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EXPLICIT FIBRANT REPLACEMENT FOR DISCRETE
G-SPECTRA

DANIEL G. DAVIS

(communicated by Jack Morava)

Abstract
If C is the model category of simplicial presheaves on a site

with enough points, with fibrations equal to the global fibra-
tions, then it is well-known that the fibrant objects are, in gen-
eral, mysterious. Thus, it is not surprising that, when G is a
profinite group, the fibrant objects in the model category of
discrete G-spectra are also difficult to get a handle on. How-
ever, with simplicial presheaves, it is possible to construct an
explicit fibrant model for an object in C, under certain finite-
ness conditions. Similarly, in this paper, we show that if G has
finite virtual cohomological dimension and X is a discrete G-
spectrum, then there is an explicit fibrant model for X. Also,
we give several applications of this concrete model related to
closed subgroups of G.

1. Introduction

In this paper, G always denotes a profinite group and by “spectrum” we mean a
Bousfield-Friedlander spectrum of simplicial sets. In particular, a discrete G-spectrum
is a G-spectrum such that each simplicial set Xk is a simplicial object in the category
of discrete G-sets (thus, the action map on the l-simplices,

G× (Xk)l → (Xk)l,

is continuous when (Xk)l is regarded as a discrete space, for all l > 0). The category
of discrete G-spectra, with morphisms being the G-equivariant maps of spectra, is
denoted by SptG.

As shown in [3, Section 3], SptG is a simplicial model category, where a morphism
f in SptG is a weak equivalence (cofibration) if and only if f is a weak equivalence
(cofibration) in Spt, the simplicial model category of spectra. Given X ∈ SptG, the
homotopy fixed point spectrum XhG is the total right derived functor of fixed points:
XhG = (Xf,G)G, where X → Xf,G is a trivial cofibration and Xf,G is fibrant, all
in SptG. This definition generalizes the classical definition of homotopy fixed point
spectrum, in the case when G is a finite group (see [3, pg. 337]).
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Notice that we can loosen up the requirements on Xf,G. If X → Xf is a weak
equivalence, with Xf fibrant, all in SptG, then, by the right lifting property of a
fibrant object, there is a weak equivalence Xf,G → Xf in SptG, so that

XhG = (Xf,G)G → (Xf )G

is a weak equivalence. Thus, we can identify XhG and (Xf )G, and, hence, we only
need a fibrant replacement Xf to form XhG. Henceforth, we relabel any such Xf as
Xf,G and refer to it as a globally fibrant model for X. (Thus, from now on, X → Xf,G

does not have to be a cofibration.)
The preceding discussion shows that a globally fibrant model Xf,G is an important

object. Of course, the model category axioms guarantee that Xf,G always exists. But
it is reasonable to ask for more. For example, in Spt, there is a functor

Q : Spt → Spt, Z 7→ Q(Z) = Zf,

where Zf is a fibrant spectrum,

(Zf)k = colim
n

Ωn(Ex∞(Zk+n)),

and there is a natural weak equivalence Z → Zf (see, for example, [14, pg. 524]).
Hence, for the model category Spt, there is always an explicit model for fibrant
replacement. Similarly, it is natural to wonder if an explicit model forXf,G is available.

But there is a difficulty with this. Let G-Setsdf be the Grothendieck site of finite
discrete G-sets (e.g., see [10, Section 6.2]). There is an equivalence between SptG
and the category of sheaves of spectra on G-Setsdf (the discrete G-spectrum X
corresponds to the sheaf of spectra HomG(−, X); see [3, Section 3] for details), and
it is well-known that, in general, for categories of simplicial presheaves, presheaves of
spectra, and sheaves of spectra, there is no known explicit model for a globally fibrant
object. In fact, the situation is such that [8, pg. 1049] says that “[t]he fibrant objects
in all of these theories continue to be really quite mysterious.” (A similar statement
appears in [11], between Corollary 19 and Definition 20).

Nevertheless, under certain hypotheses, explicit models for globally fibrant objects
are available in the cases of simplicial presheaves and presheaves of spectra. Such
results are based on Jardine’s result in [12, Proposition 3.3], which constructs an
explicit globally fibrant model for a simplicial presheaf P on the site ét |S , where P
and the scheme S must satisfy certain finiteness conditions (and other hypotheses).
For example, under similar finiteness conditions, [13, Proposition 3.20] follows the
proof of Jardine’s result to obtain a concrete globally fibrant model for a presheaf of
spectra on a site with enough points.

Now suppose that G has finite virtual cohomological dimension (see Definition 4.1)
and that X is a discrete G-spectrum. In this paper, we show that there is an explicit
model for Xf,G, by expressing the homotopy limit for diagrams in SptG in terms
of the homotopy limit for diagrams in Spt (see Theorem 2.3) and by modifying the
proof of [3, Theorem 7.4] (which applies the two results cited above, [12, Propo-
sition 3.3] and [13, Proposition 3.20]). We refer the reader to Theorem 4.2 for the
precise statement of our main result; its formulation depends on definitions that are
given in Section 3.
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Let H be a closed subgroup of G. If Y → Z is a weak equivalence in SptH , such
that Y is a globally fibrant model for X in SptG and Z is a globally fibrant model
for X in SptH , then we label the map Y → Z as rGH . Note that the map

Xf,G → (Xf,G)f,H ,

a weak equivalence in SptH , can be labelled as rGH , so that rGH always exists. In Corol-
lary 4.4, we show that the explicit globally fibrant model constructed in Theorem 4.2
yields an explicit model for rGH (where, as before, we assume that G has finite virtual
cohomological dimension).

Section 5 explains that, when H is a closed normal subgroup of G and X is a
discrete G-spectrum, there are cases when XhH , unlike XH , is not known to be a
G/H-spectrum. In Corollary 5.4, we point out that, if G has finite virtual cohomo-
logical dimension, then Theorem 4.2 implies that XhH can always be taken to be a
G/H-spectrum.

Throughout this paper, U <o G means that U is an open subgroup of G.
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2. Homotopy limits in the category of discrete G-spectra

To explicitly construct the desired fibrant discrete G-spectrum, we first need to
understand homotopy limits in the category of discrete G-spectra. Thus, we begin
this section by following the presentation in [9] to give the general definition of the
homotopy limit of a C-diagram X(−) in M, where M is a simplicial model category
and X(−) is a diagram in M indexed by a small category C.

Recall that, for a small category C, the classifying space of C is the simplicial set
BC, with l-simplices (BC)l equal to the set of compositions

c0
σ0−→ c1

σ1−→ · · · σl−1−→ cl

in C (see, for example, [9, Definition 14.1.1] for the definition of the face and degen-
eracy maps).

Definition 2.1 ([9, Definition 18.1.8]). As above, let M be a simplicial model cate-
gory and let C be a small category. Also, let X = X(−) be a C-diagram in M; that
is, X is a functor C →M, so that, for example, if c→ d is a morphism in C, then
X(c) → X(d) is a morphism in M. Then the homotopy limit of X in M, holimM

C X,
is defined to be the equalizer of the diagram

∏
c∈C X(c)B(C↓c)

α //

β
//
∏
σ : c→dX(d)B(C↓c),

where the second product is indexed over all the morphisms in C. Here, the map α is
defined as follows: the projection of α onto the factor indexed by σ : c0 → c1 is equal
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to composing the projection
∏
c∈C X(c)B(C↓c) → X(c0)B(C↓c0)

with the canonical map X(c0)B(C↓c0) → X(c1)B(C↓c0). The map β is defined by letting
the projection of β onto the factor indexed by σ be given by composing the projection

∏
c∈C X(c)B(C↓c) → X(c1)B(C↓c1)

with the canonical map X(c1)B(C↓c1) → X(c1)B(C↓c0) that is induced by the map
B(C ↓c0) → B(C ↓c1).
Remark 2.2. Note that the homotopy limit is an equalizer of a diagram involv-
ing products and cotensors, and, given a simplicial set K, the cotensor functor
(−)K : M→M is a right adjoint. Hence, the homotopy limit holimM

C (−) commutes
with limits in M.

If X and Z are C-diagrams in SptG and Spt, respectively, then we use the less
cumbersome holimG

C X and holimC Z to denote holimSptG

C X and holimSpt
C Z, respec-

tively. As in Definition 2.1, given c ∈ C, X(c) is the object in M that is indexed by
c in the diagram X.

Theorem 2.3. If X is a C-diagram in SptG, then there is an isomorphism

holimG

C
X ∼= colim

NCoG
(holim

C
X)N .

Proof. For each c ∈ C, let Bc denote the simplicial set B(C ↓c). Given a discrete G-
spectrum Y and a simplicial set K, let (Y K)G and Y K denote the cotensor objects
in SptG and Spt, respectively. Also, let

∏G and
∏

denote products in SptG and Spt,
respectively. Then, by Definition 2.1, holimG

C X is the equalizer of the diagram

∏G
c∈C(X(c)Bc)G

α //

β
//
∏G
σ : c→d(X(d)Bc)G

in SptG.
To go further, we note how limits and cotensors in SptG are formed. Recall from [3,

Remark 4.2] that, if {Yα}α is any diagram in SptG, then the limit of this diagram
in the category SptG is colimNCoG(limα Yα)N , where the limit in this expression is
taken in the category of spectra. The colimit in this expression, and others like it,
can be taken in the category of spectra, since the forgetful functor SptG → Spt is a
left adjoint, by [3, Corollary 3.8]. Given a discrete G-spectrum Y and a simplicial set
K, the spectrum Y K can be regarded as a G-spectrum (but not necessarily a discrete
G-spectrum), by using only the G-action on Y . Then

(Y K)G = colim
NCoG

(Y K)N

(e.g., see [6, (1.2.2)] and [12, pg. 42]). We apply these observations as follows.
First of all, note that holimG

C X is the equalizer in SptG of the diagram

colim
NCoG

(
∏
c∈C(X(c)Bc)G)N

α //

β
// colim
NCoG

(
∏
σ : c→d(X(d)Bc)G)N .

Furthermore, let S be a G-set (but not necessarily a discrete G-set) and let U be
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an open normal subgroup of G. Then it is clear that (
⋃
NCoG

SN )U ⊂ SU . Since
U ∈ {N | N Co G}, SU ⊂

⋃
NCoG

SN , and, hence, SU ⊂ (
⋃
NCoG

SN )U . Thus, we can
conclude that

SU = (
⋃
NCoG

SN )U .

Similarly, if Y is a G-spectrum,

Y U ∼= (colim
NCoG

Y N )U .

Therefore,

(
∏
c∈C(X(c)Bc)G)U =

∏
c∈C(colim

NCoG
(X(c)Bc)N )U ∼= ∏

c∈C(X(c)Bc)U ,

and, similarly,

(
∏
σ : c→d(X(d)Bc)G)U ∼= ∏

σ : c→d(X(d)Bc)U .

The preceding two isomorphisms imply that holimG
C X is isomorphic to the equal-

izer in SptG of the diagram

colim
NCoG

(
∏
c∈C X(c)Bc)N

α //

β
// colim
NCoG

(
∏
σ : c→dX(d)Bc)N .

Thus, holimG
C X ∼= colimNCoG EN , where E is the equalizer in Spt of the diagram

colimNCoG(
∏
c∈C X(c)Bc

α′ //
β′

//
∏
σ : c→dX(d)Bc)N ,

where α′ and β′ are the maps in the equalizer diagram for holimC X.
Since filtered colimits and finite limits commute, E ∼= colimNCoG(E ′)N , where E ′

is the equalizer in Spt of the diagram

∏
c∈C X(c)Bc

α′ //
β′

//
∏
σ : c→dX(d)Bc .

Notice that E ′ = holimC X.
If U is an open normal subgroup of G, then (holimC X)U is a G/U -spectrum, so

that colimNCoG(holimC X)N is a discrete G-spectrum. Also, given Y ∈ SptG, there
is an isomorphism colimNCoG Y

N ∼= Y . Therefore, putting our various observations
together, we obtain that

holimG

C
X ∼= colim

NCoG
EN ∼= colim

NCoG
( colim
N ′CoG

(E ′)N ′)N

∼= colim
N ′CoG

(E ′)N ′ = colim
NCoG

(holim
C

X)N .

If X is a C-diagram of fibrant discrete G-spectra (that is, X(c) is fibrant in SptG,
for all c ∈ C), then holimG

C X is a fibrant discrete G-spectrum, by [9, Theorem 18.5.2
(2)], so that Theorem 2.3 gives the following result.

Corollary 2.4. If X is a C-diagram of fibrant discrete G-spectra, then the spectrum
colimNCoG(holimC X)N is a fibrant discrete G-spectrum.
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We conclude this section with some observations about Corollary 2.4.

Definition 2.5. If P is a C-diagram of presheaves of spectra on the site G-Setsdf ,
then there is a presheaf of spectra holimC P, defined by

(holim
C

P )(S) = holim
C

P (S),

for each S ∈ G-Setsdf .

Let X be a C-diagram in SptG. Then it is natural to form the presheaf of spectra
holimC HomG(−, X). Also, let

F = HomG(−, colim
NCoG

(holim
C

X)N ),

the canonical sheaf of spectra on the site G-Setsdf associated to the spectrum
colimNCoG(holimC X)N that is considered in Corollary 2.4.

The following lemma says that the presheaf holimC HomG(−, X) is actually a sheaf
of spectra, since it is isomorphic to F .

Lemma 2.6. If X is a C-diagram of discrete G-spectra, then the presheaves of spectra
F and holimC HomG(−, X) on the site G-Setsdf are isomorphic.

Proof. Let S be a finite discrete G-set: S can be identified with a disjoint union∐m
j=1G/Uj , where each Uj is an open subgroup of G. Notice that the collection

{N}NCoG of open normal subgroups of G is a cofinal subcollection of the collec-
tion {U}U<oG of open subgroups of G, so that, if Y is a G-spectrum, there is an
isomorphism colimNCoG Y

N ∼= colimU<oG Y
U of G-spectra. Hence,

F(S) ∼= ∏m
j=1(colim

NCoG
(holim

C
X)N )Uj

∼= ∏m
j=1(colim

U<oG
(holim

C
X)U )Uj

∼= ∏m
j=1(holim

C
X)Uj

∼= holim
C

HomG(S,X),

where the third isomorphism is due to the fact that Uj ∈ {U | U <o G} (as in the proof
of Theorem 2.3) and the last isomorphism applies Remark 2.2. This chain of isomor-
phisms shows that there is an isomorphism F(S) ∼= holimC HomG(S,X) that is nat-
ural for S ∈ G-Setsdf , so that F and holimC HomG(−, X) are isomorphic presheaves
of spectra.

Remark 2.7. Let X be a C-diagram of fibrant discrete G-spectra. Then the asser-
tion of Corollary 2.4 that colimNCoG(holimC X)N is a fibrant discrete G-spectrum
is equivalent to claiming that F is a globally fibrant presheaf of spectra (see [3, pg.
333]). Also, by Lemma 2.6, to show that F is globally fibrant, it suffices to show that
holimC HomG(−, X) is a globally fibrant presheaf. This can be done by adapting [12,
Proposition 3.3] and [3, Lemma 7.3], since HomG(−, X) is a C-diagram of globally
fibrant presheaves of spectra. This gives a somewhat different way of obtaining Corol-
lary 2.4.
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3. The explicit construction of a fibrant discrete G-spectrum

In this section, we use Corollary 2.4 to construct the fibrant object in SptG that
is our primary object of interest. We begin with several definitions that are standard
in the theory of discrete G-modules and discrete G-spectra.

Definition 3.1. If A is an abelian group with the discrete topology, let Mapc(G,A)
be the abelian group of continuous maps from G to A. If Z is a spectrum, then one can
also define the discreteG-spectrum Mapc(G,Z), where the l-simplices (Mapc(G,Z)k)l
of the kth simplicial set of the spectrum Mapc(G,Z) are given by Mapc(G, (Zk)l),
the set of continuous maps from G to (Zk)l. Here, (Zk)l is given the discrete
topology and the G-action on Mapc(G,Z) is induced on the level of sets by
(g · f)(g′) = f(g′g), for g, g′ ∈ G and f ∈ Mapc(G, (Zk)l), for each k, l > 0. This
action also makes Mapc(G,A) a discrete G-module.

Definition 3.2. Consider the functor

ΓG : SptG → SptG, X 7→ ΓG(X) = Mapc(G,X),

where ΓG(X) has the G-action given by Definition 3.1. As explained in [3, Definition
7.1], the functor ΓG forms a triple and there is a cosimplicial discrete G-spectrum
Γ•GX, where, for all n > 0,

(Γ•GX)n ∼= Mapc(G
n+1, X).

Here, the spectrum Mapc(Gn+1, X) is defined as in Definition 3.1, since the cartesian
product Gn+1 is a profinite group, and its discrete G-action is given by the G-action
on the constituent sets that is given by

(g · f)(g1, g2, g3, . . . , gn+1) = f(g1g, g2, g3, . . . , gn+1).

The next definition restates Definition 3.2 in the context of discrete G-modules.

Definition 3.3. Let DMod(G) be the category of discrete G-modules. Then, as in
Definition 3.2, there is a functor

ΓG : DMod(G) → DMod(G), M 7→ ΓG(M) = Mapc(G,M),

and, given a discrete G-module M , there is a cosimplicial discrete G-module Γ•GM.

Definition 3.4 ([3, Remark 7.5]). Given a discrete G-spectrum X, let

X̂ = colim
NCoG

(XN )f.

Notice that X̂ is a discrete G-spectrum, since functorial fibrant replacement in Spt
(see the introduction) implies that each (XN )f is a G/N -spectrum. Also, X̂ is fibrant
as a spectrum and there is a weak equivalence

ψ : X ∼= colim
NCoG

XN → colim
NCoG

(XN )f = X̂

that is G-equivariant.

We define some useful terminology. If X• is a cosimplicial object in SptG, then
X• is a cosimplicial discrete G-spectrum. If X• is a cosimplicial discrete G-spectrum
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such that Xn is a fibrant discrete G-spectrum, for all n > 0, then X• is a cosimplicial
fibrant discrete G-spectrum.

The following result defines the explicit globally fibrant object that is of particular
interest to us.

Theorem 3.5. Let G be a profinite group, and let H be a closed subgroup of G. If X
is a discrete G-spectrum, then the discrete H-spectrum

colim
KCoH

(holim
∆

Γ•GX̂)K

is fibrant in the model category of discrete H-spectra. In particular, the discrete G-
spectrum

colim
NCoG

(holim
∆

Γ•GX̂)N

is fibrant in SptG.

Proof. By Corollary 2.4, we only need to show that Γ•GX̂ is a cosimplicial fibrant
discrete H-spectrum. By [15, Proposition 1.3.4 (c)], there is a homeomorphism

h : H ×G/H → G

that is H-equivariant, where H acts on the source by acting only on the factor H
and G/H is the profinite space G/H ∼= limNCoGG/NH.

Given a spectrum Z and a profinite space W = limαWα, where each Wα is a finite
discrete space, as in Definition 3.1, we can form the spectrum Mapc(W,Z), where
(Mapc(W,Z)k)l = Mapc(W, (Zk)l), and there is an isomorphism

Mapc(W,Z) ∼= colim
α

∏
w∈Wα

Z.

Thus,
Mapc(G/H, X̂) ∼= colim

NCoG

∏
G/NH X̂. (1)

Since filtered colimits commute with finite limits,
∏
G/NH X̂

∼= ∏
G/NH colim

N ′CoG
(X̂)N

′ ∼= colim
N ′CoG

(
∏
G/NH X̂)N

′
,

and it follows that Mapc(G/H, X̂) is a discrete G-spectrum, with G acting only on
X̂. Therefore, by applying the homeomorphism h, there is an isomorphism

Mapc(G, X̂) ∼= Mapc(H,Mapc(G/H, X̂)) (2)

of discrete H-spectra.
Recall from [3, Corollary 3.8] that if Z is a fibrant spectrum, then Mapc(H,Z)

is a fibrant discrete H-spectrum. Also, since X̂ is a fibrant spectrum, the product∏
G/NH X̂ is also a fibrant spectrum, so that, by (1), Mapc(G/H, X̂) is fibrant in

Spt. Then, by applying these observations to (2), we obtain that Mapc(G, X̂) is a
fibrant discrete H-spectrum. Hence, Mapc(G, X̂) is a fibrant spectrum, by [3, Lemma
3.10], so that Mapc(G,Mapc(G, X̂)) is a fibrant discrete H-spectrum, by applying
the previous argument again. Thus, iteration of this argument shows that Γ•GX̂ is a
cosimplicial fibrant discrete H-spectrum.
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4. Completing the proof of the main result

In this section, we finish the proof of the main result. Also, we discuss several
consequences of having a concrete model for Xf,G, given a discrete G-spectrum X.

Definition 4.1. Let H∗
c (G;M) denote the continuous cohomology of G with coef-

ficients in the discrete G-module M . Then a profinite group G has finite virtual
cohomological dimension (or finite vcd) if there exists an open subgroup H of G and
a non-negative integer m, such that Hs

c (H;M) = 0, for all discrete H-modules M
and all s > m.

Many of the profinite groups that one works with, in practice, have finite vcd.
For example, if G is a compact p-adic analytic group, then G has finite vcd (see the
discussion in [3, pg. 330]).

Let X be a discrete G-spectrum. Then there is a G-equivariant monomorphism
i : X → Mapc(G,X) that is defined, on the level of sets, by i(x)(g) = g · x. Then i
induces a map X → Γ•GX of cosimplicial discrete G-spectra, where, here, X is the
constant diagram. Thus, the composition

X
ψ→ X̂

∼=→ lim
∆
X̂ → holim

∆
X̂ → holim

∆
Γ•GX̂

of canonical maps defines the G-equivariant map

ψ̂ : X → holim
∆

Γ•GX̂

(the canonical map lim∆ X̂ → holim∆ X̂ is defined in [9, Example 18.3.8 (2)]).
Note that there is a homotopy spectral sequence

Es,t2 = πs(πt(Γ•GX̂)) ⇒ πt−s(holim
∆

Γ•GX̂),

where E0,t
2
∼= πt(X) and Es,t2 = 0, when s > 0, by [3, Section 7]. Thus, the spectral

sequence collapses, so that the map ψ̂ is a weak equivalence.
Now let H be a closed subgroup of G. Then X is a discrete H-spectrum, so that

X ∼= colimKCoH X
K . Composing this isomorphism with the map colimKCoH(ψ̂)K

gives the H-equivariant map

Ψ: X → colim
KCoH

(holim
∆

Γ•GX̂)K .

Now we show that if G has finite vcd, then Ψ is a weak equivalence. As mentioned
in the introduction, the proof (below) closely follows the proof of [3, Theorem 7.4], so
that our proof will be somewhat abbreviated. Also, we should mention that the proof
of [3, Theorem 7.4] follows the arguments given in [12, proof of Proposition 3.3] and
[13, Proposition 3.20].

Theorem 4.2. Let G have finite vcd, let X be a discrete G-spectrum, and let H be
a closed subgroup of G. Then the map

Ψ: X → colim
KCoH

(holim
∆

Γ•GX̂)K

is a weak equivalence in the category of discrete H-spectra, such that the target is a
fibrant discrete H-spectrum.
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Proof. Because of the earlier Theorem 3.5, we only have to prove that Ψ is a weak
equivalence of spectra.

Since H is closed in G, H also has finite vcd. Hence, H has a collection {U} of
open normal subgroups such that: (a) {U} is a cofinal subcollection of {K}KCoH (so,
for example, H ∼= limU H/U), and (b) for all U , Hs

c (U ;M) = 0, for all s > m, where
m is some natural number that is independent of U , and for all discrete U -modules
M . Thus,

colim
KCoH

(holim
∆

Γ•GX̂)K ∼= colim
U

(holim
∆

Γ•GX̂)U , (3)

so that, to show that Ψ is a weak equivalence, it suffices to show that the map

Ψ̂: X → colim
U

(holim
∆

Γ•GX̂)U ∼= colim
U

holim
∆

(Γ•GX̂)U ,

induced by Ψ and (3), is a weak equivalence.
Notice that each U is a closed subgroup of G. Then, for each U , (Γ•GX̂)U is a

cosimplicial fibrant spectrum, so that there is a conditionally convergent homotopy
spectral sequence

Es,t2 (U) = πsπt((Γ•GX̂)U ) ⇒ πt−s(holim
∆

(Γ•GX̂)U ), (4)

with
Es,t2 (U) ∼= Hs

c (U ;πt(X))

(these assertions are verified in the proof of [3, Lemma 7.12]).
Since Es,∗2 (U) = 0 whenever s > m, the E2-terms E∗,∗2 (U) are uniformly bounded

on the right. Therefore, by [13, Proposition 3.3], taking a colimit over {U} of the
spectral sequences in (4) gives the spectral sequence

Es,t2 = colim
U

Hs
c (U ;πt(X)) ⇒ πt−s(colim

U
holim

∆
(Γ•GX̂)U ). (5)

Notice that
E∗,t2

∼= H∗
c (lim

U
U ;πt(X)) ∼= H∗

c ({e};πt(X)),

which is isomorphic to πt(X), concentrated in degree zero. Thus, spectral sequence
(5) collapses, so that, for all t, πt(colimU holim∆(Γ•GX̂)U ) ∼= πt(X), and, hence, Ψ̂ is
a weak equivalence.

Let X be a C-diagram of discrete G-spectra, where C is a small category. Then, by
Theorem 2.3, there is a canonical map

φ(X,G) : holimG

C
X ∼= colim

NCoG
(holim

C
X)N → holim

C
X

that is G-equivariant.

Corollary 4.3. Let G have finite vcd, let X be a discrete G-spectrum, and let H be
a closed subgroup of G. Then the H-equivariant map

φ(Γ•GX̂,H) : holimH

∆
Γ•GX̂ → holim

∆
Γ•GX̂

is a weak equivalence in Spt.
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Proof. Notice that ψ̂ = φ(Γ•GX̂,H) ◦Ψ. Then the desired conclusion follows from the
fact that ψ̂ and Ψ are weak equivalences, where the latter fact is from Theorem 4.2.

In the introduction, we pointed out that a weak equivalence rGH : Xf,G → Xf,H in
SptH always exists. The following result uses Theorem 4.2 to give a concrete model
for rGH .

Corollary 4.4. Let G have finite vcd, let X be a discrete G-spectrum, and let H be
a closed subgroup of G. Then there is a weak equivalence

rGH : colim
NCoG

(holim
∆

Γ•GX̂)N → colim
KCoH

(holim
∆

Γ•GX̂)K

in SptH , where the source of this map is a fibrant discrete G-spectrum and the target
is a fibrant discrete H-spectrum.

Proof. Let N be an open normal subgroup of G. Then N ∩H is an open normal
subgroup of H and, hence, there is a canonical map

(holim
∆

Γ•GX̂)N ↪→ (holim
∆

Γ•GX̂)N∩H → colim
KCoH

(holim
∆

Γ•GX̂)K .

These maps, as N varies, induce the desired map, which is easily seen to be H-
equivariant. In SptH , the weak equivalence X → colimKCoH(holim∆ Γ•GX̂)K is the
composition of the weak equivalenceX → colimNCoG(holim∆ Γ•GX̂)N and rGH , so that
rGH is a weak equivalence.

The following result is a special case of the fact that, if H is open in G, then a
fibrant discrete G-spectrum is also fibrant as a discrete H-spectrum (see [4, Lemma
3.1] and [10, Remark 6.26]).

Corollary 4.5. Let G have finite vcd and let X be a discrete G-spectrum. If H is an
open subgroup of G, then colimNCoG(holim∆(Γ•GX̂))N , a fibrant discrete G-spectrum,
is also a fibrant discrete H-spectrum.

Proof. By Theorem 4.2, the spectrum colimKCoH(holim∆(Γ•GX̂))K is a fibrant dis-
crete H-spectrum. Thus, to verify the corollary, it suffices to show that this fibrant
discrete H-spectrum is isomorphic to colimNCoG(holim∆(Γ•GX̂))N in SptH .

Note that if U is an open subgroup of H, then U is also an open subgroup of G,
so that

{H ∩ V | V <o G} = {U | U <o H}.
Also, the sets {H ∩ V | V <o G} and {N | N Co G} are cofinal subcollections of the
set {V | V <o G}, so that

colim
NCoG

(holim
∆

(Γ•GX̂))N ∼= colim
V <oG

(holim
∆

(Γ•GX̂))V

∼= colim
V <oG

(holim
∆

(Γ•GX̂))H∩V

= colim
U<oH

(holim
∆

(Γ•GX̂))U

∼= colim
KCoH

(holim
∆

(Γ•GX̂))K .
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5. Understanding XhH when H is closed, and not open, in G

In this section, we use the explicit fibrant model of Theorem 4.2 to improve (some-
what) our understanding of XhH , for X ∈ SptG, when G has finite vcd and H is a
closed non-open subgroup of G.

In the introduction, we pointed out that if L is any profinite group, Z ∈ SptL,
Z → Zf,L is a trivial cofibration, and Z → Zf,L is a weak equivalence, with Zf,L and
Zf,L fibrant, all in SptL, then ZhL = (Zf,L)L → (Zf,L)L is a weak equivalence, so
that we can identify ZhL and (Zf,L)L. For the upcoming discussion, we make this
identification explicit.

Definition 5.1. If L is a profinite group and Z is a discrete L-spectrum, we define
ZhL = (Zf,L)L, where Z → Zf,L is a weak equivalence and Zf,L is fibrant, all in SptL.

Theorem 5.2. If G has finite vcd, H is a closed subgroup of G, and X is a discrete
G-spectrum, then

XhH ∼= (holim
∆

(Γ•GX̂))H .

Proof. By Definition 5.1 and Theorem 4.2,

XhH = (colim
KCoH

(holim
∆

(Γ•GX̂))K)H .

As in the proof of Theorem 2.3, since H is an open normal subgroup of itself, this
expression simplifies to give the desired result.

Remark 5.3. Suppose that the hypotheses of Theorem 5.2 are satisfied. In [3, Remark
7.13], by using a different argument, we noted that there are certain weak equivalences
that permit (holim∆(Γ•GX̂))H to be taken as a definition of XhH . (To be precise, [3,
Remark 7.13] uses “Xf,G” instead of X̂ in the expression (holim∆(Γ•GX̂))H , but it is
not hard to see that the remark is still valid with X̂ in place of “Xf,G.”) However,
Theorem 5.2 puts this definition on firmer ground by showing that it comes from
taking the H-fixed points of a fibrant replacement for X.

For this paragraph and the next, let X be a discrete G-spectrum and let H be a
closed proper normal subgroup of G, such that H 6= {e}. Then G/H is a profinite
group and the H-fixed point spectrum XH is a G/H-spectrum. However, as noted
in [4, Sections 1 and 3], the corresponding situation is more complicated with H-
homotopy fixed points. It is natural to expect XhH to be a G/H-spectrum, but,
given an arbitrary fibrant replacement Xf,H (as guaranteed by the model category
axioms), in general, there is no reason to assume that Xf,H carries a G-action, so
that (Xf,H)H need not be a G/H-spectrum. For example, if H has finite vcd, then
Xf,H can be taken to be colimKCoH(holim∆(Γ•HX̂))K , a discrete H-spectrum that is
a G-spectrum only when additional hypotheses are satisfied.

If H is open in G, then, as recalled at the end of the preceding section, Xf,G

is a fibrant discrete H-spectrum, so that XhH = (Xf,G)H is easily seen to be a
G/H-spectrum. However, if H is not open in G, then the situation is much more
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complicated: it is natural to wonder if the map

(rGH)H : (Xf,G)H → (Xf,H)H = XhH

is a weak equivalence, but the evidence indicates that it does not have to be (even
when G has finite vcd), since, for example, Xf,G is not known to be fibrant in SptH .
(There is no example known of (rGH)H failing to be a weak equivalence, but there are
several arguments indicating that there should be such examples; see [4, Sections 1,
3, and 4] and [1, Sections 3.5 and 3.6] for more discussion on this issue.) Thus, the
theory of homotopy fixed points is faced with the undesirable fact that, in general,
when H is not open in G, it is not known how to show that XhH is a G/H-spectrum.
However, Theorem 5.2 immediately implies the following result, for the case when G
has finite vcd.

Corollary 5.4. If G has finite vcd, with H a closed normal subgroup of G, and X is
a discrete G-spectrum, then XhH , when taken to be

XhH ∼= (holim
∆

(Γ•GX̂))H ,

is a G/H-spectrum.

In the context of Corollary 5.4, it is natural to inquire about the G/H-homotopy
fixed points of XhH . But there are non-trivial issues involved here; we refer the reader
to [4] for more on this topic.
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Norm. Sup. (4) 18 (1985), 437–552.

[15] J.S. Wilson, Profinite groups, The Clarendon Press, Oxford University Press,
New York, 1998.

Daniel G. Davis dgdavis@louisiana.edu

University of Louisiana, Mathematics Department, 1403 Johnston Street, Maxim
Doucet Hall, Room 217, Lafayette, LA, 70504, USA


