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Abstract
Lada introduced strong homotopy algebras to describe the

structures on a deformation retract of an algebra in topological
spaces. However, there is no satisfactory general definition of a
morphism of strong homotopy (s.h.) algebras. Given a monad >
on a simplicial category C, we instead show how s.h. >-algebras
over C naturally form a Segal space. Given a distributive monad-
comonad pair (>,⊥), the same is true for s.h. (>,⊥)-bialgebras
over C; in particular this yields the homotopy theory of s.h.
sheaves of s.h. rings. There are similar statements for quasi-
monads and quasi-comonads. We also show how the structures
arising are related to derived connections on bundles.

Introduction

Given a monad > acting on the category of topological spaces, Lada introduced
(in [CLM]) the notion of a strong homotopy (s.h.) >-algebra. This characterises the
structures arising on deformation retracts of >-algebras. Indeed, when > is an operad,
there is a bar construction which realises every s.h. >-algebra as such a deformation
retract. The formulation of s.h. algebras does not use any special properties of topo-
logical spaces, so it adapts to any simplicial category and likewise adapts to describe
s.h. coalgebras of a comonad ⊥.

Structures such as Hopf algebras or sheaves of rings cannot be described as algebras
of a monad > or as coalgebras of a comonad ⊥. However, in both cases, there are both
a natural monad > (governing the algebraic structure) and a comonad ⊥ (governing
the coalgebraic structure), satisfying a distributivity condition. This seems to have
first been described by Van Osdol in [VO] in order to develop bicohomology theory.
Independent rediscoveries have appeared in [BJ], [PW, Appendix C] and [Pri2, §2].
This permits the characterisation of a compatibility condition for the algebraic and
coalgebraic structures.

In [Pri5], it was observed that the equations defining a s.h. >-algebra can also
be used to define s.h. (>,⊥)-bialgebras associated to a distributive monad-comonad
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pair (>,⊥). In particular, this gives rise to a notion of s.h. sheaves of s.h. algebras
(on any site with enough points), yielding important applications in algebro-geometric
deformation theory.

The first main result in this paper is Proposition 2.9, which provides a single unified
framework for dealing with algebras, coalgebras and bialgebras. This then combines
with Proposition 5.7 and Corollaries 5.19 and 5.25 to give three possible models for
the ∞-category of s.h. algebras, coalgebras and bialgebras. These models are shown
to be equivalent in Propositions 5.15 and 5.24. Finally, Theorem 6.23 shows how this
∞-category is related to the Maurer-Cartan functor featuring in [Man2] and [Hin].

These results have applications in derived deformation theory, which starts with a
moduli functor from algebras to groupoids and seeks a derived moduli functor from
simplicial algebras to ∞-groupoids. By describing deformation problems in terms of
bialgebraic structures, [Pri5] and [Pri4] apply the results of this paper to construct
derived deformation functors, and these are being extended to (global) derived moduli
functors in [Pri6]. Even where there are other possible approaches to defining derived
moduli functors, strong homotopy bialgebras often provide a more concrete descrip-
tion, and have the crucial property that the functor is left exact, making it easier
to verify Lurie’s representability theorem ([Lur]). For some examples, such as Hopf
algebras, strong homotopy bialgebras provide the only known means of constructing
derived deformations.

A major failing of the theory of s.h. algebras is that there is no satisfactory gen-
eral definition of morphisms. In [CLM], this difficulty was obviated by considering
morphisms of the associated bar constructions, but this has several disadvantages.
For applications in deformation theory, the main problem is that the bar construction
does not respect finite limits, in general. For bialgebras, the difficulty is even more
fundamental, since the bar and cobar constructions will, in general, be incompatible,
so the s.h. structures cannot be rectified. This is essentially the phenomenon that a
lax sheaf of lax simplicial rings cannot be replaced by a strict sheaf of strict simplicial
rings.

Rather than seeking to define a simplicial category of s.h. algebras or bialgebras
explicitly, we instead construct Segal spaces. This is a special type of simplicial space
(i.e., bisimplicial set) introduced by Rezk in [Rez] as a model for homotopy theo-
ries, and Bergner showed, in [Ber2], that the associated model category is Quillen-
equivalent to the model category of simplicial categories, so any Segal space naturally
gives rise to a simplicial category.

Our approach makes use of a generalisation of the theory of homotopy monoids
expounded by Leinster in [Lei2]. We introduce a slight generalisation, the quasi-
comonoid, of a homotopy comonoid and associate a simplicial set MC(E), the Maurer-
Cartan space, to any simplicial quasi-comonoid E. When E0 is a group rather than
a monoid, a more natural object is the Deligne space Del(E), which is the homotopy
quotient of MC(E) by E0. We also develop the concept of a quasi-descent datum; put
simply, a quasi-descent datum is to a quasi-comonoid as a category is to a monoid.

Proposition 2.12 then shows how a distributive monad-comonad pair on a simpli-
cial category C naturally enriches it to a simplicial quasi-descent datum, with MC
evaluated at any object x of C giving the space of s.h. bialgebras over x. Moreover,
there is a natural quasi-comonoid associated to any diagram in C, and we use this to
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define a simplicial space MC by mimicking the nerve construction (Definition 3.25).
In Proposition 5.7 this is seen to be a Segal space.

Another source of quasi-comonoids is from cosimplicial groups, with the construc-
tion E given in Definition 6.6. In this case, the Maurer-Cartan space admits a simpler
description (Proposition 6.8). IfX is a simplicial set,G a simplicial group and C•(X,G)
the cosimplicial simplicial group of G-cochains on X, then Del(EC•(X,G)) is equiva-
lent to Hom(X, W̄G), where W̄G is the classifying space of G (Proposition 6.11 and
Remark 6.10). If the cosimplicial group comes from denormalising and exponentiating
a differential graded Lie algebra, then the Maurer-Cartan space is equivalent to the
classical Maurer-Cartan space of derived connections, given by the equation

dω +
1
2
[ω, ω] = 0,

for ω of total degree 1 (Corollary 6.27).
The structure of the paper is as follows.
In Section 1, we recall Leinster’s comonoids up to homotopy, and introduce quasi-

comonoids and then the category QDat of quasi-descent data. There is an adjunction
(Lemma 1.15):

Cat

alg∗

⊥
//
QDat

alg
oo .

In Section 2, we introduce monads and comonads and show how a monad > on a cate-
gory C naturally enriches it to a quasi-descent datum D(C,>). This has the properties
that algD(C,>) is the category C> of >-algebras, and that alg∗ C = D(C, id). There is
a similar result for (>,⊥)-bialgebras.

Section 3 begins the work of extending these constructions to simplicial categories.
Distributive monad-comonad pairs on simplicial categories give rise to simplicial quasi-
descent data, but the functor alg above destroys higher order information. We therefore
begin (Definition 3.5) by defining the higher Maurer-Cartan functor MC from simpli-
cial quasi-comonoids sQM∗ to simplicial sets S. Given an object x of a simplicial
quasi-descent datum D, there is a simplicial quasi-comonoid D(x, x), and the ver-
tices of MC(D(x, x)) correspond closely to Lada’s set of strong homotopy >-algebras
over x, when D = D(C,>) (Remark 3.13). We then extend this to a simplicial space
(i.e. a bisimplicial set)MC(D) (Definition 3.25), which mimics the nerve construction
by developing constructions loosely corresponding to strong homotopy diagrams of
strong homotopy algebras. When the underlying category is a groupoid, DEL(D) is
the homotopy quotient ofMC(D) by morphisms in D, and Del is similarly related to
MC.

Section 4 is primarily concerned with the study of quasi-comonoids in (Ab,×)
(abelian groups with the monoidal structure ×). These are equivalent to cosimplicial
abelian groups (Lemma 4.1), and we exploit this to develop cohomology of quasi-
comonoids, and relate it to homotopy groups of MC and Del. We also study nerves
BΓ of quasi-comonoids in groupoids, in order to understand fundamental groupoids
of simplicial quasi-comonoids. We then introduce linear quasi-comonoids (i.e. quasi-
comonoids in (Ab,⊗)). These allow us to relate cohomology of a simplicial quasi-
comonoid to homology of the underlying simplicial abelian group (Proposition 4.22).
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This gives a cohomological characterisation of when a cofibrant simply connected sim-
plicial quasi-comonoid is contractible (Corollary 4.23). These results are then extended
to quasi-bicomonoids, which play a crucial role in the construction ofMC.

Although the functor alg above is poorly suited to simplicial categories, its left
adjoint alg∗ extends naturally and preserves weak equivalences. There is a model
structure on sQDat, and the purpose of Section 5 is to relate, for D fibrant, the
simplicial spaces MC(D) and DEL(D) with the simplicial space N (D) given by the
derived function complexes

N (D)n = Maph
sQDat(alg∗ n,D),

where n is the category associated to the poset [0, n]. When D is constructed from
a distributive monad-comonad pair on a simplicial category B, we think of MC(D),
DEL(D) and N (D) as candidates for the simplicial space of s.h. bialgebras over B.

It turns out that MC(D) is a Segal space, while N (D) and DEL(D) are complete
Segal spaces (Proposition 5.7, Corollaries 5.19 and 5.25). There are Dwyer-Kan equiv-
alences between these Segal spaces (Propositions 5.15 and 5.24), so they are all weakly
equivalent in the complete Segal space model structure from [Rez]. Moreover, Theo-
rem 5.21 shows how MC and N can both be regarded as the derived right adjoint of
alg∗, even though alg∗ is not left Quillen.

Section 6 establishes a simpler Maurer-Cartan space construction for cosimplicial
simplicial groups, yielding the equivalence Del(EC•(X,G)) ' Hom(X, W̄G) described
earlier, and simplifies this description further when G is a formal Lie group, via The-
orem 6.23.

The appendices establish a framework for applying these results more widely. In
Appendix A, quasi-monads and quasi-comonads are introduced, motivated by the need
for an analogue of the homotopy operads of [vdL]. We show what it would mean for
a quasi-monad to distribute over a quasi-comonad, while ensuring that these weaker
structures still enhance a category to form a quasi-descent datum. In Appendix B, we
relate A∞-algebras to quasi-semigroups, and thus compare quasi-operads with homo-
topy operads.
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1. Monoidal structures up to homotopy

In this section, we will introduce various structures which will provide the framework
for the rest of the paper. The main concepts are those of a quasi-comonoids and quasi-
descent data, which will provide the intermediate step between monads and comonads
on one hand, and strong homotopy structures on the other.
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1.1. Quasi-comonoids
Definition 1.1. Define ∆∗∗ to be the subcategory of the ordinal number category
∆ containing only those non-decreasing (i.e. f(i+ 1) > f(i)) morphisms f : m→ n
with f(0) = 0, f(m) = n. We define a monoidal structure on this category by setting
m⊗ n = m + n, with

(f ⊗ g)(i) =

{
f(i) i 6 m

g(i−m) + p i > m,

for f : m→ p, g : n→ q.

Remark 1.2. There is an isomorphism ∆opp
∗∗ ∼= ∆0, the category of finite sets (i.e.

∆ t ∅) given by n 7→ n− 1, where −1 := ∅, with the coboundary morphisms ∂i map-
ping to σi−1 and the coface morphisms σi mapping to ∂i.

Remark 1.3. Given a category C, a functor X : ∆∗∗ → C consists of objects Xn∈ C,
with all of the operations ∂i, σi of a cosimplicial complex except ∂0, ∂n+1 : Xn→Xn+1.

Definition 1.4. Given a monoidal category C, define a quasi-comonoid X in C to be a
lax monoidal functor X : ∆∗∗ → C. This means that we have maps ζmn : Xm ⊗Xn →
Xm+n, ζ0 : 1→ X0, satisfying naturality and coherence, where 1 is the unit in the
category. If C is a model category, then we say that X is a homotopy comonoid when-
ever the maps ζmn, ζ0 are all weak equivalences. This is equivalent to the definition
in [Lei2], via the comparison of Remark 1.2.

Define a quasi-monoid in C to be a quasi-comonoid in Copp. We let QM∗(C) denote
the category of quasi-comonoids in C.
Lemma 1.5. Giving a quasi-comonoid X in C is equivalent to giving objects
Xn ∈ C for n ∈ N0, together with morphisms

∂i : Xn → Xn+1 1 6 i 6 n,

σi : Xn → Xn−1 0 6 i < n,

an associative product ζmn : Xm ⊗Xn → Xm+n, with identity ζ0 : 1→ X0, where 1
is the unit in the category, satisfying:

1. ∂j∂i = ∂i∂j−1 i < j.
2. σjσi = σiσj+1 i 6 j.

3. σj∂i =





∂iσj−1 i 6 j

id i = j, i = j + 1
∂i−1σj i > j + 1.

4. ζm+1,n(∂i ⊗ id) = ∂iζmn.
5. ζm,n+1(id⊗ ∂i) = ∂i+mζmn.
6. ζm−1,n(σi ⊗ id) = σiζmn.
7. ζm,n−1(id⊗ σi) = σi+mζmn.

Proof. This is a straightforward consequence of Remark 1.3, together with an analysis
of the interaction in ∆∗∗ of the monoidal structure and the morphisms σi, ∂i.
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Remark 1.6. When the maps ζmn, ζ0 are all isomorphisms, this becomes equivalent
to the definition of a comonoid C. The correspondence is given by setting Xn := C⊗n

and letting ∂1 : C → C ⊗ C be the coproduct.

In order to simplify the notation, we will write x ∗ y instead of ζm,n(x, y) from now
on.

1.1.1. Maurer-Cartan
Observe that the category of comonoids in (Set,×) is equivalent to Set itself, since
comultiplication ∆: X → X ×X is necessarily the diagonal embedding. This gives a
functor ι : Set→ QM∗(Set) from sets to quasi-comonoids.

Definition 1.7. Define the functor MC: QM∗(Set)→ Set by

MC(E) := Hom(ι•, E),

where • is the one-point set. Explicitly,

MC(E) = {ω ∈ E1 : σ0ω = 1, ∂1ω = ω ∗ ω}.

The reason for this notation is that any cosimplicial unital ring R has a quasi-
comonoid structure, with ∗ given by the Alexander-Whitney cup product ∪, and then

MC(R) = {11 + α ∈ R1 : σ0α = 0, 12 + ∂1α = 12 + 11 ∪ α+ α ∪ 11 + α ∪ α}
= 1 + {α ∈ N1R : ∂1α = ∂2α+ ∂0α+ α ∪ α}
= 1 + {α ∈ N1R : dα+ α ∪ α = 0},

where NR is the cosimplicial normalisation of R, with differential d. Thus MC(R) is
just the classical set of Maurer-Cartan forms of the differential graded algebra NR,
which parametrises flat connections on a vector bundle.

1.2. Quasi-descent data
We will now introduce quasi-descent data, which will form the bridge between

categories equipped with monads and/or comonads, and Segal spaces. Section 2 will
show how monads and comonads give rise to quasi-descent data, while much of the
remainder of the paper relates quasi-descent data to Segal spaces.

Definition 1.8. Given a monoidal category C and a set O, let a C-valued descent
datum D = (C,G) on objects O consist of:

1. objects G(a, b) ∈ C for each pair a, b ∈ O,

2. compatible systems G(a, b)⊗G(b, c) ∼= G(a, c) and G(a, a) ∼= 1 of transition iso-
morphisms, for all a, b, c ∈ O (the cocycle condition),

3. comonoids C(a) ∈ C for each a ∈ O,

4. isomorphisms C(a)⊗G(a, b) ∼= G(a, b)⊗ C(b) for all a, b ∈ O, compatible with
the comonoidal structures and transition isomorphisms.

Note that these conditions imply that G(b, a)⊗ C(a)⊗G(a, b) is isomorphic as a
comonoid to C(b).
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The reason for this terminology is that for an open cover {Ua}a∈O of topolog-
ical spaces X, a descent datum consists of sheaves Ca on Ua, with isomorphisms
gab : Cb|Ua∩Ub

→ Ca|Ua∩Ub
, with gab ◦ gbc = gac : Cc|Ua∩Ub∩Uc

→ Ca|Ua∩Ub∩Uc
(and gaa

necessarily the identity).

Definition 1.9. Let DatO(C) be the category of C-valued descent data on objects O,
and let Dat(C) be the category of pairs (O, D), for O a set and D = (C,G) a descent
datum on objects O. Write Dat := Dat(Set,×) and define DatO similarly. Note that
there is a functor Dat(C)→ Cat(C) to C-enriched categories, sending (O, D) to the
category with objects O and morphisms G(x, y).

Definition 1.10. Given a monoidal category C and a set O, let a C-valued quasi-
descent datum on objects O consist of:

1. objects X(a, b) ∈ C∆∗∗ for all a, b ∈ O,

2. morphisms X(a, b)m ⊗X(b, c)n ∗−→ X(a, c)m+n making the following diagram
commute for all a, b, c ∈ O

∆∗∗ ×∆∗∗
X(a,b)⊗X(b,c)−−−−−−−−−→ C

×
y

y∗

∆∗∗
X(a,c)−−−−→ C,

3. morphisms 1→ X(a, a)0 for all a ∈ O, acting as the identity for the multiplica-
tion ∗.

Remarks 1.11. A C-valued (quasi-)descent datum on the set with one object is just a
(quasi-)comonoid in C. Given a C-valued descent datum (C,G) on objects O, we may
define a quasi-descent datum X by X(a, b)n := C(a)⊗n ⊗G(a, b) ∼= G(a, b)⊗ C(b)⊗n

via the transition maps, with the maps ∂i given by the coproducts on C.
If the category C contains all finite coproducts, then we may define a monoidal

structure on C∆∗∗ by setting

(X ⊗ Y )n :=
∐

a+b=n

Xa ⊗ Y b,

with operations given by

∂i(x⊗ y) =

{
(∂ix)⊗ y i 6 a

x⊗ (∂i−ay) i > a,

σi(x⊗ y) =

{
(σix)⊗ y i < a,

x⊗ (σi−ay) i > a.

Then a quasi-descent datum on objects O is just a C∆∗∗ -enriched category with
objects O.

Definition 1.12. Let QDat(C) be the category of C-valued quasi-descent data, i.e. of
pairs (O, X) for O a set and X a quasi-descent datum on objects O. This admits a
functor to the category of C-enriched categories by taking the Hom-space underlying
X(a, b) to be X(a, b)0. Let QDat := QDat(Set,×) and sQDat := QDat(S,×).
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Let QDpd (resp. sQDpd) be the full subcategory of QDat (resp. sQDat) consist-
ing of objects whose underlying categories (resp. simplicial categories) are groupoids
(resp. simplicial groupoids). In other words, all elements of X(a, b)0 must be invertible
under ∗.

1.3. Adjoint functors
From now on, we will systematically make use of the identification in Remarks 1.11

of quasi-descent data with C∆∗∗ -enriched categories.
We have seen that there is a functor (−)0 : QDat→ Cat given by sending D to the

category D0 with objects ObD0 := ObD and morphisms D0(a, b) := D(a, b)0.

Lemma 1.13. The functor (−)0 has a right adjoint alg∗, given by Obalg∗ C = Ob C,
with (alg∗ C)(a, b)n = C(a, b) for all n, with multiplication as in C, and all operations
∂i, σi acting trivially.

Proof. Given a functor F : D0 → C, the associated morphism D → alg∗ C in QDat is
given by F on objects, with morphisms

F ◦ (σ0)n : D(a, b)n → C(a, b) = (alg∗ C)(a, b)n.

That all morphisms D → alg∗ C arise in this way follows because σ0 acts trivially on
(alg∗ C)(a, b).

Definition 1.14. Define alg : QDat→ Cat as follows: The objects of alg(D) are pairs
(D,ω), for D ∈ ObD and ω ∈ MC(D(D,D)), for MC as in Definition 1.7. Morphisms
from (D,ω) to (D′, ω′) are given by f ∈ D(D,D′)0 such that

f ∗ ω = ω′ ∗ f ∈ D(D,D′)1.

Lemma 1.15. The functor alg∗ is left adjoint to alg.

Proof. Given a functor F : C → alg(D), we construct the corresponding morphism
G : alg∗ C → D as follows: For a ∈ ObC, set G(a) ∈ ObD to be the object underlying
F (a), and then define G : alg∗ C(a, b)n → D(Ga,Gb)n by

G(x) := ωn
F (b) ∗ F (x) = F (x) ∗ ωn

F (a),

where F (a) = (G(a), ωF (a)). Conversely, any morphism G : alg∗ C → D is determined
by alg∗ C0 → D0, together with the elements G(ida) ∈ D(a, a)1.

Remark 1.16. Note that the functor alg∗ is fully faithful, so (alg∗ C)0 ' C ' alg alg∗ C.

Lemma 1.17. The functor (−)0 : QDat→ Cat has a left adjoint.

Proof. The left adjoint is the functor (id/∅) given by Ob(id/∅)(C) = Ob C, with mor-
phisms

(id/∅)(C)(a, b)n =

{
C(a, b) n = 0
∅ n > 0.
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1.4. Quasi-bicomonoids and diagonals
Definition 1.18. Given a monoidal category C, let the category QMM∗(C) of quasi-
bicomonoids consist of lax monoidal functors X : ∆∗∗ ×∆∗∗ → C.

Definition 1.19. Define a functor diag : QMM∗(C)→ QM∗(C) via the diagonal func-
tor ∆∗∗ → ∆∗∗ ×∆∗∗. Explicitly, (diagE)n = Enn, with the same product and iden-
tity as E and operations ∂i = ∂i

h∂
i
v and σi = σi

hσ
i
v.

The functor diag preserves all limits, so by the Special Adjoint Functor Theorem
([Mac, Theorem V.8.2]), it will have a left adjoint diag∗ for all the categories C which
we will encounter, since they all satisfy the solution set condition.

Definition 1.20. The category of quasi-comonoids in Set× Set is isomorphic to
Set× Set, with comultiplication necessarily given by the diagonal

(X,Y )→ (X ×X,Y × Y ).

Inclusion of comonoids in quasi-comonoids then gives a functor

ι : Set× Set→ QMM∗(Set),

with ι(X,Y )m,n = Xm × Y n.

Lemma 1.21. For E•,• ∈ QMM∗(Set),

MC(diagE) ∼= {(α, β) ∈ MC(E•,0)×MC(E0,•) : α ∗ β = β ∗ α ∈ E11}.

Proof. Given ω ∈ MC(diagE), set α := σ0
vω, β := σ0

hω. Since σ0ω = 1, we have σ0
hα =

σ0
vβ = 1. Applying the operations (σ0

v)2, σ1
hσ

0
v , σ

1
hσ

0
v , (σ0

h)2 (respectively) to the equa-
tion ω ∗ ω = ∂1ω gives the equations

α ∗ α = ∂1
hα, α ∗ β = ω, β ∗ α = ω, β ∗ β = ∂1

vβ.

This shows that the function ω 7→ (α, β) is well-defined on the sets above and has
inverse (α, β) 7→ α ∗ β.

Corollary 1.22. diag∗ ι• = ι(•, •).

Proof. Given a morphism f : ι(•, •)→ E in QMM∗(Set), let α, β be the images of the
unique elements of ι(•, •)1,0, ι(•, •)0,1. These generate ι(•, •), subject to the conditions
of Lemma 1.21.

1.5. Nerves
We will now see how to associate quasi-comonoids to small diagrams. In Remark 3.27

this will give rise to the notion of strong homotopy diagrams.

1.5.1. Categories
Given a set O, we will write CatO for the category of categories with object set O.
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Definition 1.23. Given K ∈ S, define PK : CatK0 → QM∗(Set) by

PK(C)a =
∏

x∈Ka

C((∂0)ax, (∂1)ax),

with operations

∂i(e)(x) := e(∂ix),
σj(e) := e(σjy),

(f ∗ e)(z) := f((∂a+1)bz) ◦ e((∂0)az),

for f ∈ PK(C)a, e ∈ PK(C)b.
Let Pn := P∆n .

Let Catn be the category of categories on (the n+ 1) objects [0, n].

Lemma 1.24. The functor Pn : Catn → QM∗(Set) has a left adjoint P ∗n , given by

(P ∗nE)(i, j) =

{
Ej−i j > i

∅ j < i,

with multiplication given by ∗, and identities 1 ∈ E0.

Proof. Define ∇n ∈ Set∆
opp
∗∗ by (∇n)r := Hom∆∗∗(r,n). If U : S→ Set∆

opp
∗∗ is the for-

getful functor, then define b : UK → K0 ×K0 by x 7→ ((∂1)nx, (∂0)nx), for x ∈ Kn.
Then

U∆n =
∐

(i,j)∈∆n
0

b−1(i, j) ∼=
∐

06i6j6n

∇j−i.

For C ∈ Catn, PnC decomposes in Set∆∗∗ as

PnC =
∏

06i6j6n

C(i, j)∇j−i

,

where, for K ∈ Set∆
opp
∗∗ and a set S, we define SK ∈ Set∆∗∗ by (SK)r = SKr .

For E ∈ QM∗(Set) and C ∈ Catn, this implies that

HomSet∆∗∗ (E,PnC) =
∏

06i6j6n

HomSet∆∗∗ (E, C(i, j)∇
j−i

)

=
∏

06i6j6n

HomSet(Ej−i, C(i, j)).

Analysis of the product now gives the required result.

Definition 1.25. Given a category C, a set O and a morphism f : O → Ob C, define
f−1C to be the category with objects O and morphisms (f−1C)(a, b) = C(fa, fb).
Lemma 1.26. For any category C, there is a natural isomorphism

(BC)n
∼=

∐

f∈(Ob C)[0,n]

MC(Pnf
−1C).
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Proof. Note that the right-hand side is just HomCat(P ∗nι•, C). Since (ι•)n = • for all
n, we have P ∗nι• ∼= n by Lemma 1.24, where we regard n as a category (with objects
[0, n], and a single morphism i→ j whenever i 6 j). This completes the proof, since
the nerve is given by (BC)n = HomCat(n, C).

We now generalise these results to more general categories.

Definition 1.27. Given E ∈ Set∆∗∗ and X ∈ Set∆
opp
∗∗ , define the set X×←−E to be the

quotient of {(x, e) ∈∐
nXn × En} by the equivalence relation generated by

(x, ∂ie) ∼ (∂ix, e), (x, σie) ∼ (σix, e).

Definition 1.28. Given K ∈ S and a, b ∈ K0, define K(a, b) ∈ Set∆
opp
∗∗ by setting

K(a, b)n := {x ∈ Kn : (∂1)nx = a, (∂0)nx = b}.
Lemma 1.29. Given a (small) category I, the left adjoint P ∗BI to the functor

PBI : CatOb I → QM∗(Set)

is given by (P ∗BIE)(a, b) = (BI)(a, b)×←−E for a, b ∈ Ob I, with the product given by
(x, e) ◦ (y, f) := (x ? y, e ∗ f), where ? denotes concatenation of strings of morphisms
in I, and ∗ is the product on E.

Proof. For K ∈ S, the category P ∗KE has objects K0. Morphisms are generated under
composition by K(a, b)×←−E in (P ∗KE)(a, b) for a, b ∈ K0, subject to the condition that
for e ∈ Em, f ∈ En and x ∈ Km+n,

(x, e ∗ f) ∼ ((∂m+1)nx, e) ◦ (∂0)mx, f).

When K = I, the map ((∂m+1)n, (∂0)m) : Km+n → Km ×(∂0)m,K0,(∂1)n Kn is an iso-
morphism, so any product of generators is a generator, giving the required result.

Lemma 1.30. For any category C, there is a natural isomorphism

HomCat(I, C) ∼=
∐

f∈(Ob C)Ob I

MC(PBIf
−1C).

Proof. The proof of Lemma 1.26 carries over, noting that P ∗BIι• ∼= I.

1.5.2. Quasi-descent data
Definition 1.31. Given K ∈ S, define PK : QDatK0 → QMM∗(Set) by

PK(D)a,b =
∏

x∈Kb

D((∂0)bx, (∂1)bx)a,

with operations

∂i
v(e)(x) := e(∂ix),
σj

v(e) := e(σjy),

(f ∗ e)(z) := f((∂b+1)b′z) ∗ e((∂0)bz).

for f ∈ PK(C)a,b, e ∈ PK(C)a′,b′ . The horizontal operations are ∂i
h = ∂i

D, σ
i
h = σi

D.
Note that Pn = P∆n .
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Let QDatn be the category of quasi-descent data on the n+ 1 objects [0, n].

Lemma 1.32. The functor Pn : QDatn → QMM∗(Set) has a left adjoint P ∗n , given
by

(P ∗n)(i, j)a =

{
Ea,j−i j > i

∅ j < i,

with multiplication given by ∗, identities 1 ∈ E00, and operations ∂i
h, σ

i
h.

Proof. The proof of Lemma 1.24 adapts to this generality.

Definition 1.33. Given a quasi-descent datum D, a set O and a morphism f : O →
ObD, define f−1D to be the quasi-descent datum with objects O and morphisms
(f−1D)(a, b)i = D(fa, fb)i.

Lemma 1.34. For any quasi-descent datum D, there is a natural isomorphism

(B algD)n
∼=

∐

f∈(ObD)[0,n]

MC(diagPnf
−1D).

Proof. By Lemma 1.15, the left-hand side is HomCat(n, algD) ∼= HomQDat(alg∗ n,D).
Meanwhile, the right-hand side is HomQDat(P ∗n diag∗ ι•,D), so it suffices to show
that alg∗ n ∼= P ∗n diag∗ ι•. By Corollary 1.22, P ∗n diag∗ ι• = P ∗nι(•, •), and Lemma 1.32
shows that (P ∗nι(•, •))(i, j)a is • for j > i and ∅ for j < i, so P ∗nι(•, •) = alg∗ n.

Lemma 1.35. Given a category I, the left adjoint P ∗BI to the functor

PBI : QDatOb I → QMM∗(Set)

is given by

(P ∗BIE)(a, b)n = (BI)(a, b)×←−E
n

for a, b ∈ Ob I, with the product given by

(x, e) ◦ (y, f) := (x ? y, e ∗ f),

where ? denotes concatenation of strings of morphisms in I, and ∗ is the product
on E.

Proof. The proof of Lemma 1.29 adapts to this generality.

Lemma 1.36. For any quasi-descent datum D and a category I, there is a natural
isomorphism

HomCat(I, algD) ∼=
∐

f∈(ObD)Ob I

MC(diagPBIf
−1D).

Proof. The proof of Lemma 1.34 carries over, noting that P ∗BIι(•, •) ∼= alg∗ I.
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2. Algebras, coalgebras and bialgebras

2.1. Algebras and coalgebras
Definition 2.1. A monad (or triple) on a category B is a monoid in the category of
endofunctors of B (with the monoidal structure given by composition of functors). A
comonad (or cotriple) is a comonoid in the category of endofunctors of B.

Lemma 2.2. Take an adjunction

A
G

>
//E

F
oo

with unit η : id→ GF and co-unit ε : FG→ id. Then > := GF is a monad on E with
unit η and multiplication µ := GεF , while ⊥ := FG is a comonad on A, with co-unit
ε and comultiplication ∆ := FηG.

Proof. For the monad >, this is [Mac, §VI.1], with the comonadic results following
by duality.

Definition 2.3. Given a monad (>, µ, η) on a category E , define the category E> of
>-algebras to have objects >E θ−→ E (for E ∈ E), such that θ ◦ ηE = id and θ ◦ >θ =
θ ◦ µE .

A morphism

g : (>E1
θ−→ E1)→ (>E2

φ−→ E2)

of >-algebras is a morphism g : E1 → E2 in E such that φ ◦ >g = g ◦ θ.
We define the comparison functor K : A → E> by

B 7→ (GFGB GεB−−−→ GB)

on objects, and K(g) = G(g) on morphisms.

Definition 2.4. The adjunction

A
G

>
//E

F
oo

is said to be monadic (or tripleable) if K : A → E> is an equivalence.

Examples 2.5. Intuitively, monadic adjunctions correspond to algebraic theories, such
as the adjunction

Ring
U

>
//
Set,

Z[−]
oo

between rings and sets, U being the forgetful functor. Other examples are k-algebras
over k-vector spaces, or groups over sets.

Definition 2.6. Dually, given a comonad (⊥,∆, ε) on a category A, we define the
category A⊥ of ⊥-coalgebras by

(A⊥)opp := (Aopp)⊥,

noting that ⊥ is a monad on Aopp. The adjunction of Lemma 2.2 is said to be
comonadic (or cotripleable) if the adjunction on opposite categories is monadic.
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Examples 2.7. If X is a topological space (or any site with enough points) and X ′ is
the set of points ofX, let u : X ′ → X be the associated morphism. Then the adjunction

Shf(X ′)
u∗

>
//
Shf(X),

u−1
oo

on the associated categories of sheaves is comonadic, so Shf(X) is equivalent to u−1u∗-
coalgebras in the category Shf(X ′) of sheaves (or equivalently presheaves) on X ′.

A more prosaic example is that for any ring A, the category of A-coalgebras is
comonadic over the category of A-modules.

2.2. Quasi-descent data from monads
Given a monad (>, µ, η) on a category B, and an object B ∈ B, there is a quasi-

comonoid E(B) given by

En(B) = HomB(>nB,B)

in (Set,×), with product g ∗ h = g ◦ >nh, and for g ∈ En(B),

∂i(g) = g ◦ >i−1µ>n−iB ,

σi(g) = g ◦ >iη>n−i−1B .

If we replace B with a simplicial category, then E(B) becomes a quasi-comonoid
in (S,×). Note that these constructions also all work for a comonad (⊥,∆, ε), by
contravariance.

Lemma 2.8. Given an object B ∈ B, we see that the set of >-algebra structures on B
is MC(E(B)).

Proof. This follows immediately from the explicit description in Definition 1.7.

Proposition 2.9. Given a monad (>, µ, η) (resp. a comonad (⊥,∆, ε)) on a category
B, there is a natural structure of a Set∆∗∗-enriched category on B, i.e. a quasi-descent
datum on objects ObB.

Proof. Set

Hom(B,B′)n := HomB(>nB,B′) (resp. HomB(B,⊥nB′)),

with product and operations as above.

Proposition 2.10. The category B> (resp. B⊥) of >-algebras (resp. ⊥-coalgebras) on
B is isomorphic to the image under the functor alg : QDat→ Cat (Definition 1.14) of
the quasi-descent datum on B given in Proposition 2.9.

Proof. This follows immediately from the definitions.

2.3. Bialgebras
We now show how a bialgebraic structure on a category gives rise to a quasi-descent

datum.
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As in [VO, §IV], take a category B equipped with both a monad (>, µ, η) and a
comonad (⊥,∆, ε), together with a distributivity transformation λ : >⊥ =⇒ ⊥> for
which the following diagrams commute:

>⊥ λ +3

>∆

®¶

⊥>
∆>

®¶
>⊥2 λ⊥ +3 ⊥>⊥ ⊥λ +3 ⊥2,>

>⊥ λ +3 ⊥>

>2⊥

µ⊥
KS

>λ +3 >⊥> λ> +3 ⊥>2,

⊥µ

KS

>⊥ λ +3

>ε À%
CC

CC
CC

C

CC
CC

CC
C ⊥>

ε>y¢ {{
{{

{{
{

{{
{{

{{
{

>

>⊥ λ +3 ⊥>

⊥.
η⊥

]eDDDDDDD

DDDDDDD ⊥η

9Azzzzzzz

zzzzzzz

Definition 2.11. Given a distributive monad-comonad pair (>,⊥) on a category B,
define the category B>⊥ of bialgebras as follows. The objects of B>⊥ are triples (α,B, β)

with (>B α−→ B) an object of B> and B
β−→ ⊥B an object of B⊥, such that the com-

position (β ◦ α) : >B → ⊥B agrees with the composition

>B >β−−→ >⊥B λ−→ ⊥>B ⊥α−−→ ⊥B.

A morphism f : (α,B, β)→ (α′, B′, β′) is a morphism f : B → B′ in B such that
α′ ◦ >f = f ◦ α and β′ ◦ f = ⊥f ◦ β.

Proposition 2.12. The data above give B the natural structure of a Set∆∗∗-enriched
category, with

HomB(B,B′)n = HomB(>nB,⊥nB′).

Proof. We follow [Pri2] in describing the operations. Since λ is natural,

(λ⊥>) ◦ (>⊥λ) = (⊥>λ) ◦ (λ>⊥).

Therefore any composition of λ’s gives us the same canonical map

λn
m : >m⊥n → ⊥n>m,

and we define the product on Hom(B′, B′′)m ×Hom(B,B′)n → Hom(B,B′′)m+n by

g ∗ h = ⊥n(g) ◦ λn
m ◦ >m(h).

The other operations are given by

∂i(g) = ⊥n−i∆⊥i−1B ◦ g ◦ >i−1µ>n−i
h B ,

σi(g) = ⊥n−i−1ε⊥iB ◦ g ◦ >iη>n−i−1B .

To understand how the data (>,⊥, η, µ, ε,∆, λ) above occur naturally, note that,
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by [VO, §IV] or [Pri2, §2], these data are equivalent to a diagram

D
U

>
//

V

²²

E
F

oo

V

²²
A

Ga

OO

U

>
// B,

F
oo

Ga

OO

with F a U monadic, G ` V comonadic and U , V commuting with everything (al-
though G and F need not commute). The associated monad on B is > = UF , and
the comonad ⊥ = V G. Distributivity ensures that D ' E> ' (B⊥)> and D ' A⊥ '
(B>)⊥. In other words, D ' B>⊥. The functors F are both free >-algebra functors,
while the functors G are both cofree ⊥-coalgebra functors.

Example 2.13. If X is a topological space (or any site with enough points) and X ′

is the set of points of X, let D be the category of sheaves of rings on X. If B is the
category of sheaves (or equivalently presheaves) of sets on X ′, then the description
above characterises D as a category of bialgebras over B, with the comonad being
u−1u∗ for u : X ′ → X and the monad being the free polynomial functor.

Proposition 2.14. The category B>⊥ of (>,⊥)-algebras on B is isomorphic to the
image under the functor alg : QDat→ Cat (Definition 1.14) of the quasi-descent datum
B̃ on B given in Proposition 2.12.

Proof. This is essentially [Pri2, Theorem 2.2]. Note that alg(B̃) arises naturally as
the diagonal of a Set∆∗∗×∆∗∗ -enriched category. By Lemma 1.21 and Proposition 2.10,
the objects of alg(B̃) over B ∈ B correspond to pairs (α, β), for (>B α−→ B) ∈ B> and

(B
β−→ ⊥B) ∈ B⊥ satisfying the conditions of Definition 2.11. The description of the

morphisms follows similarly.

3. Simplicial structures

3.1. Simplicial quasi-comonoids
We now study the structure of the category of simplicial quasi-comonoids introduced

in Definition 1.4.

Proposition 3.1. There is a cofibrantly generated Reedy simplicial model structure
on S∆∗∗ in which a map f : X → Y is

1. a weak equivalence if the maps fn : Xn → Y n are all weak equivalences,

2. a cofibration if the maps fn : Xn → Y n are all injective.

Proof. The category ∆∗∗ naturally has the structure of a Reedy category, with ∆∗∗,+
and ∆∗∗,− the subcategories of injective and surjective maps, thus giving S∆∗∗ a Reedy
model structure. Since ∆∗∗,− =∆−, the matching objects in C∆ and C∆∗∗ are isomor-
phic, so it follows that this model structure on S∆∗∗ is cofibrantly generated, from the
corresponding result for S∆ (as in [GJ, §VII.4]).
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It only remains to describe the cofibrations. A morphism f is a cofibration if the
∆∗∗-latching maps are cofibrations in S. This is equivalent to saying that, for all i, the
∆∗∗-latching maps

Ln(fi) : Xn+1
i ∪Ln(Xi) L

n(Yi)→ Y n+1
i

are injective.
Now, under the comparison ∆∗∗ ∼= ∆opp

0 , Xi ∈ Set∆∗∗ corresponds to an augmented
simplicial set ˘(Xi). Thus injectivity of the latching maps says that ˘(Xi)>0 → ˘(Yi)>0 is

a cofibration of simplicial sets and that ˘(Xi)−1 → ˘(Yi)−1 is injective. Since cofibrations
in S are precisely levelwise injective maps, this is equivalent to saying that the maps
fn

i : Xn
i → Y n

i are all injective.

Lemma 3.2. There is a cofibrantly generated simplicial model structure on QM∗(S)
for which a morphism f is a fibration or weak equivalence whenever the underlying
map in S∆∗∗ is so.

Proof. Since the forgetful functor QM∗(S)→ S∆∗∗ preserves filtered direct limits and
has a left adjoint F , for any finite object I ∈ S∆∗∗ , the object FI is finite in QM∗(S),
so a fortiori it permits the small object argument. The model structure on S∆∗∗ is
cofibrantly generated by finite objects, so [Hir, Theorem 11.3.2] gives the required
model structure on QM∗(S).

Remark 3.3. Observe that the category of comonoids in (S,×) is just S itself, since the
comultiplication ∆: X → X ×X is necessarily given by the diagonal. Thus there is a

functor ι : S→ QM∗(S), given by ι(X)m =

m︷ ︸︸ ︷
X ×X × · · · ×X, sending the comonoid

X to its associated quasi-comonoid.

The following follows immediately from Definition 1.7:

Lemma 3.4. If E ∈ QM∗(S), and • denotes the constant simplicial set on one ele-
ment, then

MC(E0) ∼= HomQM∗(S)(ι•, E).

Definition 3.5. Define MC: QM∗(S)→ S by

MC(E) ⊂
∏

n>0

(En+1)In

(where I = ∆1 ∈ S), consisting of those ω satisfying:

ωm(s1, . . . , sm) ∗ ωn(t1, . . . , tn) = ωm+n+1(s1, . . . , sm, 0, t1, . . . , tn),
∂iωn(t1, . . . , tn) = ωn+1(t1, . . . , ti−1, 1, ti, . . . , tn),
σiωn(t1, . . . , tn) = ωn−1(t1, . . . , ti−1,min{ti, ti+1}, ti+2, . . . , tn),
σ0ωn(t1, . . . , tn) = ωn−1(t2, . . . , tn),
σnωn(t1, . . . , tn) = ωn−1(t1, . . . , tn−1),

σ0ω0 = 1.

We will refer to these as the higher Maurer-Cartan relations.
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Define MC: QM∗(S)→ Set by MC(E) = MC(E)0, noting that this agrees with
Definition 1.7 when E ∈ QM∗(Set). Also note that we can recover MC from MC,
since MC(E)n = MC(E∆n

).

Remark 3.6. Given a distributive monad-comonad pair (>,⊥) on a simplicial category
B, and an object B of B, Proposition 2.12 gives HomB(B,B) ∈ QM∗(S), and we then
regard MC(HomB(B,B)) as being the space of strong homotopy (>,⊥)-bialgebras
over B. If ⊥ is trivial, then this is essentially the same as Lada’s definition of the
space of strong homotopy >-bialgebras from [CLM] (see Remark 3.13 for differences).

Definition 3.7. We now define matching objects for E ∈ QM∗(S) by M0E := •,
M1E := E0, and for n > 2

MnE = {(e0, e1, . . . , en−1) ∈ (En−1)n | σiej = σj−1ei ∀i < j}.
These correspond to the matching objects Mn−1E of [GJ, Lemma VII.4.9], but we
have renumbered for consistency with the wider theory of Reedy categories.

The definition of the Reedy model structure on S∆∗∗ implies the following.

Lemma 3.8. A morphism f : E → F in QM∗(S) is a fibration (resp. a trivial fibra-
tion) if and only if the relative matching maps

En → Fn ×MnF MnE

are fibrations (resp. trivial fibrations) in S.

Lemma 3.9. For any trivial fibration E → F in QM∗(S), the map MC(E)→ MC(F )
is a trivial fibration.

Proof. The idea is to write MC(E) as lim←−MC(E)n, where we define MC(E)n

⊂ ∏
06r6n(Er+1)Ir

satisfying the relations of Definition 3.5 above (to level n). We
can summarise the Maurer-Cartan relations involving ∂j and ∗ as defining a func-
tion f : MC(E)n−1 → (En+1)∂In

, where ∂In is the boundary of the simplicial set In.
The relations involving σj define a function g : MC(E)n−1 → (Mn+1E)In

. If we set
MC(E)−1 = •, this allows us to write MC(E)n as the fibre product

MC(E)n //

²²

MC(E)n−1

(f,g)

²²
(En+1)In // (En+1)∂In ×(Mn+1E)∂In (Mn+1E)In

.

Since the pullback of a trivial fibration is a trivial fibration, it suffices to show that
the map from (En+1)In

to

[(En+1)∂In ×(Mn+1E)∂In (Mn+1E)In

]×[(F n+1)∂In×(Mn+1F )∂In (Mn+1F )In ] (Fn+1)In

is a trivial fibration. By definition, the maps

En+1 →Mn+1E ×Mn+1F Fn+1

are trivial fibrations. If X → Y is a trivial fibration, then XIn → X∂In ×Y ∂In Y In

is
a trivial fibration, since ∂In → In is a cofibration in S (using the simplicial structure
of S). This gives the required result.
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Definition 3.10. Define an object Ξ ∈ QM∗(S) by Ξ0 = • and Ξn+1 = In for n > 0,
where I = ∆1, with operations

(s1, . . . , sm) ∗ (t1, . . . , tn) = (s1, . . . , sm, 0, t1, . . . , tn),
∂i(t1, . . . , tn) = (t1, . . . , ti−1, 1, ti, . . . , tn),
σi(t1, . . . , tn) = (t1, . . . , ti−1,min{ti, ti+1}, ti+2, . . . , tn),
σ0(t1, . . . , tn) = (t2, . . . , tn),
σn(t1, . . . , tn) = (t1, . . . , tn−1).

Proposition 3.11. For E ∈ QM∗(S) fibrant, there is a natural weak equivalence

RHomQM∗(S)(ι•, E) ' MC(E)

in S.

Proof. It follows from Definition 3.5 that MC(E) = HomQM∗(S)(Ξ, E).
Next, observe that the unique map Ξ→ ι• is a weak equivalence, since the maps

In → • are weak equivalences. For any trivial fibration E → F in QM∗(S), Lemma 3.9
shows that

HomQM∗(S)(Ξ, E)→ HomQM∗(S)(Ξ, F )

is surjective, so Ξ has the left lifting property with respect to trivial fibrations, making
it a cofibrant replacement for ι•. Thus, for E fibrant,

MC(E) ' RHomQM∗(S)(ι•, E).

Corollary 3.12. The functor MC: QM∗(S)→ S is right Quillen.

Proof. Given a (trivial) fibration E → F , the morphism MC(E)→ MC(F ) is

HomQM∗(S)(Ξ, E)→ HomQM∗(S)(Ξ, F ).

This is a (trivial) fibration, since QM∗(S) is a simplicial model category.

Remarks 3.13. Lada’s definition of a strong homotopy algebra in [CLM] differs from
Definition 3.5 in that it omits all of the degeneracy conditions except σ0ω0 = 0. Propo-
sition 3.11 would not be true if we omitted those degeneracy conditions.

Now, consider a >-algebra A in topological spaces, and a retraction r : A→ X, with
section s. Given a homotopy h from sr to idA, Lada constructs a system

{ωn : >n+1X × |I|n → X}
by setting

ωn(a1, . . . , an) := r ◦ εA ∗ h(a1) ∗ εA ∗ h(a2) ∗ · · · ∗ h(an) ∗ εA ◦ s.
If we impose the additional conditions that r ◦ h(a) = r, h(a) ◦ s = s and h(a)

◦ h(b) = h(min(a, b)), for all a, b ∈ [0, 1], then ω satisfies the higher Maurer-Cartan
relations of Definition 3.5.

Moreover, a similar description holds for retractsX of (>,⊥)-bialgebrasA, replacing
εA with ηA ◦ εA : >A→ ⊥A.

Another way to look at this is that |Ξ| is a cofibrant resolution of ι(|∆0|) in
QM∗(Top). An alternative (and possibly more natural) cofibrant replacement Φ of
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ι(|∆0|) is given by Φ0 = |∆0| and Φn+1 = |I|n, with the same operations as Ξ, except
that we replace the map min: |I| × |I| → |I| with the map (a, b) 7→ ab. Thus, for
E ∈ QM∗(Top) and Sing : Top→ S, the space MC(SingE) is equivalent to the subset
of

∏
n>0 HomTop(|I|n, En+1) satisfying the conditions of Definition 3.5, except that

we replace min with multiplication. The procedure above then allows us to construct
a point ω of this space from a deformation retract, provided we modify the conditions
above by requiring that the homotopy satisfies h(a) ◦ h(b) = h(ab).

Definition 3.14. For E ∈ QM∗(S) with E0 a group (rather than just a monoid), there
is an adjoint action of E0 on MC(E), given by (g, ω) 7→ g−1 ∗ ω ∗ g. We then define
Del(E) to be the homotopy quotient Del(E) = [MC(E)/hE0] = MC(E)×E0

WE0, for
W the universal cover of BE0 = W̄E0, as in [GJ, Ch. V.4].

3.2. Simplicial categories
Definition 3.15. Given a simplicial category C, recall from [Ber1] that the category
π0C is defined to have the same objects as C, with morphisms

Homπ0C(x, y) = π0HomC(x, y).

A morphism in HomC(x, y)0 is said to be a homotopy equivalence if its image in π0C
is an isomorphism.

Lemma 3.16. There is a model structure on the category sCat of simplicial categories,
in which a morphism f : C → D is
(W) a weak equivalence whenever

(W1) for any objects a1 and a2 in C, the map HomC(a1, a2)→ HomD(fa1, fa2) is
a weak equivalence of simplicial sets;

(W2) the induced functor π0f : π0C → π0D is an equivalence of categories.
(F) a fibration whenever

(F1) for any objects a1 and a2 in C, the map HomC(a1, a2)→ HomD(fa1, fa2) is
a fibration of simplicial sets;

(F2) for any objects a1 ∈ C, b ∈ D, and homotopy equivalence e : fa1 → b in D,
there is an object a2 ∈ C and a homotopy equivalence d : a1 → a2 in C such
that fd = e.

Proof. See [Ber1, Theorem 1.1].

3.3. Simplicial quasi-descent data
Lemma 3.17. For a fixed set O, there is a cofibrantly generated simplicial model
category structure on sQDatO for which a morphism f : D → D′ is a fibration or a
weak equivalence if and only if, for all a, b ∈ O, the map

f : HomD(a, b)→ HomD′(a, b)
is a Reedy fibration or a levelwise weak equivalence in S∆∗∗ .

Proof. Applying [Hir, Theorem 11.3.2] (as in the proof of Lemma 3.2) to the right
adjoint functor sQDatO → S∆∗∗ given by D 7→∏

a,b∈OHomD(a, b), we see that this is
a model structure.
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The simplicial structure comes from the simplicial structure on S∆∗∗ , so

HomDK (a, b) := HomD(a, b)K .

We now consider the whole category sQDat, not just the subcategories on fixed
objects.

Lemma 3.18. The functor (−)0 : sQDat→ sCat is both a left and a right adjoint.
The functor D 7→∏

a,b∈ObDHomD(a, b) from sQDat to S∆∗∗ is a right adjoint.

Proof. (−)0 has left adjoint (id/∅) and right adjoint alg∗, with the same formulae and
reasoning as in Lemmas 1.13 and 1.17. The left adjoint to

D 7→
∏

a,b∈ObD
HomE(a, b)

is the functor U : S∆∗∗ → sQDat given by sending X to the category with two objects
x, y, and morphisms

Hom(x, x)n = Hom(y, y)n :=

{
1 n = 0
∅ n > 0,

Hom(x, y) := X and Hom(y, x) := ∅.
Proposition 3.19. There is a cofibrantly generated model structure on sQDat for
which a morphism f : D → E is

(W) a weak equivalence if and only if
(W1) for all a, b ∈ ObD, the map

f : HomD(a, b)→ HomE(fa, fb)
is a weak equivalence in S∆∗∗ , and

(W2) the morphism π0(f0) : π0(D0)→ π0(E0) is an equivalence of categories (for
π0C as in Definition 3.15);

(F) a fibration if and only if
(F1) for all a, b ∈ ObD, the map

f : HomD(a, b)→ HomE(fa, fb)
is a Reedy fibration in S∆∗∗ , and

(F2) for any objects a1 ∈ D, b ∈ E and a homotopy equivalence e : fa1 → b in E0,
there exist an object a2 ∈ E and a homotopy equivalence d : a1 → a2 in D0

such that f0d = e.

Proof. Note that these conditions are equivalent to saying that f is a weak equiv-
alence or fibration provided that both f0 : D0 → E0 and the maps HomD(a, b)→
HomE(fa, fb) are weak equivalences or fibrations. This follows because the functor
S∆∗∗ → S given by X 7→ X0 preserves both weak equivalences and fibrations (by def-
inition of the Reedy model structure).

For U as in the proof of Lemma 3.18, define (I1) to be the class consisting of the
images under U of the generating cofibrations from Proposition 3.1, and let (I2) be
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the single morphism ∅ → 0 from the category with no objects to the category with
one object and no non-identity morphisms. Define (I) := (I1) ∪ (I2).

Define (J1) to be the class consisting of the images under U of the generat-
ing trivial cofibrations from Proposition 3.1, and let (J2) be the image of the class
(A2) from [Ber1] under the functor (id/∅) : sCat→ sQDat of Lemma 3.18. Define
(J) := (J1) ∪ (J2).

For a class C of morphisms, say that a morphism f is S-injective if it has the left
lifting property (LLP) with respect to S. From the adjoint property of the functor
U , it follows that a morphism f : D → E is (J1)-injective, (resp. (I1)-injective) if and
only if f satisfies (F1) (resp. (F1) and (W1)). The morphism f is (I2)-injective if and
only if it is surjective on objects. By Lemma 3.18, f is (J2)-injective if and only if
f0 : D0 → E0 is (A2)-injective.

Since cofibrations in S, concentrated in degree 0 in S∆∗∗ , become cofibrations in
the model structure of Proposition 3.1, the images under (id/∅) of the classes (C1),
(C2), (A1) and (A2) from [Ber1] lie in (I1), (I2), (J1) and (J2), respectively. It thus
follows from [Ber1, Theorem 1.1] that for any J-injective (resp. I-injective) morphism
f : D → E , the morphism f0 : D0 → E0 is a fibration (resp. a trivial fibration) in sCat.
Looking at the LLP in S∆∗∗ , we then deduce that J-injectives (resp. I-injectives) are
precisely (F ) (resp. (F ) ∩ (W ) ) in sQDat.

We now verify the conditions of [Hov, Theorem 2.1.19]. It is immediate that the
class (W ) has the two-out-of-three property and is closed under retracts. The domains
of (I2) and (J2) are small, and similarly to the proof of [Ber1, Theorem 1.1], the
smallness of the generating (trivial) cofibrations in S∆∗∗ means that the domains of
(I1) and (J1) are small relative to (I1)-cells and (J1)-cells, respectively. Thus the
domains of (I) and (J) are small relative to (I)-cells and (J)-cells, respectively. We
have shown that the class of (I)-injectives is the intersection of (W ) with the class of
(J)-injectives.

It remains only to show that all (J)-cells are in (W ) and are (I)-cofibrations. Since
cofibrations in S, concentrated in degree 0 in S∆∗∗ , become cofibrations in the model
structure of Proposition 3.1, the functor (id/∅) maps cofibrations in sCat to (I)-
cofibrations. Thus (J2)-cells are (I)-cofibrations, since (id/∅) preserves all colimits.
Likewise, U preserves all colimits and maps cofibrations to (I)-cofibrations, so (J1)-
cells are (I)-cofibrations, and therefore (J)-cells are (I)-cofibrations. Since (J) ⊂ (W ),
it follows immediately from the definitions and the corresponding properties in sCat
and S∆∗∗ that all (J)-cells also lie in (W ).

Note that the functor (−)0 : sQDat→ sCat of Lemma 3.18 is then both left and
right Quillen, while the functor D 7→∏

a,b∈ObDHomD(a, b) from sQDat→ S∆∗∗ is
right Quillen.

Definition 3.20. We define model structures on sQDpd, sQDpdO by requiring that
a morphism f is a weak equivalence or a fibration whenever the underlying map in
sQDat, sQDatO is so. We may apply [Hir, Theorem 11.3.2] to see that these are indeed
model structures, since the forgetful functors preserve filtered colimits and have left
adjoints (denoted by D 7→ DGpd), given by formally inverting morphisms in D0.
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3.4. Simplicial bicomonoids
Lemma 3.21. There is a cofibrantly generated simplicial model structure on

QMM∗(S)

for which a morphism f is a fibration or weak equivalence whenever the underlying
map in the Reedy model category S∆∗∗×∆∗∗ is so.

Proof. The proof of Lemma 3.2 carries over.

Lemma 3.22. The diagonal functor diag : QMM∗(S)→ QM∗(S) is right Quillen.

Proof. The Special Adjoint Functor Theorem ([Mac, Theorem V.8.1]) implies that
diag : QMM∗(S)→ QM∗(S) has a left adjoint diag∗. It therefore suffices to show that
for any (trivial) fibration f in S∆∗∗×∆∗∗ , the map diag f is a (trivial) fibration in S∆∗∗ .

Now, let Θn, ∂Θn ∈ Set∆∗∗ be given by

HomSet∆∗∗ (Θn, X) = Xn and HomSet∆∗∗ (∂Θn, X) = MnX.

Similarly, let Θij , ∂Θij ∈ Set∆∗∗×∆∗∗ be given by

HomSet∆∗∗×∆∗∗ (Θij , X) = Xi,j and HomSet∆∗∗×∆∗∗ (∂Θij , X) = M i,jX.

Latching object arguments (adapting [GJ] Proposition VII.1.7) show that the maps
∂Θn ⊂ Θn generate all monomorphisms in Set∆∗∗ , and likewise the maps ∂Θij ⊂ Θij

generate all monomorphisms in Set∆∗∗×∆∗∗ .
The diagonal functor diag : Set∆∗∗×∆∗∗ → Set∆∗∗ has a left adjoint diag∗, and we

just observe that this preserves monomorphisms (much like the case of bisimplicial sets
considered in [GJ, Theorem IV.3.15]). Therefore the functor diag∗ : S∆∗∗ → S∆∗∗×∆∗∗

preserves Reedy (trivial) cofibrations, so is left Quillen, making diag right Quillen.

Note that we may regard QM∗(S) and QMM∗(S) as being simplicial diagrams in
QM∗(Set) and QMM∗(Set), respectively. This will allow us to extend many of the
constructions of Section 1 to the simplicial case.

3.5. Nerves
In Remark 3.6, we saw how MC enables us to define the space of s.h. bialgebras over

a fixed object. However, as was first noted in [CLM], there is no satisfactory general
way to define morphisms of s.h. algebras. The bar construction of [CLM] gives a
definition when the monad is an operad, but does not generalise to s.h. bialgebras.
Instead, we will now introduce a space of s.h. I-diagrams of s.h. bialgebras for any
small category I, allowing us to mimic the nerve construction and thus to construct a
simplicial space of s.h. bialgebras.

3.5.1. MC
Definition 3.23. Given K ∈ S, define the functor PK : sQDatK0 → QMM∗(S) by
extending Definition 1.31 to simplicial sets. Let Pn := P∆n ; as in Lemma 1.32, Pn has
a left adjoint P ∗n .

Proposition 3.24. The functor PK : sQDatK0 → QMM∗(S) is right Quillen.
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Proof. Since PK is defined as a limit, it preserves arbitrary limits, so we just need to
show that it preserves (trivial) fibrations. We may regard an object X of S∆∗∗×∆∗∗ as
a ∆∗∗ diagram in S∆∗∗ , by i 7→ Xi,•. Denote the associated Reedy matching objects by
M i

horX ∈ S∆∗∗ . Similarly there is a diagram j 7→ X•,j , and we denote the associated
matching objects byM j

verX ∈ S∆∗∗ . Note that the Reedy matching objects in S∆∗∗×∆∗∗

are then given by

M ijX = (M i
horX)j ×Mi

horM
j
verX

(M j
verX)i,

as an immediate consequence of the characterisation of matching objects in [Hov,
Definition 5.2.2].

Now, for D ∈ sQDatK0 , the horizontal matching object M i
horPK(D) in S∆∗∗ is given

by

(M i
horPK(D))j = M i(PK(D)j) =

∏

x∈Kj

M iD((∂0)jx, (∂1)jx).

Next, observe that forX,K ∈ S, the object S ∈ S∆∗∗ given by Sn = XKn has matching
object MnS given by

MnS = {(f0, f1, . . . , fn−1) ∈ (XKn−1)n | σifj = σj−1fi ∈ XKn−2 ∀i < j} ∼= XLnK ,

where LnK is the nth simplicial latching object of K (of [GJ, §VII.1]). Thus the
vertical matching object M j

verPK(D) is given by

(M j
verPK(D))i =

∏

x∈LjK

D((∂0)jx, (∂1)jx)i.

Therefore, since LjK → Kj is always injective,

M ijPK(D) ∼=
( ∏

x∈LjK

D((∂0)jx, (∂1)jx)i
)
×

( ∏

x∈Kj−LjK

M iD((∂0)jx, (∂1)jx)
)
,

which yields the required result.
In fact, we may adapt this further to say that for any cofibration i : J ↪→ K in S

and any (trivial) fibration D → E in sQDatK0 , the map

PK(D)→ PK(E)×PJ (i−1
0 E) PJ(i−1

0 D)

is a (trivial) fibration.

Definition 3.25. Define a functorMC : sQDat→ sS to bisimplicial sets by

MC(D)(n) :=
∐

f : [0,n]→ObD
MC(diagPn(f−1D)) ∈ S.

Definition 3.26. Given a simplicial set X, we define X ∈ sS to be the constant space
X(n) := X for all n. By contrast, we define Xhor by Xhor

(n) := Xn.

Remark 3.27. Assume that D comes from a distributive monad-comonad pair (>,⊥)
on a simplicial category B, as in Proposition 2.12. Lemma 1.30 then allows us to think
of MC(D)(n) as being the space of s.h. n-diagrams of s.h. (>,⊥)-bialgebras over B,
so MC is a kind of nerve construction. More generally, for any small category I, we
think of

∐
f : Ob I→ObDMC(diagPBI(f−1D)) as the space of s.h. I-diagrams of s.h.

(>,⊥)-bialgebras over B, noting that this is just HomsS((BI)hor,MC(D)).
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Lemma 3.28. Given a (trivial) fibration f : D → E in sQDat, the morphism

MC(D)→MC(E)×cosk0(Ob E)hor cosk0(ObD)hor

is a (trivial) fibration in the Reedy category sS = S∆opp
, where cosk0 : Set→ S denotes

the 0-coskeleton ([GJ, §IV.3]).

Proof. For any simplicial set K, HomS(K, cosk0S) = SK0 ; since (∂∆n)0 = (∆n)0 =
[0, n] (for ∂∆n ⊂ ∆n the boundary), the nth Reedy matching map of the morphism
above is given by taking the coproduct over all g : [0, n]→ ObD of

MC(diagPng
−1D)→

MC(diagPng
−1(Ob f)−1E)×MC(diag P∂∆ng−1(Ob f)−1E) MC(diagP∂∆ng−1D).

Assume that f is a (trivial) fibration. By the proof of Proposition 3.24,

Png
−1D → (Png

−1(Ob f)−1E)×P∂∆n g−1(Ob f)−1E) (P∂∆ng−1D)

is a (trivial) fibration in QMM∗(S), so Lemma 3.22 shows that

diagPng
−1D → (diagPng

−1(Ob f)−1E)×diag P∂∆n g−1(Ob f)−1E) (diagP∂∆ng−1D)

is a (trivial) fibration in QM∗(S), so Corollary 3.12 shows that the map above is a
(trivial) fibration whenever f is so.

Note that considering level 0 shows that MC : sQDat→ sS is not right Quillen,
since a fibration only maps to a fibration when it is surjective on objects, and a trivial
fibration only maps to a trivial fibration when it is an isomorphism on objects.

3.5.2. Del
Definition 3.29. Let sGpd be the category of simplicial groupoids, i.e. the full sub-
category of (Gpd)∆

opp
consisting of those Γ for which the simplicial set Ob Γ of objects

is constant. As in [GJ, §V.7], this has a model structure in which a morphism is a
weak equivalence or fibration whenever the corresponding morphism in sCat is so (for
the model structure of Lemma 3.16), although the description simplifies considerably,
since all morphisms in Γ (and in particular homotopy equivalences) are isomorphisms.

Definition 3.30. Given Γ ∈ sGpd, define S(Γ) to be the category of simplicial Γ-
representations. An object X ∈ S(Γ) consists of X(a) ∈ S for all objects a of Γ and
distributive morphisms Γ(a, b)×X(b)→ X(a) in S.

Lemma 3.31. For Γ ∈ sQDpd, there is a natural Γ0-representation in S, given by
mapping a ∈ ObΓ to MC(Γ(a, a)). Denote this representation by MC(Γ) ∈ S(Γ0).

Proof. We just need to define an associative action MC(a)× Γ0(a, b)→ MC(b). As in
Definition 3.14, the adjoint action (ω, g) 7→ g−1 ∗ ω ∗ g suffices.

Definition 3.32. Given a simplicial groupoid Γ, define the Γ-representation WΓ by

(WΓ)n(a) :=
∐

x0,x1,...,xn

Γ(a, xn)n × Γ(xn, xn−1)n−1 × · · · × Γ(x1, x0)0,

for a ∈ ObΓ. As in [GJ, §V.4] (which considered only simplicial groups), this has
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operations:

∂i(vn, vn−1, . . . , v0) =

{
(∂ivn, ∂i−1vn−1, . . . , (∂0vn−i)vn−i−1, vn−i−2, . . . , v0) i < n,

(∂nvn, ∂n−1vn−1, . . . , ∂1v1) i = n,

σi(vn, vn−1, . . . , v0) = (σivn, σi−1vn−1, . . . , σ0vn−i, 1, vn−i−1, . . . , v0).

For h ∈ Γ(a, b), the action is given by

h(vn, vn−1, . . . , v0) = (hvn, vn−1, . . . , v0).

Definition 3.33. Given Γ ∈ sGpd, define

holim−→
Γ

: S(Γ)→ (S↓W̄Γ)

by X 7→ X ×Γ WΓ, where W̄Γ := • ×Γ WΓ is a model for the classifying space of Γ
([GJ, §V.7]).

Lemma 3.34. The functor holim−→Γ
: S(Γ)→ (S↓W̄Γ) is right Quillen, where fibrations

and weak equivalences in S(Γ) are defined objectwise.

Proof. The proof of [GJ, Lemma VI.4.6], which takes the case when Γ is a discrete
groupoid, carries over to this generality. The left adjoint is given by

X 7→ X ×W̄Γ WΓ.

Definition 3.35. Define a functor Del : sQDpd→ S by

Del(Γ) := holim−→
Γ0

MC(Γ),

making use of the forgetful functor S↓W̄Γ→ S. Note that if Γ has one object, then
it may be regarded as an object of QM∗(S), and this definition is consistent with
Definition 3.14 in this case.

Proposition 3.36. The functor Del : sQDpd→ S is right Quillen.

Proof. Since Del clearly preserves limits, we need only show that it preserves (trivial)
fibrations. Given a (trivial) fibration f : D → E in sQDpd, set F := E ×alg∗ E0 alg∗D0,
and observe that f factors as the composition of the (trivial) fibrations g : D → F ,
h : F → E .

Now, MC(D)→ MC(F) is a morphism in S(D0) which is a (trivial) fibration by
Corollary 3.12. Lemma 3.34 then implies that Del(D)→ Del(F) is a (trivial) fibra-
tion in S, since Ob(D) = Ob(F). The morphism Del(F)→ Del(E) is a pullback of
Del(alg∗D0)→ Del(alg∗ E0), so it remains only to show that the latter is a (trivial)
fibration.

Given E ∈ QM∗(S) with En = E0 for all n, studying the degeneracy operations
shows that MC(E) = {1}. Therefore MC(alg∗D0) is the constant D0-representation
on the one-point set •, so

Del(alg∗D0) = • ×D0
WD0 = W̄D0

and similarly for Del(alg∗ E0) = W̄E0. The morphism D0 → E0 is a (trivial) fibration
in sGpd, so W̄D0 → W̄E0 is a (trivial) fibration in S, by [GJ, Theorem V.7.8].
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Definition 3.37. Given K ∈ S and D ∈ sQDat, define h(K,D) ∈ sQDat by

Ob(h(K,D)) = HomSet(K0,ObD)

and

h(K,D)(a, b)n :=
∏

x∈Kn

C(a((∂0)nx)b((∂1)nx)),

and note thatMC(D)n = MC(h(∆n,D)).

Definition 3.38. Define DEL : sQDpd→ sS by DEL(Γ)(n) := Del(h(∆n,Γ)).

Corollary 3.39. The functor DEL : sQDpd→ sS is right Quillen.

Proof. This just combines Proposition 3.36 with the observation that for any (trivial)
fibration f : D → E in sQDpd, the morphism

h(∆n,D)→ h(∆n, E)×h(∂∆n,E) h(∂∆n,D)

is a (trivial) fibration in sQDat for all n > 0, which follows by combining Lemma 3.22
with the proof of Proposition 3.24.

4. Abelian groups and cohomology

In this section, we will investigate quasi-comonoids in abelian groups and in group-
oids. The main motivation for this is that we can detect whether a simplicial set X
is contractible just by looking at πfX and H∗(X,Z), and we will now develop the
corresponding notions for QM∗(S).

4.1. Cosimplicial abelian groups
Lemma 4.1. There is an equivalence between the category QM∗(Ab,×) of quasi-
comonoids in (Ab,×) and the category cAb of cosimplicial complexes of abelian groups.

Proof. Take A ∈ QM∗(Ab,×). The operations ∂i and σi on A are necessarily Z-linear.
We enhance this to a cosimplicial structure by setting ∂0a = 01 ∗ a, ∂m+1a = a ∗ 01,
for a ∈ Am and 01 the group identity in A1. To see that this satisfies the cosimplicial
axioms, note that the properties of ∗ give that

∂i+1∂0a = ∂0∂ia ∀1 6 i 6 m,

∂i∂m+1a = ∂m+2∂ia ∀1 6 i 6 m,

σi+1∂0a = ∂0σia ∀0 6 i < m,

σi∂m+1a = ∂mσia ∀0 6 i < m.

We also have ∂0∂m+1a = 01 ∗ a ∗ 01 = ∂m+2∂0a, so it only remains to show that
σ0∂0 = id and σm∂m+1 = id and that ∂0∂0 = ∂1∂0 and ∂m+1∂m+1 = ∂m+2∂m+1. The
first two conditions follow because σ001 = 00, which is the identity for ∗, and the sec-
ond two follow because 01 ∗ 01 = 02 = ∂101.
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Since Am ×An ∗−→ Am+n is linear, for a, a′ ∈ Am, b, b′ ∈ An we then have

a ∗ b′ + a′ ∗ b = (a+ a′) ∗ (b′ + b),

so setting a′ = 0m, b
′ = 0n gives a ∗ b = a ∗ 0n + 0m ∗ b, and 0n = 0∗n1 , so the product

is necessarily the Alexander-Whitney cup product a ∗ b = (∂m+1)na+ (∂0)mb, which
is uniquely determined by the cosimplicial structure.

Definition 4.2. Let sAb be the category of simplicial abelian groups and let csAb be
the category of cosimplicial simplicial abelian groups.

Definition 4.3. Denote the left adjoint to the inclusion functor csAb→ QM∗(S) by
cot. This is left Quillen, and we denote the associated left-derived functor on homotopy
categories by L cot.

Lemma 4.4. There is a cofibrantly generated simplicial model structure

QM∗(sAb,×)

in which a morphism is a fibration or a weak equivalence whenever the underlying map
in QM∗(S) is so.

Proof. We may apply [Hir, Theorem 11.3.2] to the forgetful functor QM∗(sAb,×)→
QM∗(S). This functor satisfies the Special Adjoint Functor Theorem ([Mac, Theorem
V.8.2]), so it has a left adjoint (analogous to the free module generated by a set).
It also preserves filtered direct limits, so admits the small object argument where
necessary.

Lemma 4.5. There is an equivalence

QM∗(sAb,×) ' csAb

of model categories, where csAb is given the Reedy model structure for cosimplicial
objects in sAb (with its standard model structure).

Proof. Lemma 4.1 gives the equivalence of categories, by passing to simplicial dia-
grams. Now, f is a weak equivalence in QM∗(sAb,×) whenever each fn is a weak
equivalence, and a fibration whenever f is a Reedy fibration in S∆∗∗ . Since the match-
ing objects for ∆ and ∆∗∗ are the same, this means that the model structure of
Lemma 4.4 is just the Reedy model structure on (sAb)∆, as they have the same weak
equivalences and fibrations.

Definition 4.6. LetNs denote simplicial normalisation from simplicial abelian groups
to non-negatively graded chain complexes, given by

Ns(V )n :=
⋂

i>0

ker(∂i : Vn → Vn−1),

with differential ∂0. Let Nc denote cosimplicial conormalisation from cosimplicial
abelian groups to non-negatively graded cochain complexes, given by

Nc(V )n :=
⋂

i>0

ker(σi : V n → V n−1),

with differential
∑

i(−1)i∂i. By the Dold-Kan correspondence ([Wei, Theorem 8.4.1],
passing to opposite categories and using [Wei, Lemma 8.3.7] in the cosimplicial case),
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these functors are both equivalences; let Dc be the cosimplicial denormalisation func-
tor, inverse to Nc.

Definition 4.7. Set I = ∆1, and for n > 0, let

nג := ({1} × In−1) ∪
⋃

j>0

(Ij × {0, 1} × In−1−j) ⊂ In ∈ S;

for n > 2 this is given by removing the interior of 0× In−1 from the boundary ∂In,
while 1ג = {1} and 0ג = ∅.

Let

Z(In/גn) := Z(In)/Z(גn) ∈ sAb,

where Z(S) is the free Z-module generated by the set S, and let δ be the canonical
map Z(In−1/גn−1)→ Z(In/גn) arising from the map In−1 → In given by x 7→ (0, x).

For any simplicial abelian group W , write

W In/גn

:= ker(W In →W nג

) = HomsAb(Z(In/גn),W )

and let δ be the canonical map W In/גn →W In−1/גn−1
dual to the map δ above.

Proposition 4.8. Given an abelian group object E in QM∗(S), corresponding under
Lemma 4.1 to the cosimplicial simplicial abelian group C(E), there is an isomorphism

MC(E) ∼= {η ∈
∞∏

n=0

Nn+1
c C(E)In/גn

: dcηn−1 = δηn}.

Proof. As in Lemma 3.9, write MC(E) = lim←−n
MC(E)n, and assume that we are given

an element

(ω0, . . . , ωn−1) ∈ MC(E)n−1.

The proof of Lemma 3.9 then gives rise to the data

βn−1 ∈Mn+1C(E)In

, αn−1 ∈ Cn+1(E)∂In

(in the notation of Definition 3.7). By Lemma 3.9, the fibre of MC(E)n → MC(E)n−1

over (ω0, . . . , ωn−1) is given by ωn ∈ Cn+1(E)In

compatibly lifting αn−1, βn−1 in the
following diagram:

Cn+1(E)In //

²²

Cn+1(E)∂In

²²
Mn+1C(E)In // Mn+1C(E)∂In

.

For any abelian cosimplicial abelian group C•, dualising [Wei, Lemma 8.3.7] gives a
decomposition of the associated cochain complex as Cn = Nn

c (C)⊕ (M ′)n(C), where
Nn

c (C) = ∩n−1
i=0 kerσi, and (M ′)n(C) =

∑n
i=1 ∂

iCn−1, so the commutative diagram
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becomes

(Nn+1
c C(E)In

)⊕ ((M ′)n+1C(E)In

) //

²²

(Nn+1
c C(E)∂In

)⊕ ((M ′)n+1C(E)∂In

)

²²
Mn+1C(E)In // Mn+1C(E)∂In

.

Moreover, σ : (M ′)nC →MnC is an isomorphism, and we will denote the inverse by
a 7→ ã. Thus the problem of constructing ωn reduces to seeking an element ηn = ωn −
β̃n−1 ∈ Nn+1

c C(E)In

lifting prN (αn−1) ∈ Nn+1
c C(E)∂In

, where

prN : C → Nc(C)

is the projection given by annihilating M ′(C).
Now, αn−1 is defined by

αn−1(t1, . . . , ti−1, 0, ti+1, . . . , tn) = (∂i+1)n−i+1ωi−1(t1, . . . , ti−1)

+ (∂0)iωn−i(ti+1, . . . , tn),

αn−1(t1, . . . , ti−1, 1, ti+1, . . . , tn) = ∂iωn−1(t1, . . . , ti−1, ti+1, . . . , tn).

Therefore,

prNαn−1(0, t2, . . . , tn) = prN∂
0ηn−1(t2, . . . , tn),

prNαn−1(t1, . . . , ti−1, 0, ti+1, . . . , tn) = 0 for i > 1,
prNαn−1(t1, . . . , ti−1, 1, ti+1, . . . , tn) = 0,

since all other terms lie in (M ′)n+1 (the span of {∂i : i > 0}).
Since prN∂

0 = prNdc, it follows from [Wei, Lemma 8.3.7] that on Nn
c ,

prN∂
0 = dc =

n+1∑

i=0

(−1)i∂i.

This implies that

ηn ∈ Nn+1
c C(E)In/גn

,

and that the condition for ηn to lift prN (αn−1) is precisely that δ(ηn) = dcηn−1.

Corollary 4.9. A representative for L cot(ι•) is given by ι(Z) ∼= EDc(Z[−1]), for

E : csAb→ QM∗(sAb,×)

as in Lemma 4.1.

Proof. First observe that, for Ξ from Definition 3.10,

L cot(ι•) ' L cot(Ξ),

since Ξ→ ι• is a cofibrant replacement.
Since Ξ represents MC, for any simplicial cochain complex V (in non-negative

cochain degrees) we have Hom(NcC(cotΞ), V ) ∼= MC(E(DcV )), where Hom is taken
in the category of simplicial cochain complexes. Since C is inverse to E , and Nc is
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inverse to Dc, Proposition 4.8 can then be rephrased to say that

Nn
c C(cot(Ξ)) ∼=

{
Z(In−1/גn−1) n > 1
0 n = 0,

with differential dc = δ.
Thus the bicomplex NsNcC(cotΞ) is weakly equivalent (in the Reedy model cate-

gory of cochain diagrams in chain complexes) to the bicomplex Z[−1], consisting of Z
concentrated in cochain degree 1 and chain degree 0. This means that cot Ξ is weakly
equivalent to EDc(Z[−1]) (with constant simplicial structure), but this is isomorphic
to ι(Z) (having n copies of Z in level n).

Definition 4.10. Given a cochain complex V , denote the brutal truncation in degrees
> n by σ>nV , so

(σ>nV )i =

{
V i i > n

0 i < n.

Definition 4.11. Define the total complex functor TotΠ from chain cochain complexes
(i.e. bicomplexes) to chain complexes by

(TotΠ V )n :=
∏

a−b=n

V b
a ,

with differential d := ds + (−1)adc on V b
a .

Proposition 4.12. For A ∈ csAb, πnMC(A) ∼= Hn−1(TotΠ σ>1NsNcA).

Proof. First, note that MC(A) = HomQM∗(S)(Ξ, A), so the Dold-Kan correspondences
give

MC(A) = HomcsAb(cot Ξ, A) ' HomDG>0dg>0Ab(NsNcC(cotΞ), NsNcA),

whereDG>0dg>0Ab is the Reedy category of non-negatively graded cochain complexes
of non-negatively graded chain complexes.

Now, Corollary 4.9 implies that NsNcC(cot Ξ) is a cofibrant replacement for Z[−1]

in DG>0dg>0Ab, so

MC(A) ' RHomDG>0dg>0Ab(Z[−1], NsNcA).

A simpler cofibrant replacement is the object L given by

Ln
i =

{
Z n = i+ 1, i+ 2,
0 otherwise,

with chain and cochain differentials the identity whenever possible. Thus

MC(A) ' HomDG>0dg>0Ab(L,NsNcA).

Now, a map L→ B is determined by the images bn of the elements 1 ∈ Ln
n−1,

subject to the conditions that dcbn = dsbn+1. Thus

HomDG>0dg>0Ab(L,B) ∼= Z−1(TotΠ σ>1B),

where Zi(V ) = ker(d : Vi → Vi−1), and the description of πnMC(A) follows.
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Proposition 4.13. For A ∈ csAb,

πnDelA ∼= Hn−1(TotΠNsNcA).

Proof. We need to understand the adjoint action of A0 on MC(A). For g ∈ A0 and
ω ∈ MC(A), we have g−1 ∗ ω ∗ g = g−1 ∗ 0 ∗ g + ω, so the problem reduces to under-
standing the morphism D : A0 → MC(A) given by D(g) = g−1 ∗ 0 ∗ g.

If we now consider the simplicial normalisation of [X/hG], for X and G abelian and
[−/h−] as in Definition 3.14, we see that

Ns
n[X/hG] ∼= Ns

nX ⊕Ns
n−1G

(x, g, dsg, 0, 0, . . . , 0)←[ (x, g).
The corresponding differential is given by ds(x, g) = (dsx+ g · 0, dg), so Ns[X/hG] is
isomorphic to the mapping cone of the morphism NsG

·0−→ NsX.
If X = MC(A) and G = A0, then the gauge action on 0 is given by g · 0 = Dg, so

NsDelA is isomorphic to the cone complex of the morphism

NsA0 NsD−−−→ NsMC(A).

Now,

HomcsAb(ι(Z), A) ∼= Z1NcA := ker(dc : N1
cA→ N2

cA),

with the map cot(Ξ)→ ι(Z) corresponding to the inclusion f : Z1NcA ↪→ MC(A) given
by f(a)n = (∂1)n(a) ∈ An+1 ⊂ (An+1)In

. The key observation is that this subset is
closed under the adjoint action, so, in particular, D : A0 → MC(A) factors through
Z1NcA, via the map dc : A0 → Z1NcA.

The map L→ Z[−1] corresponds to the natural inclusion

(Z1NcA)n ↪→ Z−1(TotΠ σ>1NcA
∆n

).

The proof of Proposition 4.12 gives an equivalence

NsMC(A) ' τ>0(TotΠ(σ>1NcA)[−1])

of chain complexes, where τ>0 is good truncation in non-negative degrees; thus

τ>0(V [−1])n =





Vn−1 n > 0
Z−1V n = 0
0 n < 0.

Since this equivalence preserves the image of NsHomcsAb(ι(Z), A), it also preserves
the image of A0, giving an equivalence between the cone complexes of

NsA0 NsD−−−→ NsMC(A) and NsA0 dc−→ τ>0(TotΠ(σ>1NcA)[−1]).

The latter cone complex is just

τ>0(TotΠ(NsNcA)[−1]),

which has the required cohomology.
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4.2. Cohomology
Definition 4.14. Given E ∈ QM∗(S) and A ∈ cAb, define cohomology groups of E
with coefficients in A by

Hi(E,A) := HomHo(QM∗(S))(E,N−1
s A[−i]),

where N−1
s A[−i] is the simplicial abelian group whose simplicial normalisation has A

concentrated in chain degree i.

Proposition 4.15. For A ∈ cAb,

Hi(ι•, A) ∼=
{

Hi+1(NcA) i > 0
Z1NcA i = 0.

Proof. By Proposition 3.11, Hi(ι•, A) ∼= π0MC(N−1
s A[−i]), which by Proposition 4.12

is isomorphic to H−1(TotΠ σ>1NcA[−i]). Since (TotΠ σ>1NcA[−i])n = (σ>1NcA)i−n,
this is just Hi+1(σ>1NcA), as required.

4.3. Groupoids
Given Γ ∈ QM∗(Gpd,×) (or even in QM∗(Cat,×)), we have BΓ ∈ QM∗(S), for

B : Gpd→ S the nerve functor, and we now seek to describe the set MC(BΓ) (and
hence the space MC(BΓ)).

Proposition 4.16. For C ∈ QM∗(Cat,×), the set MC(BC) is isomorphic to the set
of pairs (x, a), for x ∈ Ob C1, a ∈ C2(x ∗ x, ∂1x) satisfying the following conditions:

σ0x = 1,
σ0a = σ1a = idx ∈ C1(x, x),

(∂2a) ◦ (x ∗ a) = (∂1a) ◦ (a ∗ x) ∈ C3(x ∗ x ∗ x, ∂2∂1x),

where a ∗ x := a ∗ idx and x ∗ a = idx ∗ a, for idx ∈ C1(x, x) the identity morphism.

Proof. First, observe that

MC(BC) = HomQM∗(S)(Ξ, BC) ∼= HomQM∗(Cat)(τ1Ξ, C),
where τ1Ξ is the fundamental category of Ξ (in the sense of [JT, §1]).

It is therefore equivalent to show that τ1Ξ is the quasi-comonoid in categories
generated by an object ξ ∈ Ξ1

0 and a morphism α ∈ τ1(Ξ2)(ξ ∗ ξ, ∂1ξ) satisfying the
conditions for (x, a) above.

Note that Ξ0 is the free quasi-comonoid (in sets) generated by the unique element
ξ ∈ Ξ1

0, subject to the condition that σ0ξ = 1. Recall that Ξn
0 = [0, 1]n−1 for n > 1.

We may then describe τ1Ξn as the category associated to the poset [0, 1]n−1. Thus
τ1Ξ2 has objects ξ ∗ ξ and ∂1ξ (corresponding to 0 and 1 in [0, 1] respectively), with a
unique isomorphism α : ξ ∗ ξ → ∂1ξ. Since there is a unique morphism from (0, 0) to
(1, 1) in τ1Ξ3, the morphisms

(∂2α) ◦ (ξ ∗ α), (∂1α) ◦ (α ∗ ξ) ∈ C3(ξ ∗ ξ ∗ ξ, ∂2∂1ξ)

must be equal.
It therefore only remains to show that τ1Ξ is isomorphic to the quasi-comonoid D

defined to have objects ObΞ, with morphisms freely generated by α ∈ D(ξ ∗ ξ, ∂1ξ),
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subject to the condition (∂2α) ◦ (ξ ∗ α) = (∂1α) ◦ (α ∗ ξ). Since the condition is satis-
fied by τ1Ξ, there is a natural map D → τ1Ξ in QM∗(Cat).

Now, for u ∈ Dm(x, y) and v ∈ Dn(x′, y′), the fact that Dm ×Dn ∗−→ Dm+n is a
functor implies that

(idy ∗ v) ◦ (u ∗ idx′) = u ∗ v = (u ∗ idy′) ◦ (idx ∗ v).
Therefore every morphism in D can be generated from α by the operations ∂i, ξ∗, ∗ξ
and composition. Thus every morphism is a composition of morphisms of the form

∂ir · · · ∂i1(ξs ∗ α ∗ ξt).

There are 2n−2(n− 1) such morphisms in Dn, corresponding to edges in the (n− 1)-
cube ObDn = [0, 1]n−1, so we call these the edge morphisms. Since τ1Ξn is generated
by edge morphisms, this implies that the functor Dn → τ1Ξn is full.

Finally, the condition (∂2α) ◦ (ξ ∗ α) = (∂1α) ◦ (α ∗ ξ) implies that any square of
edge morphisms in Dn commutes. Thus Dn is the category associated to the poset
[0, 1]n−1, so D → τ1Ξ is an isomorphism, as required.

Corollary 4.17. For Γ ∈ QM∗(Gpd),

HomHo(QM∗(S))(ι•, BΓ) ∼= MC(BΓ)/ ∼,
where for pairs (x, a) as in Proposition 4.16, the equivalence relation ∼ is given by
saying that (x, a) ∼ (x′, a′) if there exists λ ∈ Γ1(x, x′) such that

(∂1λ) ◦ a = a′ ◦ (λ ∗ λ), σ0λ = id1,

where id1 is the identity morphism in Γ0(1, 1).

Proof. Let Ar(Γ) ∈ QM∗(Gpd) be the groupoid of arrows in Γ, defined levelwise, and
observe that

BΓ id−→ BAr(Γ)→ B(Γ× Γ)

is a path object for BΓ. Since Ξ is a cofibrant replacement for ι•, this gives

HomHo(QM∗(S))(ι•, BΓ) ∼= HomQM∗(S)(Ξ, BΓ)/HomQM∗(S)(Ξ, BAr(Γ)),

which is just MC(BΓ)/MC(BAr(Γ)).
Applying Proposition 4.16 to Ar(Γ) shows that elements of MC(BAr(Γ)) correspond

to pairs 
x

λ−→ x′,

x ∗ x λ∗λ−−−−→ x′ ∗ x′

a

y
ya′

∂1x
∂1λ−−−−→ ∂1x′


 ,

with (x, a), (x′, a′) ∈ MC(BΓ) and (∂1λ) ◦ a = a′ ◦ (λ ∗ λ), σ0λ = id1. This gives the
required description.

4.4. Linear quasi-comonoids
Given E ∈ QM∗(S), we now wish to describe the homology groups H∗(En,Z), for

all n — by definition, these are just homology groups of the simplicial abelian group



74 J. P. PRIDHAM

Z⊗ E freely generated by E. Applying Z⊗ levelwise gives a functor

Z⊗ : QM∗(S)→ QM∗(sAb,⊗),

where the latter category is not to be confused with the category QM∗(sAb,×) con-
sidered earlier. There is a forgetful functor, right adjoint to Z⊗, and [Hir, Theorem
11.3.2] allows us to put a model structure on QM∗(sAb,⊗) for which a morphism is
a weak equivalence or a fibration if the underlying map in QM∗(S) is so.

This means that a morphism in QM∗(sAb,⊗) is a weak equivalence or a fibration
whenever the underlying map in the Reedy category S∆∗∗ is so. Thus the forgetful
functor QM∗(sAb,⊗)→ (sAb)∆∗∗ is right Quillen, where the latter category has the
Reedy model structure.

Alternatively, we can forget the operations ∂i, σi and retain the multiplication. This
gives us a forgetful functor U : QM∗(Ab,⊗)→ GRing to simplicial (not necessarily
commutative) N0-graded rings with unit, given by U(R)n = Rn.

Lemma 4.18. The forgetful functor U : QM∗(sAb,⊗)→ sGRing is left Quillen.

Proof. We first note that the model structure which we will use for sGRing is defined
by saying that f : R→ S is a weak equivalence (resp. a fibration) whenever all the
maps fn : Rn → Sn are weak equivalences (resp. fibrations) in S. That this defines a
model structure follows from [Hir, Theorem 11.3.2].

We may explicitly describe the right adjoint U∗ by

(U∗R)n :=
∏

m∈N0
f : n→m in ∆

Rm,

where for any morphism g : n→ n′ in ∆, the map g : (U∗R)n → (U∗R)n′ is given by
g(r)f = rg◦f , for f : n′ →m.

The matching maps of this all have canonical sections, so it follows immediately
that U∗ preserves fibrations and trivial fibrations, hence is right Quillen.

Definition 4.19. Given a (not necessarily commutative) ring R, and an R-bimodule
M , define the set Der(R,M) of derivations to be the set of ring homomorphisms
R→ R⊕Mε over R, where ε2 = 0 and ε commutes with everything. Equivalently, a
derivation is a morphism f : R→M such that f(ab) = af(b) + f(a)b.

Then (as in [DV]) define the R-bimodule Ω(R) to be the kernel of the multipli-
cation map R⊗R→ R; this has the universal property that HomR−R(Ω(R),M) ∼=
Der(R,M), with the universal derivation R→ Ω(R) given by r 7→ r ⊗ 1− 1⊗ r.

We now also denote the forgetful functor QM∗(Ab,×)→ GAb to N0-graded abelian
groups by U .

Lemma 4.20. For E ∈ QM∗(Set), there is a natural isomorphism

U cot(E) ∼= U(Z⊗ ι•)⊗U(Z⊗E) Ω(U(Z⊗ E))⊗U(Z⊗E) U(Z⊗ ι•).
Proof. Given a graded U(Z⊗ ι•)-bimodule M , we have

HomU(Z⊗E)−U(Z⊗E)(Ω(U(Z⊗ E)),M) = Der(U(Z⊗ E),M),

making use of the augmentation U(Z⊗ E)→ U(Z⊗ ι•) coming from the canonical
map E → ι• to the final object.
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Now,

Der(U(Z⊗ E),M) = HomGRing↓U(Z⊗ι•)(U(Z⊗ E), U(Z⊗ ι•)⊕Mε),

for ε2 = 0, and this is isomorphic to HomQM∗(Set)↓U∗U(Z⊗ι•)(E,U∗(U(Z⊗ ι•)⊕Mε)).
Now, observe that cAb is equivalent to the category of Z⊗ ι•-bimodules in Ab∆∗∗ ,

with operations ∂0 and ∂n+1 on level n corresponding to left and right multiplication
by the unique element of (ι•)1. Given a Z⊗ ι•-bimodule N in Ab∆∗∗ , the equivalence
cAb ' QM∗(Ab,×) then combines with the forgetful functor UAb : QM∗(Ab,×)→
QM∗(Set) to give rise to an object of QM∗(Set). Explicitly, this is

((Z⊗ ι•)⊕Nε)×(Z⊗ι•) ι•
(noting that the underlying object in Set∆∗∗ is just N).

Next, observe that the forgetful functor Ab∆∗∗ → GAb has right adjoint U∗, defined
by the same formulae as the functor U∗ of Lemma 4.18. Thus we get U∗M ∈ Ab∆∗∗ ,
which has a natural Z⊗ ι•-bimodule structure, allowing us to regard it as a cosimplicial
complex. Moreover,

UAbU∗M = ((Z⊗ ι•)⊕ U∗Mε)×(Z⊗ι•) ι •
= ((U∗U(Z⊗ ι•))⊕ U∗Mε)×U∗U(Z⊗ι•) ι •
= U∗(U(Z⊗ ι•)⊕Mε)×U∗U(Z⊗ι•) ι•

in QM∗(Set). Since cot is left adjoint to UAb,

HomcAb(cotE,U∗M) ∼= HomQM∗(Set)(E,U∗(U(Z⊗ ι•)⊕Mε)×U∗U(Z⊗ι•) ι•),
which we have already seen is isomorphic to Der(U(Z⊗ E),M).

Thus

HomU(Z⊗E)−U(Z⊗E)(Ω(U(Z⊗ E)),M) ∼= HomcAb(cotE,U∗M)
∼= HomU(Z⊗ι•)−U(Z⊗ι•)(U cotE,M),

as required.

Corollary 4.21. The morphism L cot ι• ' cot(ι•) is a weak equivalence.

Proof. We could use our explicit cofibrant replacement Ξ to calculate L cot, but instead
we give an argument which will generalise more widely. Although ι• is not cofibrant,
the underlying graded ring U(Z⊗ ι•) is freely generated by the unique element of (ι•)1,
so it is cofibrant in sGRing. If we took a cofibrant replacement E of ι•, we would then
have a weak equivalence U(Z⊗ E)→ U(Z⊗ ι•) of cofibrant objects. Therefore

U(Z⊗ ι•)⊗U(Z⊗E) Ω(U(Z⊗ E))⊗U(Z⊗E) U(Z⊗ ι•)→ Ω(U(Z⊗ ι•))
would be a weak equivalence of simplicial U(Z⊗ ι•)-modules, so Lemma 4.20 gives a
weak equivalence cot(E)→ cot(ι•), as required.

Proposition 4.22. Given a cofibrant object R ∈ sGRing, equipped with an augmen-
tation R→ Z, there is a spectral sequence

F (H∗(Z⊗R Ω(R)⊗R Z)) =⇒ H∗(R),

where F is the free graded (non-commutative) Z-algebra functor on a graded module.
This converges whenever R0 = Z.
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Proof. By [Qui2, §II.6], cofibrant simplicial rings are retracts of free simplicial rings,
where a simplicial ring R• is said to be free if there are free generators Cq ⊂ Rq for
all q, closed under the degeneracy operations of R•.

Since the proposition is unchanged by taking retractions, we may assume that R
is free. If I = ker(R→ Z) is the augmentation ideal, first observe that R = Z⊕ I,
and that freeness gives Z⊗R Ω(R)⊗R Z = I/(I · I). There is a filtration on R by
powers of I, with associated graded algebra grIR =

⊕
n>0 I

·n/I ·n+1. Since R is free,
the canonical map F (I/(I · I))→ grIR is an isomorphism. The spectral sequence of
the proposition is then just the spectral sequence associated to this filtration.

Finally, if R0 = Z, then I0 = 0, so I ·n+1 ∩Rn = 0. We may regard the spectral
sequence as a direct sum of spectral sequences, using the graded decomposition. In
degree n, this gives the spectral sequence associated to the filtration I ·p ∩Rn = 0 of
Rn. Since this filtration is bounded, the spectral sequence converges.

Corollary 4.23. If f : E → F in QM∗(Set) is a morphism with E0 = F 0 = 1, πfE '
πfF ' • and L cot(E) ' L cot(F ), then f is a weak equivalence. Moreover, if

L cot(E) ' cot(ι•),
then E → ι• is a weak equivalence.

Proof. We may choose cofibrant replacements Ẽ, F̃ of E,F , with Ẽ0 = F̃ 0 = 1. Since
the objects Ẽn, F̃n are simply connected for all n, we only need to prove that the map
H∗(Ẽn,Z)→ H∗(F̃n,Z) of homology groups is an isomorphism. Now, H∗(Ẽn,Z) =
H∗(Z⊗ Ẽn), so we may apply Lemma 4.20 and Proposition 4.22 to give the required
isomorphism.

For the final part, note that Corollary 4.21 gives

L cot(ι•) ' cot(ι•).

4.5. Diagonals
In this section, we will study properties of the diagonal functor diag : QMM∗(S)→

QM∗(S), with a view to characterising MC(diagE), thereby extending Lemma 1.21
to the simplicial case.

4.5.1. Groupoids
Our first step is to establish a diagonal version of Proposition 4.16.

Definition 4.24. Given a ∆∗∗ ×∆∗∗-diagram S•,• of sets, and a distinguished point
1 ∈ Sn−1,i, define (Nn

h S)i = Sn,i ∩⋂
j ker(σj

h), where ker denotes the inverse image of
1. Similarly, given 1 ∈ Si,n−1, define (Nn

v S)i = Si,n ∩⋂
j ker(σj

v).

Lemma 4.25. Given Γ ∈ QMM∗(Gpd), the set MC(diagBΓ) consists of the data
(x, s, t, a, b), where x ∈ ObΓ11, and for xh := σ0

vx, xv := σ0
hx,

s ∈ Γ20(xh ∗ xh, ∂
1
hxh), t ∈ Γ02(xv ∗ xv, ∂

1
vxv)

and

a ∈ NhNvΓ11(xh ∗ xv, x), b ∈ NhNvΓ11(xv ∗ xh, x).
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These data satisfy the additional conditions that

(xh, s) ∈ MC(BΓ•0), (xv, t) ∈ MC(BΓ0•)

(as in Lemma 4.16), and that if we set γ = b−1 ◦ a : xh ∗ xv → xv ∗ xh, then

∂1
hγ = (xv ∗ s) ◦ (γ ∗ xh) ◦ (xh ∗ γ) ◦ (s ∗ xv)−1,

∂1
vγ
−1 = (xh ∗ t) ◦ (γ−1 ∗ xv) ◦ (xv ∗ γ−1) ◦ (t ∗ xh)−1.

Proof (sketch). By Proposition 4.16, we know that MC(diagBΓ) consists of pairs
(x, α), with x ∈ ObΓ11, α ∈ Γ22(x ∗ x, ∂1

h∂
1
vx), satisfying various conditions. If we look

at a := σ0
vσ

1
hα, b := σ0

hσ
1
vα, then we have a : σ0

vx ∗ σ0
hx→ x and b : σ0

hx ∗ σ0
vx→ x. We

also set s = (σ0
v)2α ∈ Γ20 and t = (σ0

h)2α ∈ Γ02.
Note that

(σ0
vx, s) ∈ MC(BΓ•0), (σ0

hx, t) ∈ MC(BΓ0•), a, b ∈ NhNvΓ11,

by applying powers of σ0
h or σ0

v to the equations for α.
Applying the operations σi

hσ
j
vσ

k
v to the equation

(∂2
h∂

2
vα) ◦ (x ∗ α) = (∂1

h∂
1
vα) ◦ (α ∗ x)

for {i, j, k} = {1, 2, 3} and j < k gives us the following equations in σ0
vα, σ

1
vα:

σ1
vα = (∂1

hb) ◦ (b ∗ xh)−1

(σ0
vα)−1 ◦ (σ1

vα) = (xh ∗ b) ◦ (a ∗ xh)−1

σ0
vα = (∂1

ha) ◦ (xh ∗ a)−1,

which reduce to the first condition for γ. Interchanging horizontal and vertical struc-
tures does the same for σ0

hα, σ
1
hα, giving the second condition (for γ−1).

It remains to show that we can recover α from s, t, a, b. It is the composition

(∂1
h∂

1
va) ◦ (s ∗ t) ◦ (xh ∗ γ ∗ xv) ◦ (a−1 ∗ a−1).

Proposition 4.26. For Γ ∈ QMM∗(Gpd), elements of HomHo(QM∗(S))(ι•, B diag Γ)
are represented by data of the form (xh, xv, s, t, γ), where

(xh, s) ∈ MC(BΓ•,0), (xv, t) ∈ MC(BΓ0,•),

and γ : xh ∗ xv → xv ∗ xh satisfies the conditions of Lemma 4.25. Two systems

(xh, xv, s, t, γ), (x′h, x
′
v, s
′, t′, γ′)

represent the same element if and only if there exist

λh ∈ Γ1,0(xh, x
′
h), λv ∈ Γ0,1(xv, x

′
v)

such that

(∂1
hλh) ◦ s = s′ ◦ (λh ∗ λh) σ0

hλh = 1,
(∂1

vλv) ◦ t = t′ ◦ (λv ∗ λv) σ0
vλv = 1,

γ′ ◦ (λh ∗ λv) = (λv ∗ λh) ◦ γ.
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Proof (sketch). Take (x, α) as in the proof of Lemma 4.25. By Corollary 4.17, (x, α) ∼
(x′, α′) whenever there exists λ ∈ Γ11(x, x′) such that

(∂1
h∂

1
vλ) ◦ α = α′ ◦ (λ ∗ λ) σ0

hσ
0
vλ = 1.

Given (x, α), we may therefore set

x′ = xh ∗ xv, α′ = (∂1
h∂

1
va
−1) ◦ α ◦ (a ∗ a)

and define a transformation λ : (x, α)→ (x′, α′) by λ = a−1.
Therefore, every element of HomHo(QM∗(S))(ι•, B diag Γ) has a representative with

x = xh ∗ xv, and a = 1, giving data (xh, xv, s, t, γ) as above. Two such systems are
equivalent if there exists a transformation λ ∈ Γ11(xh ∗ xv, x

′
h ∗ x′v) satisfying the con-

ditions of Lemma 4.17. Since a = 1, we recover that λ = λh ∗ λv for λh := σ0
vλ and

λv := σ0
hλ. The conditions for λ then reduce to the conditions for λh, λv above.

Corollary 4.27. The object diag∗(Ξ) ∈ QMM∗(S) is simply connected in every level.

Proof. By Lemma 4.25, the fundamental groupoid Γ := πf (diag∗ Ξ) ∈ QMM∗(Gpd)
is generated by an object x ∈ ObΓ1,1, together with isomorphisms (s, t, a, b) satisfying
the conditions of that lemma. Consider Υ ∈ QMM∗(Gpd) generated by objects

xh ∈ ObΓ1,0, xv ∈ ObΓ0,1

and isomorphisms (s, t, γ) satisfying the conditions of Lemma 4.26. That lemma implies
that the canonical inclusion Υ→ πf diag∗ Ξ is a levelwise equivalence.

Now, the objects of Υ are words in (∂1
h)ixh, (∂1

v)jxv, and the conditions on (s, t, a, b)
ensure that there is a unique isomorphism between any two such words in the same
level, so Υmn is simply connected. Thus the maps Υ→ πf diag∗ Ξ→ ι(•, •) are equiv-
alences in every level, as required.

4.5.2. Abelian groups
Lemma 4.28. The category QMM∗(Ab,×) is equivalent to the category ccAb of
bicosimplicial abelian groups.

Proof. The proof of Lemma 4.1 carries over to this context.

Definition 4.29. Define cot : QMM∗(Set)→ QMM∗(Ab,×) ' ccAb to be left ad-
joint to the forgetful functor QMM∗(Ab,×)→ QMM∗(Set).

The following results have the same proofs as Corollary 4.21, Proposition 4.22
and Corollary 4.23, replacing the category GRing of graded rings with the category
GGRing of bigraded rings.

Lemma 4.30. The morphism L cot ι(•, •)→ cot ι(•, •) is a weak equivalence.

Proposition 4.31. Given a cofibrant object R ∈ sGGRing, equipped with an augmen-
tation R→ Z, there is a spectral sequence

F (H∗(Z⊗R cot(R)⊗R Z)) =⇒ H∗(R),

where F is the free bigraded (non-commutative) Z-algebra functor on a bigraded mod-
ule. This converges whenever R00 = Z.
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Corollary 4.32. If f : E → F in QMM∗(Set) is a morphism with E00 = F 00 = 1,
πfE ' πfF ' • and L cot(E) ' L cot(F ), then f is a weak equivalence. Moreover, if
L cot(E) ' cot ι(•, •), then E → ι(•, •) is a weak equivalence.

Proposition 4.33. The map Ldiag∗(ι•)→ ι(•, •) is a weak equivalence.

Proof. Proposition 4.26 shows that this gives an equivalence on fundamental group-
oids, so by Corollary 4.32 it suffices to show that

L cot(L diag∗(ι•)) ' L cot(ι(•, •)).
Now the diagonal functor diag : QMM∗(Ab,×)→ QM∗(Ab,×) also has a left

adjoint diag∗Ab : QM∗(Ab,×)→ QMM∗(Ab,×), which can be calculated in a simi-
lar way to the functor d∗ in [GJ, §IV.3.3], by studying the associated cosimplicial
and bicosimplicial complexes. It follows from this description that diag∗Ab preserves
weak equivalences. Moreover, the functors diag∗Ab cot and cot diag∗ from QM∗(Set) to
QMM∗(Ab,×) are naturally isomorphic, since their right adjoints are.

By Corollary 4.30, L cot ι(•, •) ' cot ι(•, •), so it suffices to show that

diag∗Ab cot Ξ→ cot ι(•, •) = diag∗Ab cot ι•
is a weak equivalence. Since diag∗Ab preserves weak equivalences in QM∗(Ab,×), we
need only observe that cot Ξ→ cot ι• is a weak equivalence by Corollary 4.21.

5. Mapping spaces

Lemma 5.1. For n as in Lemma 1.26, P ∗n diag∗ Ξ is a cofibrant replacement for alg∗ n
in sQDatn (with the model structure of Lemma 3.17), and hence also in sQDat.

Proof. By Proposition 4.33, the morphism diag∗ Ξ→ ι(•, •) in QMM∗(S) is a weak
equivalence. From the description of P ∗n in Lemma 1.32, it follows that P ∗n from Defini-
tion 3.23 preserves weak equivalences, so P ∗n diag∗ Ξ→ P ∗nι(•, •) is also a weak equiv-
alence. Since P ∗n : QMM∗(S)→ sQDatn is left Quillen, P ∗n diag∗ Ξ is cofibrant (and a
realisation of P ∗nL diag∗ ι(•)). Now we need only recall from the proof of Lemma 1.34
that P ∗nι(•, •) ∼= alg∗ n.

5.1. MC
Proposition 5.2. For D ∈ sQDat fibrant,

MC(D)n '
∐

f : [0,n]→ObD
Maph

sQDatn
(alg∗ n, f−1D),

where Maph denotes the derived function complex RMap of [Hov, §5].
Proof. For E ∈ sQDatn,

MC(diagPnE) = HomsQDatn
(P ∗n diag∗ Ξ, E),

recalling that (unlike sQDat) the model category sQDatn has a simplicial struc-
ture. Since P ∗n diag∗ Ξ is cofibrant, this is equivalent to the derived function com-
plex Maph

sQDatn
(P ∗n diag∗ Ξ, E) whenever E is fibrant ([Hov, Theorem 5.4.9]). Since
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P ∗n diag∗ Ξ is weakly equivalent to alg∗ n, this function complex is also weakly equiv-
alent to Maph

sQDatn
(alg∗ n, E). The description now follows immediately from Defini-

tion 3.25.

Corollary 5.3. For D ∈ sQDat fibrant,

MC(D)n ' Maph
sQDat(alg∗ n,D)×h

Maph
sCat(0,D0)[0,n] (ObD)[0,n].

Proof. Comparing the model structures of Lemma 3.17 and Proposition 3.19, it follows
immediately that the functor O↓sQDat→ sQDatO, given by mapping f : O → D to
f−1D, preserves (trivial) fibrations. Its left adjoint is the inclusion functor sQDatO →
O↓sQDat, so these form a Quillen pair. Hence

Maph
sQDatn

(alg∗ n, f−1D) ' Maph
[0,n]↓sQDat(alg∗ n, [0, n]

f−→ D)

= Maph
sQDat(alg∗ n,D)×h

Maph
sQDat([0,n],D) {f}.

Thus we have that MC(D)n = Maph(alg∗ n,D)×h
Maph([0,n],D)

Hom([0, n],D), and

Maph
sQDat([0, n],D) = Maph

sCat([0.n],D0) = Maph
sCat(0,D0)[0,n].

Definition 5.4. For n ∈ N0, define Ξ× alg∗ n ∈ sQDat to have objects [0, n] and mor-
phisms (Ξ× alg∗ n)(i, j) = Ξ for i 6 j and ∅ otherwise. This can be characterised as
the coproduct (Ξ× alg∗(Obn)) t(id/∅)[0,n] (id/∅)(n) in the category sQDat, or equiv-
alently in the category sQDatn.

Lemma 5.5. The natural morphism f : Ξ× alg∗ n→ P ∗n diag∗ Ξ is a trivial cofibra-
tion in sQDatn.

Proof. For D ∈ sQDatn,

HomsQDatn(Ξ× alg∗ n,D) = MC((PnD)•,0 ×(PnD)0,0 (PnD)0,•).

The morphism f then corresponds to the map

((σ0
v)•, (σ0

h)•) : diag(PnD)→ (PnD)•,0 ×(PnD)0,0 (PnD)0,•

in QM∗(S).
Given a trivial fibration D → E in sQDatn, observe that the conditions (W1) and

(F1) from Proposition 3.19 ensure that

diag(PnD)→ diag(PnE)×(PnE)•,0×(PnE)0,0 (PnE)0,• (PnD)•,0 ×(PnD)0,0 (PnD)0,•

is a trivial fibration in QM∗(S), so Lemma 3.9 implies that the functor MC applied
to this map is surjective. Therefore f is a cofibration.

Now, Ξ× alg∗ n ' (ι•)× alg∗ n = alg∗ n and P ∗n diag∗ Ξ ' alg∗ n by Lemma 5.1.
Thus f is a trivial cofibration in sQDatn.

Definition 5.6. Recall from [Rez, 4.1] that a Segal space is defined to be a bisimplicial
set W ∈ sS which is Reedy fibrant, and for which the natural maps

Wk →
k︷ ︸︸ ︷

W1 ×∂0,W0∂1 · · · ×∂0,W0,∂1 W1

are weak equivalences in S for all k.
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Proposition 5.7. For D ∈ sQDat fibrant, MC(D) is a Segal space.

Proof. By applying Lemma 3.28 to the morphism D → alg∗ 0, we know thatMC(D)
is Reedy fibrant, since cosk0(ObD)hor is Reedy fibrant, and MC(alg∗ 0) = •.

Letting W :=MC(D), we have

(Wn)i =
∐

f : [0,n]→ObD
HomsQDatn

(P ∗n diag∗ Ξ, f−1D)i

=
∐

f : [0,n]→ObD
HomsQDatn

((P ∗n diag∗ Ξ), (f−1D)∆
i

)

= HomsQDat((P ∗n diag∗ Ξ),D∆i

),

where DK is defined by ObDK = ObD and HomDK (a, b) := HomD(a, b)K (note that
although this makes sQDat into a simplicial category, it does not satisfy axiom (SM7)
of a simplicial model category).

Now,
k︷ ︸︸ ︷

(W1 ×∂0,W0,∂1 · · · ×∂0,W0,∂1 W1)i

∼= HomsQDat((P ∗1 diag∗ Ξ)∪P∗0 Ξ · · · ∪P∗0 Ξ(P ∗1 diag∗ Ξ),D∆i

)

∼=
∐

f : [0,n]→ObD
HomsQDatn

((P ∗1 diag∗ Ξ)∪Ξ · · · ∪Ξ(P ∗1 diag∗ Ξ), f−1D)i,

since [0, 1] ∪{1} [1, 2] ∪{2} · · · ∪{n−1} [n− 1, n] = [0, n].
Now, Lemma 5.5 implies that

(Ξ× alg∗ 1)∪Ξ · · · ∪Ξ(Ξ× alg∗ 1)→ P ∗1 diag∗ Ξ∪Ξ · · · ∪ΞP
∗
1 diag∗ Ξ

is a trivial cofibration (being a pushout of trivial cofibrations), and the left-hand side
is just Ξ× alg∗(1∪0 · · · ∪01) = Ξ× alg∗ k. This is weakly equivalent to alg∗ k, so

k︷ ︸︸ ︷
W1 ×∂0,W0,∂1 × · · · ×∂0,W0,∂1 W1 '

∐

f : [0,n]→ObD
Maph

sQDatn
(alg∗ k, f−1D),

which is equivalent to Wk by Proposition 5.2.

5.1.1. Morphism spaces
Lemma 5.8. Given D ∈ QDat, and x, y ∈ Ob algD, the object D(x̄, ȳ) ∈ Set∆∗∗ has
the natural structure of a cosimplicial set, where x̄, ȳ ∈ ObD are the objects underlying
x, y.

Proof. The objects x, y correspond to the elements

ωx ∈ MC(D(x, x)), ωy ∈ MC(D(y, y)).

In order to enhance the structure of D(x̄, ȳ), we define operations ∂0 := ωx∗ : D(x, y)n

→ D(x, y)n+1, and ∂n+1 := ∗ωy : D(x, y)n → D(x, y)n+1. The Maurer-Cartan equa-
tions ensure that these operations satisfy the necessary conditions for a cosimplicial
set.
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Definition 5.9. Recall from [GJ, §VIII.1] that the functor Tot: cS→ S from cosim-
plicial simplicial sets to simplicial sets is given by

TotX• =
{
x ∈

∏
n

(Xn)∆
n

: ∂i
Xxn = (∂i

∆)∗xn+1, σ
i
Xxn = (σi

∆)∗xn−1

}
.

When X is Reedy fibrant, homotopy groups of the total space are related to homotopy
groups of the spaces Xn via a spectral sequence given in [GJ, Proposition VIII.1.15].

Proposition 5.10. Given D ∈ sQDat fibrant, and x, y ∈ Obalg(D0), there is a nat-
ural weak equivalence

MC(D)1 ×MC(D)×MC(D) {(x, y)} ' TotD(x̄, ȳ).

Proof. Define f : [0, 1]→ ObD by f(0) = x̄, f(1) = ȳ, and set E := f−1D ∈ sQDat1
(for sQDatn as in Lemma 1.32). Then

MC(D)1 ×MC(D)×MC(D) {(x, y)} = Hom(ΞtΞ)↓sQDat1
(P ∗1 diag∗ Ξ, E)

= Homalg∗(0t0)↓sQDat1((P
∗
1 diag∗ Ξ)

∪(ΞtΞ) alg∗(0 t 0), E).
By Lemma 5.5,

(P ∗1 diag∗ Ξ)∪(ΞtΞ) alg∗(0 t 0) ' (Ξ× alg∗ 1)∪(ΞtΞ) alg∗(0 t 0) = alg∗ 1,

so our expression reduces to RHomalg∗(0t0)↓sQDat1
(alg∗ 1, E).

Now, in the simplicial category alg∗(0 t 0)↓sQDat1, a cofibrant replacement for
alg∗ 1 is given by the object C with C(0, 0) = C(1, 1) = ι•, C(1, 0) = ∅ and C(0, 1)• =
∆•. The multiplicative structure is determined by setting ω0 ∗ a = ∂0a and a ∗ ω1 =
∂n+1a, for a ∈ ∆n and ω0, ω1 the unique elements of C(0, 0)1 and C(1, 1)1.

Now,

Homalg∗(0t0)↓sQDat1
(C, E) =
{
e ∈

∏
n

(E(0, 1)n)∆
n

: ∂i
Een = (∂i

∆)∗en+1, σ
i
Een = (σi

∆)∗en−1

}

(which preserves (trivial) fibrations, proving that C is cofibrant).
This expression is just Tot E(0, 1), where E(0, 1) is given the cosimplicial structure

of Lemma 5.8, but E(0, 1) = D(x̄, ȳ), giving the required description.

5.2. N
Definition 5.11. Given D ∈ sQDat, define N (D) ∈ sS by

N (D)n := Maph
sQDat(alg∗ n,D).

Proposition 5.12. Any Reedy fibrant replacement for N (D) is a Segal space.

Proof. If W := N (D), we need to show that the maps

Wk →
k︷ ︸︸ ︷

W1 ×h
∂0,W0 ∂1

· · · ×h
∂0,W0,∂1

W1

are weak equivalences for all k.



THE HOMOTOPY THEORY OF STRONG HOMOTOPY ALGEBRAS AND BIALGEBRAS 83

Now, the right-hand side is given by

Maph
sQDat(alg∗ 1∪L

alg∗ 0 · · · ∪L
alg∗ 0 alg∗ 1,D),

so we need only show that alg∗ 1∪L
alg∗ 0 · · · ∪L

alg∗ 0 alg∗ 1 ' alg∗ k.
A cofibrant replacement of the diagram for this homotopy colimit is given by taking

Ξ instead of alg∗ 0, and P ∗1 diag∗ Ξ instead of alg∗ 1. Thus the calculation of Proposi-
tion 5.7 can be interpreted as saying that

k︷ ︸︸ ︷
alg∗ 1∪L

alg∗ 0 · · · ∪L
alg∗ 0 alg∗ 1 ' alg∗ k,

which gives the required result.

Definition 5.13. Given a Segal space W , define ObW := (W0)0. For x, y ∈ ObW ,
define mapW (x, y) := {x} ×W0,∂1 W1 ×∂0 {y} ∈ S. There is a natural category Ho(W )
with objects ObW and morphisms π0mapW (x, y).

Definition 5.14. Recall from [Rez, 7.4] that a morphism f : U → V of Segal spaces
is said to be a Dwyer-Kan equivalence if

1. Ho(f) : Ho(U)→ Ho(V ) is an equivalence of categories, and
2. for all x, y ∈ ObU , the map mapU (x, y)→ mapV (fx, fy) is a weak equivalence

in S.

Proposition 5.15. Given a fibrant object D ∈ sQDat, the natural transformation

MC(D)→ N (D)f

is a Dwyer-Kan equivalence of Segal spaces, where (−)f denotes Reedy fibrant replace-
ment.

Proof. Corollary 5.3 amounts to saying thatMC(D) is weakly equivalent to the homo-
topy fibre product of

N (D)→ cosk0Maph
sQDat(0,D0)hor ← cosk0(ObD)hor.

Thus, for x, y ∈ ObMC(D), the space mapMC(D)(x, y) is weakly equivalent to the
homotopy fibre product of

mapN (D)f (x, y)→ mapcosk0Maph
sQDat(0,D0)hor(x, y)← mapcosk0(ObD)hor(x, y).

Now, for any S ∈ S and x, y ∈ S0, mapcosk0(S)hor(x, y) = {(x, y)}, so

mapMC(D)(x, y) ' mapN (D)f (x, y).

It therefore remains only to show that the morphism Ho(MC(D))→ Ho(N (D)f )
of categories is essentially surjective. Since 0 is cofibrant, the map

ObD → Maph
sQDat(0,D0)

is surjective on π0. Any fibrant replacement (ObD)f → Maph
sQDat(0,D0) will also be

surjective on π0, and hence surjective on level 0 (by path-lifting). Therefore the map

ObMC(D)→ ObN (D)f i

is surjective on objects, so a fortiori essentially surjective.
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Definition 5.16. Given a Segal space W , let Whoequiv ⊂W1 consist of components
whose images in π0mapW (x, y) are isomorphisms in Ho(W ). W is said to be a complete
Segal space if the map σ0 : W0 →Whoequiv is a weak equivalence.

Lemma 5.17. Given a levelwise trivial cofibration E → F in S∆∗∗ , and X ∈ Set∆
opp
∗∗ ,

the map X×←−E → X×←−F is a trivial cofibration in S, for ×←− as in Definition 1.27.

Proof. Since Set∆∗∗ is equivalent to the category of augmented simplicial objects by
Remark 1.2, a morphism E → F is a levelwise trivial cofibration precisely when E0 →
F 0 is a trivial cofibration and E>1 → F>1 corresponds to a levelwise trivial cofibration
of bisimplicial sets. By [GJ] Theorem IV.3.9, this second condition is the same as being
a Reedy trivial cofibration of bisimplicial sets.

Let LnE be the Reedy latching object of E in Set∆∗∗ (as in [Hov, Definition 5.2.2]).
Explicitly, this is the quotient of

∐n−1
i=1 E

n−1 by the relations (∂je)i ∼ (∂i−1e)j for
e ∈ En−2 and i 6 j. Note that L0E = L1E = ∅. For E>1 → F>1 to be a Reedy trivial
cofibration says that the latching maps En ∪LnE LnF → Fn are trivial cofibrations for
all n > 1. Thus a morphism E → F is a levelwise trivial cofibration in S∆∗∗ precisely
when the latching maps are trivial cofibrations for all n > 0.

Let (X×←−E)(n) ⊂ X×←−E be the subspace generated by Xi × Ei for i 6 n, and let
NnX = Xn − (

⋃
06r6n−1 σrXn−1). Then

(X×←−E)(n) = (X×←−E)(n−1) ∪(NnX×LnE) (NnX × En),

so the map

(X×←−E)(n) ∪(X×←−E)(n−1) (X×←−F )(n−1) → (X×←−F )(n)

is a trivial cofibration.
We then proceed inductively to show that (X×←−E)(n) → (X×←−F )(n) is a trivial cofi-

bration. The case n = 0 is immediate, and by assuming the n− 1 case we get a trivial
cofibration

(X×←−E)(n) → (X×←−E)(n) ∪(X×←−E)(n−1) (X×←−F )(n−1).

The result above then implies that (X×←−E)(n) → (X×←−F )(n) is a trivial cofibration,
which completes the induction.

Thus X×←−E → X×←−F is a transfinite composition of trivial cofibrations, so must be
a trivial cofibration, as required.

Proposition 5.18. If I is a small category and D ∈ sQDat, then there are canonical
equivalences

Maph
sS((BI)hor,N (D)) ' Maph

sQDat(alg∗ I,D).

Proof. Lemma 5.1 shows that P ∗n diag∗ Ξ is a cofibrant replacement for alg∗ n, so for
K ∈ S,
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Maph
sS(K

hor,N (D)) ' holim←−
n∈∆↓K

Maph
sS((∆

n)hor,N (D))

' holim←−
n∈∆↓K

Maph
sQDat(P

∗
n diag∗ Ξ,D)

' Maph
sQDat( holim−→

n∈(∆↓K)opp

P ∗n diag∗ Ξ,D)

= Maph
sQDat(P

∗
K diag∗ Ξ,D).

Now, Lemma 1.35 gives a method for calculating the functor P ∗BI. Since (diag∗ Ξ)n,•

∈ S∆∗∗ is levelwise contractible for all n (by Proposition 4.33), a choice of point
x ∈ (diag∗ Ξ)n,1 determines a levelwise trivial cofibration ι• → (diag∗ Ξ)n,• in S∆∗∗ .
Therefore Lemma 5.17 implies that

K(a, b)×←−(ι•)→ K(a, b)×←−(diag∗ Ξ)n,•

is a trivial cofibration for all a, b ∈ K0.
By Lemma 1.29, (P ∗BI diag∗ Ξ)(a, b)n = (BI)(a, b)×←−(diag∗ Ξ)n,•, so the calculation

above shows that the canonical map

(P ∗BI diag∗ Ξ)(a, b)n → (BI)(a, b)×←−(ι•)
is a weak equivalence; thus

P ∗BI diag∗ Ξ→ P ∗BIι(•, •)
is a weak equivalence, and P ∗BIι(•, •) ∼= alg∗ I as in Lemma 1.36.

Corollary 5.19. Any Reedy fibrant replacement of N (D) is a complete Segal space.

Proof. We know that N (D)f is a Segal space by Proposition 5.12. If we let J be the
simply connected groupoid on two objects, then [Rez, Proposition 6.4] implies that it
suffices to show that the map

N (D)f
0 → Maph

sS((BJ)hor,N (D)f )

is a weak equivalence.
By Proposition 5.18,

Maph
sS((BI)hor,N (D)) ' Maph

sQDat(alg∗ I,D),

and alg∗ J ' alg∗ 0, since J is simply connected. The result then follows by considering
this equivalence in the cases I = J and I = 0.

Definition 5.20. Given a simplicial category I, let BI ∈ sS be the nerve of I, as
considered in [Ber2, §8] (where it was denoted R). Explicitly, (BI)n ∈ S is given by

(BI)n =
∐

x0,...,xn∈Ob I
HomI(x0, x1)× · · · ×HomI(xn−1, xn).

In [Rez, Theorem 7.2], Rezk introduced the complete Segal space model structure
CSS on the category sS, whose fibrant objects are complete Segal spaces. In [Ber2],
Bergner showed that there is a chain of Quillen equivalences between the model cat-
egories CSS and sCat. Therefore the following theorem can be interpreted as saying
that N and MC are derived right adjoints to alg∗ : sCat→ sQDat.
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Theorem 5.21. If I is a simplicial category and D ∈ sQDat, then there are canonical
equivalences

Maph
sQDat(alg∗ I,D) ' Maph

sS(BI,N (D))

' Maph
CSS(BI,N (D))

' Maph
CSS(BI,MC(Df )),

where Df is a Reedy fibrant replacement of D.

Proof. First note that we can regard K ∈ sS as a diagram ∆opp → S and evaluate K
in the simplicial category sS as the coend K = K ⊗∆opp (∆)hor =

∫ n
Kver

n × (∆n)hor

(in the notation of [Hir, Definition 18.3.2]). Since K and ∆: ∆opp → S are both Reedy
cofibrant, this means that Maph

sS(K,N (D)) is (assuming N (D) Reedy fibrant) the end∫
n

Maph
sS(Kver

n × (∆n)hor,N (D)) =
∫

n
N (D)Kn

n . The proof of Proposition 5.18 now
adapts to prove the first equivalence, replacing homotopy limits with ends.

For any K ∈ sS, we may define P ∗K : QMM∗(S)→ sQDat(S), specialising to the
functor P ∗K of Lemma 1.35 when K ∈ sSet. If I is a simplicial category, then for all m
the simplicial set [n] 7→ ((BI)n)m is the nerve of the category Im, given by Ob Im =
Ob I and HomIm(x, y) := HomI(x, y)i. Thus the description of P ∗BI in Lemma 1.35
generalises to simplicial categories I, and, as in Proposition 5.18, the morphism

P ∗BI diag∗ Ξ→ P ∗BIι(•, •) = alg∗ I

is a weak equivalence.
By Corollary 5.19, N (D)f is a complete Segal space, and since the identity functor

CSS → sS is right Quillen for the Reedy model structure, the second equivalence
follows. Proposition 5.15 gives the third equivalence, since [Rez, Theorem 7.7] shows
that a morphism of Segal spaces becomes a weak equivalence in CSS if and only if it
is a Dwyer-Kan equivalence.

5.3. DEL
Definition 5.22. Let D 7→ DLGpd be the left-derived functor

Ho(sQDat)→ Ho(sQDpd)

of the functor D 7→ DGpd from Definition 3.20.

Lemma 5.23. There is a natural equivalence (alg∗ n)LGpd ' alg∗(nGpd).

Proof. By Lemma 1.36, P ∗n diag∗ Ξ is a cofibrant resolution of alg∗ n, so we need to
show that

(P ∗n diag∗ Ξ)Gpd ' alg∗(nGpd).

By Lemma 5.5, the natural morphism f : Ξ× alg∗ n→ P ∗n diag∗ Ξ is a trivial cofi-
bration in sQDatn and hence also in sQDat. Since (−)Gpd : sQDat→ sQDpd is left
Quillen, this implies that fGpd is a trivial cofibration, so it suffices to show that
(Ξ× alg∗ n)Gpd ' alg∗(nGpd). Now, (Ξ× alg∗ n) has objects [0, n] and morphisms

(Ξ× alg∗ n)Gpd(i, j) = Ξ

for all i, j. Since Ξ ' ι•, this gives a weak equivalence (Ξ× alg∗ n)Gpd → alg∗(nGpd),
as required.
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Proposition 5.24. For D ∈ sQDpd fibrant,

Del(D) ' Maph
sQDat(alg∗ n,D)

for all n > 0.

Proof. Let Del∗ be the left adjoint to Del : sQDpd→ S, making it a left Quillen
functor by Proposition 3.36. Since Del(D)0 =

∐
x∈ObDMC(D(x, x)), it follows that

Del∗(∆0) = Ξ, so Del∗(∆0) ' alg∗ 0. Since ∆• is a cofibrant cosimplicial resolution of
∆0 in S, Del∗(∆•) is thus a cofibrant cosimplicial resolution of alg∗ 0, so

Maph
sQDpd(alg∗ 0,D) ' ([m] 7→ HomsQDpd(Del∗(∆m),D)) = Del(D),

giving the case n = 0.
For the general case, note that the inclusion functor sQDpd→ sQDat is right

Quillen, with left adjoint given by groupoid completion, and so

Maph
sQDat(alg∗ n,D) ' Maph

sQDpd((alg∗ n)LGpd,D) ' Maph
sQDpd(alg∗(nGpd),D),

by Lemma 5.23. Since nGpd ' 0, this is just Maph
sQDpd(alg∗ 0,D), which completes

the proof.

Proposition 5.25. The functor DEL : sQDpd→ sS of Definition 3.38 is right Quil-
len for the complete Segal space model structure CSS of [Rez, Theorem 7.2]. In par-
ticular, for any D ∈ sQDpd fibrant, the simplicial space DEL(D) is a complete Segal
space. In fact, DEL(D) is then equivalent to the constant simplicial space Del(D).

Proof. By Corollary 3.39, we know that DEL is right Quillen for the Reedy model
structure. In order to prove the remaining statements, it suffices to show that for any
fibration f : D → E , the fibrations

(f, (∂i)n) : DEL(D)n → DEL(E)n ×Del(E) Del(D)

are trivial fibrations for i = 0, 1 and for all n. This is equivalent to showing that the
cofibrations

Del∗(∆m)∪Del∗(∂∆m)(DELn)∗(∂∆m)→ (DELn)∗(∆m)

are trivial cofibrations for all m > 0 (and both choices of map (∂i)n∗ : Del∗ → DEL∗n),
where (DELn)∗ : S→ sQDpd is left adjoint to DELn.

Since DEL is right Quillen, the functor DELn is right Quillen, so the proof of
Proposition 5.24 adapts to show that the cosimplicial object i 7→ (DELn)∗(∆m) is a
cofibrant cosimplicial resolution of (P ∗n diag∗ Ξ)Gpd in sQDpd, which by Lemma 5.23
is equivalent to alg∗(nGpd) and hence is equivalent to alg∗ 0. Therefore the cofibrations
Del∗(∆m)→ (DELn)∗(∆m) are all weak equivalences. Moreover,

Del∗(∂∆m) ' holim−→∆m−1,+
alg∗ 0

(for ∆m−1,+ the subcategory of ∆ on objects 6 m− 1 with only injective morphisms)
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and similarly for (DELn)∗(∂∆m). Thus the cofibrations

Del∗(∂∆m)→ (DELn)∗(∂∆m)

are also weak equivalences, giving a weak equivalence

Del∗(∆m)→ Del∗(∆m)∪Del∗(∂∆m)(DELn)∗(∂∆m).

Since Del∗(∆m)→ (DELn)∗(∆m) is a trivial cofibration (coming from the trivial cofi-
bration (∂i)n : ∆0 → ∆n), this gives the required result.

Corollary 5.26. For D ∈ sQDpd fibrant, the morphism MC(D)→ DEL(D) is a
Dwyer-Kan equivalence, and DEL(D) ' N (D).

Proof. Proposition 5.24 implies that the constant simplicial space Del is a model forN ,
so Proposition 5.25 shows that DEL must also be a model for N . By Proposition 5.15,
the morphism MC(D)→ N (D)f is a Dwyer-Kan equivalence.

6. Maurer-Cartan and classifying spaces

In many cases, a simplicial quasi-descent datum E has additional structure, and in
this section we show how this simplifies the Segal spacesMC(E) and DEL(E) (where
appropriate). This will give descriptions which are not only simpler, but are related
to more familiar formulae.

6.1. Groups
6.1.1. Cosimplicial simplicial groups
Definition 6.1. Let csGp be the category of cosimplicial simplicial groups, equipped
with its Reedy simplicial model structure over simplicial groups.

Example 6.2. Given a simplicial set X and a simplicial group G, our main motivating
example of a cosimplicial simplicial group is the complex C•(X,G) given by

Cn(X,G)m := GXn
m ,

with cosimplicial operations ∂i := G∂i
m , σ

i := Gσi
m , and simplicial operations ∂i = ∂G

i ,
σi = σG

i .

Definition 6.3. Define MC: cGp→ Set by

MC(G) := Z1(G) = {ω ∈ G1 : σ0ω = 1 ∂1ω = ∂2ω · ∂0ω}.
Definition 6.4. Define MC: csGp→ S by MC(G) ⊂∏

n>0(G
n+1)∆

n

, satisfying the
conditions of [Pri3, Lemma 3.3]; i.e. the elements ωn ∈ (Gn+1)∆

n

satisfy

∂iωn =

{
∂i+1ωn−1 i > 0
(∂1ωn−1) · (∂0ωn−1)−1 i = 0,

σiωn = σi+1ωn+1,

σ0ωn = 1.

Define MC: csGp→ Set by MC(G) = MC(G)0, noting that this agrees with Defini-
tion 6.3 when G ∈ cGp.
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Remark 6.5. If G ∈ csGp is of the form G = C•(X,H), for X ∈ S and H ∈ sGp as
in Example 6.2, then [Pri3, Lemma 3.3] gives a canonical isomorphism MC(G) ∼=
HomS(X, W̄H), where W̄ is the classifying space functor of [GJ, Ch V.4].

Definition 6.6. Define E : csGp→ QM∗(S) by E(G)n = Gn, with identity 1 ∈ G0,
operations ∂i

E(G) = ∂i
G, σ

i
E(G) = σi

G, and Alexander-Whitney product

g ∗ h = ((∂m+1
G )ng) · ((∂0

G)mh),

for g ∈ Gm, h ∈ Gn.
Observe that E is right Quillen and preserves weak equivalences. Denote its left

adjoint by E∗. Note that MC(G) = MC(E(G)).

Note that the equivalence of Lemma 4.1 is just given by E : cAb→ QM∗(Ab,×).

Proposition 6.7. For G ∈ csGp fibrant, there is a natural isomorphism

RHomcsGp(E∗(ι•), G) ' MC(G)

in Ho(S).

Proof. This is essentially the same as Proposition 3.11. First, note that E∗(ι•)n is
the free group on n generators, with constant simplicial structure. If s is the unique
element of (ι•)1, then the generators in level n are given by ∂in−1 · · · ∂i2∂i1s, for
0 < i1 < i2 < · · · < in−1 6 n. We then define Φ ∈ csGp by

Φn := Fr(
∐

j<n

∆j),

where Fr denotes the free group functor. We give this the operations dual to those on
W̄G in [GJ, Ch. V]; i.e. for x ∈ ∆j ⊂ Φn, we set

∂i
Φ(x) =





∂i−n+j
∆ (x) i > n− j

(∂0
∆x) · x i = n− j

x i < n− j,

σi
Φ(x) =





σi−n+j
∆ (x) i > n− j

1 i = n− j − 1
x i < n− j − 1.

Thus HomsGp(Φn, Gm) = (W̄Gm)n, with cosimplicial operations on Φ correspond-
ing to simplicial operations on W̄G, so we have

HomcsGp(Φ, G) =
{
f ∈

∏
n

(W̄Gn)n : ∂ifn = ∂ifn+1σ
ifn = σifn−1

}

= HomcS(∆, W̄G),

where ∆ is the cosimplicial space given by ∆n in level n.
The proof of [GJ, Lemma V.5.3] adapts to show that this is isomorphic to MC(G).

Explicitly, ω ∈ MC(G) corresponds to the maps ∆n → W̄Gn given by the element
(ωn−1, ∂

0ωn−2, . . . , (∂0)n−1ω0) ∈ (W̄Gn)n. (This also implies that Φ is the group com-
pletion of the cosimplicial simplicial groupoid G(∆), for G the loop groupoid functor
of [GJ, §V.7].) Hence HomcsGp(Φ, G) ∼= MC(G).
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The inclusion MC(G0) ↪→ MC(G) corresponds to a map Φ→ ι•. Since
∐

i<n ∆i

is weakly equivalent to a disjoint union of n− 1 points, this map must be a weak
equivalence.

Now, we may show (similarly to Lemma 3.9, replacing In by ∆n) that for all trivial
fibrations G→ H, MC(G)→ MC(H) is a surjection; hence Φ is cofibrant.

Thus, for G fibrant,

RHom(E∗(ι•), G) ' Hom(Φ, G) ' MC(G).

6.1.2. Equivalence of Maurer-Cartan spaces
Proposition 6.8. There are equivalences

MC(E(G)) ' MC(G)

in S, functorial in fibrant objects G ∈ csGp. Here, the functors MC on the left and
right are those from Definitions 3.5 and 6.4 respectively.

Proof. Since G is fibrant, E(G) = RE(G). By Proposition 3.11,

MC(E(G)) ∼= RHomQM∗(S)(ι•,RE(G)) ∼= HomcsGp(LE∗(ι•), G).

Thus, by Proposition 6.7, we need only show that LE∗(ι•)→ E∗(ι•) is a weak equiv-
alence in csGp. A model for LE∗(ι•) is given by E∗Ξ, for Ξ from Definition 3.10.

Since E∗ is a left adjoint, it commutes with coequalisers, so π0(E∗Ξ)n = E∗(π0Ξn) =
E∗((ι•)n). Since E∗(ι•)n is a discrete group, we need only show that the components
of (E∗Ξ)n are contractible for all n. This is equivalent to saying that the universal
cover U of BE∗(ι•)n is contractible, which will follow from the Hurewicz theorem
if Hi(U,Z) = 0 for all i > 1. This is the same as saying that the homology groups
Hi((E∗Ξ)n,ZE∗(ι•)n) are zero for all i > 1.

Let csRep(E∗(ι•)) be the category of abelian cosimplicial simplicial E∗(ι•)-rep-
break resentations and consider the functor csRep(E∗(ι•))→ csGp↓E∗(ι•) given by
V 7→ V o E∗(ι•). This is a right adjoint, and it is right Quillen for the Reedy model
structure on csRep(E∗(ι•)). Denote the derived left adjoint by L cot and observe that
for V ∈ sRep(E∗(ι•)n),

HomHo(sRep(E∗(ι•)n))((L cotG)n, V ) ∼= HomHo(sGp↓E∗(ι•)n)(Gn, V [−i]o E∗(ι•)n)
∼= H1(B(Gn), •;V ),

where the final group is hypercohomology (with coefficients in a complex of local
systems). Thus

Hi(L cotG)n ∼= Hi+1(B(Gn), •;ZE∗(ι•)n).

It therefore suffices to show that Hi(L cot E∗Ξ) = 0 for all i > 1.
Now, for W ∈ csRep(E∗(ι•)),
HomcsGp↓E∗(ι•)(E∗Ξ, W o E∗(ι•)) ∼= HomQM∗(S)↓EE∗(ι•)(Ξ, E(W o E∗(ι•)))

∼= HomQM∗(S)(Ξ, E(W o E∗(ι•))×EE∗(ι•) ι•)
∼= HomQM∗(Ab,×)(cot Ξ, E(W o E∗(ι•))×EE∗(ι•) ι•).

This leads us to consider the functor  : csRep(E∗(ι•))→ csAb, given by

W 7→ C(E(W o E∗(ι•))×EE∗(ι•) ι•).
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Explicitly, we see that this has objects w ·$m in level m, for $m the image of

(ι•)m → EE∗(ι•)m.

The operations are ∂i(w ·$m) = ∂i(w) ·$m+1 for 0 < i 6 m, σi(w ·$m) = σi(w)
· $m−1,

∂0
W (w ·$m) = $1 ∗ (w ·$m) = (∂2)m($1) · ∂0

W (w) · ∂0($m)

= ad(∂2)m($1)(∂
0
Ww) ·$m+1

(as $m+1 = (∂2)m($1) · ∂0($m)), and

∂m+1
W (w ·$m) = (w ·$m) ∗$1 = ∂m+1

W w ·$m+1.

Thus (W )n ∼= Wn, with the same operations as W , except for

∂0
W (w) = ((∂2)m$1) ? ∂0

W (w),

where ? denotes the group action of E∗(ι•)m+1 on Wm+1.
It therefore follows that the left adjoint ∗ is given by (∗U)n = Un[E∗(ι•)n], which

is the free representation on generators Un. This will have the same operations on
generators as U , except that ∂0

∗U (u) = ((∂2)m$1)−1 ? ∂0
U (u).

For the natural Reedy model structure on csRep(E∗(ι•)), ∗ is clearly left Quillen, so
it follows that  is a right Quillen functor. Moreover, the descriptions above show that
 and ∗ both preserve weak equivalences. Thus

L cot E∗Ξ ' ∗L cot(ι•),
so Hi(L cot E∗Ξ) ∼= HiDc(Z[−1]) by Lemma 4.9. In particular, Hi(L cot E∗Ξ) = 0 for
all i > 0, as required.

6.1.3. Del
Definition 6.9. For G ∈ csGp, there is an adjoint action of G0 on MC(G), given by

(g ∗ ω)n = (∂0(∂1)n+1(σ0)n+1g) · ωn · (∂0(∂1)n(σ0)ng−1),

as in [Pri3, Definition 3.8].
We then define Del(G) to be the homotopy quotient Del(G) = [MC(G)/hG0] :=

MC(G)×G0
WG0 ∈ S.

Remark 6.10. If G = C•(X,H) for X ∈ S,H ∈ sGp, then Del(G) ' MapS(X, H̄). This
is because

Del(G)n = Hom(X, W̄ (G∆n

)× (cosk0G0)n),

and [n] 7→ W̄ (G∆n

)× (cosk0G0)n gives a fibrant simplicial resolution of W̄G in S.

Proposition 6.11. The equivalence of Proposition 6.8 is G0-equivariant, giving iso-
morphisms Del(E(G)) ' Del(G) in Ho(S), functorial in fibrant objects G ∈ csGp.

Proof. If we let Z ∈ QM∗(S) be the object given by Z in degree 0 and ∅ in higher
degrees, then E0 ∼= HomQM∗(S)(Z, E), so the E0-action on MC(E) corresponds to a
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Z-coaction on Ξ, i.e. a map

Ξ→ Ξ
∐
Z

in QM∗(S), where
∐

denotes coproduct in the category QM∗(S), satisfying a coasso-
ciativity condition.

Since E∗ is a left adjoint, it preserves coproducts, so we get a coaction of E∗(Z) on
E∗(Ξ), i.e. a coassociative map E∗(Ξ)→ E∗(Ξ) ? E∗(Z), where ? denotes free product.
Of course, HomcsGp(E∗(Z), G) ∼= E(G)0 = G0.

Now, the morphisms

MC(E(G))← MC(E(G)0) = MC(G0)→ MC(G)

are equivariant with respect to the action of G0
0. Since HomcsGp(E∗(Z), G) ∼= G0

0, this
amounts to saying that the weak equivalences

E∗(Ξ)→ E∗(ι•)← Φ

are E∗(Z)-coequivariant, with the E∗(Z)-coaction on Φ corresponding to the adjoint
action of Definition 6.9.

We now make use of the fact that for H ∈ sGp acting on Y ∈ S, one model for the
homotopy quotient [Y/hH] is given by first forming the simplicial object [Y/H] in the
category of groupoids, then forming the nerve B[Y/H] (which is a bisimplicial set),
giving [Y/hH] ' diagB[Y/H].

Given C ∈ csGp equipped with a E∗(Z)-coaction, we now define the cosimplicial
diagram β(C) ∈ (csGp)∆ by the property that

HomcsGp(β(D), G) = B[HomcsGp(D,G)/G0] ∈ (S)∆
opp
.

Explicitly, β(D)n = D ?

n︷ ︸︸ ︷
E∗(Z) ? E∗(Z) ? · · · ? E∗(Z).

Now E∗(Z) is just the cosimplicial group E∗(Z)n =

n+1︷ ︸︸ ︷
Z ? Z ? · · · ? Z, so E∗(Z) is lev-

elwise cofibrant. Since E∗(Z), E∗(Ξ), E∗(ι•) and Φ are all levelwise cofibrant, the
morphisms β(E∗(Ξ))→ β(E∗(ι•))← β(Φ) are (levelwise) weak equivalences.

In the Reedy model category (csGp)∆, we now choose a cofibrant replacement C
for β(Φ), and a factorisation β(E∗(Ξ))→ F → β(E∗(ι•)) with β(E∗(Ξ))→ F a trivial
cofibration and F → β(E∗(ι•)) a trivial fibration. Since C and F are weakly equivalent
in the Reedy model category (csGp)∆ ↓β(E∗(ι•)), there is an explicit weak equivalence
f : C → F in this category. Now, Reedy cofibrations are a fortiori levelwise cofibra-
tions, so the objects Cn, Fn are cofibrant in csGp. We therefore have levelwise weak
equivalences

HomcsGp(β(Φ), G)→ HomcsGp(C,G),

and

HomcsGp(F,G)→ HomcsGp(β(E∗(Ξ)), G)

in (S)∆opp
, for all G ∈ csGp. Combining these with f gives weak equivalences

B[MC(G)/G0]→ HomcsGp(C,G)
f∗←− HomcsGp(F,G)→ B[MC(E(G))/G0],
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in (S)∆opp
and taking diagonals gives the required result that

Def(G) ' Def(E(G)).

6.2. Lie algebras
6.2.1. Nilpotent DGLAs
Definition 6.12. Let DGZN̂LA denote the category of pro-nilpotent differential gra-
ded Lie algebras (DGLAs) over k.

Explicitly, a DGLA is a graded vector space L =
⊕

i∈Z L
i over k, equipped with

operators [, ] : L× L→ L bilinear and d : L→ L linear, satisfying:

1. [Li, Lj ] ⊂ Li+j .
2. [a, b] + (−1)āb̄[b, a] = 0.
3. (−1)c̄ā[a, [b, c]] + (−1)āb̄[b, [c, a]] + (−1)b̄c̄[c, [a, b]] = 0.
4. d(Li) ⊂ Li+1.
5. d ◦ d = 0.
6. d[a, b] = [da, b] + (−1)ā[a, db].

Here ā denotes the degree of a, mod 2, for a homogeneous.
A DGLA is said to be nilpotent if the lower central series ΓnL (given by Γ1L = L,

Γn+1L = [L,ΓnL]) vanishes for nÀ 0.
Thus DGZN̂LA is the category of pro-objects in the category of nilpotent DGLAs.

Definition 6.13. Given a pro-nilpotent Lie algebra g, define Û(g) to be the pro-
unipotent completion of the universal enveloping algebra of g, regarded as a pro-object
in the category of algebras. As in [Qui1, Appendix A], this is a pro-Hopf algebra, and
we define exp(g) ⊂ Û(g) to consist of elements g with ε(g) = 1 and ∆(g) = g ⊗ g,
for ε : Û(g)→ k the augmentation (sending g to 0), and ∆: Û(g)→ Û(g)⊗ Û(g) the
comultiplication.

Since k is assumed to have characteristic 0, exponentiation gives an isomorphism
from g to exp(g), so we may regard exp(g) as having the same elements as g, but with
multiplication given by the Campbell-Baker-Hausdorff formula.

Definition 6.14. Given a Z-graded pro-nilpotent DGLA L•, define the Maurer-Car-
tan set by

MC(L) :=
{
ω ∈ L1 | dω +

1
2
[ω, ω] = 0 ∈ L2

}
.

Define the gauge group Gg(L) by Gg(L) := exp(L0), which acts on MC(L) by the
gauge action g(ω) = g · ω · g−1 − dg · g−1, where · denotes multiplication in the uni-
versal enveloping algebra of L. That g(ω) ∈ MC(L) is a standard calculation (see [Kon]
or [Man1]).

Let π1(L) := MC(L)/Gg(L) be the quotient set.

Lemma 6.15. If e : L ³ M has kernel K, with [K,L] = 0, then there is an obstruction
map oe : π1(M)→ H2(K), with o−1

e (0) being the image of π1(L). Moreover, π1(L) is
a principal H1(K)-bundle over o−1

e (0)

Proof. This is well-known (see [Man1, §3], for instance).
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Definition 6.16. Let O(MC) be the pro-nilpotent DGLA representing MC, so

Hom(O(MC), L) ∼= MC(L).

Explicitly, O(MC) is the free pro-nilpotent graded Lie algebra on one generator x in
degree 1, with differential determined by dx = 1

2 [x, x].
Similarly, define O(Gg) to represent Gg; this is freely generated by y, dy, for

y ∈ O(Gg)0. Note that this has a cogroup structure in DGZN̂LA, coming from the
group structure on Gg.

Define T and O(T ) by T (L) = Hom(O(T ), L) := exp(Z0L); this is freely generated
by z ∈ O(T )0, with dz = 0. The embedding T ↪→ Gg corresponds to the projection
y 7→ z, dy 7→ 0, and O(T ) is a quotient cogroup of O(Gg) in DGZN̂LA.

We may therefore regard MC, Gg, T as being objects of the opposite category
(DGZN̂LA)opp, which is a full subcategory of the category of presheaves onDGZN̂LA,
via the Yoneda embedding.

Proposition 6.17. The map q : Gg→ MC given by g 7→ g(0) gives an isomorphism
between MC and the right quotient of Gg by T in the category (DGZN̂LA)opp.

Proof. It is immediate that for h ∈ T (L) we have h(0) = 0, since dh = 0. This gives
a morphism Gg(L)/T (L)→ MC(L), functorial in L, and we need to show that MC is
the universal representable presheaf with this property, in other words that

Gg × T
pr1 //
µ

//Gg
q //MC

is a coequaliser in (DGZN̂LA)opp, where µ(g, t) = g · t.
The forgetful functor Uopp from DGZN̂LA to the category GZN̂LA of pro-nilpotent

Z-graded Lie algebras preserves and reflects all equalisers, so U : (DGZN̂LA)opp →
(GZN̂LA)opp preserves and reflects all coequalisers. It therefore suffices to show that
UMC = (UGg)/(UT ).

Now, the forgetful functor Uopp has a right adjoint R, given by (RL)n = Ln × Ln+1,
with [(a, a′), (b, b′)] = ([a, b], [a′, b] + (−1)ā[a, b′]) and d(a, a′) = (a′, 0). This gives

(UMC)(L)/(UGg)(L) = MC(RL)/Gg(RL) = π1(RL).

Applying R to the tower · · · → L/[L, [L,L]]→ L/[L,L] gives a tower of surjections
satisfying the conditions of Lemma 6.15. Since H∗(RM) = 0 for all M , this implies by
induction that π1(RL) = 0 for all L. Thus UGg acts transitively on UMC.

In particular, this means that the canonical element in (UMC)(UoppO(MC)) is of
the form Uq(s) for some s ∈ (UGg)(UoppO(MC)). Via the Yoneda embedding, s is
equivalent to the data of a section of Uq : UGg→ UMC. Since the fibres of Uq are
precisely the UT -orbits, the map UMC× UT → UGg given by (ω, t) 7→ s(ω) · t is an
isomorphism. It follows immediately that the fork is a coequaliser, since

(UMC× UT )/UT = UMC.
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6.2.2. Cosimplicial simplicial groups
Definition 6.18. Given G ∈ csGp, define the gauge group Gg(G) to be the subgroup
of

∏
nG

n
n consisting of those g satisfying

∂ign = ∂ign−1 ∀i > 0,
σign = σign+1 ∀i,

similarly to [Pri3, Definition 3.5]. Note that G0
0 can be regarded as a subgroup of

Gg(G), setting gn = (∂1)n(σ0)ng, for g ∈ G0
0. The group T (G) := Tot(G)0 is the sub-

group of Gg(G) consisting of those g for which ∂0gn = ∂0gn−1.
The action of Definition 6.9 extends to an action of Gg(G) on MC(G), given by

(g ∗ ω)n = (∂0gn+1) · ωn · (∂0g−1
n ), as in [Pri3, Definition 3.5].

Remark 6.19. If G ∈ csGp is of the form G = C•(X,H), for X ∈ S and H ∈ sGp,
then [Pri3, Lemma 3.3 and Proposition 3.9] gives a canonical isomorphism Gg(G) ∼=
HomS(X,WH) for WH the canonical H-torsor on W̄H, as in [GJ, Ch. V]. Moreover,
T (H) ∼= HomS(X,H), and the map q : Gg(G)→ MC(G) corresponding to the gauge
action on 1 comes from the identification W̄G = G\WG of [GJ, Ch. V].

Lemma 6.20. The functors MC, Gg and T are all representable in csGp.

Proof. MC is represented by the object Φ defined in Proposition 6.7, which we will
now denote by O(MC), so HomcsGp(O(MC), G) ∼= MC(G).

Define O(T ) by O(T )n = Fr(∆n) (where Fr denotes the free group functor), with
cosimplicial operations coming from those on the cosimplicial space ∆•; this gives
HomcsGp(O(T ), G) ∼= T (G).

Similarly, define O(Gg) to represent Gg; this is given by O(Gg)n = Fr(
∐

j6n ∆j),
with operations given on x ∈ ∆j ⊂ O(Gg)n by

∂i
O(Gg)(x) =

{
∂i−n+j
∆ (x) i > n− j
x i 6 n− j,

σi
O(Gg)(x) =

{
σi−n+j

∆ (x) i > n− j
x i 6 n− j.

The isomorphism
Gg(G) ∼= HomcsGp(O(Gg), G)

is given by g ∈ Gg(G) mapping ∆j⊂ O(Gg)n to Gn via the element (∂0)n−jgn ∈ Gn
j .

Note that O(Gg) has a cogroup structure in csGp, coming from the group struc-
ture on Gg. Explicitly, this is the map O(Gg)→ O(Gg) ? O(Gg) given by
x 7→ x ? x for x ∈ ∆j ⊂ O(Gg)n. The embedding T ↪→ Gg corresponds to the quotient
map i : O(Gg)→ O(T ) given by mapping ∆j ⊂ O(Gg)n to ∆n ⊂ O(T )n via (∂0

∆)n−j .
Thus O(T ) is a quotient cogroup of O(Gg) in csGp.

We may therefore regard MC, Gg, and T as being objects of the opposite category
(csGp)opp.

Proposition 6.21. The map q : Gg→ MC given by g 7→ g ∗ 1 gives an isomorphism
between MC and the right quotient of Gg by T in the category (csGp)opp.
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Proof. Define P ∈ csGp by

Pn := Fr
(∐

j6n

∆j
)
.

We give this the operations dual to those on WG in [GJ, Ch. V], i.e. for x ∈ ∆j ⊂ Pn,
we set

∂i
P (x) =





∂i−n+j
∆ (x) i > n− j

(∂0
∆x) · x i = n− j

x i < n− j,

σi
P (x) =





σi−n+j
∆ (x) i > n− j

1 i = n− j − 1
x i < n− j − 1.

In particular, O(MC)n is the simplicial subgroup of Pn on generators
∐

j<n ∆j , making
O(MC) a subobject of P .

Now, [Pri3, Proposition 3.9] adapts to give an isomorphism ψ : P → O(Gg), given
by mapping x ∈ ∆j ⊂ Pn to (∂0

∆x) · x−1 when j < n, and x−1 when j = n.
The right action of T on Gg corresponds to the coaction µ : O(Gg)→ O(Gg)? O(T )

given by mapping x ∈ ∆j ⊂ O(Gg)n to xGg · ((∂0
∆)n−jx)T , where yGg and yT denote

the copies of y in O(Gg)n and in O(T )n, respectively. There is an obvious isomorphism
Pn ∼= O(MC)n ? O(T )n, since O(T )n = Fr(∆n), and this is equivariant for the O(T )-
coaction (with trivial coaction on O(MC)), since x ∈ ∆j ⊂ Pn has µ(ψ(x)) = ψ(x)
∈ O(Gg) for j < n, and µ(ψ(x)) = ψ(x) · i(x) when j = n.

Therefore

Gg × T
pr1 //
µ

//Gg
q //MC

is a coequaliser in csGpopp, as required.

6.2.3. Lie algebras to groups
Definition 6.22. Given an N0-graded DGLA L, let DL be its cosimplicial denormal-
isation. Explicitly,

DnL :=
⊕

m+s=n
16j1<···<js6n

∂js · · · ∂j1Lm.

We then define operations ∂j and σi using the cosimplicial identities, subject to the
conditions that σiL = 0 and ∂0v = dv −∑n+1

i=1 (−1)i∂iv for all v ∈ Ln.
We now have to define the Lie bracket J, K from DnL⊗DnL to DnL. Given a finite

set I of distinct strictly positive integers, write ∂I = ∂is · · · ∂i1 , for I = {i1, . . . , is},
with i1 < · · · < is. The Lie bracket is then defined on the basis by

J∂Iv, ∂JwK :=

{
∂I∩J(−1)(J\I,I\J)[v, w] v ∈ L|J\I|, w ∈ L|I\J|,
0 otherwise,

where for disjoint sets S, T of integers, (−1)(S,T ) is the sign of the shuffle permutation of
S t T which sends the first |S| elements to S (in order), and the remaining |T | elements
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to T (in order). Beware that this formula cannot be used to calculate J∂Iv, ∂JwK when
0 ∈ I ∪ J (for the obvious generalisation of ∂I to finite sets I of distinct non-negative
integers).

Theorem 6.23. Given a simplicial pro-nilpotent N0-graded DGLA L••, there are ca-
nonical isomorphisms

Gg(exp(DL)) ∼= Gg(TotΠNsL), MC(exp(DL)) ∼= MC(TotΠNsL),

which are compatible with the respective gauge actions. Here, D is cosimplicial denor-
malisation and Ns is simplicial normalisation (as in Definition 4.6). This isomorphism
acts as the identity on the subgroups

exp(L0
0) 6 Gg(exp(DL)) and exp(L0

0) 6 Gg(TotΠNsL)

Proof. In order to keep track of the various gradings in these categories, we will
write DGZ for Z-graded cochain complexes, DG for cochain complexes in non-negative
degrees, and dg for chain complexes in non-negative degrees.

On the category sDGN̂LA of simplicial pro-nilpotent N0-graded DGLA, these func-
tors are all representable, since exp, D, TotΠ and Ns are all right adjoints, so

HomsDGN̂LA(D∗ exp∗O(Gg), L) ∼= Gg(exp(DL)),
HomsDGN̂LA(D∗ exp∗O(MC), L) ∼= MC(exp(DL)),

HomsDGN̂LA((Ns)∗(TotΠ)∗O(Gg), L) ∼= Gg(TotΠNsL),

HomsDGN̂LA((Ns)∗(TotΠ)∗O(MC), L) ∼= MC(TotΠNsL),

for exp∗ : csGp→ csN̂LA,

D∗ : csN̂LA→ sDGN̂LA, (TotΠ)∗ : DGZN̂LA→ dgDGN̂LA

and (Ns)∗ : dgDGN̂LA→ sDGN̂LA the corresponding left adjoints.
We may therefore regard the functors D∗ exp∗Gg, D∗ exp∗MC, (Ns)∗(TotΠ)∗Gg

and (Ns)∗(TotΠ)∗MC as objects of (sDGN̂LA)opp and likewise for D∗ exp∗ T and
(Ns)∗(TotΠ)∗T .

Now, the isomorphism Gg(exp(DL)) ∼= Gg(TotΠNsL) simply follows from the
proof of the Dold-Kan correspondence, which generalises to give an equivalence of
categories between N0-graded complexes and “simplicial abelian groups without ∂0”.
This isomorphism maps the subgroup T (exp(DL)) to T (TotΠNsL) isomorphically, by
the usual Dold-Kan correspondence.

The isomorphism D∗ exp∗MC ∼= (Ns)∗(TotΠ)∗MC follows by taking the right quo-
tients

(D∗ exp∗Gg)/(D∗ exp∗ T ) ∼= ((Ns)∗(TotΠ)∗Gg)/((Ns)∗(TotΠ)∗T )

in (sDGN̂LA)opp, by Propositions 6.21 and 6.17.

Remark 6.24. Note that this gives a shorter and more conceptual proof of [Pri3,
Theorems 4.39 and 4.44], and in that context we may shorten the arguments, replacing
Proposition 6.21 with [Pri3, Proposition 3.9].
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Definition 6.25. Define MC TotΠNs : sDGN̂LA→ S by

MCTotΠNs(L)n := MC(TotΠNs(L∆n

))

and define Del : sDGN̂LA→ S to be the homotopy quotient

Del := [MCTotΠNs/h exp(L0)];

i.e.

Del(L) := MC TotΠNs(L)×exp(L0) W exp(L0),

where exp(L0)n ⊂ Gg(L∆n

) acts via the gauge action.

Remark 6.26. This is essentially the functor used to construct derived formal stacks
in [Hin].

Corollary 6.27. There are canonical isomorphisms

Del(L) ∼= Del(exp(DL))

in S, functorial in L ∈ sDGN̂LA.

Proof. By Theorem 6.23, MCTotΠNs(L) ∼= MC(L). This isomorphism is equivariant
with respect to the action of the simplicial group

exp(L0)n = exp((L∆n

)00 6 Gg(L∆n

),

so it gives the required isomorphism on taking homotopy quotients.

Appendix A. Quasi-monads, quasi-comonads and
quasi-distributivity

To date, the main context in which s.h. >-algebras have been studied is when the
monad > comes from an operad. This is partly because these were the only cases for
which a satisfactory theory of morphisms was developed in [CLM]. Since this diffi-
culty was resolved for general monads (and even distributive monad-comonad pairs)
in Section 3.5, we now look into how related constructions adapt to this generality.

In [KS], free resolutions of operads were exploited to study deformations of algebras.
Since an objectwise weak equivalence >′ → > of arbitrary monads on a simplicial
category gives a weak equivalence of the associated simplicial quasi-descent data (from
Proposition 2.9), the respective Segal spaces of s.h. >-algebras are weakly equivalent.
This means that many of the ideas from [KS] carry over to arbitrary monads.

However, in some settings, such as [vdL], operads are too restrictive, and homotopy
operads have to be used instead. We now introduce quasi-monads and quasi-comonads,
which give a context sufficiently general to be analogous to homotopy operads, while
providing a natural generalisation of the constructions of Section 2.

A.1. Quasi-monads and quasi-comonads
Definition A.1. Define a quasi-monad (resp. a quasi-comonad) on a category B to be
a quasi-monoid (resp. quasi-comonoid), as in Definition 1.4, in the monoidal category
(End(B), ◦) of endofunctors of B.
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Substituting the monoidal category (End(B), ◦) into Lemma 1.5 yields the following
two lemmas.

Lemma A.2. A quasi-monad consists of functors >n : B → B, together with the fol-
lowing data:

µi : >n+1 =⇒ >n 1 6 i 6 n,

ηi : >n−1 =⇒ >n 0 6 i < n,

an associative coproduct ξmn : >m+n =⇒ >m ◦ >n, with coidentity ξ0 : >0 =⇒ id,
satisfying:

1. µiµj = µj−1µi i < j.
2. ηiηj = ηj+1ηi i 6 j.

3. µiηj =





ηj−1µi i < j

id i = j, i = j + 1
ηjµi−1 i > j + 1

4. (µi>n)ξm+1,n = ξmnµi.
5. (>mµi)ξm,n+1 = ξmnµi+m.
6. (ηi>n)ξm−1,n = ξmnηi.
7. (>mηi)ξm,n−1 = ξmnηi+m.

Lemma A.3. A quasi-comonad consists of functors ⊥n : B → B, together with the
following data:

∆i : ⊥n =⇒ ⊥n+1 1 6 i 6 n

εi : ⊥n =⇒ ⊥n−1 0 6 i < n,

an associative product ζmn : ⊥m ◦ ⊥n =⇒ ⊥m+n, with identity ζ0 : id =⇒ ⊥0, sat-
isfying:

1. ∆j∆i = ∆i∆j−1 i < j.
2. εjεi = εiεj+1 i 6 j.

3. εj∆i =





∆iεj−1 i < j

id i = j, i = j + 1
∆i−1εj i > j + 1

4. ζm+1,n(∆i⊥n) = ∆iζmn.
5. ζm,n+1(⊥m∆i) = ∆i+mζmn.
6. ζm−1,n(εi⊥n) = εiζmn.
7. ζm,n−1(⊥mεi) = εi+mζmn.

Lemma A.4. A quasi-monad on B gives rise to a quasi-descent datum enriching B,
given by

Hom(B,B′)n := HomB(>nB,B
′).

In particular, this allows us to define Maurer-Cartan sets. We also have a notion
of homotopy monad on a simplicial category (when the ξ are all weak equivalences).
Dually, we have the same constructions for quasi-comonads.
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A.2. Distributivity for quasi-monads and quasi-comonads
We now need to describe a distributivity transformation λ for a quasi-monad > and

a quasi-comonad ⊥. We wish to enrich B to a quasi-descent datum by setting

HomB(B,B′)n := Hom(>nB,⊥nB′),

so we need natural transformations

λn
m : >m⊥n =⇒ ⊥n>m.

with the following diagrams commuting:

>m⊥n
λn

m +3

>m∆i

®¶

⊥n>m

∆i>m

®¶
>m⊥n+1

λn+1
m +3 ⊥n+1>m

>m⊥n
λn

m +3 ⊥n>m

>m+1⊥n

µi⊥n

KS

λn
m+1 +3 ⊥n>m+1,

⊥nµi

KS

>m⊥n
λn

m +3

>mεi

®¶

⊥n>m

εi>m

®¶
>m⊥n−1

λn−1
m +3 ⊥n−1>m

>m⊥n
λn

m +3 ⊥n>m

>m−1⊥n

ηi⊥n

KS

λn
m−1 +3 ⊥n>m−1,

⊥nηi

KS

together with unit rules

(ξ0⊥n) = (⊥nξ0) ◦ λn
0 ζ0>m = λ0

m ◦ (>mζ
0)

and associativity rules

(λn
p>q) ◦ (>pλ

n
q ) ◦ (ξpq⊥n) = (⊥nξpq) ◦ λn

p+q,

(⊥pλq
m) ◦ (λp

m⊥q) ◦ (>mζ
pq) = (ζpq>m) ◦ λp+q

m .

Lemma A.5. Given a category B, a quasi-monad > and a quasi-comonad ⊥ on B,
together with a quasi-distributivity transformation λ satisfying the conditions above,
there is a quasi-descent datum on B given by setting

HomB(B,B′)n := Hom(>nB,⊥nB′).

Proof. We define the structures on HomB by

∂ix = ∆i ◦ x ◦ µi,

σix = εi ◦ x ◦ ηi,

x ∗ y = ζnm ◦ (⊥nx) ◦ λn
m ◦ (>my) ◦ ξmn,

for x ∈ HomB(B′, B”)m and y ∈ HomB(B,B′)n, with identity ζ0 ◦ ξ0.
It follows immediately from Lemmas A.2 and A.3 that HomB(B,B′) ∈ Set∆∗∗ . The

first four diagrams above ensure that ∗ defines a map

HomB(B′, B”)⊗HomB(B,B′)→ HomB(B,B”)

in Set∆∗∗ . The unit rules then ensure that ζ0 ◦ ξ0 is the multiplicative identity, and
the associativity rules make this product associative.
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Appendix B. A∞-algebras and homotopy operads

A∞-algebras are designed to model deformation retracts of differential graded asso-
ciative algebras without unit (DGAAs). They are thus an alternative candidate for
the task performed in general by s.h. algebras, and are indeed often known as strong
homotopy associative algebras (SHAAs). That both concepts are essentially equiva-
lent seems to be folklore (though, if necessary, it could be inferred from the results of
Section 6.2).

Now, a DGAA is just a semigroup in the category of cochain complexes (i.e. it
satisfies all the requirements of a monoid, except the unit axiom). A third candidate
to model deformation retracts of DGAAs is therefore a homotopy semigroup in cochain
complexes (defined analogously to a homotopy monoid). These were studied in [Lei1],
where it was conjectured that they give rise to A∞-algebras.

B.1. Homotopy semigroups and semicogroups
Definition B.1. Define ∆+

∗∗ to be the subcategory of ∆∗∗ on objects n 6= 0 and con-
taining only injective morphisms.

Definition B.2. Define a semigroupal category to be a category C equipped with a
bifunctor C × C ⊗−→ C satisfying the axioms of a monoidal category (but without a unit
object).

Definition B.3. Given a semigroupal category C (in particular if C is monoidal),
define a quasi-semigroup X in C to be a colax semigroupal functor X : (∆+

∗∗)opp → C.
This means that we have maps

ξmn : Xm+n → Xm ⊗Xn,

satisfying naturality and coherence. If C is a model category, then we say that X is a
homotopy semigroup whenever the maps ξmn are all weak equivalences.

Lemma B.4. Giving a quasi-semigroup X in C is equivalent to giving objects Xn∈ C
for n ∈ N1, together with morphisms

∂i : Xn+1 → Xn 1 6 i 6 n,

and an associative coproduct ξmn : Xm+n → Xm ⊗Xn, satisfying:

1. ∂i∂j = ∂j−1∂i i < j.

2. (∂i ⊗ id)ξm+1,n = ξmn∂i.

3. (id⊗ ∂i)ξm,n+1 = ξmn∂i+m.

Definition B.5. Given a semigroupal category C, define a quasi-semicogroup X in C
to be a lax semigroupal functor X : ∆+

∗∗ → C. This means that we have maps

ζmn : Xm ⊗Xn → Xm+n,

satisfying naturality and coherence. If C is a model category, we say that X is a
homotopy semicogroup whenever the maps ζmn are all weak equivalences.
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Lemma B.6. Giving a quasi-semicogroup X in C is equivalent to giving objects
Xn ∈ C for n ∈ N1, together with morphisms

∂i : Xn → Xn+1 1 6 i 6 n

an associative product ζmn : Xm ⊗Xn → Xm+n, satisfying:

1. ∂j∂i = ∂i∂j−1 i < j.

2. ζm+1,n(∂i ⊗ id) = ∂iζmn.

3. ζm,n+1(id⊗ ∂i) = ∂i+mζmn.

B.2. Homotopy semigroups in abelian categories
.

Definition B.7. Given a quasi-semigroup V in an abelian semigroupal category V,
define the chain complex C(V ) ∈ Ch(V) by

C(V )n :=

{
Vn n > 0
0 n 6 0,

with differential d =
∑

i(−1)i∂i.

Definition B.8. A coalgebra C is said to be conilpotent if the iterated coproduct
∆n : C → C⊗n is 0 for n sufficiently large. A coalgebra C is said to be ind-conilpotent
if it is a filtered colimit of conilpotent coalgebras.

Lemma B.9. C(V ) has the natural structure of an ind-conilpotent coassociative coal-
gebra without counit in Ch(V).

Proof. We define the coproduct ∆: C(V )→ C(V )⊗ C(V ) by
⊕

i+j=n

ξij : C(V )n → (C(V )⊗ C(V ))n.

It is straightforward to verify that this is coassociative and a chain map, so C(V ) is a
coassociative coalgebra without counit.

Observe that the brutal truncations σ6mC(V ) of C(V ) form conilpotent subcoal-
gebras of C(V ), since (C(V )⊗n)i = 0 for all i < n. Thus C(V ) is ind-conilpotent, since
C(V ) = lim−→σ6mC(V ).

B.2.1. DG coalgebras
Now assume that V is the category of cochain complexes of vector spaces over a field
k. If V is a quasi-semigroup in V, then Lemma B.9 implies that the cochain complex
TotC(V ) (given by (TotC(V ))n :=

⊕
i C(V )i+n

i ) is an ind-conilpotent coassociative
DG coalgebra without counit over k.

Definition B.10. Let DGCk be the category of all ind-conilpotent coassociative DG
coalgebras without counit over k. LetDGAk be the category of associative DG algebras
without unit over k.
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Definition B.11. Define the cobar functor β∗ : DGCk → DGAk by letting β∗C be the
free graded associative k-algebra

⊕
n>0 C[−1]⊗n on generators C[−1], with differential

defined on generators by dC + ∆, for

∆: C[−1]→ (C ⊗ C)[−1] = (C[−1]⊗ C[−1])[1]

the comultiplication.
It has right adjoint β : DGAk → DGCk given by letting βA be the cofree graded

coassociative ind-conilpotent k-algebra
⊕

n>0A[1]⊗n on cogenerators A[1], with differ-
ential defined on cogenerators by dA +m : A⊕ (A⊗A)[1]→ A[1], for m : A⊗A→ A
the multiplication.

Definition B.12. Define the tangent space tanC of C ∈ DGCk to be

ker(∆: C → C ⊗ C).

Proposition B.13. There is a cofibrantly generated model structure on DGCk, for
which a morphism f is

1. a cofibration if it is injective;

2. a weak equivalence if either of the following equivalent conditions holds:

(a) β∗f is a quasi-isomorphism.
(b) f can be expressed as a filtered colimit of quasi-isomorphisms fα : Cα → Dα

between finite-dimensional objects of DGCk (note that this is a stronger than
requiring that f be a quasi-isomorphism);

3. a fibration if f is cofree as a morphism of ind-conilpotent coassociative graded
coalgebras without counit.

Moreover, for a fibrant object C there is a natural isomorphism

Hn(tanC) ∼= Hn+1(β∗C).

With respect to this model structure, β∗ is a left Quillen equivalence, when DGAk

is given its standard model structure.

Proof. Existence of such a model structure is given in [Pri7, Proposition 4.36] for
the analogous case of cocommutative coassociative coalgebras and Lie algebras, but
the proof carries over to any Koszul-dual pair of quadratic operads, so it adapts to
our context (coassociative coalgebras and associative algebras). The generating cofibra-
tions are injective morphisms f : C → D between finite-dimensional objects, satisfying
the additional property that the coproduct coker f → D ⊗ coker f is zero. Generating
trivial cofibrations have the additional property that H∗(coker f) = 0.

Characterisation of the weak equivalences follows from [Pri7, Proposition 4.42].
That β∗ is a Quillen equivalence follows from [Pri7, Theorem 4.55].

Remark B.14. Note that fibrant objects of DGCk are those whose underlying coalge-
bras are cofree. These are precisely strong homotopy associative algebras (SHAAs),
as in [Kon], and weak equivalences between these are tangent quasi-isomorphisms. A
choice of cogenerators on an SHAA is precisely an A∞-algebra. This means that every
A∞-algebra has a weakly equivalent DG associative algebra.
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Corollary B.15. There is a canonical equivalence class of A∞-algebras associated to
any quasi-semigroup V in the category of cochain complexes over k.

Proof. The A∞-algebra is just a choice of cogenerators on a fibrant replacement for
TotC(V ).

When V is a homotopy semigroup, we wish to relate this A∞-algebra to V .

Proposition B.16. Assume that C ∈ DGCk is equipped with an exhaustive increasing
filtration 0 = F0C ⊂ F1C ⊂ · · · , comultiplicative in the sense that

∆(Fn) ⊂
∑

i+j=n

Fi ⊗ Fj ⊂ C ⊗ C,

and for which the resulting maps ∆n : grF
nC → (F1C)⊗n are quasi-isomorphisms. Then

there are canonical isomorphisms Hn+1(β∗C) ∼= Hn(F1C).

Proof. The filtration FnC induces a filtration on β∗C by

Fp(C[−1]⊗n) :=
∑

p1+···+pn=p

(Fp1C[−1])⊗ (Fp2C[−1])⊗ · · · ⊗ (FpnC[−1]).

Since this filtration is exhaustive and bounded below, the associated spectral sequence

Epq
0 (F ) = (grF

−pβ
∗C)p+q =⇒ Hp+q(β∗C)

converges.
Now, note that grFβ∗C ∼= β∗(grFC), and that the quasi-isomorphisms ∆n : grF

nC →
(F1C)⊗n induce a graded quasi-isomorphism

δ : grFC →
⊕
n>0

(F1C)⊗n

in DGCk.
We now define a filtration W on β∗C by Wmβ∗C =

⊕
n>m C[−1]⊗n, noting that

Fp(β∗C) ∩W p+1(β∗C) = 0, since Fn−1(C⊗n) = 0. Thus W induces a finite filtration
on grF

−pβ
∗C, so the associated spectral sequence

Enq
0 (W ) = (grn

W grF
−pβ

∗C)n+q =⇒ Hp+q(grF
−pβ

∗C)

converges. Now, the left-hand side is just grF
−p(C[−1]⊗n), so

Enq
1 (W ) ∼= Hn+q(grF

−p(C[−1]⊗n)).

Therefore δ induces an isomorphism of E1 spectral sequences, making

grF
−pβ

∗(δ) : grF
−pβ

∗C → grF
−pβ

∗
(⊕

n>0

(F1C)⊗n
)

a quasi-isomorphism. The right-hand side is just grF
−pβ

∗β(F1C[−1]), where F1C[−1]
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is regarded as an object of DGAk with zero multiplication. Therefore

Epq
1 (F ) = Hp+q(grF

−pβ
∗C) ∼= Hp+q(grF

−pβ
∗β(F1C[−1])).

Now, since β∗ a β are a pair of Quillen equivalences, the map

β∗β(F1C[−1])→ F1C[−1]

is a quasi-isomorphism, so

Epq
1 (F ) ∼=

{
Hp+q(F1C[−1]) p = −1,
0 otherwise,

and therefore the spectral sequence collapses at E1, giving

Hq−1(β∗C) ∼= Hq−1(F1C[−1]) = Hq−2(F1C),

as required.

The following result confirms a conjecture from [Lei1, §3.5], although not with the
proof envisaged there.

Proposition B.17. If V is a homotopy semigroup, then we may choose a represen-
tative A∞-algebra with underlying cochain complex V1.

Proof. We adapt the proof of [Pri3, Lemma 1.16]. Take a trivial cofibration
TotC(V )→ E, with E fibrant. The filtration FnC :=

⊕
i6n Vn of C(V ) satisfies the

conditions of Proposition B.16, since the maps Vn → (V1)⊗n are quasi-isomorphisms
by hypothesis. Thus the map V1 → tanE is a quasi-isomorphism. Let the quotient be
Q, and note that this is a contractible cochain complex.

Let B be the cofree coalgebra on generators Q; this is trivially fibrant. Since the
morphism tanE → E is a cofibration in DGCk, the composite map tanE → Q→
B must extend to a morphism f : E → B in DGCk. Let A be the equaliser of f
and the zero map; this is again a cofree object in DGCk, hence fibrant, and tanA =
ker(tanE → Q) ∼= V1.

Therefore A is an SHAA with cogenerating space V1, so defines an A∞-structure
on V1.

B.3. DG co-operads
We now show that the relation between A∞-algebras and homotopy semigroups of

cochain complexes has an analogue for operads. Roughly speaking, we will show that
a homotopy monad (in the sense of Appendix A) with suitable operadic structure is
related to the homotopy operads of [vdL].

Definition B.18. Given an additive cocomplete monoidal category C, we now define
a full subcategory E(C) of the category End(C) of endofunctors on C. Objects of E
correspond to collections {Pn}n>0, with Pn a C-representation of the symmetric group
Sn, with the associated endofunctor given by

V 7→
⊕

n

Pn ⊗Sn V ⊗n.

E forms a monoidal category under composition of functors, and an additive cate-
gory under ⊕.
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Definition B.19. An operad (resp. pseudo operad) on C is a monoid (resp. semi-
group) in E(C), and a co-operad (resp. pseudo co-operad) on C is a comonoid (resp.
semicogroup) in E(C).

Note that since E(C) is an additive category, there is a natural retraction

(F ◦X)⊕ (F ◦ Y )→ F ◦ (X ⊕ Y )→ (F ◦X)⊕ (F ◦ Y ),

for any F,X, Y ∈ E(C). Thus, augmented operads > on abelian categories C correspond
to pseudo operads S on C, by setting S := ker(> → 1) and > = S ⊕ 1.

Let dgVect be the category of chain complexes, and gVect the category of graded
vector spaces, both over a field of characteristic 0.

Lemma B.20. If C = dgVect or gVect, then the forgetful functor from pseudo operads
on C to E(C) has a left adjoint, denoted by T . Likewise, the forgetful functor from ind-
conilpotent pseudo co-operads on C to E(C) has a right adjoint, denoted by T ′.

Proof. These are described in [vdL, §2]. In both cases, the underlying functor is

F 7→
⊕
n>0

n︷ ︸︸ ︷
F ◦ F ◦ · · · ◦ F .

Definition B.21. Recall from [vdL, Definition 3.1] that an operad up to homotopy
on dgVect is defined to be a collection P ∈ E(gVect), together with a square-zero
differential δ on the cofree pseudo co-operad T ′(P [1]).

The notion of operad up to homotopy in [vdL] generalises pseudo operads (or, equiv-
alently, augmented operads) rather than operads. This motivates the following com-
parison, noting that the quasi-monads of Appendix A are a fortiori quasi-semigroups
in End(C), and that pseudo co-operads can be replaced by homotopy operads, similarly
to Corollary B.15.

Lemma B.22. Every quasi-semigroup Q in E(dgVect) (in the sense of Definition B.3)
naturally gives rise to a pseudo co-operad β(Q) on dgVect.

Proof. Given a quasi-semigroup Q = {Qn}n>0 in E(dgVect), we may set β(Q) :=⊕
n>0Qn[n] in E(gVect), with differential δ := dQ ±

∑
i(−1)i∂i. Here, ∂i : Qn[n]j →

Qn+1[n+ 1]j−1 is the structural map ∂i : (Qn)n+j → (Qn+1)n+j of the quasi-semi-
group.

The functor β(Q) has the natural structure of a pseudo co-operad, with coproduct
β(Q)→ β(Q) ◦ β(Q) given on Qn[n] ⊂ β(Q) by

∑
i+j=n ξij : Qn[n]→ Qi[i] ◦Qj [j],

making use of the natural retraction (F ◦X)⊕ (F ◦ Y )→ F ◦ (X ⊕ Y )→ (F ◦X)⊕
(F ◦ Y ).
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