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HOMOTOPY NILPOTENCY IN LOCALIZED SU(n)
DAISUKE KISHIMOTO

(communicated by Donald M. Davis)

Abstract
We determine the homotopy nilpotency of p-localized SU(n)
when p is a quasi-regular prime in the sense of [9]. As a conse-
quence, we see that it is not a monotonic decreasing function
in p.

1. Introduction

Let G be a compact Lie group and let — ;) stand for the p-localization in the sense
of [2]. In [7], McGibbon asked:

Question 1.1. For which primes p is G, homotopy commutative?

He answered this question for G simply connected. For example, he showed that
SU(n)p is homotopy commutative if and only if p > 2n. Later, in [8], he studied
higher homotopy commutativity of p-local finite loop spaces and, motivated by this
work, Saumell [11] considered the above question by replacing homotopy commutativ-
ity with higher homotopy commutativity in the sense of Williams [14]. For example,
she showed that if p > kn, then SU(n),) is a Cy-space in the sense of Williams [14].

One can also approach the problem from the opposite direction:

uestion 1.2. How far from being homotopy commutative is G or a given prime
(p)
p?

In [5], Kaji and the author approached this question by considering homotopy
nilpotency which is defined as follows, where we treat only group-like spaces (see [15]
for a general definition). Let X be a group-like space, that is, X satisfies all the axioms
of groups up to homotopy, and let v: X x X — X be the commutator map of X. We
write the n-iterated commutator map yo (1 x y)o-+-o (1 x -+ x 1 x~v): X" - X
by Yn, where X"+ is the direct product of (n + 1)-copies of X. We say that X is
homotopy nilpotent of class n, denoted nil X = n, if ~,, >~ *x and 7,_1 % *. Namely,
nil X = n means that X is a nilpotent group of class n up to homotopy. Then one
can say that nil X tells how far from being homotopy commutative X is. Note that
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we normalize homotopy nilpotency such that nil X = 1 if and only if X is homotopy
commutative. Then, rewriting the above result of McGibbon, we have

nil SU(n)(,y = 1 if and only if p > 2n. (1)

In [5], Kaji and the author determined nil X for a p-compact group X when p is
a regular prime, that is, X has the homotopy type of the direct product of localized
spheres. For example, they showed

2 fordn<p<2
nilSU(n) ) = { oransp=an 2)
when p is odd, and nil SU(2) 2y = 2.
The aim of this article is to determine nil SU(n)(,) when p is a quasi-regular prime
in the sense of [9], that is, SU(n)(,) has the homotopy type of the p-localization of
the direct product of spheres and sphere bundles over spheres. The result is

3 forngpggn

Theorem 1.1. Let p be a prime greater than 5. Then we have:
1. nilSU(n)) =3 ifp=n+1or 5 <p< %
2. nilSU(n) ) =2 if 25 <p<n—2.

Since the homotopy type of SU(n)(,) gets easier as p increases, it is natural to
expect that nilSU(n),) is a monotonic decreasing function in p. In fact, (1) and (2)
give some evidence for this expectation. However, Theorem 1.1 shows this is false in
almost all cases as follows. In [10], it is shown that

T

< m(x) < 1.25506

log log

for x > 17, where w(z) is the prime counting function, that is, m(x) is the number
of primes less than or equal to x. This implies that there is a prime p in the range
% <p<n-—2forn >33 We can also show that there are such primes for n =9

and 13 < n < 32 by a case-by-case analysis. Thus we obtain

Corollary 1.2. Forn =9 orn > 13, nilSU(n),) is not a monotonic decreasing func-
tion in p.

In what follows, we will make the conventions: For amap f: X — Y, f.: [4, X] —
[A,Y] and f*: [V, B] — [X, B] mean the induced maps. If a map f: X — Y] x Y3
satisfies m; o f ~ %, then we say that f falls into Y5, where 7 is the first projection.
We often assume that the above f is a map from X into Y>. We denote the adjoint
congruence [X, QY] 3 [XX,Y] by ad. When X is group-like, we always assume that
the homotopy set [A, X] is a group by pointwise multiplication and we denote by 0
unity of this group which is the constant map. We denote the order of an element x
of a group by ord(z).

2. Homotopy groups of B,

Hereafter, let p denote an odd prime and put 2 < ¢ < p. Each space and map is
always assumed to be localized at the prime p.
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Let us first recall basic results on the p-primary component of the homotopy groups
of spheres.

Theorem 2.1 ([12, Chapter XIII]).
1. We have
Z/p fork=2(p-—-1)—1,i=1,...,p—1
Ton-14x(ST" N2 Z/p fork=2i(p—1)—2,i=n,...,p—1
0 otherwise, for 1 <k <2p(p—1)—3.

2. Let a1(3) be a generator of me,(S®) and define o;(3) € ma;p—1)42(S?) induc-
tively by the Toda bracket {c;—1(3),p,01(2i(p—1) +2)}1 fori=2,...,p—1.
Then mon2i(p—1)—2(S*" 1) is generated by a;(2n — 1) = X240y (3).

8. Toip—1)+1(5%) is generated by a1 (3) o cyy—1(2p) fori=2,...,p— 1.

4. X2 7r2n+2i(p_1)_3(52”71) — 7r2n+2i(p_1)_1(52"+1) is the zero map for i =mn,
...,p— 1. In particular, a;(n)oa;(n+2i(p—1)—1)=0 for i+j<p and
n = 5.

Let B,, be the S?"~!-bundle over $27t2P=3 guch that
H* (Bna Z/p) = A(jZn—h ?1i‘2n—1)7

where |Zo,_1| = 2n — 1. Namely, B,, is induced from the sphere bundle $?"~! —
O(2n +1)/0(2n — 1) — 5" by a1 (2n) as in [9]. Recall that we have a cell decom-
position
Bn —_ S2n71 Ua1(2n+1) 62n+2p73 U e4n+2p74.
Let A, denote the (4n + 2p — 5)-skeleton of B,,, that is, A, = Cy, 2n—1), Where C}
stands for the mapping cone of f. In particular, we have
A, =X2n44,. (3)

It follows from a result of McGibbon [6] that the cofiber sequence A, — B, —
S4n+2r—4 gplits after a suspension, that is,

YB, ~ YA, Vv §intp=3, (4)

Mimura and Toda [9] showed that SU(n) has the homotopy type of the direct
product of odd spheres and By’s if and only if p > 5. We shall be concerned with
SU(n) for § < p < n, equivalently, SU(p + ¢ — 1) since 2 < ¢ < p. In this case, we have
a homotopy equivalence

SU(p+t—1)~ By x---x By x ST x ... x §2P71,

We compute the homotopy groups of B,, following Mimura and Toda [9] in a
slightly larger range than [9]. Consider the homotopy exact sequence of the fibration
S§2n=1 — B, — §27+2p=3_ Then the connecting homomorphism §: 7, (S?"T2P=3) —
me—1(5?"71) is given by

d(Xz)=a1(2n—1)ox. (5)

Then by Theorem 2.1, we obtain m,(Bs) for * < 2p(p — 1). In particular, each map



64 DAISUKE KISHIMOTO

S™ — By for 2p+2 <m < 2p(p— 1) lifts to S? C By. It also follows from Theo-
rem 2.1 that for n > 3 and i = 2,...,p — 1, we have the short exact sequence

0 — 7. (S*" ) = 7. (B,) — m.(S*"T2P73) - 0 (6)

for 2n 4+ 2p — 2 < * < 2n + 2p(p — 1) — 4. Then we have only to consider the case that
*=2n+2i(p—1)—2fori=2,...,p— 1. Leti,,: S*»° ! — A,, and j,: A, — B, be
the inclusions and let g, : A, — S?"T2’=3 be the pinch map. Consider the following
commutative diagram in which the lower horizontal sequence is the exact sequence
(6) and we put k =2n+2i(p—1) — 2.

Wk(SM_l) nx > e (Ay) I = 7Tk(52"+2p_3)

[

0 o ﬂ.k(52n—1) - S Wk(Bn) - 7.(.k(S2n+2p—3) - 5 0

Note that a coextension a;_1(2n + 2p — 4): S2+2P=D=2 A = (O, (9,1 satis-
fies

qn*(Oéi_l(2n + 2]) - 4)) = —ai_1(2n + 2p — 3)

and
ai—1(2n+2p—4)op = —in.({a1(2n —1),;-1(2n + 2p — 4),p}1)
= Zn*(%{al—l(Qn - 1),p,a1(2n + 2p - 4)}1)
= —ip.(F05(2n — 1))
(see [12, p.179]). Then (6) does not split for x = 2n 4 2i(p — 1) — 2 and hence we
have obtained that 72,4 2i(p—1)—2(Bn) = Z/p?. Moreover, it is generated by the ele-
ment j,.(a;—1(2n 4+ 2p — 4)). In particular, each map S™ — B,, which is of order p

for 2n +2p — 2 <m < 2n + 2p(p — 1) — 4 lifts to S?"~! C B,,. Summarizing, we have
calculated

Proposition 2.2. As for the homotopy groups of B,,, we have:

Z/p fork=2i(p—1)—1,i=2,...,p—1

1. m3yk(B2) = Zy) fork=2p—2

0 otherwise, for 1 <k < 2p(p—1) — 3.
Z/p fork=2i(p—1)—1,i=2,...,p—1
Z/p fork=2(p—-1)—2i=n,...,p—1
Zy) fork=2p—2
0 otherwise, for 1 <k <2p(p—1) — 3.
3. For2p+2<m < 2p(p—1), each map S™ — By lifts to S® C Bs.

4. Forn>=3 and 2n+2p—2<m < 2n+2p(p—1) — 4, each map S™ — B,, of
order p lifts to S*"~1 C B,.

2. Forn >3, mop—14(Bn) =

By Theorem 2.1 and Proposition 2.2 we can see the homotopy groups of SU(p +
t—1) in a range. It will be useful to list the non-trivial odd homotopy groups of
SU(p+t—1).



HOMOTOPY NILPOTENCY IN LOCALIZED SU(n) 65

Corollary 2.3. Letp > T and2(p+t) — 1 <k <12p—1. Then m(SU(p+t—1)) =
0 unless k is odd and not in the following table. Moreover, each element of
mok—1(SU(p+t — 1)) can be compressed into S™ C SU(p+1t—1) for n in the fol-
lowing table.

6p — 3
1 8p—5 8p—3

10p—7 10p—5 10p—3

12p—9 12p—7 12p—5 12p—3
n ) 7 9 11

3. Homotopy nilpotency and Samelson products

Let X be a group-like space. For amap f: A — X we write by — f the composition

AL x4 x , where ¢: X — X is the homotopy inversion. We will often use the
fact that the pinch map V3 x --- x Vi = V3 A -+ AV} induces an injection [V3 A -+ A
Vie, X] = [Vi X -+ x Vi, X] (see [15, Lemma 1.3.5]).

Suppose that X = X; x --- x X, as spaces, not necessarily as group-like spaces.
We denote the inclusion X — X and the projection X — X by ¢x and pg respec-
tively for k = 1,...,n. Note that we may assume 1x = (i o p1) - - - (45, © P ), the point-
wise multiplication. Let 7: X2 — X be the commutator map of X and let 7 be
the k-iterated commutator map yo (1 xy)o---o (1 x ---x 1 x~): Xk - X. By
applying a commutator calculus to a certain subgroup of [X**! X] together with
the above description of 1x, Kaji and the author [5] gave a decomposition of ~; and
obtained

Proposition 3.1. Let X be a group-like space such that X = X1 x --- x X,, as spaces
and let iy, : X — X be the inclusion form =1,...,n. Then nil X < k if and only if
<91, < e <9k>0k+1> s >> =0 f07" each 6‘17 ey 9k+1 S {:l:il, ey :|:Zn}

We produce formulae for Samelson products which will be useful for our purpose.

Proposition 3.2. Let X be a group-like space and let 0;: V; — X fori=1,2,3.
1. If (£07, (£0, £03)) = (£0, (£03,£61)) = 0, then (£03, (£6;,105)) = 0.
2. (01,05) =0 implies (81, —62) = 0.
3. Let0y: V3 — X. If (01, (02,03)) = (01, (02,0%)) = (03, (02, 0%)) = 0, then we have
(01, (02, 0503)) = 0.
4. Suppose that X = X1 X --- X X, as spaces and denote by iy, and py, the inclusion

X, — X and the projection X — X}, respectively fork =1,...,n. Then we have
that (61,1 opgob2) =0 for k=1,...,n implies (f1,02) = 0.

Proof. 1. Recall first the Hall-Witt formula of groups. Let G be a group and let
[—, —] denote the commutator of G. Then we have the Hall-Witt formula,

[y, [z, e 1" [ [y, 27 Pl [y 1Y = 1,

for x,y, 2 € G, where 2V = yry~!.
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Let ¢;: Vi x Vi x V3 — V; be the i-th projection for i = 1,2,3. Put 6; = 6; o ¢;
for i =1,2,3. For 0 € X3, we define o: V1 AVa A V3 — Vi) AVy2) A Vg3 by
o (v1,v2,v3) = (Vg(1), Vo(2), Vo(3))- Then we have

[50(1)7 [50'(2)7 50(3)]} =0 'o q*(<917 <025 03>>)a

where [—, —] denotes the commutator in the group [Vi x V5 x V3, X] and g¢:
X3 — X ) is the pinch map, where X (") denotes the smash product of m-copies
of X. Hence, by hypothesis, we have established [£0;, [+, £03]] =
[+02, [+03,+£6,]] = 0 and thus it follows from the Hall-Witt formula that we
obtain [+03, [+6;, £0,]] = 0. Since ¢~ and ¢* are monic, we have (03, (£6,,
+65)) = 0.

2. This follows from the fact 1x = (i1 o p1) - - (in, © pr) and the formula

[z,yz] = [z,y][z, 2]"
for z,y € G.
3. This also follows from the above formula.

4. This follows from the formulae
[, [y, zw]] = [z, [y, 2]z, [z, [y, W] [z, [y, w]] A bl

for z,y, z,w € G respectively. O

We denote the inclusions %! — SU(p+t—1), A; > SU(p+t—1) and B; —
SU(p +t — 1) by €;, A; and \; respectively for 2 < i < pand 2 < j < t. We also denote
by 7; the projections SU(p+t —1) — B; for 2 <i <tand SU(p+t—1) — S%~1! for
t+1<i<p.

Let W=AyV--- VA VS yv...v8?P~Landlet j =X V-~V Ve Ve
Vep: W—SU(p+t—1). By (4) there is a homotopy retraction r: XSU(p +t —
1) = XW of ¥j and as in [7] we can see that there is a self-homotopy equivalence
f:SU(p+t—1) = SU(p+t—1) such that the following square diagram is homo-
topy commutative.

SSU(p+t— 1) —T = SSU(p+t — 1)

[

adyj

sw— > BSU(p+t—1).

Then for any map g: ¥A — SU(p+t — 1), the Whitehead product [+ad);,g] =0
if and only if [+ad);, g] = 0. By adjointness of Whitehead products and Samelson
products, we have established

Proposition 3.3. For any map f: V — SU(p+1t) and each i =1,...,t, the Samel-
son product (+X;, fY = 0 if and only if (£X;, f) = 0. In particular, (£A\g, £N;) =0 if
and only if (£, £X) = 0.
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4. Computing the Samelson products

Let A= {eg,...,epA2,..., A} and A ={ez,...,€p,A2,..., N}, and let +A =
{£e2, ..., ey, Tha, ..., £N} and £A = {Fea, ..., L6y, FAa, ..., N }. We write the
domain of @ € +A or A by X (6). For example, if § = \;, then X () = A;. For § € £A
or +A, we write |0 =i if 0 = +¢;, £\; or £);.

By Proposition 3.1, it is sufficient to calculate the iterated Samelson products
(01,(--{0p, Ops1)---)) for 01,...,0,41 € £A in determining nil SU(p + ¢ — 1). To do
so, we will use the following result of Hamanaka [3].

Theorem 4.1 (Hamanaka [3]). Let X be a CW-complex with dim X < 2n + 2p — 4.
Then there is an exact sequence

p—2 p—3

- o o - ,

K%(X) () — @ H*™ (X, Zpy) = [X, U(n)] () — KHX) () — EB HP 2N (X Zy)
=0 =0

such that:
1. O(x) = @i:oz(n + i) chnyi(w) () for x € KO(X), where chy, is the 2k-dimen-
sional part of the Chern character.
2. For f,g € [X,U(n)]y), the commutator [f,g] lies in Coker® and represented
by

@ Z I (x2i-1) U g™ (225-1),

k=0 it+j—1=n+k

where x3,_1 € H* =1 (U(n); Z(y)) is the suspension of the universal i-th Chern
class ¢; € H*'(BU (n); Zy)).

As an easy consequence of Theorem 4.1, Hamanaka [3] showed:

0 fori+j<p+t—1

Proposition 4.2. ord({*e;, te;)) = Y
P « i) {p Jori+j=p+t.

Now let us calculate other Samelson products of £¢; and £A; by applying Theo-
rem 4.1. We have that H*(By; Z,)) = A(r2,—1, T2n42p—3) such that the mod p reduc-
tion of &2,,—1 and xon42p—3 are Top—1 and P12y, 1 respectively. Then H*(A,; Zy) =
Z(p)(a2n—1, a2nt2p—3) such that j*(z;) = a; for i = 2n —1,2n + 2p — 3, where R(ey,
€s,...) stands for the free R-module with a basis eq, es,... and j,: A, — B, is the
inclusion.

Lemma 4.3. For n < p, I?(EAn)(p) = Zp)(&nsMn) such that
1
ch(&,) = Bagn—1 + Hza2n+2p737 ch(nn) = Xagn42p—3-

Proof. Let v be the canonical line bundle of CPP and let € € I?(CPP) = [CP?,
BU(c0)] be the composite CP? % §27 % BU(o0) for the pinch map q: CPP — §2P
and a generator u of ma,(BU(c0)). Note that SCPP ~ Ay v S5V .-V §?P~1 By
using (3), we put &, and 7, to be the pullback of ¥2"~2y and ¥2"~2¢ by the inclu-
sion YA, — ¥?"2CPP. Then Lemma 4.3 follows from an easy calculation of the
Chern character of v and e. O
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Proposition 4.4. 1. For (i,j) # (p,t),

0 fori+j<p+1

d({£e;, 1)) = ord({(£), +¢;)) = '
ord({bei, ;) = ord((£),, £6,) {p PN

2. Fori+j <t, ord((£\;, £);)) = 0.
3. Let X(i,7) be the (2i + 25 + 4p — 5)-skeleton of A; A\ A;, that is, A; N A; minus

the top cell. For (i,7) # (p,p),

0 fori+j<p+1

A((£X, £ | x (i) =
or (< ]>‘X( ,j)) {p fori+j>p+2.

Proof. 1. Note that U(n) ~ SU(n) x S as H-spaces; here we localize at the odd

prime p. Then we have ord((e;, A;)) = ord((€}, \})), where ¢; and \; are the com-

positions S%~1 % SU(p+t—1) — U(p+t—1) and A, 2 SU(p+t—1) <
U(p +t — 1) respectively. Hence we calculate (e, \};). Apply Theorem 4.1 to
X = 5?71 x A;. Then, by Lemma 4.3, the 2(i + j + p — 2)-dimensional part of
CokerO is

Z(p)<52i71 X a2j+2p73>/(wszi—1 X Q2j+2p—3),

where sg;_1 is a generator of H*~1(5%1~1; Z(,)). By definition, €' (z2;_1) = s2i—1
and \;(w2j42p-3) = azj42p-3. Then, by the above observation, ¢*({e;,\})) €
Coker© is represented by s2;—1 X agj12p—3. Thus we have calculated
ord({e}, \%)).

17

. This is quite analogous to 1.
. Let p;: X7 x X5 — X, be the i-th projection for i = 1,2 and let ¢: X7 x X5 —

X1 A X5 be the pinch map. For f;: X; — U(n), i = 1,2, we have
[f1op1, faop2] = ¢ ((f1, f2)) € [X1 x X2,U(n)]

as in the proof of Proposition 3.2. Since ¢* is monic, ord([f1 o p1, f2 o p2]) =
ord({f1, f2)). Now if the subcomplex Y C X; x X satisfies dimY < 2n + 2p —
4, it follows from the construction of the exact sequence in Theorem 4.1 that
[f1 ©p1, f2 o po]|y lies in Coker® which is represented by

D D g U(wa) x f5(we1)),

k=0 i+j—1=n+k

where g: Y — X; x X5 is the inclusion (see [3] for details). Using this formula,
the remaining calculation is analogous to 1. O

In what follows we will often use the argument below implicitly.

Proposition 4.5. Let X — Y — Z be a cofiber sequence and let W be a space such
that [Z,W] =x*. If a map f: Y — W satisfies f|x =0, then f = 0.

Proof. Proposition 4.5 follows from the exact sequence [Z, W] — [V, W] — [X, W]
induced from the cofiber sequence X — Y — Z. O
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By Theorem 2.1 and Proposition 2.2, the Samelson product (+6;, £65) for 01,6, €
A falls to a single B; or S?=! Cc SU(p+t—1)fori=2,...,tand j=t+1,...,p.
We shall consider the lifting problem of the above (+6;,+65) when it maps to B;.

Let us first consider (+e;, £e;). Note that we can assume i+ j > p +t by Propo-
sition 4.2, which implies that (+e;, £e;) falls to S§2(+5=P)+1 for j + j < 2p — 1 and to
B, for i = j = p. Then it is sufficient to look at the case i = j = p. By Proposition 4.2,
ord((+e€p, +¢,)) = p and then, by Proposition 2.2, (%€, +e,) lifts to S* C By. Thus
we have obtained

Proposition 4.6. (£e¢;, +¢;) falls to S22+ CSU(p+t—1) if p+t <i+j<
2p — 1 and lifts to S® C By if i + j = 2p.

Next we consider (fe;,£\;) and (£}, +¢;). In the following calculation, we shall
assume the homotopy set [XX,Y] is a group by the comultiplication of ¥X and
the induced map (Xf)*: [EX',Y] — [EX,Y] from f: X — X’ as a group homomor-
phism. Now we have the exact sequence induced from the cofiber sequence S$27+2P—5

a1 (2n-2) g2n—2 _, Coar(2n—2) for n > 3:

_ a1 (2n—1)* n— n— n—
T2 (8200 S o a(SP"Y) = [Cony anys S2 Y = oo (S27Y).

It follows from Theorem 2.1 that a;(2n — 1)* is epic. Then, for ma,_2(S**~1) =0,
we obtain

Proposition 4.7. Forn > 3, [Cy,(2n—2),5*" ] = 0.

Corollary 4.8. Forp+2 <i+j < p+t—1, the Samelson products (£\;, xe;) and
<:|:€j, :|:)\1> llﬁ to S2(i+i—p)+1 - Bi+j,p+1.

Proof. We only give a proof for (¢;, ;) since the others are analogous. It follows from
Proposition 2.2 that (e;, \;) falls to Bitj_pr1 CSU(p+t—1). Since S* "1 ANA; =
Ca(2i+2j—2), it follows from Proposition 4.7 that q.({(e;, A;)) = 0, where q: Bij;j_pi1
— S§20+)=1 s the projection. Then (e;, \;) lifts to S2+7=P)+1 and the proof is
completed. O

Let us describe the above lift f: A; A §27—1 — §2(i+i—P)+1 of the Samelson product
(Ai, €5). Consider the following commutative diagram in which the row and the col-
umn sequences are the exact sequences induced from the cofiber sequence $2"+2P—4 —
Cor (2n+2p—1) > S¥4~% and the fiber sequence $*"~! — B, — §2"+2P=3 respec-
tively.

[(ECq, 2nt2p—1)s S2nt+2p=3]

o

Tontap—6(S? ") —— [Ca, 2n42p—1), S2" ] ——> Tan2p-a(S?"1)

[Coq (2n+2p—4) Bn]

Let p: Co, 2n42p—a) — 5?2774 be an extension of the degree p self-map of §2"+2P~4,
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Then, by (5) and [12, Proposition 1.9], we have

6(¥p) = a1(2n — 1) op = ¢"({a1(2n — 1), p, 01 (2n + 2p — 4) )b = ¢"(az2(2n — 1)).
On the other hand, it follows from Theorem 2.1 that

Imqg* = Z/p(q" (a2(2n — 1))).

Then we have established that if f: Cy, (2n42p—a) — S2n=1 satisfies f|gant2p-a = 0,
then i,(f) = 0. In particular, it follows from Proposition 4.4 that
Proposition 4.9. Forp+2 <i+j<p+t—1, any lift of (\i,¢;) to S2HI—P)+1
Bi+j—p+1; say f, satz’sﬁes f|5‘21‘,—1/\s2j—1 7é 0.

Next we consider the lifting problem of (£A;,+\;). Recall from [12, Lemma 3.5]
that the cell structure of Cy, () A Cq, (n) for n = p is given by

Ca1(n) A Cal(n) = (COq(Qn) Vi SQn+2p—2) U, 6271-5—41)_47
where
vn = (ix(@) + (=1)"201(2n)) V o1 (2n + 2p — 2) )

for the inclusion i: S?" — a1 (2n) and some «a € 7r2n+4p,5(52”). Since n > p, it fol-
lows from the Serre isomorphism 7, (S%") & S, 1(S*71) @ 7, (S*"~1) that a is a
multiple of aa(2n).

We shall identify A; A A; with Cq,(i4j-1) A Cq,(i+j—1). Consider the following
commutative diagram in which the row sequences are the exact sequence induced

from the cofiber sequence 4; A A; — S2(i+i+2p-3) S, XX (i,7):

[ZX(iaj)aSkil] %ﬂk-‘%p—(i(sakil) [Az /\Aj,Skil]

Z2N\L E2Nl EZN\L

[22N+1X(i,j), Sk+2N—1] . 7Tk:+4p76+2N(Sk+2N_1) . [ZQN(AZ' A Aj), SIc-i—QN—l]7
(22N py

where we put k = 2(i + j). When N is large enough, we have X2V f = S, ;. y_1. Let
Pt Coy2(i4j-1)) — S2TI71 be an extension of the degree p self-map of S2(+H7+N-1),
Then, by [12, p.179], we have
(EV A (Ep) = {p,ar2(i+j + N) = 1),a1(2(i +j + N +p = 2)) 11
= 0a2(2(i+j+N)—1)
as in the proof of Proposition 2.2. On the other hand, it follows from Theorem 2.1 that

»2N, 7r2(i+j+2p_3)(52(”j)*1) — 7r2(i+j+2p_3+N)(SQ(iJrj*N)*l) is an isomorphism.
Thus we have obtained

Proposition 4.10. The inclusion X (i,j) — A; A Aj induces an injection [A; A A,
SHADT = [X (3, 5), S*HD 7.

Corollary 4.11. Fori+j <p, (£A;,£\;) =0.
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Proof. By Proposition 4.4, it is sufficient to consider the case that t +1 < i+ j <
p. In this case, (£A;, £);) falls to §2(+7)=1 © SU(p 4t — 1) and then the proof is
completed by Proposition 4.4 and Proposition 4.10. O

Corollary 4.12. For p+1 < i+ j < 2p—1, the Samelson products (£X;, £A;) can
be compressed into S2(HI—P)T1 C SU(p+t — 1).

Proof. We only show the case of (\;,\;) since other cases are similar. By Propo-
sition 2.1 and Proposition 2.2, (A;, A;) falls to Biyj_pi1. Put (A, \j)|xa ) = fV
9: X(i,5) = Coy 254 j)—2) V S20++P=2) — B, 1. By Proposition 4.7, we have
¢+(f) = 0 for the projection q: Biy;_p+1 — S20+9)~1. By Proposition 4.4, f is of
order at most p and then, by Proposition 2.2, ¢.(g) = 0. Thus, by Proposition 4.10,
¢-({(N\i, A;)) = 0 and this implies that (\;, A;) lifts to S20Hi—P+l c B, . . O

5. Upper bound for nilSU(p +t — 1)

Hereafter, we suppose that p > 7.
The aim of this section is to show:

Theorem 5.1. nilSU(p+¢—1) < 3.

First, here is the proof of Theorem 5.1. By Proposition 3.1 and by Proposition 3.3,
it is sufficient to show that

<91, <§27 <é3,é4>>> =0 for 0, € £A and 92,@3,@4 S +A.

Let wy € A and let @o,w3,04 € A. It follows from Proposition 3.2 that if (4(dws,
:t@4>, <:|:(:)2, :I:w1>) = <:|:(1127 (:I:wl, :|:<:|:(D3, j:u?4)>> = 0, then <:|:(,<117 <:|:<:‘:JJ$, :l:(:J4>,
+@s9)) = 0. By Proposition 3.3, this implies (+w1, (£@s, (£@3, £@4))) = 0. On the
other hand, by Proposition 3.2, if (@3, (+dy, (Fwe, tw1))) = (£ig, (£(+wa, Tw1),
+a3)) =0, then (£(tdq,+wr), (£ws, £@4)) = 0. By Proposition 3.2, this implies
(+({+ws, +@4), (£wa, wq)) = 0. Thus the proof is completed by the following propo-
sitions.

Proposition 5.2. (01, (02, (05,04))) =0 for 61,0, € £A and 03,0, € £A.

PI;OpOSition 5.3. <01, <92, <93,04>>> = <01, <92, <94,93>>> =0 for 61,605 € +A, 05,0, €
+A and |03] + |64] # 2p.

Proposition 5.4. (£),, (£X,, (01,602))) =0 for 61,05 € £A.

We will calculate iterated Samelson products in +A from those in +A by using the
following lemma.

Lemma 5.5. Let

ni no ng
X = (\/ Sian—S) U (U e?nPfSJrQ(P*l)) U U (U e?np73+2(k71)(p—1))
i=1 i=1 i=1

and let f: X — SU(p+t—1). If n+k < p, then f can be compressed into S*"~1 C
SU(p+t—1) and 22)f = 0.
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Proof. If f falls to By, it follows from Theorem 2.1 that ¢.(f) = 0 for the projection
q: B, — 8?"t2r=3 and then f lifts to S?"~! C B,,. Thus we assume that f is a map
from X to S?"~1. Consider the exact sequence induced from the cofiber sequence

Vi S XV S =Y
7y * - x 1
[Y, S2n—1] (q_)) [X7 S2n_1] AN @7’(2711973(51'2”71).
i=1
It follows from Theorem 2.1 that (325)*(X%f) = 0, and then there exists g: X2V —
S§2n+1 such that (X2¢')*(g) = X2 f. By induction, we obtain ¥2* f = 0. O

Corollary 5.6. Let X = §?"~1 op §2n—1ye2n+2r—3 forn <5p—3andlet f: X —
SU(p+t—1). Then (0, f) = (f,0) =0 for each 6 € £A.

Proof. By Corollary 2.3, we only have to consider the case 2n — 1 = 6p — 3, 8p — 5,
8p — 3, 10p — 7. Then it follows from Lemma 5.5 that f can be compressed into
S5 or 87 C SU(p+t—1), and that X*f = 0. By Proposition 4.4, we assume |6] >
p — 2. Since p > 7, X(0) is a 6-suspension and then 1xg) A f = f A lxg) = 0. Thus
Proposition 3.3 completes the proof.

We give candidates for non-zero 2-iterated Samelson products in +A.

Proposition 5.7. Let 01,02,05 € £A. If |01] + |02| + 03] #2p+ 1, 2p+2, 2p+ 3,
3]), then <91, <(92, 93>> =0.

Proof. Suppose that [01] + |02| 4+ |03] # 2p + 1, 2p + 2, 2p + 3, 3p. By Proposition 3.3,
it is sufficient to show that (6, (f2,03)) = 0 for 6; € £A and 0y, 05 € £A.

By Corollary 2.3, (0, (02,03)) = 0 if 61,02,03 € £A. Then by Proposition 3.2 and
Proposition 3.3, it is sufficient to show that (0y, (0o, £X;)) = (01, (£, 02)) = 0 for
01,02 € £A. Since other cases are analogous, we only show (\;, (A;, \x)) = 0. When
j =3, A; is a suspension by (3). Then it follows from (4) that (\;, \g) = (A\j, A\) V
1 AjABy = (A; ANAg) V (A; ASHH2P=4) 5 SU(p+t —1). By Corollary 2.3, we
have (A, (A\j, Ax)) = 0 and, by Corollary 5.6, (\;, f) = 0. Then we have established
(Ai, (Aj, Ak)) = 0.

When j = 2, we assume k = p — 1 or p by Proposition 4.4. It follows from Theo-
rem 2.1 and Proposition 2.2 that (Ag, 5\1,,1) falls to Bs. By Corollary 4.12 and Theo-
rem 2.1, we have q.({\2, Ap—1)) = 0 for the projection ¢: By — S?P*1. Then (\g, Ap_1)
lifts to f: A A Bp—1 — S3. Hence, by Proposition 4.4, (\;, f) = 0if i < p — 1 and this
shows that (\;, (\j, \x)) = 0 when (j, k) = (2,p — 1). One can analogously show that
his 4y M) = 0 when (4, k) = (2,p). o

Proof of Proposition 5.4. As in the above proof of Theorem 5.1, Proposition 5.2
implies that it is sufficient to prove (£(61, 6a), (£X,, £),)) = 0.

By Proposition 5.7, we have only to consider the case that |01 + |62] =p+ 1, p+ 2,
p+3 or 2p When ‘91| + ‘62| =p+ 1, <01792> falls to B2 X 55 X 577 B2 X B3 X S7 or
By x B3 x By by Theorem 2.1 and Proposition 2.2. On the other hand, (), £\,)
falls to By x S® or By x Bz by Theorem 2.1 and Proposition 2.2. Then, by Proposi-
tion 3.2, Proposition 4.4 and Corollary 4.11, we have obtained that (+\,, (£X,, (61,
02))) = 0. Other cases are quite analogous. O



HOMOTOPY NILPOTENCY IN LOCALIZED SU(n) 73

~ Now we proceed with the calculation to show all 3-iterated Samelson products in
A vanish. As a first step, we show:

Proposition 5.8. (01, (02, (03,04))) =0 for 61,...,04 € £A.

Proof. By Proposition 5.7, we assume that |02| + [0s] + |04 =2p+ 1, 2p+ 2, 2p + 3
or 3p. We only show the case that (62,03, 04) = (A, Aj, Ag) for i + j + k = 2p + 3 since
the other cases are analogous. By Corollary 2.3, there is a homotopy commutative
diagram:

Ag A Ay A Ay L) g, gy

)

(\/ SSp 3)U€10p 5 4>f SU p+t—1

where ¢ pinches the (8p — 4)-skeleton of A; A A; A Ay. It follows from Lemma 5.5 that
f can be compressed into ST C SU(p +t — 1) and that %% f = 0. Then, by Proposi-
tion 4.4, we assume that ¢ > p — 2 and this implies that X (6;) is a 6-suspension.
Hence we have 14, A f = 0 and this completes the proof. O

Corollary 5.9. (01, (02, (03,04))) = (01, (02, (04,03))) =0 for 01,035,035 € A and
04 € £A.

Proof. By Proposition 5.8, we put 6, = +\;.
We first consider the case that 03 # £A5. Since X (3) is a suspension, we have the
following homotopy commutative diagram by (4).

<637:‘:5\i>

l ; 03,4
(X (05) A A;) V(X (03) A Shit2p=1) ( Vi qu Up+t—1)
Then, by using the homotopy equivalence
3 3 s |
/\ X(6;) ANB; ~ (/\ X(0;) NA;)V (/\ X(0,) A Shit2=4),
j=1 j=1 =1

we have
<61a <927 <937 ij‘Z>>> = <91a <92a <937 i)‘z>>> V <91a <92a f>>
Thus, by Corollary 5.6 and Proposition 5.8, we have established (61, (62, (A5, £);))) =

0. It is analogous to show {0y, (02, (£X;,05))) = 0.

We next consider the case that 83 = +\s. By Corollary 4.11 and Proposition 5.8,
we assume that ¢ =p—1,p. It follows from Corollary 4.12 that we also assume
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(#Xg, £X;): Ay A B; — §2C+i=P)*1 Then, by (4), we have a homotopy commuta-
tive diagram
T2 (+A2, N
$2(Ay A B;) (A2 220) §2(2+i—p)+3

Y2(Ax A A;) V X2 (A A ST wgz(w—pwq

By Proposition 5.7, we also assume that |02| + 03] + || =2p+ 1, 2p+ 2, 2p+ 3 or
3p and this implies that X (62) is a 6-suspension. Then, by applying the homotopy
equivalence

(X (02) A Ay A AV (X (02) A Ag A S2EFH=PIFL)
we have

<927 <:t)‘2v :l:;‘l» = <92, <:|:>‘27 :l:)‘i>> \ (<62> €3+ifp> © (12—2X(02) A g))

By Corollary 5.6, we also have 1x-2x(,) A g = 0 and then by Proposition 5.8 we have
obtained (1, (02, (A2, £)\;))) = 0. We can similarly see that (61, (02, (£A;, £A2)))
=0 0

Proof of Proposition 5.2. By Proposition 5.8 and Corollary 5.9, we put 3 = 4+\; and
04 = ).

Applying the homotopy extension property of the inclusion ¥A4; A A; — ¥£A; A By,
we replace a homotopy retraction ¥ A4; A B; — ¥A; A A; with a strict retraction. We
also replace a homotopy retraction ¥ A4; A B; — X A; A A; with a strict one.

Let Y'(¢,j) be the (4i 4+ 45 + 4p — 7)-skeleton of B; A Bj, that is, Y (i,7) is B; A B;
minus the top cell. Since we have strict retractions ¥A4; A B; — X A; A Aj and ¥A4; A
B; — ¥ A; N Aj, the proof of Corollary 5.9 implies that we can choose contractions of
<01, <92, <:|:5\“ :t)\]>>> and <91, <02, <:|:)\Z, :|:5\J>>> to coincide on X(Gl) A X(eg) AN Az AN
A;. Then, by gluing the above contractions, we obtain

<917 <92a <:|:5\ia in>|Y(i7j)>> =0 (8)
for 91, 92 € +A.
Now we consider first the case 3 # £ 5. As in the proof of Corollary 5.9, we have

for some map f: X(62) A S*Hi+P=2) _ SU(p 4t — 1), where we use the homotopy
equivalence

X(02) ABi A Bj =~ (X(62) ANY (4,§)) V (X (02) A SHFTH+P=2)y,

Then for (61,02, 05) # (£XAp, TAp, £A,), we have (01, (0a, (£N;, £X;))) = 0 by Corol-
lary 5.6 and (8).

By Proposition 2.2, (£),, +,) falls to By x B3 C SU(p +t — 1). Then by Propo-
sition 3.2, it is sufficient to show that (01, (£\,, \j o m; 0 (£, £A,))) =0 for i = 2,3
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for 6; € £A. Analogously to the above case, we have
<i)\p, )‘i oTm; O <i5\p, iXp>> = <i>\p, Ai oTm; O <i5\p, ij\p>‘y(p’p)> \Y fz

for some map f;: A, A S?P78 — SU(p + ¢ — 1), where we use the homotopy equiva-
lence

Ay ANBy AB, >~ (A, NY (p,p)) V (A, A SP?P78).

By (8), it is sufficient to show (01, fi) = 0 for i = 2,3. By [13], we have m14p_9(S5?) =
7r16p,11(53) = 0 and then my4,_9(B2) = Tigp—11(B2) = 0 by the homotopy exact se-
quence of the fibration S® — By — $?P*1 and Theorem 2.1. Thus f» = 0. Similarly,
we have f3 = 0.

We next consider the case 62 = £Xo. By Proposition 5.7, we put (i,5) = (p —
1,p), (p,p — 1), (p,p). When (i, 5) = (p,p), it follows from Proposition 5.7 that |05 = 2
or 3. By Proposition 2.2, (£),,+),) falls to By x B3 C SU(p+t—1). Then, by
Proposition 3.2 and Corollary 4.11, we have (0, (£),, £A,)) = 0. We shall prove
the case (i,7) = (p — 1,p). The case (i,5) = (p,p — 1) is proved quite analogously.
By Proposition 2.2, (£X,_1,+),) falls to B, and then (£Xa, (£X,_1,%\,)) falls
to Bs x By. Moreover, by Theorem 2.1 and Corollary 4.12, we can see that m; o
(£a, (EXp—1,EX,)) can be compressed into S*~! for i = 3,4. Then, by Proposi-
tion 3.2, we assume |0;| > p — 2 and then X () is a 6-suspension. By an analogous
argument as above, there are maps g;: X?(A? A §12P=12) — §2i+1 guch that

2275 0 (£, (FXp1, £Ap)) = 227 0 (FXa, (FAp- 1, X))y (po1.)) V 05
for i = 3,4, where we use the homotopy equivalence
Y2 A5 A B,_1 ANBp >~ EJQ(A2 AY(p—1,p))V 22(A2 A 512;;—12).
Then, as in the proof of Corollary 5.9, we obtain (01, (s, (EX,—1, £A,))) =0. O

In order to calculate other Samelson products, we will use

Lemma 5.10. Let g: V. — W1 VW5 and let f;: W; — X for i =1,2. Suppose that
fiopiog=0 fort=1,2 and that X is an H-space, where p;: Wy V Wy — W; is the
i-th projection. Then (f1V fa) og =0.

Proof. Define fi - fo: Wi x W — X by fi - fa(w,y) = fi(z) f2(y) for (z,y) € W1 x
Ws. Then we have a homotopy commutative diagram

\
Ve v, L
jo f1-f2

VLW w2 X
where j is the inclusion. This completes the proof. O
Proof of Proposition 5.3. We first consider the case 05 # £\y. If 4 = )\, we have
(03,04) = (03, X))V
for some map f: X(03) A S*¥+2P=1 — SU(p+t — 1), where we use the homotopy
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equivalence
X(03) A By ~ (X (05) A A;) V (X (03) A S¥t+2r—4),

We also have an analogous decomposition of (+);, 63). Then by Corollary 5.6 and
Proposition 5.8, it is sufficient to show that (61, (£A;, (05, 04))) = 0 for 61, 05,0, € £A.
Since |03| + 04| # 2p, we have (fs,60,): X (03) A X (0,) — S>(+7-P)+1 by Proposi-
tion 4.6, Corollary 4.8 and Corollary 4.12. Since we have

(X, €itjopt1) = (N, €irjopt1) V g
for some map g: S%*6/=3 — SU(p + t — 1) by applying the homotopy equivalence
B; A G2(i+j—p+1) =1 o (4, A S =P+ =1y G2+61=3 _, QU(p + ¢ — 1).

Then by Corollary 5.6, Proposition 5.8 and Lemma 5.10, we obtain (61, (£}, (03, 04)))
=0.

We next consider the case #3 = £)\5. By Corollary 4.11, 6, = :I:S\p,l or :I:S\p and
then by Proposition 5.8, 5 = +\, and 6, = \,_1 or A, as 04 = £\, _1 or £\,. Now we
consider the case 6, = +\,_1. By Proposition 2.2, (X2, £\, _1) falls to By C SU(p +
t —1). By Theorem 2.1, we have [Ay A S8 §2PF1] = 0 and then the inclusion Ay A
Ap—1 — A A B,_1 induces an injection [As A B,_1, ST — [As A 4,1, S%T1]. On
the other hand, it follows from Corollary 4.12 that g.((£A2,+Ap—1)) =0 for the
projection q: By — S?PT! and then g, ((£Xa, +\,_1)) = 0 which is equivalent to that
(£Aa, ij\p,l) can be compressed into S° C Bs. Note that

(£, €2) = (£, €0) V [ By AS? = (A, AS®) v (SP7HAS3) — SU(p +t —1).

By Corollary 5.6, we have (01, f) = 0. Then by Lemma 5.10, it is sufficient to show
that (01, (£A,, (£A2, £Ap_1))) = 0 and this is done by Corollary 5.9. The equality
(01, (£Ap, (£Ap—1,£A2))) = 0 can be shown in an analogous way.

Let us consider the case 64 = ij\p. As above, (£Ag, ij\p> can be compressed into
S5 x 87 and then, by Proposition 3.2, it is sufficient to show that (6, (f2,€; o m; 0
(£, £),))) = 0 for i = 3,4. This is done quite analogously to the above case. We
can also see that (01, (02, (£, £A2))) = 0 as well. O

6. Proof of Theorem 1.1

6.1. t=2

We shall show (e,_1,(\2,€,)) # 0 and then, by Theorem 5.1, the proof of The-
orem 1.1 is completed. By Theorem 2.1 and Proposition 2.2, (Aa,¢,) falls to S° C
SU(p + 1). Since (ez, €p) # 0 by Proposition 4.2, we have (Xg, €,) = aa1(5) for some
integer a such that a # 0 (p), where oy (5): Cy, (2p42) = Az A S?P71 — 5% is an exten-
sion of a1 (5). Analogously, we have (e,_1, €3) = ba1(5) for an integer b such that b # 0
(p). Then, by [12, Proposition 1.9],

{ep-1: (N2, &) = abar (5) 0 52720y (5) = abg" ({1 (5), 1 (2p + 2), a1 (dp — 1)}), (9)
where ¢g: 2?73 A Ay A S?P~1 — §6P=3 pinches the bottom cell.
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Consider the exact sequence induced from the cofiber sequence S2P=3 A Ay A §2P~1
4, S6p—3 aﬁl}j) S4p.

ap(S%) B o 5(S%) L [$2P3 A Ay A S2L, 5],

By Theorem 2.1, a1 (4p)* = 0 and then ¢* is monic. It is known that {o;(5), a1 (2p +
2),a1(4p — 1)} # 0 (see, for example, [4, p. 38]) and thus, by (9), we have established

(ep—1, (A2, €p)) # 0.

6.2. 3<tget

2
By Proposition 4.4, possible non-trivial 2-iterated Samelson products in +A are:

1. (tep, (Lep, Lep)).

2. (N, (e, Fer)), (e, (BN, Eer)), (Fei, (Fej, £Ag)) for i+j+k=2p+1,
2p+ 2, 2p + 3.

We shall show these Samelson products are all trivial and then, by Proposition 3.1,
the proof is completed.

1. By the Jacobi identity of Samelson products, we have 3(%e,, (xe,, £€,)) =0
and then, for p > 3, (xe,, (£ep, £€,)) = 0.

2. By Proposition 3.2, it is sufficient to show (£e;, (£X;, Lex)) = (Eei, (Fej, £Ap))
=0 for i+j+k=2p+1, 2p+2, 2p+ 3. Let us consider (&e;, (£}, £ey))
for i+ j+k =2p+1. By (4), we have (£e;, (£X;, tex)) = (Fei, (£N), Lep)) V
(ei, f) for some f: §¥+2p=4 A §2k=1 _, QUJ(p+t — 1). Then, by Corollary 5.6,
it is sufficient to show (%e;, (£A;, £ei)) = 0.

Let us consider the case i + j + k = 2p + 1. By Proposition 4.12, (£, £ex) can
be compressed into S2UTF=P)F1 C SU(p + ¢ — 1) and then we have

(F€i, (A, Tex)) = (€, €54k—p+1) © (Lgzi-1 A f),

where f: Aj A S%R~1 — §2UHk=P)HL Since i +j+k—p+l=p+2<p+t—1, we
have (%€, €j1k—pt+1) =0 and then (+e;, (£, £ex)) = 0. Analogously, we can see
<:|:€i, <:|:6j,:|:>\k>> =0.

When i+ j+k=2p+2,2p+3, it follows from Corollary 2.3 that (Le;, (£,
:|:€k>> =0.

6.3. Pl <t<p

Put t # p. We shall show (A,_¢11, (M, €p)) 7 0 and this completes the proof of
Theorem 1.1 by Theorem 5.1. Let X be the (8p — 4)-skeleton of A,_;1 A Ay A S?P~1,
that is, Ap_¢141 A Ar A 527=1 minus the top cell. Then, as in Section 4, the cofiber
sequence S2P—DHLA A, A §2-1 X %, 6603 gplits. We denote a homotopy sec-
tion of ¢ by s, where ¢ is the restriction of the pinch map A, ;41 A Ay A S?P~1 —
S§2@=t)=1 A A, A §2P~1 Then, by Proposition 4.8, we have a homotopy commutative
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diagram:
(1A 7t+1/\<)‘i16p>)|X <)\ —t+175t+1>
X - Ap_t+1 A\ 32t+1 A S L B3
(jl q/\152t+1i
Lg2(2p—t)—1 A€t €p)
G2(2p—1)—1 p G2t—1 A g2p—1 G2(2p—t)-1 p g2+l — 1 o pBo.

By Theorem 2.1 and Proposition 4.2, we have 1g22p-1-1 A (€, €p) = aa (4p) for some
integer a such that a Z 0 (p).

Let a1(2p+2): S* — A3 be a coextension of a;(2p + 2). Then, as in Section 2,
we have f = bi.(a1(2p+2)) for some integer b, where i: A5 — Bs is the inclusion.
Suppose that b = b'p. Then, by [12, Proposition 1.8], we have

f=Vi(a1(2p+2) op) = =i, 0 ji({ar(5), 01(2p +2),p}) = —%is 0 ji(az(5)),

where j: S® — Ajz is the inclusion. In particular, f lifts to S° C Bs and this contra-
dicts Proposition 4.9. Thus we have b # 0 (p).
On the other hand, it follows from [12, Proposition 1.8] that

a1(2p+2) o1 (2p +2) = —ju{a(5),01(2p +2), n (4p — 1)}
It is known that {a(5), a1(2p + 2), a1 (4p — 1)} # 0 as above and then we have estab-
lished
fo(lg2er—n-1 A e, €p)) = fo(lgeep—n-1 A (€, €p)) 0GOS
= (Ap—t41, (A, 6p)) 08
#0.
This implies (Ap—i+1, (Ae; €p)) # 0.

When t = p, the proof is completed by the homotopy exact sequence induced from
the fiber sequence SU(2p —2) — SU(2p — 1) — S4P~3.
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