣∣∣
(0,0)

. (16)

Proof. The smoothness of FΓ follows from the smoothness of the 2-functor F as
explained in Section 2.2: the relevant evaluation map

R2 × [0, 1]2
Γ∗◦ΣR×id // BX × [0, 1]2

ev // X

is smooth. Since F is smooth on 2-morphisms, F ◦ Γ∗ ◦ ΣR is smooth.
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Next we notice that FΓ(0, t) = FΓ(s, 0) = 1 for all s, t ∈ R, so that the second mixed
derivative naturally takes values in h. Now we consider the two families

Σk := (Γk)∗ ◦ ΣR : R2 → B2X

of bigons in X. We work in a suitable open neighborhood V ⊂ R2 of the origin, and
are going to construct a homotopy H : V × [0, 1] → BX with H(x, y, k) = Σk(x, y)
for k = 0, 1. Then we will show that H factors through the smooth map

f : V × [0, 1] → Z : (x, y, α) 7→ (x, y, (x2 + y2)α),

where

Z :=
{
(x, y, z) ∈ V × [0, 1] | 0 6 z 6 x2 + y2

}
,

and another smooth map B : Z → BX. Applying the chain rule to the decomposition
H = B ◦ f gives

∂2FΓk

∂s∂t

∣∣∣∣
(0,0)

=
∂2

∂s∂t

∣∣∣∣
(0,0)

(F ◦ Σk) =
∂2

∂s∂t

∣∣∣∣
(0,0,k)

(F ◦B ◦ f)

= H(F ◦B)|f(0,0,k)

(
∂f

∂x

∣∣∣∣
(0,0,k)

,
∂f

∂y

∣∣∣∣
(0,0,k)

)

+ D(F ◦B)|f(0,0,k)

(
∂2f

∂x∂y

∣∣∣∣
(0,0,k)

)
,

where H(F ◦B) denotes the Hesse matrix of F ◦B, considered as a symmetric, fibre-
wise bilinear form TZ ×Z TZ → h. By construction of the map f , the latter expression
is independent of k.

In order to construct H and B, we work in a chart that identifies V with an open
neighborhood of x, and form the “linear interpolation”

h : V × [0, 1]× [0, 1]2 → X : (x, y, α, s, t) 7→ Σ0(x, y)(s, t) + α · d(x, y, s, t),

where the “difference” d is given by

d : V × [0, 1]2 → X : (x, y, s, t) 7→ Σ1(x, y)(s, t)− Σ0(x, y)(s, t).

Then, we set H(x, y, α)(s, t) := h(x, y, s, t, α). Next we construct the map B. The
coincidence of the values and the first derivatives of the maps Γ0, Γ1 at (0, 0) imply
via Hadamard’s lemma that there exist smooth maps a, b, c : V × [0, 1]2 → X such
that

d(x, y, s, t) = x2 · a(x, y, s, t) + y2 · b(x, y, s, t) + 2xy · c(x, y, s, t).

Now we change to polar coordinates. We denote by U ⊂ R>0 × [0, 2π) a suitable
open neighborhood of (0, 0) so that the coordinate transformation τ : (r, φ) 7→ (r ·
cosφ, r · sinφ) is a map τ : U → V . Then, we get

dp(r, φ, s, t) := d(τ(r, φ), s, t) = r2 · d̃p(r, φ, s, t)

with

d̃p(r, φ, s, t) := cos2 φ · a(τ(r, φ), s, t) + sinφ cosφ · b(τ(r, φ), s, t)
+ sin2 φ · c(τ(r, φ), s, t)
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defining a smooth map d̃p : U × [0, 1]2 → X. We look at the smooth map

bp : U × [0, 1]× [0, 1]2 → X : (r, φ, α, s, t) 7→ Σ0(τ(r, φ), s, t) + α · d̃p(r, φ, s, t).

We consider Zp := {(r, φ, z) ∈ U × [0, 1] | 0 6 z 6 r2
}
, and claim that the restric-

tion of bp to Zp × [0, 1]2 transforms back into a smooth map in cartesian coordi-

nates. To see this, it suffices to notice that the term α · d̃p(r, φ, s, t) and all its r-
derivatives vanish at r = 0, since then also α = 0. This way we obtain a smooth map
b : Z × [0, 1]2 → X satisfying

b(τ(r, φ), α, s, t) = bp(r, φ, α, s, t)

for all (r, φ) ∈ U .

Finally, we set B(x, y, α)(s, t) := b(x, y, s, t, α). It is straightforward to see that
B(x, y, α) is a bigon, and the smoothness of b implies the smoothness of the map
B : Z → BX. We calculate for (r, φ) ∈ U :

(B ◦ f)(τ(r, φ), α)(s, t) = bp(r, φ, r
2α, s, t)

= Σ0(τ(r, φ), s, t) + α · r2 · d̃p(r, φ, s, t)
= Σ0(τ(r, φ), s, t) + α · d(τ(r, φ), s, t)
= h(τ(r, φ), s, t, α).

Since the coordinate transformation is surjective, this shows the claimed coincidence
B ◦ f = H.

With Lemma 3.6 we have now extracted a well-defined map

αF : TX ×X TX → h : (x, v1, v2) 7→ − ∂2FΓ

∂s∂t

∣∣∣∣
(0,0)

(17)

from the 2-functor F .

Lemma 3.7. The map αF has the following properties:

(a) for fixed x ∈ X, it is antisymmetric and bilinear.

(b) it is smooth.

Proof. To prove (a), let Γ̄(s, t) := Γ(t, s), and let FΓ and FΓ̄ the corresponding smooth
maps (15). Due to the permutation, the derivatives in (16) yield the values for
αF (x, v1, v2) and αF (x, v2, v1), respectively. Note that Γ̄∗ ◦ ΣR = Γ∗ ◦ Σ−1

R , where
Σ−1

R is the 2-morphism inverse to the 2-morphism (14) under vertical composition.
Since the 2-functor F sends inverse 2-morphisms to inverse group elements, we have
FΓ̄ = F−1

Γ . Hence, by taking derivatives, we get αF (x, v2, v1) = −αF (x, v1, v2).

It remains to show that αF (v1 + λv′1, v2) = αF (v1, v2) + λαF (v
′
1, v2). If Γ and Γ′

are smooth functions for the tangent vectors (v1, v2) and (v′1, v2), respectively, we use
a chart φ : U → X of a neighbourhood of x with φ(0) = x and construct a smooth
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function Γ̃ : (−ε, ε)2 → X by

Γ̃(s, t) := φ(φ−1(Γ(s, t)) + λφ−1Γ′(s, t)),

where ε has to chosen small enough. It is easy to see that Γ̃(0, 0) = p and that

v1 + λv′1 =
d

ds

∣∣∣∣
s=0

Γ̃(s, 0) and v2 =
d

dt

∣∣∣∣
t=0

Γ̃(0, t). (18)

On the other hand,

Γ̃∗(ΣR(s, t)) = φ∗(φ
−1
∗ (Γ∗(ΣR(s, t))) + λφ−1

∗ (Γ′
∗(ΣR(s, t)))),

where we have used that bigons in R2 can be added and multiplied by scalars. This
shows that

∂2FΓ̃

∂s∂t

∣∣∣∣
(0,0)

=
∂2FΓ

∂s∂t

∣∣∣∣
(0,0)

+ λ
∂2FΓ′

∂s∂t

∣∣∣∣
(0,0)

;

together with (18) proves that αF is bilinear.
To prove (b), let φ : U → X be a chart of X with an open subset U ⊂ Rn. The

induced chart φTX : U × Rn → TX of the tangent bundle sends a point (u, v) ∈ U ×
Rn to dφ|u(v) ∈ Tφ(u)X. We show that

U × Rn × Rn
φ
[2]
TX // TX ×X TX

αF // h

is a smooth map. For this purpose, let c : U × Rn × Rn × R2 → BX be defined by
c(x, v1, v2, σ, τ)(s, t) := φ(u+ β(sσ)v1 + β(tτ)v2), where β : [0, 1] → [0, 1] is a smooth
map with β(0) = 0 and β(1) = 1 and with sitting instants. The map c depends obvi-
ously smoothly on all parameters, so that fc := p2 ◦ F ◦ c : U × Rn × Rn × R2 → H is
a smooth function. Notice that Γu,v1,v2(s, t) := c(u, v1, v2, s, t)(1, 1) defines a smooth
map with the properties

Γ(0, 0) = φ(u) ,
∂Γ

∂s

∣∣∣∣
(0,0)

= dφ|u(v1) and
∂Γ

∂t

∣∣∣∣
(0,0)

= dφ|u(v2).

It is furthermore still related to c by

(Γu,v1,v2)∗(ΣR(s, t)) = c(u, v1, v2, s, t).

Now,

(αF ◦ φ[2]TX)(x, v1, v2) = αF (φ(u),dφ|u(v1),dφ|u(v2))

= − ∂2

∂s∂t

∣∣∣∣
(0,0)

(p2 ◦ F ◦ (Γu,v1,v2)∗ ◦ ΣR)(s, t)

= − ∂2

∂s∂t

∣∣∣∣
(0,0)

fc(x, v1, v2, s, t).

The last expression is, in particular, smooth in x, v1 and v2.

All together,

Bx(v1, v2) := αF (x, v1, v2)

defines an h-valued 2-form B ∈ Ω2(X, h) on X, which is canonically associated to the
smooth 2-functor F .
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Proposition 3.8. Let F : P2(X) → BG be a smooth 2-functor, and A ∈ Ω1(X, g) and
B ∈ Ω2(X, h) be the corresponding differential forms. Then,

dA+ [A ∧A] = t∗(B), (19)

where t∗ := dt|1 : h → g is the Lie algebra homomorphism induced from the Lie group
homomorphism t which is part of the crossed module corresponding to the Lie 2-group
G.

Proof. We consider again the bigon ΣR(s, t) and the associated smooth map

FΓ : R2 → H

from (15). If we denote by γ1(s, t) the source path and by γ2(s, t) the target path of
ΣR(s, t), we obtain further smooth maps

fi := F ◦ Γ∗ ◦ γi : R2 → G.

Note that each of these two paths can be decomposed into horizontal and vertical
paths, γ1(s, t) = γv1 (s, t) ◦ γh1 (t) and γ2(s, t) = γh2 (s, t) ◦ γv2 (s), and that this decom-
position induces accordant decompositions of the functions fi, namely f1(s, t) =
fv1 (s, t) · fh1 (t) and f2(s, t) = fh2 (s, t) · fv2 (s). We recall from (6) that the 1-form A ∈
Ω1(X, g) is related to these functions by

Ax(v1) = − ∂fvi
∂s

∣∣∣∣
(0,0)

and Ax(v2) = − ∂fhi
∂t

∣∣∣∣
(0,0)

for i = 1, 2. Now we employ the target-matching-condition (B.4) for the 2-morphism
F (Σ):

f2 = (t ◦ FΓ) · f1 (20)

as functions from R2 to G. The second partial derivatives of the functions fi are at
(0, 0):

∂2f1
∂s∂t

∣∣∣∣
(0,0)

=
∂2fv1
∂s∂t

∣∣∣∣
(0,0)

+Ax(v1)Ax(v2)

∂2f2
∂s∂t

∣∣∣∣
(0,0)

=
∂2fh2
∂s∂t

∣∣∣∣
(0,0)

+Ax(v2)Ax(v1)

Here notice that fk(0, t) = 1 and fk(s, 0) = 1 so that the second derivatives naturally
take values in g. Also, we write XY := dm|(1,1)(X,Y ) ∈ g for X,Y ∈ g, which is – in
a faithful matrix representation – just the product of matrices. The first derivatives
vanish,

∂FΓ

∂t

∣∣∣∣
(0,0)

=
∂FΓ

∂s

∣∣∣∣
(0,0)

= 0, (21)

because F is constant on families of identity bigons. Summarizing, equation (20)
becomes

∂2fh2
∂s∂t

∣∣∣∣
(0,0)

+Ax(v2)Ax(v1) = −dt|1(Bx(v1, v2)) +
∂2fv1
∂s∂t

∣∣∣∣
(0,0)

+Ax(v1)Ax(v2),

this implies the claimed equality.
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3.2.2. Extracting Forms II: Pseudonatural Transformations

Now we discuss a smooth pseudonatural transformation

ρ : F → F ′

between two smooth 2-functors F, F ′ : P2(X) → BG. The components of ρ are a
smooth map g : X → G and a diffeological map ρ1 : P

1X → GnH. Notice that ρ1 is
not functorial, i.e., ρ1(γ2 ◦ γ1) is in general not the product of ρ1(γ2) and ρ1(γ1). In
order to remedy this problem, we construct another map ρ̃ : P 1X → GnH from ρ
that will be functorial. We denote the projection of ρ1 toH by ρH := pH ◦ ρ1 : P 1X →
H. Then we define

ρ̃(γ) := (F ′(γ), ρH(γ)−1). (22)

Lemma 3.9. ρ̃ defines a smooth functor ρ̃ : P1(X) → B(GnH).

Proof. For our convention concerning the semi-direct product, we refer the reader the
equation (B.2) in Appendix B. With this convention, axiom (T1) of the pseudonatural
transformation ρ implies for two composable paths γ1 and γ2 that

α(F ′(γ2), ρH(γ1))ρH(γ2) = ρH(γ2 ◦ γ1). (23)

Then, the product of ρ̃(γ2) with ρ̃(γ1) in the semi-direct product GnH is

(F ′(γ2), ρH(γ2)
−1) · (F ′(γ1), ρH(γ1)

−1)

(B.2)
= (F ′(γ2)F

′(γ1), ρH(γ2)
−1α(F ′(γ2), ρH(γ1)

−1))

(23)
= (F ′(γ2 ◦ γ1), ρH(γ2 ◦ γ1)−1),

and thus equal to ρ̃(γ2 ◦ γ1). Since F ′(idx) = 1, equation (23) also shows that ρ̃(idx) =
(1, 1). Thus, ρ̃ is a functor. Its smoothness is clear from the definition.

By Theorem 2.6, the smooth functor ρ̃ corresponds to a 1-form with values in
gn h, which in turn gives by projection into the two summands an h-valued 1-form
ϕ ∈ Ω1(X, h) and a g-valued 1-form. The ladder identifies (due to the definition of
ρ̃) with the 1-form A′ that corresponds to the functor F ′. Summarizing, the smooth
pseudonatural transformation ρ defines a smooth function g : X → G and a 1-form
ϕ ∈ Ω1(X, h).

Proposition 3.10. Let F, F ′ : P2(X) → BG be smooth 2-functors with associated 1-
forms A,A′ ∈ Ω1(X, g) and 2-forms B,B′ ∈ Ω2(X, h) respectively. The smooth func-
tion g : X → G and the 1-form ϕ ∈ Ω1(X, h) extracted from a smooth pseudonatural
transformation ρ : F → F ′ satisfy the relations

A′ + t∗(ϕ) = Adg(A)− g∗θ̄ (24)

B′ + α∗(A
′ ∧ ϕ) + dϕ+ [ϕ ∧ ϕ] = (αg)∗(B). (25)

In (24), θ̄ is the right invariant Maurer-Cartan form on G. In (25), A′ ∧ ϕ is a 2-
form with values in h⊕ g, which is sent by the linear map α∗ to a 2-form with values
in h.
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Proof. Like in the proof of Proposition 3.8 we employ the target-matching condition
(B.4) for the component

∗
F (γ) //

g(x)

��

∗

ρ(γ)
��

��
��

��

{� ��
����
��

g(y)

��
∗

F ′(γ)

// ∗

of the pseudonatural transformation ρ at 1-morphism γ : x→ y in P2(X). For this
purpose we choose a smooth curve Γ: R → X through a point x := Γ(0) and consider
the associated tangent vector v ∈ TxX. With the standard path γR(t) in the real line
from 0 to t we form from the 2-functors the smooth maps

f := F ◦ Γ∗ ◦ γR : R → G and f ′ := F ′ ◦ Γ∗ ◦ γR : R → G

and from the pseudonatural transformation the smooth maps

g̃ := ρ ◦ Γ: R → G and h := ρH ◦ Γ∗ ◦ γR : R → H. (26)

The condition we want to employ then becomes

f ′(t) · g̃(0) = t(h(t)) · g̃(t) · f(t). (27)

If we take the definition of the function g : X → G and the 1-forms A, A′ and ϕ into
account, namely g(x) = g̃(0) and

Ax(v) = − ∂f

∂t

∣∣∣∣
t=0

, A′
x(v) = − ∂f ′

∂t

∣∣∣∣
t=0

and ϕx(v) = − ∂

∂t

∣∣∣∣
t=0

h−1,

the derivative of this equation at zero yields

−A′
x(v) · g(x) = dt|1(ϕx(v)) · g(x) + dgx(v)− g(x) ·Ax(v),

this implies equation (27) that we had to show. Here, the symbol · stands for the
derivatives of left or right multiplication.

To prove the second equation we use axiom (T2) of the pseudonatural transforma-
tion ρ, namely the compatibility with 2-morphisms. For a 2-morphism Σ in P2(X),
that we take of the form

x1
γh
1 //

γv
2

��

y1

Σ
}}

}}
}

}}
}}

}

z� }}
}}}}
}}

γv
1

��
x2

γh
2

// y2
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this axiom requires

F (x1)
F (γh

1 ) //
ρ(x1)

~~}}
}}

}}
F (y1)

ρ(γh
1 )

iiiiiii
iiiiiii

px iiiiii
iiiiii

F (γv
1 )

��

ρ(y1)
}}

~~}}
F ′(x1) F ′(γh

1 ) //

F ′(γv
2 )

��

F ′(y1)

F ′(Σ)
}}

}}
}}

}}

}}
}}

}}
}}

z� }}
}}

}}
}

}}
}}

}}
} F ′(γv

1 )

��

F (y2)

ρ(γv
1 )AAAA

\dAAAA

ρ(y2)~~}}
}}

}}

F ′(x2)
F ′(γh

2 )

// F ′(y2)

=

F (x1)

F (γv
2 )

��

F (γh
1 ) //

ρ(x1)

~~}}
}}

}}
F (y1)

F (Σ)
}}

}}
}}

}}

}}
}}

}}
}}

z� }}
}}

}}
}

}}
}}

}}
} F (γv

1 )

��

F ′(x1)

F ′(γv
2 )

��

F (x2)

ρ(γv
2 )AAAA

\dAAAA

ρ(x2)
}}

~~}}

F (γh
2 ) // F (y2)

ρ(γh
2 )

iiiiiii
iiiiiii

px iiiiii
iiiiii

ρ(y2)~~}}
}}

}}

F ′(x2)
F ′(γh

2 )

// F ′(y2)

.

With a choice of a smooth map Γ: R2 → X we can pullback these diagrams to R2 and
use the standard bigon ΣR(s, t). We use the smooth functions FΓ, f1 and f2 defined
by the 2-functor F as described in the proof of Proposition 3.8, and the analogous
functions F ′

Γ, f
′
1 and f ′2 for the 2-functor F ′. From the pseudonatural transformation

ρ we further obtain a function g̃ := ρ ◦ Γ: R2 → X and functions hhi := ρH ◦ Γ∗ ◦ γhi
and hvi := ρH ◦ Γ∗ ◦ γvi . Now we have

f(0, 0)
fh
1 (t) //

g̃(0,0)

~~}}
}}

}}
f(0, t)

hh
1 (t)

iiiiiii
iiiiiii

px iiiiiiiiiiii

fv
1 (s,t)

��

g̃(0,t)
~~

��~~
f ′(0, 0) f ′h

1 (t) //

f ′v
2 (t)

��

f ′(0, t)

F ′
Γ(s,t)

}}
}}

}}
}

}}
}}

}}
}

z� }}
}}

}}
}

}}
}}

}}
} f ′v

1 (s,t)

��

f(s, t)

hv
1(s,t)@@@@

[c@@@@

g̃(s,t)��~~
~~

~~

f ′(s, 0)
f ′h
2 (s,t)

// f ′(s, t)

=

f(0, 0)

fv
2 (s)

��

fh
1 (t) //

g(0,0)

~~}}
}}

}}
f(0, t)

FΓ(s,t)
~~

~~
~~

~~

~~
~~

~~
~~

z� ~~
~~

~~
~

~~
~~

~~
~ fv

1 (s,t)

��

f ′(0, 0)

f ′v
2 (s)

��

f(s, 0)

hv
2(s)AAAA

\dAAAA

g̃(s,0)
}}

~~}}

fh
2 (s,t) // f(s, t)

hh
2 (s,t)

iiiiii
iiiiii

px iiiiiiiiii
g̃(s,t)��~~

~~
~~

f ′(s, 0)
f ′h
2 (s,t)

// f ′(s, t)

.

Using the rules (B.5) and (B.6) for vertical and horizonal composition in BG, the
above diagram boils down to the equation

F ′
Γ(s, t) · α(f ′v1 (s, t), hh1 (t)) · hv1(s, t)

= α(f ′h2 (s, t), hv2(s)) · hh2 (s, t) · α(g̃(s, t), FΓ(s, t)).

We now take the second mixed derivative and evaluate at (0, 0).
For the evaluation we use the properties of the 2-functor F that imply – on the level

of 2-morphisms – f(0, 0) = 1 and – on the level of 1-morphisms – fh1 (0) = fv1 (0, 0) =
fv2 (0) = fh2 (0, 0) = 1. The same rules hold for F ′. Similarly, the properties of the
functor ρ̃ give additionally hh1 (0) = hv1(0, 0) = 1 and hv2(0) = hh2 (0, 0) = 1. To compute
the derivative of the terms that contain α, it is convenient to use the rule

dα|(g,h)(X,Y ) = dαh|g(X) + dαg|h(Y ), (28)

where αg : H → H and αh : G→ H are obtained from α by fixing one of the two
parameters, and the differentials on the right hand side are taken only with respect
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to the remaining parameter. Finally, we use (21). The result of the computation is
(in notation introduced in the proof of Proposition 3.8)

∂2F ′
Γ

∂s∂t
+ dα|(1,1)

(
∂f ′v1
∂s

,
∂hh1
∂t

)
+
∂hh1
∂t

· ∂h
v
1

∂s
+
∂2hv1
∂s∂t

= dα|(1,1)
(
∂f ′h2
∂t

,
∂hv2
∂s

)
+
∂hv2
∂s

· ∂h
h
2

∂t
+
∂2hh2
∂s∂t

+ dαg̃(0,0)|1
(
∂2FΓ

∂s∂t

)
.

Expressed by differential forms, this gives

−B′
x(v1, v2)− α∗(A

′
x(v1), ϕx(v2)) + ϕx(v2)ϕx(v1) +

∂2hv1
∂s∂t

= −α∗(A
′
x(v2), ϕx(v1)) + ϕx(v1)ϕx(v2) +

∂2hh2
∂s∂t

− (αg)∗(B),

which yields the second equality.

3.2.3. Extracting Forms III: Modifications

Let us now consider a smooth modification

A : ρ1 ⇒ ρ2

between smooth pseudonatural transformations ρ1, ρ2 : F → F ′ between two smooth
2-functors F, F ′ : P2(X) → BG. Its components furnish a smooth map X → GnH.
We denote its projection on the second factor by a : X → H.

Proposition 3.11. Let F, F ′ : P2(X) → BG be smooth 2-functors with associated
1-forms A,A′ ∈ Ω1(X, g), let ρ1, ρ2 : F → F ′ be smooth pseudonatural transforma-
tions with associated smooth functions g1, g2 : X → G and 1-forms ϕ1, ϕ2 ∈ Ω1(X, h).
Then, the smooth map a : X → H associated to a smooth modification A : ρ1 ⇒ ρ2
satisfies

g2 = (t ◦ a) · g1 and ϕ2 + (r−1
a ◦ αa)∗(A

′) = Ada(ϕ1)− a∗θ̄, (29)

where ra(x) : H → H is the multiplication with a(x) from the right.

Proof. In the same way as before we choose a smooth map Γ: R → X with Γ(0) =: x
and Γ̇(0) =: v ∈ TxX and consider the smooth functions fΓ, f

′
Γ : R → G from (15), the

smooth functions g̃1, g̃2 : R → G and h1, h2 : R → H from (26), and define an addi-
tional smooth function aΓ := a ◦ Γ: R → H with aΓ(0) = a(x). The target-matching
condition (B.4) for the 2-morphism

fΓ(0)

g̃1(0)

!!

g̃2(0)

==
aΓ(0)

��

f ′Γ(0)

in BG obviously gives us the first equation. The axiom for the modification A implies

α(f ′γ(t), aΓ(0)) · h1(t) = h2(t) · aΓ(t).
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The first derivative evaluated at 0 gives

(αaΓ(0))∗

(
∂f ′γ
∂t

∣∣∣∣
0

)
h1(0) + α(f ′γ(0), aΓ(0)) ·

∂h1
∂t

∣∣∣∣
0

=
∂h2
∂t

∣∣∣∣
0

· aΓ(0) + h2(0) ·
∂aΓ
∂t

∣∣∣∣
0

.

With f ′γ(0) = h1(0) = h2(0) = 1 this yields

(αa(x))∗(−A′) + a(x) · ϕ1|x(v) = ϕ2|x(v) · a(x) + da|x(v)

which is the second equation we had to prove.

3.2.4. Summary of Section 3.2

In order to obtain a precise relation between smooth 2-functors and differential forms,
we define a 2-category which is adapted to the relations we have found in Proposi-
tions 3.8, 3.10 and 3.11.

Definition 3.12. Let G be a Lie 2-group, (G,H, t, α) the corresponding smooth
crossed module, and X a smooth manifold. We define the following 2-category

Z2
X(G)∞1 :

1. An object is a pair (A,B) of a 1-form A ∈ Ω1(X, g) and a 2-form B ∈ Ω2(X, h)
which satisfy the relation (19):

dA+ [A ∧A] = t∗(B).

2. A 1-morphism (g, ϕ) : (A,B) → (A′, B′) is a smooth map g : X → G and a 1-
form ϕ ∈ Ω1(X, h) that satisfy the relations (24) and (25):

A′ + t∗(ϕ) = Adg(A)− g∗θ̄

B′ + α∗(A
′ ∧ ϕ) + dϕ+ [ϕ ∧ ϕ] = (αg)∗(B).

The composition of 1-morphisms

(A,B)
(g1,ϕ1) // (A′, B′)

g2,ϕ2 // (A′′, B′′)

is given by the map g2g1 : X → G and the 1-form (αg2)∗(ϕ1) + ϕ2, where

αg : H → H

is the action of G on H with fixed g. The identity 1-morphism is given by g = 1
and ϕ = 0.

3. A 2-morphism a : (g1, ϕ1) ⇒ (g2, ϕ2) is a smooth map a : X → H that satis-
fies (29):

g2 = (t ◦ a) · g1 and ϕ2 + (r−1
a ◦ αa)∗(A

′) = Ada(ϕ1)− a∗θ̄.

The vertical composition

(g, ϕ)
a1 +3 (g′, ϕ′)

a2 +3 (g′′, ϕ′′)
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is given by a2a1. The horizontal composition is

(A,B)

(g1,ϕ1)

��

(g′
1,ϕ

′
1)

CC
a1

��

(A′, B′)

(g2,ϕ2)

��

(g′
2,ϕ

′
2)

BB
a2

��

(A′′, B′′) = (A,B)

(g2g1,(αg2 )∗(ϕ1)+ϕ2)

##

(g′
2g

′
1,(αg′2

)∗(ϕ
′
1)+ϕ′

2)

;;
a2α(g2,a1)

��

(A′′, B′′),

and the identity 2-morphism is given by a = 1.

It is straightforward to check that this definition gives indeed a 2-category. In the
Sections 3.2.1, 3.2.2 and 3.2.3 above we have collected the structure of a 2-functor

D : Funct∞(P2(X),BG) → Z2
X(G)∞.

Let us check that the axioms of a 2-functor are satisfied. Horizontal and vertical com-
positions of 2-morphisms are respected because these are just smooth maps a : X → H
which become multiplied in exactly the same way in both 2-categories. It remains to
check the compatibility with the composition of 1-morphisms, i.e., we have to show
that

D(ρ2 ◦ ρ1) = D(ρ2) ◦ D(ρ1)

39 transformations ρ1 : F → F ′ and ρ2 : F
′ → F ′′. Let (gi, ϕi) := D(ρi) for i = 1, 2.

According to the definition (A.1) of the composition of pseudonatural transforma-
tions, the component of ρ2 ◦ ρ1 at an object x ∈ X is g2(x)g1(x) ∈ G, and its com-
ponent at a 1-morphism γ : x→ y is ρ2(γ) · α(g2(y), ρ1(γ)) ∈ H. If we consider the
smooth functions g̃1, g̃2 : R → G and h1, h2 : R → H associated to ρ1 and ρ2 like in
(26), the 1-form associated to ρ2 ◦ ρ1 is, at x := Γ(0) and v := Γ̇(0) and using (28),

− d

dt

∣∣∣∣
0

α(g̃2(t), h1(t)
−1)h2(t)

−1

= −dαg̃2(0)|h1(0))

(
∂h−1

1

∂t

∣∣∣∣
0

)
h2(0)

−1 − α(g̃2(0), h1(0)
−1)

∂h−1
2

∂t

∣∣∣∣
0

= (αg2(x))∗(ϕ1|x(v)) + ϕ2|x(v),

this is exactly the rule for horizontal composition of 1-morphisms in Z2
X(G)∞.

3.3. From Forms to Functors

In this section we introduce a 2-functor

P : Z2
X(G)∞ → Funct∞(P2(X),BG)

that goes in the direction opposite to the 2-functor D defined in Section 3.2. The
principle here is to pose initial value problems governed by differential forms. Their
unique solutions define smooth 2-functors, smooth pseudonatural transformations and
smooth modifications.
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3.3.1. Reconstruction I: 2-Functors
Here we consider a given 1-form A ∈ Ω1(X, g) and a given 2-form B ∈ Ω2(X, h) that
satisfy the condition from Proposition 3.8,

dA+ [A ∧A] = t∗(B). (30)

By Theorem 2.6 the 1-form A defines a smooth functor FA : P1(X) → BG. Our aim
is now to define a map kA,B : B2X → H such that FA and kA,B together define a
smooth 2-functor F : P2(X) → BG, which is dedicated to be the image of the pair
(A,B) under the 2-functor P we want to define. For our convention concerning the
semi-direct product, we refer the reader again to equation (B.2) in Appendix B.

In order to find the correct definition of kA,B we look at the target-matching
condition

FA(γ1) = t(kA,B(Σ)) · FA(γ0) (31)

that has to be satisfied for any bigon Σ: γ0 ⇒ γ1. For technical reasons we consider
Σ: [0, 1]2 → X to be extended trivially over all of R2, i.e.,

Σ(s, t) =


γ0(0) = γ1(0) for t < 0

γ0(1) = γ1(1) for t > 1

γ0(t) fors < 0and 0 6 t 6 1

γ1(t) fors > 1and 0 6 t 6 1.

Let τs0(s, t) be the closed path in R2 that runs counter-clockwise around the rectangle
spanned by (s0, 0) and (s0 + s, t), and let the smooth function uA,s0 : R2 → G be
defined by uA,s0(s, t) := FA(Σ∗(τs0(s, t))). For this function, we recall

Lemma 3.13 (Lemma B.1 in [SW09]).

(a) uA,0(1, 1) = FA(γ
−1
0 ◦ γ1)

(b) uA,s0(s, 1) = uA,s0(s
′, 1) · uA,s0+s′(s− s′, 1)

(c)
∂

∂s

∂

∂t
uA,s0

∣∣∣∣
(0,t)

= −Ad−1
FA(γs0,t)

(Σ∗K)(s0,t)

(
∂

∂s
,
∂

∂t

)
with γs,t the path defined by γs,t(τ) := Σ(s, τt) and K the curvature 2-form K :=
dA+ [A ∧A] ∈ Ω2(X, g).

The function uA,s0 is interesting for us because by (a) uA,0(1, 1) coincides up to
conjugation with the image of the group element kA,B(Σ) ∈ H we want to determine
under the homomorphism t. The multiplicative property (b) shows that the smooth
function f : R → G defined by f(σ) := uA,0(σ, 1) solves the initial value problem

∂

∂σ
f(σ) = dlf(σ)|1

(
∂

∂s

∣∣∣∣
0

uA,σ(s, 1)

)
and f(0) = 1. (32)

This initial value problem is governed by the 1-form

∂

∂s

∣∣∣∣
0

uA,σ(s, 1) =

∫ 1

0

dt

{
∂

∂s

∂

∂t
uA,σ

∣∣∣∣
(0,t)

}
(c)
= −

∫ 1

0

dt Ad−1
FA(γσ,t)

(
(Σ∗K)(σ,t)

(
∂

∂s
,
∂

∂t

))
. (33)
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Here, Ad−1
FA(γ−,−) ◦ Σ

∗K is a g-valued 2-form on [0, 1]2, and we have just performed a

fibre integration over the second factor [0, 1]. The result is a g-valued 1-form on [0, 1].
This form actually lies in the image of t∗,

(t ◦ (αFA(γ−,−)−1)∗(Σ
∗B)

(30)
= Ad−1

FA(γ−,−)(Σ
∗K). (34)

We are thus forced to consider the 1-form

AΣ := −
∫
[0,1]

(αFA(γ−,−)−1)∗(Σ
∗B) ∈ Ω1([0, 1], h). (35)

Due to the sitting instants of Σ, we can equivalently speak of a 1-form on R which
vanishes outside of [0, 1]. Now we use again Theorem 2.6 and obtain a smooth func-
tor FAΣ : P 1R → H. Since P 1R can be identified with R× R (compare Lemma 4.1
in [SW09]) this is just a smooth function fΣ : R2 → H. The purpose of these defini-
tions is, that by (33) and (34) the smooth function

f : R → G : σ 7→ t(fΣ(0, σ))
−1

solves the initial value problem (32). Thus, by uniqueness t(fΣ(0, σ))
−1 = uA,0(σ, 1).

If we now define

kA,B : BX → H : Σ 7→ α(FA(γ0), fΣ(0, 1)
−1) (36)

for γ0 the source path of the bigon Σ we have achieved

t(kA,B(Σ)) = FA(γ0) · t(fΣ(0, 1))−1 · FA(γ0)
−1 (a)

= FA(γ1) · FA(γ0)
−1; (37)

this is the required target-matching condition (31). Another indication that the map
kA,B we have found is the correct one is the following

Proposition 3.14. The map kA,B : BX → H is diffeological. For any smooth map
Γ: R2 → X with x := Γ(0), v1 := ∂Γ

∂s and v2 := ∂Γ
∂t , we have

− ∂2

∂s∂t

∣∣∣∣
(0,0)

kA,B(Γ∗ΣR(s, t)) = Bx(v1, v2).

Proof. Assume that c : U → BX is a map from an open subset U ⊂ Rn to BX such
that the evaluation c(u)(s, t) ∈ X is smooth on all of U × [0, 1]2. Hence, the dif-
ferential form Ac(u) from (35) depends smoothly on u ∈ U , and so does the solu-
tion fc(u) : R2 → H of the differential equation governed by Ac(u). This implies that
kA,B ◦ pr ◦ c : U → H is smooth, so that kA,B is diffeological by Lemma 2.4.

Now we consider U = R2 and c := Γ∗ ◦ ΣR the standard bigon (14), so that kA,B ◦
c : R2 → H is a smooth map. In order to compute the derivative

∂

∂s

∣∣∣∣
0

kA,B(c(s, t)) =
∂

∂s

∣∣∣∣
0

α(FA(Γ∗γ0(s, t)), fc(s,t)(0, 1)
−1)

we observe that Ac(s,t)|σ = σAc(1,t)|σs. For the solutions of the corresponding differ-
ential equations we obtain by a uniqueness argument fc(s,t)(0, σ) = fc(1,t)(0, sσ). We
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compute

∂

∂s

∣∣∣∣
0

fc(s,t)(0, 1)
−1 = − ∂

∂s

∣∣∣∣
0

fc(1,t)(0, s)

= Ac(1,t)|0
(
∂

∂s

)
= −

∫ 1

0

dτ
(
αFA(Γ∗γ0,tτ )

)
∗ (c(1, t)

∗B)(0,τ)

(
∂

∂s
,
∂

∂τ

)
= −

∫ t

0

dτ ′
(
αFA(Γ∗γ0,τ′ )

)
∗
(Γ∗B)(0,τ ′)

(
∂

∂s
,
∂

∂τ ′

)
(38)

In the last step we have performed an integral transformation and used that c(1, 1) =
Γ. Finally

∂2

∂s∂t

∣∣∣∣
0

kA,B(c(s, t)) =
∂

∂t

∣∣∣∣
0

(αFA(Γ∗γ0(0,t)))∗

(
∂

∂s

∣∣∣∣
0

fc(s,t)(0, 1)
−1

)
=

∂2

∂s∂t

∣∣∣∣
0

fc(s,t)(0, 1)
−1

(38)
= −(Γ∗B)|0

(
∂

∂s
,
∂

∂t

)
= −Bx(v1, v2).

In the first line we have used (28) and that fc(0,t)(0, 1) = 1 ∈ H, so that the differential
of α1 : G→ H is the zero map.

The next thing we would like to know about the map kA,B is its compatibility
with the horizontal and vertical composition of bigons in X. Concerning the vertical
composition, this will be straightforward, but for the horizontal composition we have
to introduce firstly an auxiliary horizontal composition and to check the compatibility
of kA,B with this one.

To define this auxiliary horizontal composition, we consider two bigons Σ1 : γ1 ⇒
γ′1 and Σ2 : γ2 ⇒ γ′2, with γ1, γ

′
1 : x→ y and γ2, γ

′
2 : y → z. The result will be a bigon

Σ2 ∗ Σ1 : γ2 ◦ γ1 ⇒ γ′2 ◦ γ′1.

We define a map p : [0, 1]2 → [0, 1]2 by

p(s, t) :=


(0, t) for 0 6 t < 1

2 and 0 6 s < 1
2

(2s, t) for 1
2 6 t 6 1 and 0 6 s < 1

2

(2s− 1, t) for 0 6 t < 1
2 and 1

2 6 s 6 1

(1, t) for 1
2 6 t 6 1 and 1

2 6 s 6 1,

see Figure 1. This map p is not smooth, but its composition with Σ2 ◦ Σ1 is, due to
the sitting instants of the bigons Σ1 and Σ2. We define

Σ2 ∗ Σ1 := (Σ2 ◦ Σ1) ◦ p

to be this smooth map, this defines the auxiliary horizontal composition of Σ1 and
Σ2.
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p : 7→

Figure 1: A useful deformation of the unit square.

Lemma 3.15. The map kA,B : BX → H respects the vertical composition of bigons
in the sense that

kA,B(idγ) = 1 and kA,B(Σ2 • Σ1) = kA,B(Σ2) · kA,B(Σ1)

for any path γ ∈ PX and any two vertically composable bigons Σ1 and Σ2. It respects
the auxiliary horizontal composition ∗ in the sense that

kA,B(Σ2 ∗ Σ1) = kA,B(Σ2) · α(FA(γ2), kA,B(Σ1))

for any two horizontally composable bigons Σ1 : γ1 ⇒ γ′1 and Σ2 : γ2 ⇒ γ′2.

Proof. Concerning the vertical composition, the identity bigon idγ : γ ⇒ γ has the 1-
form Aidγ = 0, so that fΣ(0, σ) is constant. Hence, kA,B(idγ) = 1. Now let Σ1 : γ0 ⇒
γ1 and Σ2 : γ1 ⇒ γ2 be two bigons. For the 1-form (35) associated to the bigon Σ2 • Σ1

we find

1

2
AΣ2•Σ1 |σ =

{
AΣ1 |2σ for 0 6 σ 6 1

2

AΣ2 |2σ−1 for 1
2 6 σ 6 1

and accordingly

fΣ2•Σ1(0, 1) = fΣ2•Σ1

(
1

2
, 1

)
· fΣ2•Σ1

(
0,

1

2

)
= fΣ2(0, 1) · fΣ1(0, 1). (39)

A short calculation then shows that

kA,B(Σ2 • Σ1)
(36)
= α(FA(γ0), fΣ2•Σ1(0, 1)

−1)

(39)
= α(FA(γ0), fΣ1

(0, 1)−1 · fΣ2
(0, 1)−1)

= α(FA(γ0) · t(fΣ1(0, 1))
−1, fΣ2(0, 1)

−1) · α(FA(γ0), fΣ1(0, 1)
−1)

(a)
= α(FA(γ1), fΣ2(0, 1)

−1) · α(FA(γ0), fΣ1(0, 1)
−1)

(36)
= kA,B(Σ2) · kA,B(Σ1).

In the step in the middle we have used the axioms of a crossed module, namely that

α(g, h1h2) = α(g, α(t(h1), h2) · h1) = α(g · t(h1), h2) · α(g, h1)

for all g ∈ G and h1, h2 ∈ H.
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Concerning the auxiliary horizontal composition, we obtain for the 1-form (35)
associated to the bigon Σ2 ∗ Σ1

1

2
AΣ2∗Σ1 |σ =

{
Ad−1

FA(γ1)
(AΣ2 |2σ) for 0 6 σ 6 1

2

AΣ1 |2σ−1 for 1
2 6 σ 6 1

and accordingly

fΣ2∗Σ1(0, 1) = fΣ2∗Σ1

(
1

2
, 1

)
· fΣ2∗Σ1

(
0,

1

2

)
= fΣ1(0, 1) · α(FA(γ1)

−1, fΣ2(0, 1)). (40)

Then we obtain

kA,B(Σ2 ∗ Σ1)
(36)
= α(FA(γ2 ◦ γ1), fΣ2∗Σ1(0, 1)

−1)

(40)
= α(FA(γ2 ◦ γ1), α(FA(γ1)

−1, fΣ2(0, 1))
−1 · fΣ1(0, 1)

−1)

(36)
= kA,B(Σ2) · α(FA(γ2), kA,B(Σ1))

this yields the required identity.

Before we come to the original horizontal composition of bigons it is convenient to
show first the following

Lemma 3.16. For thin homotopy equivalent bigons Σ ∼2 Σ′ we have

kA,B(Σ) = kA,B(Σ
′).

We have moved the proof of this lemma to Appendix C. Then it follows that kA,B

factors through B2X,

BX
pr2 // B2X // H.

Since pr2 is surjective, the map B2X → H is uniquely determined, and by Proposi-
tion 3.14, it is diffeological. We denote this unique diffeological map also by

kA,B : B2X → H.

Proposition 3.17. The assignment

F : x

γ

��

γ′

CCΣ

��

y 7→ ∗

FA(γ)

��

FA(γ′)

CCkA,B(Σ)

��

∗ (41)

defines a smooth 2-functor F : P2(X) → BG.

Proof. Since FA is a smooth functor, we have nothing to show for 1-morphisms. On
2-morphisms, the assignment kA,B is smooth by Proposition 3.14. By Lemma 3.15
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it further respects the vertical composition. Concerning the horizontal composition,
notice that

h : [0, 1]× [0, 1]2 → X : (r, s, t) 7→ (Σ2 ◦ Σ2)(rp+ (1− r)id[0,1]2)(s, t),

defines a homotopy between Σ2 ∗ Σ1 and Σ2 ◦ Σ1, and since its rank is limited by
dimensional reasons to 2, this homotopy is thin. Then, by Lemmata 3.15 and 3.16 we
have

kA,B(Σ2 ◦ Σ1) = kA,B(Σ2 ∗ Σ1) = kA,B(Σ2) · α(FA(γ2), kA,B(Σ1)). (42)

Thus, the 2-functor F respects the horizontal composition.

3.3.2. Reconstruction II: Pseudonatural Transformations

Here we consider a 1-morphism

(g, ϕ) : (A,B) → (A′, B′)

in the 2-category Z2
X(G)∞, i.e., a smooth map g : X → G and a 1-form ϕ ∈ Ω1(X, h)

that satisfy the relations from Proposition 3.10,

A′ + t∗(ϕ) = Adg(A)− g∗θ̄ (43)

B′ + α∗(A
′ ∧ ϕ) + dϕ+ [ϕ ∧ ϕ] = (αg)∗(B). (44)

The 1-forms A′ and ϕ define a 1-form (A′, ϕ) ∈ Ω1(X, gn h), and thus by Theo-
rem 2.6 a smooth functor ρ̃ : P1(X) → B(GnH). We denote its projection to H by
h : P 1X → H. We want to define a smooth pseudonatural transformation ρ : F → F ′

between the 2-functors F := P(A,B) and F ′ := P(A′, B′) by

ρ : x
γ // y 7−→

∗
F (γ) //

g(x)

��

∗

g(y)

��

h(γ)−1
��

����
��

{� ��
�����
�

∗
F ′(γ)

// ∗

. (45)

We have to show

Lemma 3.18. The target-matching condition

F ′(γ) · g(x) = t(h(γ)−1) · g(y) · F (γ) (46)

for the 2-morphism h(γ)−1 is satisfied.

Proof. We recall that F (γ), F ′(γ) and h(γ) are values of solutions fγ , f
′
γ : R → G and

hγ : R → H of initial value problems. We show that

f ′γ(0, t) = t(hγ(t)
−1) · g(γ(t)) · fγ(0, t) · g(γ(0))−1 =: β(t)

which gives for t = 1 equation (43). For this purpose, we show that β(t) satisfies the
initial value problem for f ′γ . The initial condition β(0) = 1 is satisfied. Notice that
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with p := γ(t) and v := γ̇(t)

∂hγ(t)

∂t
= −drhγ(t)|1(ϕp(v))− (αhγ(t))∗(A

′
p(v)) (47)

so that – using Axiom 2a) of the crossed module –

∂

∂t
t(hγ(t)

−1) = dt|hγ(t)−1

(
∂hγ(t)

−1

∂t

)
=
(
Ad−1

t(hγ(t))

(
t∗(ϕp(v)) +A′

p(v)
)
−A′

p(v)
)
· t(hγ(t)−1).

Then we compute

∂β

∂t
=
(
Ad−1

t(hγ(t))

(
t∗(ϕp(v)) +A′

p(v) + g∗θ̄|p(v)−Adg(Ap(v))
)
−A′

p(v)
)
· β(t).

Using equation (43), the right hand side becomes −A′
p(v)β(t). Hence, β(t) solves the

same initial value problem as f ′γ(0, t). By uniqueness, both functions coincide.

It remains to check that the axioms of a pseudonatural transformation are satisfied.
Axiom (T1) follows from the fact that ρ̃ is a functor by the same arguments as given
in the proof of Lemma 3.9. For axiom (T2) we have to prove

Lemma 3.19. The 2-morphism h(γ) satisfies

F ′(Σ) · h−1(γ0) = h−1(γ1) · α(g(y), F (Σ))

for any bigon Σ: γ0 ⇒ γ1.

Proof. We recall that F (Σ) = kA,B(Σ) = α(F (γ), fΣ(0, 1)
−1), where fΣ(0, s) is the

solution of a initial value problem governed by a 1-form AΣ. For F (γ
′) the same is

true with primed quantities. We define the notion γs(t) := Σ(s, t) consistent with γ0
and γ1. Then, the equation

f ′Σ(0, s) = α(F ′(γ0)
−1, h(γ0)

−1 · α(g(y) · F (γ0), fΣ(0, s)) · h(γs)) := κ(s),

evaluated for s = 1, is the equation we have to prove. Like in the proof of Lemma 3.18
we show that κ(s) solves the initial value problem for f ′Σ(0, s). In a first step, the
derivative ∂κ/∂s can be written as drκ(s)|1X(s), where X(s) ∈ h is

X(s) = (αF ′(γ0)−1)∗

(
−Ad−1

h(γ0)
(αg(y)F (γ0))∗AΣ|s

(
∂

∂s

)
+ Adh(γ0)−1α(g(y)F (γ0),fΣ(0,s))

(
∂h(γs)

∂s
h(γs)

−1

))
= −(αg(x))∗

(
AΣ|s

(
∂

∂s

))
+ (αF ′(γ−1

s ))∗h(γs)
−1 ∂h(γs)

∂s
.

In the second line we have used the target matching conditions (31) and (46). With



174 URS SCHREIBER and KONRAD WALDORF

the definition (35) and again (46), the first summand becomes

−(αg(x))∗AΣ|s
(
∂

∂s

)
=

∫ 1

0

dt (αF ′(γs,t)−1)∗Ad−1
h(γs,t)

W (s, t),

where we have written

W (s, t) := Σ∗((αg)∗(B))(s,t)

(
∂

∂s
,
∂

∂t

)
∈ h.

To compute the second summand, we recall from Section 3.3.1 the definition of the
path τs0(s, t) that runs counter-clockwise around the rectangle spanned by (s0, 0)
and (s0 + s, t). We consider the smooth function us0 : R2 → GnH be defined by
us0(s, t) := ρ̃(Σ∗(τs0(s, t))), where ρ̃ is the smooth functor corresponding to the 1-
form (A′, ϕ) ∈ Ω1(X, gn h) we started with. For this smooth function, we recall
Lemma 3.13 (a), here h(γ−1

0 ◦ γs) = pH(u0(s, 1)). Furthermore, we have

∂

∂s
u0(s, 1)

(b)
= u0(s, 1) ·

∂

∂σ

∣∣∣∣
0

us(σ, 1)

= u0(s, 1) ·
∫ 1

0

dt
∂

∂σ

∂

∂t

∣∣∣∣
(0,t)

us(σ, t)

(c)
= −u0(s, 1) ·

∫ 1

0

dt Ad−1
ρ̃(γs,t)

(Σ∗K)(s,t)

(
∂

∂s
,
∂

∂t

)
. (48)

In the last line, K = (KA′ ,Kϕ) is the curvature 2-form of the 1-form (A′, ϕ), consist-
ing of

KA′ = dA′ + [A′ ∧A′]
(30)
= t∗ ◦B′ and Kϕ = α∗(A

′ ∧ ϕ) + dϕ+ [ϕ ∧ ϕ].

If we write Y (s, t) for Σ∗Kϕ evaluated at (s, t), and similarly Z(s, t) for Σ∗B′, the
adjoint action in (48) on the semidirect product gn h is

Ad−1
(g,h)(t∗(Z), Y ) =

(
Ad−1

g (t∗(Z)), (αg−1)∗
(
Ad−1

h (Y + Z)− Z
))

.

With Y + Z =W from (44), the projection of (48) to h becomes

∂h(γ−1
0 ◦ γs)
∂s

= −h(γ−1
0 ◦ γs) · (αF ′(γ−1

0 ◦γs)
)∗(∫ 1

0

dt (αF ′(γs,t)−1)∗

(
Ad−1

h(γs,t)
(W (s, t))− Z(s, t)

))
. (49)

Then, with h(γ−1
0 ◦ γs) = h(γ−1

0 )α(F ′(γ0)
−1, h(γs)), we have summarized

X(s) =

∫ 1

0

dt(αF ′(γs,t)−1)∗Z(s, t)
(35)
= −A′

Σ|s
(
∂

∂s

)
.

This shows κ(s) = f ′Σ(0, s).

3.3.3. Reconstruction III: Modifications
We consider a 2-morphism

a : (g, ϕ) ⇒ (g′, ϕ′)
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in the 2-category Z2
X(G)∞, between two 1-morphisms (g, ϕ) and (g′, ϕ′) from (A,B)

to (A′, B′). This is a smooth map a : X → H that satisfies (29):

g2 = (t ◦ a) · g1 and ϕ2 + (r−1
a ◦ αa)∗(A

′) = Ada(ϕ1)− a∗θ̄. (50)

We want to define a smooth modification A : ρ⇒ ρ′ between the pseudonatural trans-
formations ρ := P(g, ϕ) and ρ′ := P(g′, ϕ′). We define

A : x 7→ ∗

g(x)

��

g′(x)

CCa(x)

��

∗ .

The target-matching condition for the 2-morphism f(x) is obviously satisfied due to
the first equation in (50). The axiom for the modification A is

Lemma 3.20. The 2-morphism a(x) satisfies

α(F ′(γ), a(x)) · h(γ)−1 = h′(γ)−1 · a(y)

for all paths γ ∈ PX.

Proof. We rewrite the equation as

h′γ(t) = a(γ(t)) · hγ(t) · α(f ′γ(0, t), a(x)−1) := λ(t)

which we will prove by showing that λ(t) satisfies the same initial value problem as
h′γ(t), namely (47):

∂h′γ(t)

∂t
= −drh′

γ(t)
|1(ϕ′

p(v))− (αh′
γ(t)

)∗(A
′
p(v)) (51)

for p := γ(t) and v := γ̇(t). A straightforward calculation shows that

∂λ

∂t
= −drλ(t)|1

(
−(a∗θ̄)p(v) + Ada(p)(ϕ1|p(v))

−(r−1
a(p) ◦ αa(p))∗(A

′
p(v))

)
− (αλ(t))∗(A

′
p(v)).

For this calculation, one twice has to use the identity

(αh1h2
)∗(X) = drh2

|h1
(αh1

)∗(X) + dlh1
|h2

(αh2
)∗(X). (52)

Using then the second equation of (50), we have shown that λ(t) satisfies the differ-
ential equation (51). Thus, λ(t) = h′γ(t).

3.3.4. Summary of Section 3.2

Above we have collected the structure of a 2-functor

P : Z2
X(G)∞ → Funct∞(P2(X),BG).

Let us check that the axioms of a 2-functor are satisfied. Like in Section 3.2.4, hori-
zontal and vertical composition of 2-morphisms is respected because they are defined
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on both sides in the same way for the same H-valued functions. It remains to check
the compatibility with the composition of 1-morphisms,

P((g2, ϕ2) ◦ (g1, ϕ1)) := P(g2, g1, (αg2)∗(ϕ1) + ϕ2) = P(g2, ϕ2) ◦ P(g1, ϕ1)

for 1-morphisms (gi, ϕi) : (Ai, Bi) → (Ai+1, Bi+1). For the components at objects x ∈
X, this equality is clear. We recall the component of P(gi, ϕi) at a path γ ∈ PX is a
2-morphism in BG given according to (45) by a group element h(γ)−1, where h(γ) =
hi(1) for hi(t) the solution of the initial value problem (47). Similar, the component
of P(g2, g1, ϕ̃) at γ with ϕ̃ := (αg2)∗ ◦ ϕ1 + ϕ2 is h̃(γ)−1, where h̃(γ) = h̃(1) for h̃(t)
the solution of the initial value problem

∂h̃(t)

∂t
= −drh̃(t)|1(ϕ̃2|γ(t)(vt))− (αh̃(t))∗(A3|γ(t)(vt)) (53)

with vt := γ̇(t). According to the definition of the composition of pseudonatural trans-
formations, the equation we have to prove now follows from

h̃(t) = α(g2(γ(t)), h1(t)) · h2(t) =: ζ(t) (54)

evaluated at t = 1, and we prove (54) by showing that ζ(t) solves (53). A straight-
forward calculation similar to the one performed in the proof of Lemma 3.20, using
(52) and (43) for (g2, ϕ2), shows that this is indeed the case.

3.4. Main Theorem
We have so far defined two 2-functors D and P which go from smooth 2-functors

to differential forms, and from differential forms back to smooth 2-functors. Here we
prove the main theorem of this article:

Theorem 3.21. The 2-functors

D : Funct∞(P2(X),BG) → Z2
X(G)∞

from Section 3.2 and

P : Z2
X(G)∞ → Funct∞(P2(X),BG)

from Section 3.3 satisfy

D ◦ P = idZ2
X(G)∞ and P ◦ D = idFunct∞(P2(X),BG) (55)

and form hence an isomorphism of 2-categories.

Proof. We start with an object (A,B) in Z2
X(G)∞, i.e., a 1-form A ∈ Ω1(X, g) and a

2-form B ∈ Ω2(X, h) such that dA+ [A ∧A] = t∗ ◦B. We let (A′, B′) := D(P(A,B))
be the differential forms extracted from the reconstructed 2-functor F := P(A,B).
By Theorem 2.6 we have A′ = A. Now we test the 2-form B′ at a point x ∈ X and
at tangent vectors v1, v2 ∈ TxX. Let Γ: R2 → X be a smooth map with x = Γ(0),
v1 = ∂Γ

∂s

∣∣
0
and v2 = ∂Γ

∂t

∣∣
0
. We only have to summarize

B′
x(v1, v2)

(17)
= − ∂2

∂s∂t

∣∣∣∣
0

P(A,B)(Γ∗ΣR(s, t))

(41)
= − ∂2

∂s∂t

∣∣∣∣
0

kA,B(Γ∗ΣR(s, t)) = Bx(v1, v2),

where the last equality has been shown in Proposition 3.14.
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Conversely, let F : P2(X) → BG be a smooth 2-functor, and let F ′ := P(D(F )).
By Theorem 2.6 it is clear that F ′(x) = F (x) and F ′(γ) = F (γ) for every point x ∈ X
and every path γ ∈ PX. For a bigon Σ ∈ B2X we recall that

F ′(Σ) = kD(F )(Σ) = α(F (γ0), f
′
Σ(0, 1)

−1), (56)

where f ′Σ is the solution of the initial value problem

∂f ′Σ(0, s)

∂s
= −drf ′

Σ(0,s) (X(s)) and f ′Σ(0, 0) = 1. (57)

This initial value problem is governed by X(s) ∈ h, which is given by the 1-form AΣ

from (35), namely

X(s) := AΣ|s
(
∂

∂s

)
:= −

∫ 1

0

dt (αF (γs,t)−1)∗(Σ
∗B)(s,t)

(
∂

∂s
,
∂

∂t

)
,

and B is the 2-form in (A,B) = D(F ).

We define a bigon Σs,t(σ, τ) by Σs,t(σ, τ)(s
′, t′) := Σ(s+ β(σs′), t+ β(τt′)), where

β is some fixed smooth map β : [0, 1] → [0, 1] with β(0) = 0 and β(1) = 1 and with
sitting instants. We notice from (56) and (57) that F ′(Σ0,0(s, 1)) is the unique solution
of the initial value problem

∂

∂s
F ′(Σ0,0(s, 1)) = F ′(Σ0,0(s, 1)) · dαF (γ0)(X(s)) and F ′(Σ0,0(0, 1)) = 1.

In the following we prove that F (Σ0,0(s, 1)) also solves this initial value problem, so
that in particular

F ′(Σ) = F ′(Σ0,0(1, 1)) = F (Σ0,0(1, 1)) = F (Σ)

follows, and we have P(D(F )) = F . To show that F (Σ0,0(s, 1)) is a solution we com-
pute

∂

∂s
F (Σ0,0(s, 1)) = F (Σ0,0(s, 1))dαF (γ0)αF (γs)−1

(
∂

∂σ

∣∣∣∣
0

F (Σs,0(σ, 1))

)
and then

αF (γs)−1

(
∂

∂σ

∣∣∣∣
0

F (Σs,0(σ, 1))

)
=

∫ 1

0

dt (αF (γs,t)−1)∗
∂2

∂σ∂τ

∣∣∣∣
0

α(F (γs,t+τ )
−1, F (Σs,0(σ, t+ τ))).

To compute the derivative we decompose Σs,0(σ, t+ τ) in two bigons Σs,0(σ, t) and
Σs,t(σ, τ) and obtain

∂2

∂σ∂τ

∣∣∣∣
0

α(F (γs,t+τ )
−1, F (Σs,0(σ, t+ τ))) = −(Σ∗B)s,t

(
∂

∂s
,
∂

∂t

)
.

Now, the three last equations show that F (Σ0,0(s, 1)) solves the above initial value
problem.

So far we have proved equations (55) on the level of objects. On the level of 1-
morphisms, it is a consequence of Theorem 2.6: for a pseudonatural transformation
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ρ : F → F ′ with components g : X → G and ρH : P 1X → H we have

P(D(ρ))
(22)
= P(g,D(F ′, ρ−1

H ))
(45)
= (g,P(D(F ′, ρ−1

H ))−1)
Th. 2.6
= (g, ρH) = ρ,

and conversely, for a 1-morphism (g, ϕ) : (A,B) → (A′, B′) in Z2
X(G)∞,

D(P(g, ϕ))
(45)
= D(g,P(A′, ϕ)−1)

(22)
=
(
g,D

((
P(A′, ϕ)−1

)−1
))

Th. 2.6
= (g, ϕ).

Finally, on the level of 2-morphisms, which are on both sides just the same H-valued
functions on X, there is nothing to show.

4. Examples of Smooth 2-Functors

We give three examples of situations where smooth 2-functors are present.

4.1. Connections on (non-abelian) Gerbes
Let us first recall from [SW09] what connections on ordinary principal bundles

have to do with ordinary functors. ForG a Lie group, we denote byG-Tor the category
whose objects are smooth manifolds with transitive, free and smooth G-action from
the right, and whose morphisms are G-equivariant smooth maps. The functor which
regards G itself as a G-space is denoted by iG : BG→ G-Tor. If γ : x→ y is a path in
X, any principal G-bundle P provides us with objects Px and Py of G-Tor, namely its
fibres over the endpoints of γ. Furthermore, a connection ∇ on P defines a morphism

τγ : Px → Py

in G-Tor, namely the parallel transport along γ. Well-known properties of parallel
transport assure that the assignments x 7→ Px and γ 7→ τγ define a functor

traP,∇ : P1(X) → G-Tor.

The main result of [SW09] is the characterization of functors obtained like this among
all functors F : P1(X) → G-Tor. They are characterized by the following defining
property of a transport functor : there exists a surjective submersion π : Y →M and
a smooth functor triv : P1(Y ) → BG such that the functors π∗F and iG ◦ triv are
(with additional conditions we skip here) naturally equivalent. In other words, trans-
port functors are locally smooth functors. These transport functors form a category
Trans1BG(X,G-Tor), and we have

Theorem 4.1 ([SW09], Theorem 5.4). The assignment of a functor traP to a prin-
cipal G-bundle P with connection over X defines a surjective equivalence of categories

Bun∇G(X) ∼= Trans1BG(X,G-Tor).

Under this equivalence, trivial principal G-bundles with connection correspond to
globally smooth functors, i.e., functors tra : P1(X) → G-Tor with tra = iG ◦ triv for a
smooth functor triv : P1(X) → BG. Trivializable principal G-bundles with connection
correspond to functors which are naturally equivalent to globally smooth functors
(again with additional assumptions on the natural equivalence).

We think that the concept of transport functors is adequate to be categorified and
to capture all aspects of connections on 2-bundles, in particular gerbes. We anticipate
the following results of [SWA]:
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1. Gerbes with connection over X have structure 2-groups G.

2. A trivial G-gerbe with connection over X is a smooth 2-functor

F : P2(X) → BG.

Let us test these assertions in two examples.

Example 4.2. We consider the Lie 2-group G = BU(1) from Example B.3. The corre-
sponding BU(1)-gerbes are also known as abelian gerbes, or U(1)-gerbes. Now, a triv-
ial BU(1)-gerbe with connection over X is by the above assertion and Theorem 3.21
nothing but a 2-form B ∈ Ω2(X).

Abelian gerbes with connection can be realized conveniently by bundle gerbes
[Mur96]. In this context it is well-known that a connection on a trivial bundle gerbe
is indeed just a 2-form, see, e.g., [Wal07].

Example 4.3. LetH be a connected Lie group. We denote by aut(H) the Lie algebra of
the Lie group Aut(H) of Lie group automorphisms of H. We consider the Lie 2-group
G = AUT(H) from Example B.5. By the above assertion and Theorem 3.21, a trivial
AUT(G)-gerbe with connection overX is a pair (A,B) of a 1-form A ∈ Ω1(X, aut(H))
and a 2-form B ∈ Ω2(X, h) such that

dA+ [A ∧A] = ad(B), (4.1)

where ad: h → aut(H) : X 7→ adX .

AUT(H)-gerbes are also known as H-gerbes1 in the sense of Breen and Mess-
ing [BM05]. There, a connection on a trivial H-gerbe is a pair (A,B) just as in
Example 4.3 but without the condition (4.1). This difference lies at the heart of a
question N. Hitchin posed at the VBAC-meeting in Bad Honnef in June 2007 after
a talk by L. Breen, namely if it is possible to define a surface holonomy from a
connection on an H-gerbe. Let us presume that “a surface holonomy” is at least a
2-functorial assignment, i.e., is described by a 2-functor on the path 2-groupoid. This
assumption is supported by the approach via “2-holonomies” [MP10], as well as by
transport 2-functors [SWA]. Similar considerations have also been made for ordinary
holonomy [CP94, SW09]. Then, the following three statements on a Breen-Messing
connection (A,B) on a trivial H-gerbe over X are equivalent:

(a) it defines a surface holonomy.

(b) it satisfies condition (4.1), dA+ [A ∧A] = ad(B).

(c) there exists a smooth 2-functor

F : P2(X) → BAUT(H)

such that (A,B) = D(F ).

A detailed discussion of surface holonomies that also covers non-trivial H-gerbes, is
postponed to [SWA].

1We have to remark that a U(1)-gerbe in the sense of Example 4.2 is not the same as an H-gerbe
for H = U(1) in the sense of Breen and Messing. The difference becomes clear if one uses the
classification of gerbes by Lie 2 -groups we have proposed here: we have BU(1)-gerbes on one side
but AUT(U(1))-gerbes on the other. Indeed, BU(1) is only a sub-2-group of AUT(U(1)).
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4.2. Derivatives of Smooth Functors
In Appendix B we have reviewed the Lie 2-group EG associated to any Lie group

G. For any functor F : P1(X) → BG there is an associated 2-functor

dF : P2(X) → BEG

that we call the derivative 2-functor of F . It sends a 1-morphism γ ∈ P 1X to the
image F (γ) ∈ G of γ under the functor F . This determines dF completely, since the
Lie 2-groupoid BEG has only one object, and precisely only one 2-morphism between
any two fixed 1-morphisms. It will be interesting to determine the unique 2-morphism
dF (Σ) associated to a bigon Σ: γ1 ⇒ γ2 explicitly. For this purpose, we denote by
∂Σ the 1-morphism γ−1

1 ◦ γ2. Then, we obtain directly from the definitions:

Theorem 4.4 (The non-abelian Stokes’ Theorem for functors). Let G be a Lie group
and let F : P1(X) → BG be a functor. Then,

dF (Σ) = F (∂Σ)

for any bigon Σ ∈ B2X.

In order to understand why we call this identity Stokes’ Theorem, notice that if
the functor F is smooth, also its derivative 2-functor dF is smooth. Then, we have
associated differential forms:

Lemma 4.5. Let A ∈ Ω1(X, g) be the 1-form associated to the smooth functor F ,
and let B ∈ Ω2(X, g) be the 2-form associated to its derivative 2-functor dF by The-
orem 3.21. Then,

B = [A ∧A] + dA.

Proof. We recall that there is also the 1-form A′ ∈ Ω1(X, g) associated to the 2-
functor dF , and that by Proposition 3.8 B = [A′ ∧A′] + dA′, since t is the identity
in the crossed module that defines EG. Furthermore, since dF (γ) = F (γ), we have
A = A′.

We have reviewed in Section 4.1 that a smooth functor F : P1(X) → BG corre-
sponds to trivial principal G-bundle P with connection ω in the sense that traP,ω =
iG ◦ F . By Lemma 4.5, the 2-form B determined by the 2-functor dF is the curvature
of this connection ω. Moreover, the holonomy of ω around any closed path γ (identi-
fied with a group element) is given by F (γ). If γ is of the form γ = ∂Σ for any bigon
Σ, Theorem 4.4 implies

Hol∇(∂Σ) = F (∂Σ) = dF (Σ);

this is a relation between the holonomy and the curvature of a connection on a
(trivial) principal G-bundle. Further restricted to the case that the bigon Σ is of the
form Σ: idx ⇒ γ for a closed path γ : x→ x, we have

Corollary 4.6. Let ω be a connection on a trivial principal G-bundle of curvature
K, and let γ be a contractible loop at x ∈ X. Then,

Holω(γ) = Pexp

∫ 1

0

AΣ = P exp

∫ 1

0

ds

(∫ 1

0

dt Ad−1
τ(γs,t)

K|Σ(s,t)

(
∂Σ

∂s
,
∂Σ

∂t

))
,

where Σ: idx ⇒ γ is any choice of a smooth contraction of γ to its base point, the
group element τ(γs,t) ∈ G is the parallel transport of the connection ω along the path
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γs,t, and the path-ordered exponential Pexp indicates the unique solution of the respec-
tive initial value problem, like in (9).

Exactly the same formula can been found in [AFG99], derived by completely
different methods. In the abelian case of G = U(1) Corollary 4.6 boils down to the
well-known identity

Holω(γ) = exp

(
i

∫
Σ

K

)
for a surface Σ with boundary γ = ∂Σ.

4.3. Classical Solutions in BF-Theory
Four-dimensional BF theory is a topological field theory on a four-dimensional,

compact, oriented smooth manifold X, see e.g., [Bae96]. Usually, it involves a sym-
metric, non-degenerate invariant bilinear form 〈−,−〉 on the Lie algebra g of a Lie
group G, and the fields are pairs (A,B) of a 1-form A ∈ Ω1(X, g) and a 2-form
B ∈ Ω2(X, g).

We infer that a naturally generalized setup in which BF theory should be con-
sidered, is a Lie 2-group G, i.e., a smooth crossed module (G,H, t, α), together with
the invariant form 〈−,−〉 on the Lie algebra of G. Other generalizations have been
proposed in [GPP08]. The fields are now pairs (A,B) of a 1-form A ∈ Ω1(X, g)
and a 2-form B ∈ Ω2(X, h), and the action is, with FA := dA+ [A ∧A] and βA,B :=
FA − t∗B,

S(A,B) :=
1

2

∫
X

〈βA,B ∧ βA,B〉 . (4.2)

Expressed in terms of A and B, this is

S(A,B) =
1

2

∫
X

〈FA ∧ FA〉 −
∫
X

〈t∗B ∧ FA〉+
1

2

∫
X

〈t∗B ∧ t∗B〉 ; (4.3)

these terms can be identified as: a topological Yang-Mills term, the “original” BF-
term and a so-called cosmological term. The variation of this action gives

δS

δA
= 0 ⇔ t∗dB +A ∧ t∗B = 0

δS

δB
= 0 ⇔ βA,B = 0.

We notice that the second equation implies the first, so that the critical point of
S(A,B) are exactly those with βA,B = 0. It follows further that the topological Yang-
Mills term, which is usually not present in BF theory, has no influence on the critical
points. Since pairs (A,B) with βA,B = 0 correspond by Theorem 3.21 to smooth
2-functors F : P2(X) → BG, we have

Proposition 4.7. The critical points of the BF action (4.2) are exactly the smooth
2-functors F : P2(X) → BG.

5. Transgression to Loop Spaces

In this section we use the observation that 2-functors defined on the path 2-
groupoid P2(X) of a smooth manifold X induce structure on the loop space
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LX := C∞(S1, X), since loops are particular 1-morphisms in P2(X). In order to
understand this structure properly, we equip LX with the canonical diffeology of
LX = D∞(S1, X), see Section 2.2. In Section 5.1 we generalize the relation between
smooth functors and differential forms (Theorem 2.6) from smooth manifolds X to
arbitrary diffeological spaces, in particular to LX. In Section 5.2 we combine this
generalized statement on LX with Theorem 3.21 on X.

5.1. Generalization to Diffeological Spaces
In order to describe a generalization of Theorem 2.6 from smooth manifolds to

diffeological spaces, we first have to define the path groupoid P1(X) of a diffeological
space X. We will see that almost all definitions we gave for X a smooth manifold
pass through; only the notion of thin homotopy has to be adapted.

So, a path in X is a diffeological map γ : [0, 1] → X with sitting instants. As
described in Section 2.2 the set PX of paths can be considered as a subset of the dif-
feological space D∞((0, 1), X), and is hence itself a diffeological space. By axiom (D2)
for diffeological spaces, the constant path idx at a point x ∈ X is diffeological.

Lemma 5.1. The composition γ2 ◦ γ1 of two paths γ1 : x→ y and γ2 : y → z is again
a path.

Proof. Notice that if γ : [0, 1] → X is a path and U ⊂ [0, 1] is open, then γ|U : U → X
is a plot of X. To see that the composition γ2 ◦ γ1 (which is defined in the same way
as for smooth manifolds) is diffeological, let U ⊂ [0, 1] be open, let εi be a sitting
instant of γi, and let

U1 := U ∩ (0, 12 ) , U2 := U ∩ ( 12 − ε1,
1
2 + ε2) and U3 := U ∩ ( 12 , 1).

These are open sets that cover U , furthermore, (γ2 ◦ γ1)|Ui = γi|Ui for i = 1, 3 are
plots of X and (γ2 ◦ γ1)|U2 is constant and hence also a plot of X by axiom (D2).
Hence, (γ2 ◦ γ1)|U is a plot of X by axiom (D3).

We leave it to the reader to prove that the inverse γ−1 of a path γ is again a
path. Next we have to define thin homotopy for paths in a diffeological space. For
this purpose, we first give a reformulation of a thin homotopy on smooth manifolds,
which generalizes better to diffeological spaces.

Lemma 5.2. Let X and Y be smooth manifolds and f : X → Y be a smooth map.
The rank of the differential of f is bounded above by a number k ∈ N if and only if
the pullback of every (k + 1)-form ω ∈ Ωk+1(Y ) along f vanishes.

Proof. Assume that the rank of the differential of f is at most k everywhere. Then,
f∗ω = 0 for all ω ∈ Ωk+1(Y ). Conversely, assume that f∗ω = 0 for all ω ∈ Ωk+1(Y ).
Assume further that there exists a point p ∈ X such that df |p has rank k′ > k.
Then, there exist vectors v1, . . . , vk′ ∈ TpX such that their images wi := df |p(vi) are
linear independent. Using a chart of a neighbourhood of f(p) one can construct a
k′-form ω ∈ Ωk′

(Y ) such that ωf(p)(w1, . . . , wk′) is non-zero. Since this is equal to
(f∗ω)p(v1, . . . , vk′), we have a contradiction to the assumption that f∗ω = 0.

We thus have reformulated restrictions on the rank of the differential of a smooth
function in terms of pullbacks of differential forms. Now we generalize to diffeological
spaces.
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Definition 5.3. Let X be a diffeological space. A differential k-form on X is a family
of k-forms ωc ∈ Ωk(U) for every plot c : U → X, such that

ωc1 = f∗ωc2

for every smooth map f : U1 → U2 with c2 ◦ f = c1.

Notice that the k-forms on a diffeological space X form a vector space Ωk(X), and
that the wedge product and the exterior derivative generalize naturally to differential
forms on diffeological spaces. Furthermore, it is clear that a differential form ω on
a smooth manifold X induces a differential form on X regarded as a diffeological
space: for a chart φ : U → X of X one takes ωφ : = φ∗ω. We have also a very simple
definition of pullbacks of differential forms on diffeological spaces along diffeological
maps f : X → Y between diffeological spaces X and Y : the pullback f∗ω of a k-form
ω = {ωc} on Y is the k-form on X defined by

(f∗ω)c := ωf◦c

for every plot c of X. Here it is important that f ◦ c, since f was supposed to be
diffeological, is a plot of Y . In particular, if Y is a smooth manifold, f ◦ c : U → Y is
a smooth map and (f∗ω)c = (f ◦ c)∗ω.

Definition 5.4. Two paths γ0 : x→ y and γ1 : x→ y in a diffeological space X are
called thin homotopy equivalent , if there exists a diffeological map h : [0, 1]2 → X with
sitting instants as described in (1) of Definition 2.1, such that the pullback h∗ω of
every 2-form ω ∈ Ω2(X) vanishes.

By Lemma 5.2 it is clear that for X a smooth manifold Definition 5.4 is equivalent
to Definition 2.1. By arguments similar to those given in the proof of Lemma 5.1 one
can show that Definition 5.4 defines an equivalence relation ∼1 on the diffeological
space PX of paths in X, so that the set of equivalence classes P 1X := PX/ ∼1 is
again a diffeological space. This will be the set of morphisms of the path groupoid
P1(X) we are going to define. In the following lemma we prove that the axioms of a
groupoid are satisfied.

Lemma 5.5. Let X be a diffeological space. For a path γ : x→ y we have

γ−1 ◦ γ ∼1 idx and idy ◦ γ ∼1 γ ∼1 γ ◦ idx.

For three paths γ1 : x→ y, γ2 : y → z and γ3 : z → w we have

γ1 ◦ (γ2 ◦ γ3) ∼1 (γ1 ◦ γ2) ◦ γ3.

Proof. We prove γ−1 ◦ γ ∼1 idx; the remaining equivalences can be shown analo-
gously. We choose the standard homotopy: this is, for some smooth map β : [0, 1] →
[0, 1] with β(0) = 0 and β(1) = 1 and with sitting instants, the map

h : [0, 1]2 → X : (s, t) 7→

{
γ(2β(s)t) 0 6 t 6 1

2

γ(2β(s)(1− t)) 1
2 < t 6 1.

This map has sitting instants. To see that it is diffeological, we use the same trick as
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in the proof of Lemma 5.1, i.e., we cover (0, 1)2 with

Vγ := (0, 1)× (0, 12 ) , Vγ−1 := (0, 1)× ( 12 , 1) and Vε := (0, 1)× ( 12 − ε, 12 + ε)

for ε a sitting instant γ, and accordingly any open subset U ⊂ [0, 1]2 by Vγ ∩ U ,
Vγ−1 ∩ U and Vε ∩ U . Now,

h|Vγ∩U = (γ ◦mβ)|Vγ∩U (5.1)

with mβ(s, t) := 2β(s)t; it is thus the composition of a plot with a smooth map and
hence by axiom (D1) a plot. Similarly h|Vγ−1∩U and hVε∩U are plots. This shows that

h|U is covered by plots and thus itself a plot. This implies that h is diffeological. It
remains to show that the pullback h∗ω of every 2-form ω ∈ Ω2(X) vanishes. This
follows from the fact that h restricted to each of the subsets Vγ , Vγ−1 and Vε is either
constant or factors as in (5.1) through the one-dimensional manifold [0, 1] via γ or
γ−1, respectively.

This finishes the definitions of the path groupoid P1(X) of a diffeological space X.
It is clear that one now can consider smooth functors

F : P1(X) → S

into any Lie category S like before: the maps F0 : X → S0 on objects and F1 : P
1X →

S1 on morphisms have to be diffeological maps.
Further towards a generalization of Theorem 2.6 we have to generalize the category

Z1
X(G)∞ introduced in Definition 3.12 from a smooth manifold X to a diffeological

space. Notice that Definition 5.3 extends naturally to g-valued differential forms on
diffeological spaces. Now, for a diffeological spaceX an object in Z1

X(G)∞ is a g-valued
1-form A = {Ac} on X. A morphism g : A→ A′ is a diffeological map g : X → G such
that for any plot c : U → X and the associated smooth map gc := g ◦ c : U → X

A′
c = Adgc(Ac)− g∗c θ̄. (5.2)

The functor D from Section 2.3 generalizes straightforwardly to a functor

D : Funct∞(P1(X),BG) → Z1
X(G)∞

for any diffeological space X:

• Let F : P1(X) → BG be a smooth functor. For any plot c : U → X of X (which
is itself a diffeological map), the pullback c∗F is a smooth functor c∗F : P1(U) →
BG defined on the path groupoid of the smooth manifold U . Hence Ac :=
D(c∗F ) ∈ Ω1(U, g) is a 1-form. If c′ : U ′ → X is another plot and f : U → U ′

is a smooth map with c = c′ ◦ f , we have by Proposition 2.7 Ac = D(c∗F ) =
f∗D(c′∗F ) = f∗Ac′ .

• Let ρ : F → F ′ be a smooth natural transformation. Its components furnish
a diffeological map g : X → G. For any plot c : U → X, we have gc := ρ ◦ c =
D(c∗ρ) : U → X, hence, since D is a functor, (5.2) is satisfied.

The extension of the inverse functor P to diffeological spaces is slightly more involved.
Let A = {Ac} ∈ Ω1(X, g) be a 1-form on the diffeological space X. For every plot
c : U → X we obtain a smooth functor Fc := P(Ac). In particular, since every path
γ : [0, 1] → X defines a plot γ|(0,1), we have functors Fγ defined on the path groupoid
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of the open interval (0, 1). Let εs,t ∈ P 1((0, 1)) be the path in (0, 1) that goes from
s+ ε to t− ε, where ε is a sitting instant of γ. Then, we define a map

F : P 1X → G : γ 7→ Fγ(ε0,1).

Lemma 5.6. This defines a smooth functor F : P1(X) → BG.

Proof. To see that F : P 1X → G is diffeological, we have to show that for every
plot c : U → P 1X the composite F ◦ c : U → G is a smooth map. Since we can check
smoothness locally, we may assume that c = pr ◦ c′ for a plot c′ : U → PX and the
projection pr : PX → P 1X. The relevant evaluation map c̃ : U × (0, 1) → X given by

U × (0, 1)
c′×id // PX × (0, 1)

ev // X

is a plot of X. Hence, we have a smooth functor Fc̃ : P1(U × (0, 1)) → BG. With the
map iu : (0, 1) → U × (0, 1) : t 7→ (u, t) we have a plot c̃ ◦ iu and accordingly Ac′(u) =
i∗uAc̃ for all u ∈ U . Then, by Proposition 2.7,

F (c(u)) = i∗uFc̃(ε0,1) = Fc̃((iu)∗ε0,1).

Since U → P 1(U × (0, 1)) : u 7→ (iu)∗ε1,2 is a diffeological map, and Fc̃ is diffeological,
we have shown that F ◦ c is smooth. The compatibility of F with the composition of
paths follows from

Fγ′◦γ(ε0,1) = Fγ′◦γ(ε1/2,1) · Fγ′◦γ(ε0,1/2) = Fγ′(ε0,1) · Fγ(ε0,1). (5.3)

For the last step of (5.3), we show the equality Fγ(ε0,1) = Fγ′◦γ(ε0,1/2); the one
for γ′ goes analogously. Indeed, consider the inclusion ι1 : [0, 1] → [0, 1] defined by
ι1(t) :=

1
2 t. Pulling back Aγ′◦γ along ι1 and using Proposition 2.7 we get Fγ = ι∗1Fγ′◦γ .

Evaluating this on the path ε0,1, and using that (ι1)∗(ε0,1) = ε0,1/2 in P
1((0, 1)) shows

the claim.

Now the following theorem follows from Theorem 2.6 applied to functors and forms
on the codomain U of each plot c : U → X of X.

Theorem 5.7. Let X be a diffeological space and G a Lie group. The functors

D : Funct∞(P1(X),BG) → Z1
X(G)∞

and

P : Z1
X(G)∞ → Funct∞(P1(X),BG)

satisfy

D ◦ P = idZ1
X(G)∞ and P ◦ D = idFunct(P1(X),BG),

and are hence isomorphisms of categories.

5.2. Induced Structure on the Loop Space
In this section we discuss the diffeological space LX = D∞(S1, X), where X is a

smooth manifold. In order to formalize the relation between functors defined on the
path groupoid P1(X) and structure on LX we are going to explore we introduce two
constructions.
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Firstly, we denote for any category T by ΛT := T1 set of morphisms in T . Accord-
ingly, for a functor F : S → T , we call its induced map on morphisms ΛF : ΛS → ΛT .
Clearly, if F was a diffeological functor, ΛF is a diffeological map. Secondly, we intro-
duce a diffeological map

` : LX → ΛP1(X). (5.4)

Its definition is not completely obvious since loops have no sitting instants. We
fix some smooth map β : [0, 1] → [0, 1] with β(0) = 0 and β(1) = 1 and with sit-
ting instants. We have a smooth map eβ : [0, 1] → S1 defined by eβ(t) := e2πiβ(t) and
accordingly a diffeological map

`β : LX → PX : τ 7→ τ ◦ eβ .

We define ` := pr ◦ `β , where pr : PX → P 1X is the projection to thin homotopy
classes. This map ` is diffeological and indeed independent of the choice of β: for
another choice β′ and some τ ∈ LX we find a thin homotopy `β(τ) ∼1 `β′(τ) for
example by

h : [0, 1]2 → X : (s, t) 7→ τ
(
e2πi(β(s)β

′(t)+(1−β(s))β(t))
)
; (5.5)

this map is diffeological, has sitting instants and is evidently thin, since it factors
through S1.

Now, having the two definitions Λ and ` at hand, for F : P1(X) → T a smooth
functor,

ΛF ◦ ` : LX → ΛT (5.6)

is a diffeological map on the loop space. A particular situation arises if the category
T = BG for a Lie group G. In this case ΛBG = G. We have now obtained a map

H1 :

{
Smooth functors
F : P1(X) → BG

}
→ D∞(LX,G). (5.7)

This map is of course well-known: as mentioned in Section 4.1, a smooth functor
F : P1(X) → BG corresponds to a (trivial) principal G-bundle P with connection ω
over X, in such a way that the parallel transport along a path γ in X is given by
multiplication with F (γ). For a loop τ ∈ LX, understood as a path `(τ), this means

H1(F )(τ) = F (`(τ)) = Holω(τ),

so that H1(F ) is nothing but the holonomy of the connection ω around γ.

In the following we explore which structure on the loop space LX is induced from a
smooth 2-functor F : P2(X) → BG. To start with, we generalize the two constructions
Λ and ` we have described before, to 2-categories.

Definition 5.8. Let T be a 2-category. We define a category ΛT as follows: the
objects are the 1-morphisms T1 of T , and the morphisms between two objects
f : Xf → Yf and g : Xg → Yg are triples (x, y, ϕ) ∈ T1 × T1 × T2 of 1-morphisms
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x : Xf → Xg and y : Yf → Yg and of a 2-morphism

Xf

f

��

x // Xg

g

��

ϕ}}
}}

}
}}

}}
}

z� }}
}}}}
}}

Yf y
// Yg

.

The composition in ΛT is putting these squares next to each other, and the identity
of an object f : X → Y is the triple (idX , idY , idf ).

Clearly, if the sets T1 and T2 of the 2-category T are diffeological spaces, the objects
and morphisms of ΛT form also diffeological spaces. For F : S → T a 2-functor, we
have an associated functor

ΛF : ΛS → ΛT ,

which just acts as F on 1-morphisms and 2-morphisms of S. If the 2-functor F is
diffeological, the functor ΛF is also diffeological. Next we generalize the diffeological
map ` introduced above to a diffeological functor

` : P1(LX) → ΛP2(X).

On objects, it is just the map ` from (5.4), regarding a loop τ ∈ LX as a particular
path in X, i.e., as an object in ΛP2(X). To define ` on morphisms, let γ be a path
in LX, i.e., a diffeological map γ : [0, 1] → D∞(S1, X) with sitting instants. We have
an associated smooth map mγ : R2 → X defined by mγ(s, t) := γ(t)(e2πis), where we
assume γ to be trivially extended to R in the usual way. Using the standard bigon
ΣR(s, t) ∈ B2R2 from (14), we have a bigon

m(γ) := mγ
∗(ΣR(1, 1)) ∈ B2X (5.8)

associated to the path γ, and thus a well-defined map m : PLX → B2X.

Lemma 5.9. The map m : PLX → B2X is diffeological.

Proof. We have to show that for any plot c : U → PLX the composite m ◦ c is a plot
of B2X. This means that, for a fixed representative Σ ∈ BX of ΣR(1, 1), and any
open subset W ⊂ [0, 1]2, the associated map

U ×W
c×id // PLX ×W

m∗Σ×id // BX ×W
ev // X (5.9)

is smooth. Let us define the open intervals V := p2(Σ(W )) and V ′ := p1(Σ(W )) for
pi : [0, 1]

2 → [0, 1] the canonical projections, and consider the chart ϕ : V ′ → S1 : s 7→
e2πis of S1. Going through all involved definitions shows that the map (5.9) coincides
with the composite

U ×W
id×Σ // U × V × V ′ c′ // X, (5.10)

where c′ is given by

U × V × V ′ c×id×id // D∞([0, 1], X)× V × V ′ ev×ϕ // LX × S1 ev // X.

Now, (5.10) is the composition of two smooth maps, where c′ is smooth because c
was supposed to be a plot of PLX ⊂ D∞([0, 1], X).
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We show next that the bigon m(γ) ∈ B2X does not depend on the thin homotopy
class of the path γ. For this purpose, let h : [0, 1] → LX be a thin homotopy between
two paths γ, γ′ ∈ PLX, and let Σ ∈ BX be a representative for the bigon ΣR(1, 1).
We have an associated map mh : [0, 1]3 → X defined by mh(r, s, t) := h(r, t)(e2πis).
Then, the map

H : [0, 1]3 → X : (r, s, t) 7→ mh(r,Σ(s, t))

is a thin homotopy betweenmγ
∗Σ and mγ′

∗ (Σ). Hence, we have obtained a diffeological
mapm : P 1LX → B2X. Going through the definitions, one finds that this bigonm(γ)
has (up to thin homotopy) the following target and source paths:

γ(0)(1)

`(γ(0))

��

pr(b◦γ) // γ(1)(1)

`(γ(1)),

��

m(γ)
rrrrrr
rrrrrr

t| rrrrr
rrrrr

γ(0)(1)
pr(b◦γ)

// γ(1)(1)

(5.11)

where b : LX → X is the base point evaluation. Hence, the triple

`(γ) := (pr(b ◦ γ),pr(b ◦ γ),m(γ))

is a morphism in ΛP2(X). The composition of paths in LX is respected in the sense
that `(γ2 ◦ γ1) = `(γ2) ◦ `(γ1), where the latter is the composition in ΛP2(X). Thus,
we have completely defined the diffeological functor

` : P1(LX) → ΛP2(X).

If now F : P2(X) → T is a smooth 2-functor, we obtain an associated smooth
functor

ΛF ◦ ` : P1(LX) → ΛT ,

generalizing the map (5.6). In the important case that T = BG for G a Lie 2-group,
the groupoid ΛBG is – following a notion of [Mac87] – trivializable: a groupoid is
called trivializable, if it is equivalent to a groupoid of the form GrS,N = S × BN for
a set S regarded as a category with only identity morphisms, and a group N ; these
groupoids are called trivial . Explicitly, the objects of GrS,N are the elements of S, the
Hom-set between two objects s1 and s2 isN if s1 = s2 and empty, and the composition
is multiplication in N . In our case we find such an equivalence tr : ΛBG → GrG,GnH

as follows: on objects, tr is just the identity on G. A morphism

∗

g1

��

x // ∗

g2

��

h
��

��
�

��
��

�

{� ��
����
��

∗
y

// ∗

in ΛBG is sent to the morphism (y, h−1) in GrG,GnH , the inverse being necessary in
order to respect the composition. The functor tr : ΛBG → GrG,GnH is an equivalence
of categories: the inverse functor sends a morphism (y, h) : g1 → g2 in GrG,GnH to
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the triple (g−1
2 t(h)yg1, y, h

−1). Now, we have constructed a smooth functor

tr ◦ ΛF ◦ ` : P1(LX) → GrG,GnH .

According to the direct product structure of the target Lie groupoid, this functor
splits in

1. a diffeological function hF : LX → G and

2. a smooth functor P1(LX) → B(GnH), which in turn corresponds by Theo-
rem 5.7 and projection to the factors to

(a) a 1-form AF ∈ Ω1(LX, g) and
(b) a 1-form ϕF ∈ Ω1(LX, h).

Summarizing, we have, for any smooth manifold X and any Lie 2-group G, a map

H2 :

{
Smooth 2-functors
F : P2(X) → BG

}
→ D∞(LX,G)× Ω1(LX, g)× Ω1(LX, h).

This map generalizes the map H1 from (5.7) from smooth functors to smooth 2-
functors. Let us describe the image H2(F ) = (hF , AF , ϕF ). The diffeological function
hF : LX → G is clearly hF = H1(F0,1) for the restriction F0,1 of F to objects and
1-morphisms. The differential forms AF and ϕF can be characterized as described in
the following proposition, also see Figure 2.

Proposition 5.10. Let F : P2(X) → BG be a smooth 2-functor, let A ∈ Ω1(X, g) and
B ∈ Ω2(X, h) the corresponding differential forms on X, and let AF and BF the
differential forms on the loop space determined by H2(F ). Then

AF = b∗A and BF =

∫
S1

(αF◦γ)∗(ev
∗B),

where b : LX → X is the projection to the base point, ev : LX × S1 → X is the evalua-
tion map, γ : LX × S1 → P 1X assigns to a loop τ ∈ LX and z ∈ S1 the path obtained
by parsing the loop τ from z to 1 counterclockwise, and αF◦γ : H → H is the action
of the crossed module G along the map F ◦ γ : LX × S1 → G.

Proof. Let c : U → LX be a plot of LXand let Γ: R → U be a smooth curve. Using
all involved definitions we obtain

(AF )c|Γ(0)
(
∂Γ

∂t

∣∣∣∣
0

)
= − d

dt

∣∣∣∣
0

(pG ◦ c∗(tr ◦ ΛF ◦ `) ◦ Γ∗ ◦ γR)(0, t)

(b∗A)c|Γ(0)
(
∂Γ

∂t

∣∣∣∣
0

)
= − d

dt

∣∣∣∣
0

((b ◦ c)∗F ◦ Γ∗ ◦ γR)(0, t).

Then one observes that

F ◦ b∗ = pG ◦ tr ◦ ΛF ◦ `

as maps from P 1LX to G; this shows the first equality.

In order to prove the second equality we still use the plot c and the smooth curve
Γ, and consider the path γt := c∗(Γ∗(γR(0, t))) ∈ P 1LX, where γR(s, t) ∈ P 1R is the
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standard path from s to t. We have

(ϕF )c|Γ(0)
(
∂Γ

∂t

∣∣∣∣
0

)
= − d

dt

∣∣∣∣
0

(pH ◦ c∗(tr ◦ ΛF ◦ `) ◦ Γ∗ ◦ γR)(0, t)

= − d

dt

∣∣∣∣
0

pH(F (m(γt)))
−1 =

d

dt

∣∣∣∣
0

pH(F (mγt
∗ ΣR(1, 1))),

where we have used the definitions of the functor ` and the map m from (5.8). Let
us remark that for the bigon ΣΓ(s, t) := mγ1

∗ ΣR(s, t) we have ΣΓ(1, t) = mγt
∗ ΣR(1, 1),

so that we may write

d

dt

∣∣∣∣
0

pH(F (mγt
∗ ΣR(1, 1))) =

∫ 1

0

dθ
∂2

∂ρ∂t

∣∣∣∣
0

pH(F (ΣΓ
1−θ−ρ(θ + ρ, t))). (5.12)

A by now standard calculation shows that

pH(F (ΣΓ
1−θ−ρ(θ + ρ, t)))

= pH(F (ΣΓ
1−θ(θ, t))) · α(F (γ(c(Γ(t)), e−2πiθ)), F (ΣΓ

1−θ−ρ(ρ, t))),

where we have used the map γ : LX × S1 → P 1X. Now the derivative in (5.12)
becomes

∂2

∂ρ∂t

∣∣∣∣
0

pH(F (ΣΓ
1−θ−ρ(θ + ρ, t))) = −(αF (γ(c(Γ(t)),e−2πiθ))∗

(
∂2

∂ρ∂t

∣∣∣∣
0

F (ΣΓ
1−θ(ρ, t))

)
.

Let us now induce from the plot c : U → LX of LX a plot of LX × S1, namely the
map

c̃ : U × (0, 1) → LX × S1 : (u, θ) 7→ (c(u), e2πiθ).

We have mγ1(1− θ, 0) = (ev ◦ c̃)(Γ(0),−θ) ∈ X and the tangent vectors

d

dt

∣∣∣∣
0

mγ1(1− θ, t) = d(ev ◦ c̃)|(Γ(0),−θ)

(
∂Γ

∂t

∣∣∣∣
0

)
d

dρ

∣∣∣∣
1−θ

mγ1(ρ, 0) = d(ev ◦ c̃)|(Γ(0),−θ)

(
∂

∂θ

)
.

By Proposition 3.14 we hence have

∂2

∂ρ∂t

∣∣∣∣
0

F (ΣΓ
1−θ(ρ, t)) = −(ev∗B)c̃|(Γ(0),−θ)

(
∂

∂θ
,
∂Γ

∂t

∣∣∣∣
0

)
.

Putting all pieces together and transforming θ 7→ −θ, we have shown

(ϕF )c|Γ(0)
(
∂Γ

∂t

∣∣∣∣
0

)
=

∫ 0

−1

dθ (α(F◦γ)(c̃(Γ(0),θ)))∗(ev
∗B)c̃|(Γ(0),θ)

(
∂

∂θ
,
∂Γ

∂t

∣∣∣∣
0

)
this is the announced fibre integral written in the plot c̃ of LX × S1.

To conclude, let us discuss the case G = BU(1). A smooth 2-functor F : P2(X) →
BBU(1) induces a smooth functor

tr ◦ ΛF ◦ ` : P1(LX) → BU(1), (5.13)

since ΛBBU(1) = BU(1); the functor tr : BU(1) → BU(1) just inverts group elements.
The image of F under H2 is hence just a 1-form ϕF ∈ Ω1(X), and this 1-form is by
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F_

Theorem 3.21

��

� // tr ◦ ΛF ◦ `_

Theorem 5.7

��
(A,B) �

b∗×
∫
S1 (αF◦γ)∗◦ev∗

// (AF , ϕF )

Figure 2: A diagram for manipulations on a smooth 2-functor F : P2(X) → BG, whose
commutativity is Proposition 5.10. The first row consists of functors, and the second
row of differential forms. The first column contains structure on X, and the second
one structure on LX.

Proposition 5.10 just the ordinary fibre integral

ϕF =

∫
S1

ev∗B. (5.14)

Let us now interpret the 2-functor F as a trivial abelian gerbe G with connection
over X (see Example 4.2 in Section 4.1), and the associated functor (5.13) as a trivial
principal U(1)-bundle L with connection ϕF over the loop space LX, see Theorem 4.1.
Equation (5.14) shows that the line bundle L is the line bundle over the loop space
obtained by transgression from the gerbe G. Transgression of abelian gerbes as so far
been realized in many ways, for example in [Gaw88, Bry93, GT01, SWB], and
we have seen here that

F 7→ tr ◦ ΛF ◦ `

is just another way to realize transgression. It has one important advantage compared
to all the above previous realizations: it works also for non-abelian gerbes. A further
discussion is postponed to the upcoming article [SWA].

Appendix A. Basic 2-Category Theory

In this article we only consider strict 2-categories, 2-functors, inverse 1-morphisms
etc., in contrast to the general case. We only use the qualifier “strict” in this section
and omit it elsewhere. A general reference is [Pow90].

Definition A.1. A (small) 2-category consists of a set of objects, for each pair (X,Y )
of objects a set of 1-morphisms denoted f : X → Y and for each pair (f, g) of 1-
morphisms f, g : X → Y a set of 2-morphisms denoted ϕ : f ⇒ g, together with the
following structure:

1. For every pair (f, g) of 1-morphisms f : X → Y and g : Y → Z, we have a 1-
morphism g ◦ f : X → Y , called the composition of f and g.

2. For every object X, we have a 1-morphism idX : X → X, called the identity
1-morphism of X.

3. For every pair (ϕ,ψ) of 2-morphisms ϕ : f ⇒ g and ψ : g ⇒ h, we have a 2-
morphism ψ • ϕ : f ⇒ h, called the vertical composition of ϕ and ψ.
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4. For every 1-morphism f , we have a 2-morphism idf : f ⇒ f , called the identity
2-morphism of f .

5. For every triple (X,Y, Z) of objects, 1-morphisms f, f ′ : X → Y and g, g′ : Y →
Z, and every pair (ϕ,ψ) of 2-morphisms ϕ : f ⇒ f ′ and ψ : g ⇒ g′, we have a
2-morphism ψ ◦ ϕ : g ◦ f ⇒ g′ ◦ f ′, called the horizontal composition of ϕ and
ψ.

This structure has to satisfy the following list of axioms:

(C1) The composition of 1-morphisms and vertical and horizontal composition of
2-morphisms are associative.

(C2) The identity 1-morphisms are units with respect to the composition of 1-morph-
isms, and identity 2-morphisms are units with respect to vertical composition,
i.e.,

ϕ • idf = idg • ϕ

for every 2-morphism ϕ : f ⇒ g. Horizontal composition preserves the identity
2-morphisms in the sense that

idg ◦ idf = idg◦f .

(C3) Horizontal and vertical compositions are compatible in the sense that

(ψ1 • ψ2) ◦ (ϕ1 • ϕ2) = (ψ1 ◦ ϕ1) • (ψ2 ◦ ϕ2)

whenever these compositions are well-defined.

The axioms of a strict 2-category allow us to use pasting diagrams for 2-morphisms:
every pasting diagram corresponds to a unique 2-morphism. In a 2-category, a 2-
morphism Σ: γ1 ⇒ γ2 is called invertible or 2-isomorphism if there exists another
2-morphism Σ−1 : γ2 ⇒ γ1 such that Σ−1 • Σ = idγ1 and Σ • Σ−1 = idγ2 . In this case,
Σ−1 is uniquely determined and called the inverse of Σ. A 1-morphism γ : x→ y is
called strictly invertible or strict 1-isomorphism, if there exists another 1-morphism
γ̄ : y → x such that idx = γ̄ ◦ γ and γ ◦ γ̄ = idy. A 2-category in which every 1-
morphism is strictly invertible is called a strict 2-groupoid .

To relate two 2-categories, we use the following definition of a 2-functor, which is
analogous to a functor between categories.

Definition A.2. Let S and T be two strict 2-categories. A strict 2-functor F : S → T
is an assignment

F : X

f

��

g

BB
ϕ

��

Y 7−→ F (X)

F (f)

""

F (g)

<<
F (ϕ)

��

F (Y )

such that

(F1) The vertical composition is respected in the sense that

F (ψ • ϕ) = F (ψ) • F (ϕ) and F (idf ) = idF (f)

for all composable 2-morphisms ϕ and ψ, and any 1-morphism f .
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(F2) The composition of 1-morphisms is respected in the sense that

F (g) ◦ F (f) = F (g ◦ h)

for all composable 1-morphisms f and g, and the horizontal composition of
2-morphisms is respected in the sense that

F (ψ) ◦ F (ϕ) = F (ψ ◦ ϕ)

for all horizontally composable 2-morphisms ϕ and ψ.

To compare 2-functors, we use the notion of a pseudonatural transformation, which
generalizes a natural transformation between functors.

Definition A.3. Let F1 and F2 be two strict 2-functors both from S to T . A pseudo-
natural transformation ρ : F1 → F2 is an assignment

ρ : X
f // Y 7−→

F1(X)
F1(f) //

ρ(X)

��

F1(Y )

ρ(Y ),

��

ρ(f)
ww

ww
w

ww
ww

w

w� www
ww

www
ww

F2(X)
F2(f)

// F2(Y )

of a 2-isomorphism ρ(f) in T to each 1-morphism f : X → Y in S such that two
axioms are satisfied:

(T1) The composition of 1-morphisms in S is respected:

F1(X)
F1(f) //

ρ(X)

��

F1(Y )
F1(g) //

ρ(Y )

��

ρ(f)
ww

ww
w

ww
ww

w

w� www
ww

www
ww

F1(Z)

ρ(g)
ww

ww
w

ww
ww

w

w� www
wwwww
ww

ρ(Z)

��
F2(X)

F2(f)
// F2(Y )

F2(g)
// F2(Z)

=

F1(X)
F1(g◦f) //

ρ(X)

��

F1(Z)

ρ(Z).

��

ρ(g◦f)w
ww

ww
ww

ww
w

w� www
ww

www
ww

F2(X)
F2(g◦f)

// F2(Z)

(T2) It is compatible with 2-morphisms:

F1(X)
F1(f) //

ρ(X)

��

F1(Y )

ρ(Y )

��

ρ(f)
ww

ww
w

ww
ww

w

w� www
ww

www
ww

F2(X)

F2(g)

GG
F2(f) // F2(Y )

F2(ϕ)

��

=
F1(x)

F1(f)

��

F1(g)
//

F1(ϕ)

��

ρ(X)

��

F1(Y )

ρ(Y ).

��

ρ(g)
ww

ww
w

ww
ww

w

w� www
ww

www
ww

F2(X)
F2(g)

// F2(Y )

It follows that ρ(idX) = idρ(X) for every object X in S. Pseudonatural transforma-
tions ρ1 : F1 → F2 and ρ2 : F2 → F3 can naturally be composed to a pseudonatural
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transformation ρ2 ◦ ρ1 : F1 → F3:

ρ2 ◦ ρ1 : X
f // Y 7−→

F1(X)
F1(f) //

ρ1(X)

��

F1(Y )

ρ1(Y )

��

ρ1(f)
vv

vv
v

vv
vv

v

w� vvv
vv

vvv
vv

F2(X)

ρ2(X)

��

F2(f) // F2(Y ).

ρ2(Y )

��

ρ2(f)
vv

vv
v

vv
vv

v

w� vvv
vv

vvv
vv

F3(X)
F3(f)

// F3(Y )

(A.1)

We need one more definition for situations where we have two pseudonatural trans-
formations.

Definition A.4. Let F1, F2 : S → T be two strict 2-functors and let ρ1, ρ2 : F1 → F2

be pseudonatural transformations. A modification A : ρ1 ⇒ ρ2 is an assignment

A : X 7−→ F1(X)

ρ1(X)

""

ρ2(X)

<<
A(X)

��

F2(Y )

of a 2-morphism A(X) in T to any object X in S which satisfies

F1(X)

ρ2(X)

))

F1(f) //

ρ1(X)

��

ks A(X)

F1(Y )

ρ1(y)

��

ρ1(f)
ww

ww
w

ww
ww

w

w� www
ww

www
ww

F2(X)
F2(f)

// F2(Y )

=

F1(X)
F1(f) //

ρ2(X)

��

F1(Y )

ρ1(X).

uu

ρ2(y)

��

A(Y )ksρ2(f)
ww

ww
w

ww
ww

w

w� www
ww

www
ww

F2(X)
F2(f)

// F2(Y )

Horizontal and vertical compositions of 2-morphisms in T induce accordant com-
positions on modifications.

For two fixed strict 2-categories S and T , we recognize the following structures:

1. For two strict 2-functors F1, F2 : S → T , the pseudonatural transformations
ρ : F1 → F2 together with modifications and their vertical composition, form
a category Hom(F1, F2).

2. Even more, strict 2-functors from S to T , together with pseudonatural transfor-
mations and their modifications, and the assignments ◦ and • as defined above,
form a strict 2-category Funct(S, T ).

Definition A.5. Let S and T be strict 2-categories. Strict 2-functors F : S → T and
G : T → S are called isomorphisms of 2-categories, if G ◦ F = idS and F ◦G = idT .
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Appendix B. Lie 2-Groups and Smooth Crossed Modules

Any strict monoidal category (G,�, 1) defines a 2-category BG: it has a single
object, the 1-morphisms are the objects of G and the 2-morphisms are the morphisms
of G. The horizontal composition is given by the tensor functor �, and the vertical
composition is the composition in G. The identity 1-morphism of the single object is
the tensor unit 1, and the identity 2-morphism of a 1-morphism X is just the identity
morphism idX of the object X in G. The axioms for the 2-category BG follow from
the properties of the tensor functor �.

In the following, we enhance this construction by two features. First, we assume
that G is a groupoid and that we have an additional functor i : G → G which is an
inverse to the tensor functor � in the sense that

X � i(X) = 1 = i(X)�X and f � i(f) = id1 = i(f)� f (B.1)

for all objects X and all morphisms f in G. In this case the 2-category BG is even
a 2-groupoid. Secondly, we assume that G is a Lie category, and that the functors �
and i are smooth. Then, BG is a Lie 2-groupoid.

Definition B.1. A Lie 2-group is a strict monoidal Lie category (G,�, 1) together
with a smooth functor i : G → G such that (B.1) is satisfied.

We denote the Lie 2-groupoid associated to a Lie 2-group G by BG. An important
source of Lie 2-groups are smooth crossed modules.

Definition B.2. A smooth crossed module is a collection (G,H, t, α) of Lie groups G
and H, and of a Lie group homomorphism t : H → G and a smooth map α : G×H →
H, such that

1. α is a left action of G on H by Lie group homomorphisms, i.e., the smooth map
αg : H → H defined by αg(h) := α(g, h)

a) is a Lie group homomorphism for all g ∈ G.
b) satisfies α1 = idH and αgg′ = αg ◦ αg′ for all g, g′ ∈ G.

2. α and t are compatible in the following two ways:

a) t(α(g, h)) = gt(h)g−1 for all g ∈ G and h ∈ H.
b) α(t(h), x) = hxh−1 for all h, x ∈ H.

Any smooth crossed module (G,H, t, α) defines a Lie 2-group (G,�, 1, i) in the
following way.

The category G: We define Obj(G) := G and Mor(G) := GnH, the semi-direct
product of G and H defined by α, explicitly

(g2, h2) · (g1, h1) := (g2g1, h2α(g2, h1)). (B.2)

An element (g, h) ∈ Mor(G) is considered as a morphism from g to t(h)g. The
composition is given by

(g′, h′) ◦ (g, h) := (g, h′h), (B.3)

where g′ = t(h)g. It is obviously associative, and the identity morphisms are
idg = (g, 1). All these definitions are smooth, so that G is a Lie category.



196 URS SCHREIBER and KONRAD WALDORF

The monoidal structure (�, 1): The functor � : G×G → G is defined on objects
by g2 � g1 := g2g1 and on morphisms by the product (B.2). By axiom 2a), the
morphisms have the correct target. It respects identity morphisms,

(g2, 1)� (g1, 1) = (g2g1, 1)

and by axiom 2b) the composition

((g′2, h
′
2)� (g′1, h

′
1)) ◦ ((g2, h2)� (g1, h1))

= ((g′2, h
′
2) ◦ (g2, h2))� ((g′1, h

′
1) ◦ (g1, h1)).

It is also strictly associative and the object 1 := 1 ∈ G is a left and right unit.

The functor i: The functor i : G → G is defined on objects by i(g) := g−1 and on
morphisms by i(g, h) := (g−1, α(g−1, h−1)). It respects sources and targets by
axiom 2a), the identities and by axioms 1a) and 2b) the composition. It is also
smooth and satisfies the condition (B.1).

Now we have completely defined the Lie 2-group associated to a smooth crossed
module. Indeed, it is a well-known fact [BS76], also see [BL04] for a review, that
every Lie 2-group arises – up to a certain notion of equivalence – from a smooth
crossed module in this way.

Let us also write down the Lie 2-groupoid BG associated to the Lie 2-group G
coming from a smooth crossed module (G,H, t, α). A 2-morphism is a morphism
(g, h) ∈ Mor(G), denoted as

∗

g

��

g′

CCh

��

∗

with

g′ = t(h)g. (B.4)

The ladder equation is also called the target-matching-condition for the 2-morphism
(g, h). The vertical composition is according to (B.3)

∗ g′ //

g

��

g′′

EE

h

��

h′

��

∗ = ∗

g

��

g′′

CCh′h

��

∗ (B.5)
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with g′ = t(h)g and g′′ = t(h′)g′ = t(h′h)g, and the horizontal composition is accord-
ing to (B.2)

∗

g1

��

g′
1

CCh1

��

∗

g2

��

g′
2

CCh2

��

∗ = ∗

g2g1

��

g′
2g

′
1

AAh2α(g2,h1)

��

∗. (B.6)

The construction of Lie 2-groups from smooth crossed modules is convenient to
discuss basic examples.

Example B.3. Let A be an abelian Lie group. We define a smooth crossed module by
taking G = {1} the trivial group and H := A. This fixes the maps to t(a) := 1 and
α(1, a) := a. All axioms are satisfied in a trivial manner except axiom 2b), which is
satisfied only because A is abelian. The associated Lie 2-group G is denoted by BA,
and the associated Lie 2-groupoid by BBA.

Example B.4. Let G be any Lie group. We obtain a smooth crossed module by taking
H := G, t = id and α(g, h) := ghg−1. The associated Lie 2-group, which also underlies
the construction of a geometric realization of EG [Seg68] is here denoted by EG. It
can be interpreted as the inner automorphism 2-group of G [RS08], and its Lie
algebra plays an important role in [SSS09].

Let us briefly exhibit the details of the associated Lie 2-groupoid EBG. It has one
object, and the set of 1-morphisms is G with the usual composition g2 ◦ g1 := g2g1.
Between every pair (g, g′) of 1-morphisms there is a unique 2-morphism

∗

g

��

g′

CCh

��

∗

determined by h := g′g−1.

Example B.5. Let H be a connected Lie group. The group of Lie group automor-
phisms of H is again a Lie group G := Aut(H) [OV91]. Together with t(h)(x) :=
hxh−1 and α(ϕ, h) := ϕ(h), we have defined a smooth crossed module whose associ-
ated Lie 2-group G is denoted by AUT(H).

Appendix C. Proof of Lemma 3.16

In this section we show that the map

kA,B : BX → H

defined for the construction of a smooth 2-functor from two differential forms A ∈
Ω1(x, g) and B ∈ Ω2(X, h), only depends on the thin homotopy class of a bigon Σ ∈
BX.
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We first start with a general homotopy h : [0, 1]× [0, 1]2 → X between two bigons
Σ1 and Σ2, i.e., h has the properties from Definition 3.2 except condition 2a) which
constrains the rank of its differential. We shall represent the surface of the unit cube
[0, 1]3 on which h is defined as a bigon in R3. For this purpose, we define two paths
µ(r, s, t) and ν(r, s, t) in R3 going from 0 ∈ R3 to (r, s, t). With the notation introduced
in Figure 3 these paths are

(0, 0, 0)

γhl
γlo

����
��

��
��

��
�

(0, s, 0)

Σl  (I
I

I

I
I

I

γov

//

γlv

��

���
�
� (0, s, t)

Σv

t|

γrv

��

(r, 0, 0)

γul

���
�

�
�

�
�

___ γhu

// (r, 0, t)

γru

����
��

��
��

��
�

Σu

9A

(r, s, 0)

hhhhhhhh

hhhhhhhh
γuv

// (r, s, t)

(0, 0, 0)

�
�
�
�

γho

//

γlo

����
��

��
��

(0, 0, t)

Σo iiiiiiiii
iiiiiiiii

px iiiiiiiii
iiiiiiiii

γor

����
��

��
��

γhr

��

(0, s, 0) γov //

γhl

��

5=ttttttt

ttttttt (0, s, t)

γrv

��

(r, 0, 0)

Σh

γhu

//___ (r, 0, t)

Σr===
===

Zb====
====

γru

����
��

��
��

(r, s, t)

Figure 3: The unit cube viewed as two bigons: Λ1 : µ => ν on the right hand side,
and Λ2 : ν → µ on the left hand side.

µ(r, s, t) := γru ◦ γhu ◦ γhl and ν(r, s, t) := γvr ◦ γov ◦ γlo.

Between these paths we have the two bigons Λ1(r, s, t) : µ(r, s, t) ⇒ ν(r, s, t) and
Λ2(r, s, t) : ν(r, s, t) ⇒ µ(r, s, t) defined by

Λ1 := (idγrv ∗ Σo) • (Σr ∗ idγho) • (idγru ∗ Σh) (C.1)

and

Λ2 := (Σu ∗ idγhl) • (idγuv ∗ Σl) • (Σv ∗ idγlo). (C.2)

The vertical composition Λ(r, s, t) := Λ2(r, s, t) • Λ1(r, s, t) is then a bigon whose
image is the surface of the cube. Notice that the two bigons Σ1 and Σ2 we started
with can be found on the top and on the bottom of the unit cube, i.e., Σ1 = h∗Σ

o

and Σ2 = h∗(Σ
u)−1.

We evaluate the map kA,B on the bigon h∗(Λ(r, s, t)), defining a smooth function
u : [0, 1]3 → H. Since kA,B is by Lemma 3.15 compatible with the vertical composition
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and the auxiliary horizontal composition ∗ we get from (C.1) and (C.2)

u(r, s, t) = kA,B(h∗Σ
u) · α(FA(h∗γ

uv), kA,B(h∗Σ
l))

·kA,B(h∗Σ
v) · α(FA(h∗γ

rv), kA,B(h∗Σ
o))

·kA,B(h∗Σ
r) · α(FA(h∗γ

ru), kA,B(h∗Σ
h)). (C.3)

On the right hand side we have omitted the arguments (r, s, t) for simplicity. In the
following we use a bigon Λr0(r, s, t) that is shifted by r0 along the r-axis with respect
to the bigon Λ(r, s, t) from Figure 3, to which it reduces for r0 = 0. Accordingly, we
have a smooth function ur0 : [0, 1]

3 → H additionally depending on the shift r0. In
the same way, we have a smooth function ur0,s0,t0 : [0, 1]

3 → H associated to a bigon
Λr0,s0,t0 that is additionally shifted by s0 and t0 along the s-axis and the t-axis,
respectively.

Lemma C.1. The smooth function ur0 : [0, 1]
3 → H has the following properties:

(a) u0(1, 1, 1) = kA,B(Σ2)
−1 · kA,B(Σ1).

(b) ur0(r, 1, 1) = ur0+r′(r − r′, 1, 1) · ur0(r′, 1, 1).
(c) ur0(r, s+ σ, 1) = H1(r0, r, s) · ur0,s,0(r, σ, 1) ·H2(r0, r, s).

(d)
1

3

∂2

∂r∂σ

∣∣∣∣
0

∂

∂t
ur0,s,0(r, σ, t) = (h∗K)(r0,s,t)

(
∂

∂r
,
∂

∂s
,
∂

∂t

)
.

In (c), H1 and H2 are certain H-valued smooth functions that do not depend on σ.
In (d), the 3-form K ∈ Ω3(X, h) is given by K := dB + α∗(A ∧B).

Proof. Condition 1 of Definition 3.2 for the homotopy h implies the vanishing of the
group elements kA,B(h∗Σ

r), kA,B(h∗Σ
l) and FA(h∗γ

rv), FA(h∗γ
ru) in the product

(C.3), so that

kA,B(h∗Λ(1, 1, 1)) = kA,B(Σ2)
−1 · kA,B(h∗Σ

v) · kA,B(Σ1) · kA,B(h∗Σ
h). (C.4)

By condition 2b), the bigons h∗Σ
v : γ′1 ⇒ γ′2 and h∗Σ

h : γ1 ⇒ γ2 are thin homotopies
between paths, i.e., the rank of their differentials is less or equal to 1. Accordingly,
Ah∗Σv = Ah∗Σh = 0 and hence kA,B(h∗Σ

v) = kA,B(h∗Σ
h) = 1. Now, assertion (a) fol-

lows from (C.4). The same vanishing arguments show that

ux(y, 1, 1) = kA,B(h∗Σ
u
x+y(1, 1)) · kA,B(h∗Σ

o
x(1, 1)). (C.5)

Using formula (C.5) by setting (x, y) to (r0, r), (r0 + r′, r − r′) and (r0, r
′), respec-

tively, shows assertion (b). Still the same arguments show that

ur0,0,0(r, s+ σ, 1) = kA,Bh∗Σ
u
r0+r,0,0(s, 1) · ur0,s,0(r, σ, 1)

· kA,Bh∗Σ
v
r0,s,0(r, 1) · kA,Bh∗Σ

o
r0,0,0(s, 1),

which is assertion (c) identifying

H1(r0, r, s) = kA,Bh∗Σ
u
r0+r,0,0(s, 1)

H2(r0, r, s) = kA,Bh∗Σ
v
r0,s,0(r, 1) · kA,Bh∗Σ

o
r0,0,0(s, 1).

For (d), we write down formula (C.3) for ur0,s,0(r, σ, t+ τ) and decompose bigons of
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length t+ τ into two bigons of length t and τ , respectively. This gives

ur0,s,0(r, σ, t+ τ)

= kA,Bh∗Σ
u
r0+r,s,t(σ, τ) · α(kA,Bh∗γ

uv
r0+r,s0+σ,t(τ), kA,Bh∗Σ

u
r0+r,s,0(σ, t))

·α(kA,Bh∗γ
uv
r0+r,s+σ,t(τ), kA,Bh∗Σ

v
r0,s+σ,0(r, t)) · kA,Bh∗Σ

v
r0,s+σ,t(r, τ)

·α
(
kA,Bh∗γ

rv
r0,s+σ,t+τ (r), α(kA,Bh∗γ

or
r0,s+σ,t(τ), kA,Bh∗Σ

o
r0,s,0(σ, t))

·kA,Bh∗Σ
o
r0,s,t(σ, τ)

)
·kA,Bh∗Σ

l
r0,s,t+τ (r, σ) · α(kA,Bh∗γ

ru
r0+r,s,t+τ (σ), kA,Bh∗Σ

h
r0,s,t(r, τ)

·α(kA,Bh∗γ
hu
r0+r,s,t(τ), kA,Bh∗Σ

h
r0,s,0(r, t))).

Now we take the derivative of this expression by the three variables r, σ and τ ,
evaluate at zero and use Proposition 3.14 in order to identify second derivatives of
kA,B with the 2-form B. This gives

∂3

∂r∂σ∂τ

∣∣∣∣
0

ur0,s,0(r, σ, t+ τ)

= 3dBh(r0,s,t)(vr, vs, vt) + α∗(Ar0,s,t(vr), Br0,s,t(vs, vt))

+α∗(Ar0,s,t(vs), Br0,s,t(vt, vr)) + α∗(Ar0,s,t(vt), Br0,s,t(vr, vs)).

Using the antisymmetry of B, this shows (d).

Remark C.2. The 3-form K = dB + α∗(B ∧A) that drops out in (d) has to be inter-
preted as the curvature of the connection (A,B) on a trivial, (non-abelian) gerbe, see
Section 4.1.

Now, if the homotopy h is thin, i.e., satisfies condition 2a) of Definition 3.2, we
have by (d)

∂2

∂r∂σ

∣∣∣∣
0

ur0,s,0(r, σ, 1) =

∫ 1

0

dt
∂2

∂r∂σ

∣∣∣∣
0

∂

∂t
ur0,s,0(r, σ, t) = 0.

Performing this trick once more, we obtain

∂

∂r

∣∣∣∣
0

ur0(r, 1, 1) =

∫ 1

0

ds
∂

∂r

∣∣∣∣
0

∂

∂s
ur0(r, s, 1)

(c)
=

∫ 1

0

dsH1(r0, r, s) ·
{

∂2

∂r∂σ

∣∣∣∣
0

ur0,s,0(r, σ, 1)

}
·H2(r0, r, s)

= 0

The multiplicative property (b) transfers this result to all values of r,

∂

∂r

∣∣∣∣
r0

u0(r, 1, 1) =
∂

∂r

∣∣∣∣
0

ur0(r, 1, 1) · u0(r0, 1, 1) = 0.

This means that the function u0(r, 1, 1) is constant, and thus determined by its value
at r = 0,

1 = u0(0, 1, 1) = u0(1, 1, 1)
(a)
= kA,B(Σ2)

−1 · kA,B(Σ1).

This shows that kA,B takes the same values on thin homotopic bigons Σ1 and Σ2.
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Appendix D. Table of Notations

AUT(H) the automorphism 2-group of a Lie group H. Page 197

BG the Lie groupoid with one object associated to a Lie group
G.

Page 150

BG the Lie 2-groupoid with one object associated to a Lie
2-group G.

Page 156

BX the diffeological space of bigons in X. Page 153

B2X the diffeological space of thin homotopy classes of bigons
in X.

Page 154

D the 2-functor that extracts differential forms from smooth
2-functors.

Page 166

D∞ the category of diffeological spaces. Page 149

EG the inner automorphism 2-group associated to a Lie group
G.

Page 197

Funct∞ the category of smooth functors between Lie categories. Page 150

LX the loop space D∞(S1, X) of a diffeological space X. Page 185

Λ the functor that makes a category out of a 2-category. Page 186

` the functor that regards a path in the loop space of X as
a bigon in X.

Page 187

PX the diffeological space of smooth paths (with sitting
instants) in X.

Page 147

P 1X the diffeological space of thin homotopy classes of paths
in X.

Page 147

P1(X) the path groupoid of X. Page 148

P2(X) the path 2-groupoid of X. Page 155

P the 2-functor that integrates differential forms to smooth
2-functors.

Page 166

Z1
X(G)∞ the category of G-connections on X. Page 150

Z2
X(G)∞ the 2-category of G-connections on X. Page 165
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